Cubic arc-transitive k-circulants

Michael Giudici

Centre for the Mathematics of Symmetry and Computation

Symmetries and Covers of Discrete Objects

Queenstown, February 2016

joint work with Istvan Kovács, Cai Heng Li and Gabriel Verret

Circulants

A graph on n vertices is called a circulant if it has an automorphism that is an n-cycle.

Equivalently, it is a Cayley graph of a cyclic group

Circulants

A graph on n vertices is called a circulant if it has an automorphism that is an n-cycle.

Equivalently, it is a Cayley graph of a cyclic group

The only cubic arc-transitive circulants are K_4 and $K_{3,3}$.

k-circulants

A permutation is called semiregular if all of its cycles have the same length.

We call a graph a k-circulant if it has a semiregular automorphism with k cycles.

bicirculants, tricirculants, tetracirculants, ...

Polycirculant Conjecture

Polycirculant Conjecture: Every vertex-transitive digraph has a nontrivial semiregular automorphism.

Proved for cubic graphs by Marušič and Scapellato (1998).

Cubic arc-transitive bicirculants

Frucht-Graver-Watkins, Marušič, Marušič-Pisanski

A cubic arc-transitive bicirculant is one of:

- K₄, K_{3,3};
- one of seven arc-transitive Generalised Petersen graphs;
- Heawood graph
- $Cay(D_{2n}, \{b, ba, ba^{r+1}\})$, with $n \ge 11$ odd and $r^2 + r + 1 \equiv 0 \pmod{n}$.

Kovács-Kutnar-Marušič-Wilson (2012): The only cubic arc-transitive tricirculants are $K_{3,3}$, Pappus graph, Tutte-Coxeter graph and F054A.

Kovács-Kutnar-Marušič-Wilson (2012): The only cubic arc-transitive tricirculants are $K_{3,3}$, Pappus graph, Tutte-Coxeter graph and F054A.

Frelih-Kutnar (2013): A cubic arc-transitive tetracirculant is one of 17 sporadic examples or in one of two infinite families.

Kovács-Kutnar-Marušič-Wilson (2012): The only cubic arc-transitive tricirculants are $K_{3,3}$, Pappus graph, Tutte-Coxeter graph and F054A.

Frelih-Kutnar (2013): A cubic arc-transitive tetracirculant is one of 17 sporadic examples or in one of two infinite families.

Frelih-Kutnar (2013): A cubic arc-transitive pentacirculant is either F050A or F150A.

Cubic arc-transitive k-circulants

For which values of k are there finitely/infinitely many cubic arc-transitive k-circulants?

Theorem: For every even positive integer k, there are infinitely many cubic arc-transitive k-circulants.

Construction

 k = 2m and p a prime with p ≡ 1 (mod 3) and p ∤ m (infinitely many such p).

•
$$G = \left\langle \begin{array}{cc} u, v, w, x & \mid u^m, v^m, w^p, x^2, [u, v], [u, w], \\ & \mid [v, w], u^x u, v^x v, w^x w \end{array} \right\rangle$$

a generalised dihedral group on $\mathbb{Z}_m^2 \times \mathbb{Z}_p$.

•
$$S = \{s, s^y, s^{y^2}\}, R = \langle S \rangle$$
 and $\Gamma = \operatorname{Cay}(R, S)$.

•
$$R = G$$
 if $(3, m) = 1$ and has index 3 otherwise.

•
$$C = \begin{cases} \langle u^3 w \rangle & \text{if 3 divides } m \\ \langle uw \rangle & \text{otherwise} \end{cases}$$

C is semiregular and has k orbits on the vertices of Γ .

Theorem: If k is a square-free positive integer coprime to 6 and Γ is a cubic arc-transitive k-circulant then $|V\Gamma| \leq 6k^2$.

- Theorem: If k is a square-free positive integer coprime to 6 and Γ is a cubic arc-transitive k-circulant then $|V\Gamma| \leq 6k^2$.
- Theorem: For every odd positive integer k there is a cubic arc-transitive k-circulant with $|V\Gamma| = 6k^2$.

Take a particular Cayley graph for $\mathbb{Z}_k^2 \rtimes \text{Sym}(3)$.

Some key observations/lemmas

Let Γ be a cubic (t + 1)-arc-regular graph with a semiregular cyclic group of automorphisms C with k orbits for (6, k) = 1

•
$$|G| = |G_v||C|k = 3.2^t|C|k$$
.

Some key observations/lemmas

Let Γ be a cubic (t + 1)-arc-regular graph with a semiregular cyclic group of automorphisms C with k orbits for (6, k) = 1

•
$$|G| = |G_{v}||C|k = 3.2^{t}|C|k.$$

• Each Sylow *p*-subgroup for each odd *p* has an index *p* cyclic subgroup.

Some key observations/lemmas

Let Γ be a cubic (t + 1)-arc-regular graph with a semiregular cyclic group of automorphisms C with k orbits for (6, k) = 1

•
$$|G| = |G_v||C|k = 3.2^t|C|k.$$

- Each Sylow *p*-subgroup for each odd *p* has an index *p* cyclic subgroup.
- C has even order and its unique involution flips an edge.

Soluble case

- Each Sylow p-subgroup for p ≥ 5 has order at most p² and p divides k.
- $t \leq 1$, so every Sylow *p*-subgroup is metacyclic.

Soluble case

- Each Sylow p-subgroup for p ≥ 5 has order at most p² and p divides k.
- $t \leq 1$, so every Sylow *p*-subgroup is metacyclic.

Chillag-Soon: $G = N \rtimes A$ where A is a Hall {2,3}-subgroup and N has a normal series

$$1 = N_0 \lhd N_1 \lhd \cdots \lhd N_n = N$$

where N_{i+1}/N_i is isomorphic to a Sylow p_i -subgroup of G.

Soluble case

- Each Sylow p-subgroup for p ≥ 5 has order at most p² and p divides k.
- $t \leq 1$, so every Sylow *p*-subgroup is metacyclic.

Chillag-Soon: $G = N \rtimes A$ where A is a Hall {2,3}-subgroup and N has a normal series

$$1 = N_0 \triangleleft N_1 \triangleleft \cdots \triangleleft N_n = N$$

where N_{i+1}/N_i is isomorphic to a Sylow p_i -subgroup of G.

Each N_i is semiregular and Γ_{Ni} is a k'-circulant with k' dividing k.

Let S be the insoluble radical of G. Then

• S is semiregular.

Let S be the insoluble radical of G. Then

- S is semiregular.
- $|C \cap S|$ is odd and $|G/S : CS/S|_2|S|_2 = 2^t$

Let S be the insoluble radical of G. Then

- S is semiregular.
- $|C \cap S|$ is odd and $|G/S : CS/S|_2|S|_2 = 2^t$
- *G*/*S* is almost simple with a cyclic subgroup of even order and index dividing $3.2^t k$.

Let S be the insoluble radical of G. Then

- S is semiregular.
- $|C \cap S|$ is odd and $|G/S : CS/S|_2|S|_2 = 2^t$
- *G*/*S* is almost simple with a cyclic subgroup of even order and index dividing $3.2^t k$.
- $G^{(\infty)}$ is quasisimple, and is either semiregular or locally transitive.