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Circulants

A graph on n vertices is called a circulant if it has an
automorphism that is an n-cycle.

Equivalently, it is a Cayley graph of a cyclic group

The only cubic arc-transitive circulants are K4 and K3,3.
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k-circulants

A permutation is called semiregular if all of its cycles have the
same length.

We call a graph a k-circulant if it has a semiregular automorphism
with k cycles.

bicirculants, tricirculants, tetracirculants, . . .



Polycirculant Conjecture

Polycirculant Conjecture: Every vertex-transitive digraph has a
nontrivial semiregular automorphism.

Proved for cubic graphs by Marušič and Scapellato (1998).



Cubic arc-transitive bicirculants
Frucht-Graver-Watkins, Marušič, Marušič-Pisanski

A cubic arc-transitive bicirculant is one of:

• K4, K3,3;

• one of seven arc-transitive Generalised Petersen graphs;

• Heawood graph

• Cay(D2n, {b, ba, bar+1}), with n ≥ 11 odd and
r2 + r + 1 ≡ 0 (mod n).



Cubic arc-transitive tricirculants, . . .

Kovács-Kutnar-Marušič-Wilson (2012): The only cubic
arc-transitive tricirculants are K3,3, Pappus graph, Tutte-Coxeter
graph and F054A.

Frelih-Kutnar (2013): A cubic arc-transitive tetracirculant is one of
17 sporadic examples or in one of two infinite families.

Frelih-Kutnar (2013): A cubic arc-transitive pentacirculant is either
F050A or F150A.
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Cubic arc-transitive k-circulants

For which values of k are there finitely/infinitely many cubic
arc-transitive k-circulants?



Even k

Theorem: For every even positive integer k , there are infinitely
many cubic arc-transitive k-circulants.



Construction

• k = 2m and p a prime with p ≡ 1 (mod 3) and p - m
(infinitely many such p).

• G =

〈
u, v ,w , x | um, vm,wp, x2, [u, v ], [u,w ],

| [v ,w ], uxu, v xv ,w xw

〉
a generalised dihedral group on Z2

m × Zp.

• S = {s, sy , sy2}, R = 〈S〉 and Γ = Cay(R, S).

• R = G if (3,m) = 1 and has index 3 otherwise.

• C =

{
〈u3w〉 if 3 divides m
〈uw〉 otherwise

C is semiregular and has k orbits on the vertices of Γ.



Odd k

Theorem: If k is a square-free positive integer coprime to 6 and Γ
is a cubic arc-transitive k-circulant then |VΓ| 6 6k2.

Theorem: For every odd positive integer k there is a cubic
arc-transitive k-circulant with |VΓ| = 6k2.

Take a particular Cayley graph for Z2
k o Sym(3).
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Some key observations/lemmas

Let Γ be a cubic (t + 1)-arc-regular graph with a semiregular cyclic
group of automorphisms C with k orbits for (6, k) = 1

• |G | = |Gv ||C |k = 3.2t |C |k .

• Each Sylow p-subgroup for each odd p has an index p cyclic
subgroup.

• C has even order and its unique involution flips an edge.
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Soluble case

• Each Sylow p-subgroup for p ≥ 5 has order at most p2 and p
divides k.

• t 6 1, so every Sylow p-subgroup is metacyclic.

Chillag-Soon: G = N oA where A is a Hall {2, 3}-subgroup and N
has a normal series

1 = N0 C N1 C · · · C Nn = N

where Ni+1/Ni is isomorphic to a Sylow pi -subgroup of G .

• Each Ni is semiregular and ΓNi
is a k ′-circulant with k ′

dividing k .
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Insoluble case

Let S be the insoluble radical of G . Then

• S is semiregular.

• |C ∩ S | is odd and |G/S : CS/S |2|S |2 = 2t

• G/S is almost simple with a cyclic subgroup of even order and
index dividing 3.2tk.

• G (∞) is quasisimple, and is either semiregular or locally
transitive.
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