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Recent history

In 1997 Graver and Watkins showed how edge-transitive maps M
can be partitioned into 14 classes T . These are distinguished by
the isomorphism class N (T ) of the one-edge map M/AutM.

In 2001 Širáň, Tucker and Watkins showed that for each n ≥ 11
with n ≡ 3 or 11 mod (12), there are finite, orientable,
edge-transitive maps M in each class T with AutM∼= Sn.

In 2011 Orbanič, Pellicer, Pisanski and Tucker classified the
edge-transitive maps of low genus, together with those on E2.

Karabáš and Nedela (work in progress) have introduced a similar
partition of oriented edge-transitive maps, based on M/Aut+M.
This is very convenient for computational purposes, and in some
cases allows them to extend the classifications to higher genus.

I shall consider what groups AutM of symmetries, finite or
infinite, the discrete objectsM in these various classes T can have.
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In 2011 Orbanič, Pellicer, Pisanski and Tucker classified the
edge-transitive maps of low genus, together with those on E2.
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Maps

A map M is an embedding of a graph G in a surface S, such that
the faces (connected components of S \ G) are simply connected,
i.e. homeomorphic to an open disc. The regular (or Platonic) solids
are typical examples.

I shall assume that S and G are connected; S may be orientable or
not, compact or not, with or without boundary (generally without).

The graph G may have multiple edges and loops (though not
usually in the most symmetric cases which I will concentrate on).

An automorphism of M is an automorphism of G which extends to
a self-homeomorphism of S. These form a group AutM.

Problem Which groups arise as the automorphism groups of highly
symmetric maps?
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Maps and permutations

v
e

f

φ φr0

φr1

φr2 φr0r2

The monodromy group

G = 〈r0, r1, r2 | r 2
i = (r0r2)2 = 1, . . .〉

of a map M acts transitively on the set Φ of flags φ = (v , e, f ) of
M, with ri changing the i-dimensional component of each φ while
preserving the other two. Vertices, edges and faces correspond to
orbits of 〈r1, r2〉, 〈r0, r2〉 (∼= V4) and 〈r0, r1〉 on Φ.

The automorphism group A = AutM of M is the centraliser of G
in the symmetric group SymΦ, acting semiregularly on Φ.
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Map subgroups
Maps M correspond to transitive permutation representations of

Γ := 〈R0,R1,R2 | R2
i = (R0R2)2 = 1〉,

via epimorphisms

Γ→ G , Ri 7→ ri (i = 0, 1, 2),

and hence to conjugacy classes of map subgroups

M = Γφ = {γ ∈ Γ | φγ = φ} ≤ Γ (φ ∈ Φ).

Easy arguments show that

1. AutM∼= NΓ(M)/M,

2. AutM acts transitively on Φ if and only if M is normal in Γ,
in which case

AutM∼= Γ/M ∼= G ,

all acting regularly on Φ. Such maps M are called regular.
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Regular maps and their groups
Regular maps are the most symmetric, the most studied, and the
most important of all maps. For example, every map is the
quotient of a regular map by some group of automorphisms.

For a given group G , the regular maps M with AutM∼= G
correspond to the normal subgroups M of Γ with Γ/M ∼= G . If G
is finite, the number of them is

|Epi (Γ,G )|/|AutG |.

Problem Which groups G are automorphism groups of regular
maps? Equivalently, which groups G are quotients of

Γ = 〈R0,R1,R2 | R2
i = (R0R2)2 = 1〉 ?

Note that
Γ = 〈R0,R2〉 ∗ 〈R1〉 ∼= V4 ∗ C2,

the free product of a Klein four-group and a cyclic group of order 2.
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Edge-transitive maps

Much is known about automorphism groups of regular maps (more
on that later), but what about a wider set of highly symmetric
maps, namely edge-transitive maps? The following is easy to prove:

Lemma
AutM acts transitively on the edges of M if and only if Γ = NE ,
where N := NΓ(M) and E := 〈R0,R2〉 ∼= V4.

Since |E | = 4 this implies that |Γ : N| ≤ 4. By inspection there are
just 14 conjugacy classes of subgroups N ≤ Γ satisfying Γ = NE .
They correspond to the 14 possible maps M/AutM with one
edge, and to the 14 classes of edge-transitive maps M described
by Graver and Watkins in 1997 (Mem. Amer. Math. Soc. 601).

Example Class 1 consists of the regular maps, those with N = Γ.
These include the Platonic solids, the antipodal quotients of the
cube, octahedron, dodecahedron and icosahedron, and many more.



1 VFP

2 FP 2∗ VP 2P VF

2ex VFP 2∗ex VFP 2Pex VFP

3

4 FP 4∗ VP 4P VF

5 FP 5∗ VP 5P VF

= closed disc

= sphere

= Möbius band

= real projective plane

Basic maps N (T ) =M/AutM for the edge-transitive classes T .



Example: the cube

The cube, as a map M on the sphere, has

AutM∼= S4 × C2.

It is regular, hence vertex-, edge-, and face-transitive.



F

M

F

N (1)

The cube M satisfies

M/AutM∼= F ∼= N (1),

where F is a fundamental region for AutM, so M is in class 1.



Example: the cuboctahedron

The cuboctahedron, as a map M on the sphere, also has

AutM∼= S4 × C2.

It is edge- and vertex-transitive, but not face-transitive.



M
F

F

N (2∗)

The cuboctahedron M satisfies

M/AutM∼= F ∼= N (2∗),

where F is a fundamental region for AutM, so M is in class 2∗.



Regular maps and Mazurov’s question

In 1980 Mazurov asked in the Kourovka Notebook (Problem 7.30):
which finite simple groups are generated by three involutions, two
of them commuting, i.e. which of them are quotients of Γ?

It is now known from work of Nuzhin and others that all
non-abelian finite simple groups have such generators, except:

I L3(q) (:= PSL3(q)) and U3(q) for all prime powers q,

I L4(q) and U4(q) for q = 2e ,

I A6, A7, M11, M22, M23 and McL.

Note that these exceptions include L2(7) ∼= L3(2), L2(9) ∼= A6 and
A8
∼= L4(2). (See surveys by Mazurov or Širáň for references.)

Thus, apart from these exceptions, every non-abelian finite simple
group is the automorphism group of a regular map. Indeed, for
some groups one can count, and even classify, the associated maps.



Example 1: G = A5

Look for epimorphisms Γ = V4 ∗ C2 → G . The factors V4 and C2

must be embedded in G . There are 15 involutions in G , each
commuting with two others, so there are 30 embeddings V4 → G .

There are three involutions in any subgroup V ∼= V4, leaving 12
involutions outside it.

The only maximal subgroup containing V is its normaliser, a
subgroup A ∼= A4, which contains no further involutions.

Hence any of the remaining 12 involutions, together with V ,
generates G , so there are 30.12 = 360 epimorphisms Γ→ G .

AutG = S5 permutes these epimorphisms regularly, so there are
360/5! = 3 normal subgroups N / Γ with Γ/N ∼= G .

Thus there are three regular maps M with AutM∼= A5.

They are the antipodal quotients of the icosahedron, dodecahedron
and great dodecahedron, non-orientable maps of genus 1, 1 and 5.
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Example 2: G = L3(2) (∼= L2(7))

There are two conjugacy classes of seven subgroups V ∼= V4 in G ,
each fixing three points or one; they are transposed by OutG .

Hence there are 14.3! = 84 embeddings V4 → G . Without loss we
may assume that the image V fixes three points, forming a line L.

There are 21 involutions in G , leaving 18 outside V .

The stabiliser of a point p ∈ L is a subgroup Gp
∼= S4 containing

V ; it contains 9 involutions, 6 of them outside V .

If p and q are distinct points in L then Gp ∩ Gq = V , so the three
subgroups Gp (p ∈ L) contain all 18 involutions outside V .

Thus no involution, together with V , generates G , so there are no
epimorphisms Γ→ G .

Hence there are no regular maps M with AutM∼= L3(2).



Orientably regular chiral maps
Class 2Pex (blame Jack Graver and Mark Watkins for the
notation!) consists of those maps for which N is the even subgroup

Γ+ = 〈X = R1R2,Y = R2R0 | Y 2 = 1〉 ∼= C∞ ∗ C2

of index 2 in Γ, consisting of the words of even length in the Ri .

These maps M are orientable and without boundary.

They are orientably regular, meaning that AutM is transitive on
directed edges, and chiral, meaning that M is not isomorphic to
its mirror image M, so they occur in chiral pairs.

Example In this chiral pair of maps, opposite sides of the outer
squares are identified to form a torus, with AutM∼= AGL1(5).



Automorphism groups of orientably regular chiral maps

The automorphism groups G = AutM of the maps M in class
2Pex are the quotients of Γ+ = 〈X ,Y | Y 2 = 1〉 by subgroups M
which are normal in Γ+ but not in Γ. This is equivalent to

1. G = 〈x , y | y 2 = 1, . . .〉, and

2. no automorphism of G inverts x and fixes y .

It is known that every finite simple group has a generating pair
satisfying (1), but what about (2)? An observation of Singerman,
building on work of Macbeath, shows that:

Proposition

Every generating pair for L2(q) are simultaneously inverted by
some automorphism.

Thus no orientably regular chiral map M has AutM∼= L2(q).

Are any other non-abelian finite simple groups excluded?



Theorem
There is a map M∈ 2Pex (i.e. orientably regular and chiral) with
AutM∼= An if and only if n ≥ 8.

Proof We need to determine when An = 〈x , y〉 with y 2 = 1 and
no automorphism inverting x and y .

⇒ If n ≤ 6 then An
∼= L2(q) for some q, so Singerman’s

observation applies. If n = 7 then any pair generating a transitive
group are either inverted or generate a proper subgroup L3(2).

⇐ For n ≥ 8 we give explicit generators x and y , using:

Theorem (Jordan, 1871–3; Wielandt, FPG, Theorem 13.9)

If G is a primitive group of degree n containing a cycle of (prime)
length m ≤ n − 3 then G ≥ An (so G = An or Sn).

[By using the classification of finite simple groups, the primality
condition can be removed (J, 2014).]



Proof
For even n ≥ 8 let

x = (2, 3, . . . , n) and y = (1, 2)(3, 4)

in An, so G := 〈x , y〉 is 2-transitive and hence primitive. Now
[y , x ] = (1, 2, 3, 5, 4), so by Jordan’s Theorem G = An.

1
2

3
4

5

6

n

AutAn = Sn, acting by conjugation, since n 6= 6; no permutation
inverts x and y , so there are no forbidden automorphisms.
(The map M has type {n − 1, n − 1} and genus g ∼ n!/8.)



For odd n ≥ 9, let

x = (1, 2, . . . , n) and y = (1, 2)(3, 6),

An easy argument with congruences shows that G is primitive.
Now [y , x2] = (1, 2)(3, 6, 4)(5, 8), so [y , x2]2 = (3, 4, 6) and hence
G = An by Jordan’s Theorem.

1

2
3

4

5

6 n

As before, asymmetry of the diagram implies that no permutation
in Sn inverts x and y , so there are no forbidden automorphisms. �



Back to edge-transitive maps

The 14 Graver-Watkins classes T correspond to the 14 conjugacy
classes of subgroups N(T ) ≤ Γ ∼= V4 ∗ C2.

The maps M in each class T are regular covers, by groups
G = AutM, of the corresponding basic maps N (T ).

The outer automorphism group

Out Γ ∼= AutV4
∼= S3

of Γ corresponds to Wilson’s group 〈D,P〉 of map operations,
where D = duality and P = Petrie duality.

It has six orbits on these conjugacy classes, and also on the basic
maps, so it is sufficient to consider one representative of each orbit.



← D → ← P →

The six rows are the orbits

of Out Γ = 〈D,P〉 ∼= S3 on

the 14 basic maps N (T ).

1

2 2∗ 2P

2ex 2∗ex 2Pex

3

4 4∗ 4P

5 5∗ 5P



Back to edge-transitive maps

The 14 GW-classes T correspond to the 14 conjugacy classes of
subgroups N(T ) ≤ Γ ∼= V4 ∗ C2. The outer automorphism group

Out Γ ∼= AutV4
∼= S3

of Γ, corresponding to Wilson’s group 〈D,P〉 of map operations,
has six orbits on these conjugacy classes, and it is sufficient to
consider one representative of each orbit. We can take

I N(1) = Γ ∼= V4 ∗ C2 (regular maps, already considered);

I N(2Pex) = Γ+ ∼= C∞ ∗ C2 (chiral maps, already considered);

I N(2) ∼= C2 ∗ C2 ∗ C2;

I N(3) ∼= C2 ∗ C2 ∗ C2 ∗ C2 (just-edge-transitive maps);

I N(4) ∼= C∞ ∗ C2 ∗ C2;

I N(5) ∼= C∞ ∗ C∞ ∼= F2.



Realising automorphism groups

To realise a given group G as AutM for a map M in a class T ,
we need G ∼= N(T )/M, where N(T ) = NΓ(M), that is, M is
normal in N(T ) but not normal in any N(T ′) > N(T ).

This means that G must not have any ‘forbidden automorphisms’
arising from conjugation in N(T ′). These are as follows (with
x , y , z , . . . generating successive cyclic factors of N(T )):

I N(1) = Γ ∼= V4 ∗ C2: no forbidden automorphisms;

I N(2Pex) = Γ+ ∼= C∞ ∗ C2: x 7→ x−1, y 7→ y ;

I N(2) ∼= C2 ∗ C2 ∗ C2: x ↔ y , z 7→ z ;

I N(3) ∼= C2 ∗ C2 ∗ C2 ∗ C2: all three double transpositions;

I N(4) ∼= C∞ ∗ C2 ∗ C2: x 7→ x−1, y ↔ z ;

I N(5) ∼= C∞ ∗ C∞: transposing and/or inverting x and y .



Reducing the problem

One can choose epimorphisms onto N(1) = Γ ∼= V4 ∗ C2 from

N(2) ∼= C2 ∗C2 ∗C2, N(3) ∼= C2 ∗C2 ∗C2 ∗C2, N(4) ∼= C∞ ∗C2 ∗C2,

which ensure (by composition) that if G is a quotient of Γ then it
is a quotient, without forbidden automorphisms, of these three
groups, so G is also realised for these three classes.

Similarly, an epimorphism from N(5) ∼= C∞ ∗ C∞ onto
N(2Pex) = Γ+ ∼= C∞ ∗ C2 ensures that any G realised for class
2Pex is also realised for class 5.

This focuses attention on classes 1 and 2Pex (the regular and
chiral maps, those of most interest combinatorially).

However, some groups G can be realised for other classes but not
for 1 or 2Pex, so these other four classes cannot be ignored.
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Realising finite simple groups

It is interesting to ask which non-abelian finite simple groups G
can arise for each class. Ignoring forbidden automorphisms, we
know that every such G is a quotient of each N(T ), except:

I L3(q), U3(q), L4(2e), U4(2e), A6, A7, M11, M22, M23, McL
for N(1) = Γ ∼= V4 ∗ C2 (Nuzhin et al.);

I U3(3) for N(2) ∼= C2 ∗ C2 ∗ C2 (Malle, Saxl and Weigel).

Problem Which G are quotients with no forbidden automorphisms?

For example, L2(q) cannot be realised for classes 2Pex or 5, where
N(T ) ∼= C∞ ∗ C2 or C∞ ∗ C∞, since a forbidden automorphism
always appears, inverting both generators.



An revisited
Using the reduction, and treating small cases individually, gives:

Theorem
An
∼= AutM for some map M in class T if and only if:

I T = 1 and n = 5 or n ≥ 9 (Nuzhin);

I T = 2Pex and n ≥ 8;

I T = 2 and n ≥ 5;

I T = 3 and n ≥ 5;

I T = 4 and n ≥ 5;

I T = 5 and n ≥ 7.

Similar methods can be applied to the symmetric groups::

Theorem

I Classes T = 1, 2, 3 and 4 realise Sn if and only if n ≥ 3.

I Classes T = 2α ex and 5 realise Sn if and only if n ≥ 6.
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Other finite simple groups

Similar methods also give:

Theorem

I if q 6= 7 or 9 then L2(q) is realised by each class T = 1
(Nuzhin), 2, 3 or 4;

I no group L2(q) is realised by T = 2Pex or 5.

I The Suzuki groups Sz(2e) and ’small’ Ree groups R(3e) are
realised by all classes T .

Problem Which other non-abelian finite simple groups are realised
by the various classes T 6= 1?



A conjecture

It seems likely that, for each of the 14 classes T , ’almost all’
non-abelian finite simple groups G are realised as automorphism
groups. Indeed, if G is ’large enough’, then randomly chosen
elements of suitable orders will generate G as a quotient of N(T ),
without forbidden automorphisms, with probability close to 1.

Example If G is O’Nan’s sporadic simple group O’N, of order

460, 815, 505, 920 = 29.34.5.73.11.19.31,

then a randomly-chosen pair x , y ∈ G of orders 31 and 2 generate
G as a quotient of N(2Pex) = Γ+ ∼= C∞ ∗ C2, without forbidden
automorphisms, with probability greater than 0.98. (Elements of
order 31 are inverted by outer automorphisms.)

Such pairs correspond to about 150, 000 non-isomorphic 31-valent
orientably regular chiral maps with automorphism group G ∼= O ′N.



Uncountably many automorphism groups

Infinite edge-transitive maps and their automorphism groups are
also of interest, and the same methods apply to them.

Theorem
Each class T realises 2ℵ0 non-isomorphic automorphism groups.

Outline proof In 1937 Bernhard Neumann proved that there are
uncountably many 2-generator groups G .

He used epimorphisms ∆ := C∞ ∗ C3 → An to construct, for any
set S of integers n ≡ 1 mod (4), a quotient G of ∆ with a normal
subgroup N ∼= An in G if and only if n ∈ S .

One can apply a similar method to our free products N(T ), using
epimorphisms N(T )→ An without forbidden automorphisms. �

Corollary

Each edge-transitive class T contains 2ℵ0 non-isomorphic maps.
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Embedding countable groups

Theorem
If C is any countable group, then each class T contains a map M
with C isomorphic to a subgroup of AutM.

Proof Schupp (1976) proved that if |A| ≥ 3 and |B| ≥ 2, than
each countable group C can be embedded in a simple quotient S
of A ∗ B. Apply this to our groups N(T ) = A ∗ B to get

M1 / N(T ) with C ≤ S := N(T )/M1, S simple.

Now choose

M2 / N(T ) with N(T )/M2
∼= An 6∼= S ,

where An has no extra automorphisms. If M := M1 ∩M2 then

C ≤ G := N(T )/M ∼= N(T )/M1 × N(T )/M2
∼= S × An.

Both S and An are characteristic subgroups of G , so any forbidden
automorphism of G would induce one on An, a contradiction.
Hence C ≤ AutM whereM, corresponding to M, is in class T . �



Intermediate growth

If a group G has a finite generating set X , let γX (n) be the
number of g ∈ G of length at most n in the generators in X . The
asymptotic behaviour of γX (n) as n→∞ is independent of X .

Example Nilpotent-by-finite groups have polynomial growth,
whereas non-elementary Fuchsian groups have exponential growth.

In 1980 Grigorchuk constructed a group G (followed in 1983 by
uncountably many examples) with intermediate growth, strictly
between polynomial and exponential. Each is generated by four
involutions a, b, c , d satisfying abc = 1, so it is a quotient of Γ,
and hence there are 2ℵ0 regular maps with intermediate growth, in
terms of the number of vertices, edges or faces within a given
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Intermediate growth is inherited by subgroups of finite index, so
the same applies to the groups N(T ) ≤ Γ and the associated maps.
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I (with Tom Tucker) Which groups are automorphism groups of
maps with boundary in the various edge-transitive classes T ?

Theorem
Of the 14 edge-transitive classes,

I 2ex, 2∗ex, 2Pex, 5, 5∗ and 5P contain no such maps,
I 1, 2, 2∗ and 2P realise only dihedral automorphism groups,
I 3, 4, 4∗ and 4P realise ’many’ automorphism groups.

What does ’many’ mean here?

I Which groups are automorphism groups of orientable maps in
the various edge-transitive classes T ?

Example There is a regular map M with AutM∼= S5 (N12.3
in Marston’s list), but there is no orientable regular map.
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