Notations
 Cayley and Coset digraphs
 Motivation
 Main Result
 The proof
 Further work

 Automorphisms of Cayley Digraphs on 2-genetic *p*-groups
 2-genetic *p*-groups
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <td

Yan-Quan Feng

Beijing Jiaotong University

Symmetries and Covers of Discrete Objects Queenstown, New Zealand

Feb. 18, 2016

Notations	Cayley and Coset digraphs	Motivation	Main Result	The proof	Further work
Outline					

2 Cayley and Coset digraphs

3 Motivation

Notations	Cayley and Coset digraphs	Motivation	Main Result	The proof	Further work
Automo	rphisms of a graph	1			

- A symmetry or an automorphism of a graph: A permutation on its vertex set preserving adjacency.
- Automorphism group of a graph Γ: the permutation group of all symmetries of the graph under the composition of permutations, denoted by Aut(Γ).

Tetrahedron

Automorphism group of the graph corresponding to the tetrahedron is S₄.

- Computing automorphism group of a graph is a **basic and** difficult problem in algebraic graph theory. The problem is NP-hard, and there are a lot of works on this area.
- For "small" order up to **30000**, one may compute the automorphism group of a graph by MAGMA or GAP.
- There is no general method to compute automorphism group of a graph: combinatorics, group theory, covering...
- Idea used often: Let G be a vertex transitive group of a graph Γ. By Frattini argument, A = GA_V, and for stabilizers, there are many works relative to Weiss Conjecture.
- All vertex-transitive graphs are coset graphs, and among them, most are Cayley graphs.

Notations	Cayley and Coset digraphs	Motivation	Main Result	The proof	Further work
Cayley I	Digraphs				

Let *G* be a finite group and $S \subset G$ with $1 \notin S$.

- Cayley digraph X = Cay(G, S): vertex set V(X) = G, directed edge set $E(X) = \{(g, sg) \mid g \in G, s \in S\}$.
- If S = S⁻¹, view (g, sg) and (sg, g) as an edge {g, sg} and X is a undirected graph, called Cayley graph.
- For $g \in G$, define $\hat{g} : x \mapsto xg, x \in G$. Then $\hat{g} \in Aut(X)$.
- $\hat{G} = {\hat{g} : | g \in G} \le \operatorname{Aut}(X)$: transitive on V(X).
- Aut(G, S) = { $\alpha \in Aut(G) | S^{\alpha} = S$ } $\leq Aut(X)$.
- $\hat{g}^{\alpha} = \alpha^{-1}\hat{g}\alpha = \hat{g}^{\alpha}, \ \hat{g} \in \hat{G}, \ \alpha \in \operatorname{Aut}(G, S)$. Then $\hat{G} \rtimes \operatorname{Aut}(G, S) \leq \operatorname{Aut}(X), \ \hat{G} \cap \operatorname{Aut}(G, S) = 1$.
- Characterization: X is a Cayley digraph on $G \Leftrightarrow \operatorname{Aut}(X)$ has a regular subgroup isomorphic to G, acting regularly on vertices. Cay(G, S) is connected $\Leftrightarrow G = \langle S \rangle$.

Notations	Cayley and Coset digraphs	Motivation	Main Result	The proof	Further work
Peterse	n graph, vertex-trai	nsitive but	not Cayley		

- A graph X is Cayley \Leftrightarrow Aut(X) has a regular subgroup.
- Petersen graph P is vertex-transitive and non-Cayley, the smallest vertex-transitive non-Cayley graph.
- Check criterion: $Aut(P) = S_5$ and all involutions (elements of order 2) fix a vertex.

Any regular subgroup would have order 10 (even), so would contain an involution.

But, every involution fixes a vertex, contrary to the regularity.

Coset digraphs – Subidussi

G: a finite group; H a subgroup of G; D a union of several double-cosets of the form HgH with $g \notin H$.

- The coset digraph X = Cos(G, H, D) of G with respect to H and D: V(X) = [G : H], the set of right cosets of H in G. $E(X) = \{(Hg, Hdg) \mid g \in G, d \in D\}.$
- Similarly to the Cayley case, if $D = D^{-1}$ we may view (Hg, Hdg) and (Hdg, Hg) as a undirected edge $\{Hg, Hdg\}$ and X is a undirected graph, called **coset graph**.
- If H = 1, Cos(G, H, D) is the Cayley digraph Cay(G, D). Cayley digraph is a special case of coset digraph.
- Every G-vertex-transitive digraph X is isomorphic to a **coset digraph** Cos(G, H, D), where H is the stabilizer of some $v \in V(X)$ and *D* consists of all elements of *G* which map v to one of its out-neighbors.

Let X = Cos(G, H, D) be a coset digraph.

- For $g \in G$, define \hat{g}_H : $H_X \mapsto H_Xg$. Then $\hat{g}_H \in \operatorname{Aut}(\operatorname{Cos}(G, H, D))$. Set $\hat{G}_H = \{\hat{g}_H \mid g \in G\}$. Then $\hat{G}_H \leq \operatorname{Aut}(X)$ and X is vertex-transitive.
- By group theory, $\hat{G}_H \cong G/H_G$, where H_G is the largest normal subgroup of *G* contained in *H*.
- Let Aut(G, H, D) = { $\alpha \in Aut(G) \mid H^{\alpha} = H, D^{\alpha} = D$ }. For $\alpha \in Aut(G, H, D)$, define $\alpha_H : Hg \mapsto Hg^{\alpha}, g \in G$. Then Aut(G, H, D)_H = { $\alpha_H \mid \alpha \in Aut(G, H, D)$ } $\leq Aut(X)_H$.
- $\tilde{H} = \{\tilde{h} : g \mapsto g^h, g \in G \mid h \in H\}$. Then $\tilde{H} \leq \operatorname{Aut}(G, H, D)$ and $\tilde{H}_H \leq \operatorname{Aut}(G, H, D)_H$.

Let X = Cos(G, H, D) and A = Aut(X). If $H_G = 1$ then

- The above result can be reduced from:
 C. Godsil, On the full automorphism group of a graph, Combinatorica, 1 (1981), 243-256.
- $N_A(\hat{G}_H) = \hat{G}_H \operatorname{Aut}(G, H, D)_H$ with $\hat{G}_H \cap \operatorname{Aut}(G, H, D)_H = \tilde{H}$. And $\hat{G}_H \cong G$, $\operatorname{Aut}(G, H, D)_H \cong \operatorname{Aut}(G, H, D)$, $\tilde{H}_H \cong \tilde{H}$.
- In particular, if $X = \operatorname{Cay}(G, S)$ and $A = \operatorname{Aut}(X)$ then $N_A(\hat{G}) = \hat{G} \rtimes \operatorname{Aut}(G, S)$.

Let X = Cay(G, S) and A = Aut(X). The Cayley graph X is called *Normal* if $\hat{G} \leq A$.

By Godsil [33], if X is normal then $\operatorname{Aut}(X) = \hat{G} \rtimes \operatorname{Aut}(G, S)$.

The normality of Cayley graph was **first proposed and systematically studied** by Mingyao Xu [63].

Xu Conjecture:

 $\frac{\text{Number of Normal Cayley graphs on } n \text{ vertices}}{\text{Number of Cayley graphs on } n \text{ vertices}} \rightarrow 1 \ (n \rightarrow \infty)$

The conjecture is true only known for some special groups.

Notations	Cayley and Coset digraphs	Motivation	Main Result	The proof	Further work
Motivatio	on				

- A group *G* is called 2-*genetic* if each normal subgroup of *G* can be generated by two elements.
- A group *G* is called *metacyclic* if *G* has cyclic normal subgroup *N* such that *G*/*N* is cyclic.
- A metacyclic gorup is 2-genetic, but the reverse is not true.
- C.H. Li, H.S. Sim, Automorphisms ..., J. Austral. Math. Soc. 71(2001) 223-231.
 Let *G* be a non-abelian metacyclic group of order an odd prime power pⁿ, and let Γ = Cay(G, S) be a connected Cayley graph on *G*. If Aut(G, S) is a p'-group, then either Γ is normal, or ...
- This was used to classify half-arc-transitive metacirculant graphs of order pⁿ with valency less than 2p by C.H. Li, H.S. Sim, On ..., J. Combin. Theory B 81(2001) 45-57.

Notations	Cayley and Coset digraphs	Motivation	Main Result	The proof	Further work
Main Rec	sult				

Main Theorem

G: nonabelian 2-genetic group of order p^n for an odd prime p. $\Gamma = \operatorname{Cay}(G, S)$: a connected Cayley digraph. If Aut(*G*, *S*) is a p'-group then either Γ is normal, or p = 3, 5, 7, 11, and ASL(2, p) \leq Aut(Γ)/ Φ (O_p(A)) \leq AGL(2, p), where the kernel of $A := \operatorname{Aut}(\Gamma)$ on $\Gamma_{\Phi(O_p(A))}$ is $\Phi(O_p(A))$:

- $p = 3, n \ge 5$, and $\Gamma_{\Phi(O_p(A))}$ has out-valency at least 8;
- 2 p = 5, $n \ge 3$ and $\Gamma_{\Phi(O_p(A))}$ has out-valency at least 24;
- **3** p = 7, $n \ge 3$ and $\Gamma_{\Phi(O_p(A))}$ has **out-valency at least** 48;
- $p = 11, n \ge 3$ and $\Gamma_{\Phi(O_p(A))}$ has out-valency at least 120.

Non-normal examples exist for each case in (1)-(4).

- There are only a few constructions of half-arc-transitive non-normal Cayley graphs on *p*-groups.
- In the main theorem, the underlying graphs of non-normal Cayley digraphs for p = 7, 11 are half-arc-transitive. Recently, Jin-Xin Zhou constructed an infinite family of such graphs for valency 4.
- Since a Sylow *p*-subgroup of ASL(2, *p*) is not metacyclic, the Theorem implies that if *G* is metacyclic then Γ is normal, which generalizes the main theorem in [C.H. Li, H.S. Sim, Automorphisms ..., J. Austral. Math. Soc. 71(2001) 223-231].

- $A = \operatorname{Aut}(\Gamma)$, $\operatorname{Aut}(G, S) p'$ -group $\mapsto \hat{G} \in \operatorname{Syl}_p(A)$.
- Let $H = O_{\rho}(A)$, $\overline{H} = H/\Phi(H)$ and $\overline{A} = A/\Phi(H)$.
- Lemma 1: $C_A(H) \leq H$.
- Lemma 2: *H* is the kernel of *A* acting on \overline{H} by conjugate, that is, $A/H \le \operatorname{Aut}(\overline{H})$.
- *G* is 2-genetic $\Rightarrow \overline{H} = \mathbb{Z}_p$ or $\mathbb{Z}_p \times \mathbb{Z}_p$.
- $\overline{H} = \mathbb{Z}_p \Rightarrow H = \hat{G} \trianglelefteq A$, the normal case.
- $\overline{H} = \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ and $A/H \leq GL(2, p)$.
- [47, Theorem 6.17], $(A/H) \cap SL(2, p)$ contains $SL(2, p) \Rightarrow$ $SL(2, p) \le A/H \le GL(2, p)$, the non-normal case.

- Let *L* be the kernel of *A* on $V(\Gamma_{\Phi(H)})$. Then $L = \Phi(H)L_{\alpha}$, L_{α} *p'*-Hall, Frattini arg. $\Rightarrow A = \Phi(H)N_A(L_{\alpha}) \Rightarrow$ $H = H \cap N_A(L_{\alpha}) \Rightarrow L_{\alpha} \trianglelefteq A \Rightarrow L_{\alpha} = 1 \Rightarrow \Phi(H) = L.$
- $SL(2,p) \leq \overline{A}/\overline{H} \leq GL(2,p)$. $\overline{U}/\overline{H} := Z(\overline{A}/\overline{H})$ is p'-group $\mapsto \overline{U} = \overline{HV}$, Frattini argument $\Rightarrow ASL(2,p) \leq \overline{A} \leq AGL(2,p)$.
- $B/H:=SL(2,p) \le A/H \le GL(2,p), \hat{G} \le B, F/H := Z(B/H),$ $B/F = PSL(2,p), K = \text{the kernel of } B \text{ on } \Gamma_H, |\Gamma_H| = p.$
- $p \neq 3 \mapsto K = F \mapsto PSL(2, p) = B/K \le Aut(\Gamma_H)$ (degree $\le p + 1$), Galois $\mapsto p = 5, 7, 11$. Thus, p = 3, 5, 7, 11.
- Lemma 4: $\Gamma_{\Phi(H)}$ has out-valency at least $p^2 1$.
- For $p = 5, 7, 11, n \ge 3$ and out-valency $\ge 24, 48, 120$ \checkmark
- For p = 3, if n = 3, 4 then Γ is normal $\times \Rightarrow n \ge 5 \checkmark$

Lemma 1: Let $A = \operatorname{Aut}(\Gamma)$ and $H = O_p(A)$. Then $C_A(H) \leq H$.

- Let B be a component of A, that is, a subnormal quasisimple subgroup: B = B' and B/Z(B) ≅ T (NS).
- [38, Lemma 2.5] \Rightarrow *B* has a proper subgroup *C* of *p*-power index and $O_{p'}(B) = 1 \Rightarrow Z(B) p$ -group, B/Z(B) has a proper subgroup BZ(B)/Z(B) of *p*-power index.
- [38, Lemma 2.3] $\Rightarrow p \nmid |M(B/Z(B))| \mapsto p \nmid |Z(B)| \Rightarrow Z(B) = 1 \text{ and } B \cong T.$
- [48, 6.9(iv), p. 450]→ any two distinct components of G commute elementwise.
- E(A) = product of all components of $A \Rightarrow B \leq E(A)$.

- $B \cong T \Rightarrow B$ is a direct factor of $E(A) \Rightarrow B^a$ is also a direct factor of E(A), $\forall a \in A$.
- B contains a normal subgroup of A isomorphic to T^n , but:
- Lemma 3: Any m.n.s of A is abelian.
- A has no component $\mapsto E(A) = 1$.
- $F(A) = O_{p_1}(A) \times \cdots \times O_{p_t}(A), \pi(A) = \{p_1, \cdots, p_t\}.$
- Generalized Fitting subgroup: $F^*(A) = E(A)F(A) = F(A)$.
- [38, Lemma 2.5] $\Rightarrow O_{p'}(A) = 1 \Rightarrow F^*(A) = O_p(A) = H.$
- [48, Theorem 6.11] $\Rightarrow C_A(F^*(A)) \leq F^*(A) \Rightarrow C_A(H) \leq H$.

Lemma 2: Set $H = O_p(A)$ and $\overline{H} = H/\Phi(H)$. Let $C_A(H) \le H$. Then *H* is the kernel of *A* acting on \overline{H} by conjugate.

- $\overline{H} \cong \mathbb{Z}_p^n$ is a vector space of dimension *n* over the field \mathbb{Z}_p . Let $\operatorname{Aut}(\overline{H}) = \operatorname{GL}(n, V)$.
- $\sigma : A \to \operatorname{Aut}(H), g \mapsto \sigma_g$, where $\sigma_g : h \mapsto h^g, h \in H$.
- $\tau : \operatorname{Aut}(H) \to \operatorname{GL}(n, V), \alpha \mapsto \tau_{\alpha} : h\Phi(H) \mapsto h^{\alpha}\Phi(H), h \in H.$
- $C_A(H) \leq H \Rightarrow \operatorname{Ker}(\sigma) = C_A(H) = Z(H)$. Set $S := \operatorname{Ker}(\tau)$ and $K := \operatorname{Ker}(\sigma\tau) \Rightarrow K/Z(H) \cong K^{\sigma} \leq S$.
- Clearly, $H \le K$. It suffice to show K is a p-group.
- $\Omega = \{(h_1t_1, h_2t_2, \dots, h_nt_n) \mid t_i \in \Phi(H)\}, |\Omega| = |\Phi(H)|^n$ *p*-power. *S* is semiregular on $\Omega \mapsto S$ is *p*-group.
- *K* is a *p*-group $\Rightarrow K \leq H \Rightarrow H = K$.

Lemma 3: Any minimal normal subgroups of A is abelian.

- Suppose $N \cong T_1 \times T_2 \times \cdots \times T_k$, where $T_i \cong T$ is n.a.s.
- Let $\Omega = \{T_1, \ldots, T_k\}$. \hat{G} is 2-genetic $\Rightarrow k \leq 2$.
- Let B = N_A(T₁). Then B ⊴ A and A/B ≲ S₂ ⇒ B is transitive on V(Γ) and Ĝ ≤ B. Consider B instead of A

• Let
$$\Delta_i \in V(\Gamma_{T_1})$$
 and $|\Delta_i| = p^m$.

- *p* ∤ (*T*₁)_{*u*}, [38, Corollary 2] ⇒ *T*₁ is 2-transitive on each Δ_{*i*} ⇒ [Δ_{*i*}] is complete digraph *K*_{*p*^m} or a null graph.
- We may assume that T_1 has at least two orbits.

- T_1 equivalent 2-transitive action on Δ_i and $\Delta_j \Rightarrow (\Delta_i, \Delta_j) = \{(\alpha_{il}, \alpha_{jl}) \mid 1 \le l \le p^m\}, \{(\alpha_{ik}, \alpha_{jl}) \mid 1 \le k, l \le p^m\}$ or $\{(\alpha_{ik}, \alpha_{jl}) \mid 1 \le k, l \le p^m, k \ne \ell\}.$
- $\forall g \in S_{p^m}, \sigma_g : \alpha_{il} \mapsto \alpha_{ilg}, \sigma_g \in Aut(\Gamma).$
- Let S_{p^m} = {σ_g | g ∈ S_{p^m}} ≤ Aut(Γ) ⇒ A_{p^m} ≤ K ≤ B, K is the kernel of B acting on Γ_{T1}.
- If m > 1 then $p^{m+1} ||K| \Rightarrow p^{n+1} ||A| \times \Rightarrow m = 1$.
- m = 1, [38, Lemma 2.3] $\Rightarrow p \nmid |Out(T_1)|$.
- $p \nmid |B/T_1C_B(T_1)| \Rightarrow \hat{G} \leq T_1C_B(T_1) = T_1 \times C_B(T_1),$ 2-genetic $\Rightarrow \hat{G}$ is abelian, a contradiction.

Lemma 4: $\Gamma_{\Phi(H)}$ has out-valency at least $p^2 - 1$ (p = 3, 5, 7, 11).

- $\Phi(H)$ is the kernel of A on $V(\Gamma_{\Phi(H)})$. Let $\alpha \in V(\Gamma_{\Phi(H)})$.
- Let $\Omega = {\Delta_1, \dots, \Delta_p}$ be the orbits of \overline{H} on $V(\Gamma_{\Phi(H)})$.
- $\overline{B} = B/\Phi(H) = \operatorname{ASL}(2, p) \le \overline{A} \le \operatorname{Aut}(\Gamma_{\Phi(H)}) \Rightarrow |\Gamma_{\Phi(H)}| = p^3,$ $|\overline{B}| = p^3(p^2 - 1), |\overline{B}_{\alpha}| = p^2 - 1.$
- $\Delta \in \Omega, \alpha \in \Delta \Rightarrow |\Delta| = p^2, \overline{B}_{\Delta} = \overline{H} \cdot \overline{B}_{\alpha}, |\overline{B}_{\Delta}| = p^2(p^2 1).$
- \overline{B}_{Δ} is sharply 2-transitive on Δ and any *p*'-subgroup *W* of \overline{B}_{Δ} fixe a vertex and has all other orbits of length |W|.
- $[\Delta] = K_{p^2}^*$ ($Out[\Delta] = p^2 1$) or the null digraph of order p^2 .
- One may assume $[\Delta]$ is the null digraph of order p^2 .

- Let K be the kernel of B on $V(\Gamma_H)$. Set $\overline{K} = K/\Phi(H)$.
- $B/H = SL(2, p) \Rightarrow F/H := Z(SL(2, p) \cong \mathbb{Z}_2, \overline{F} = F/\Phi(H))$ $\Rightarrow \overline{F}/\overline{H} \cong \mathbb{Z}_2, \overline{F} < \overline{B}_{\Lambda}, \text{ and } |\overline{F}_{\alpha}| = 2 \Rightarrow \text{There exist some}$ $i \neq j$ such that $Out((\Delta_i, \Delta_i)) \geq 2$.
- For p = 3, $B/K \cong \mathbb{Z}_3$ and $\overline{B}/\overline{K} \cong \mathbb{Z}_3 \Rightarrow \overline{K}$ fixes each Δ_i and is 2-transitive on each $\Delta_i \Rightarrow Out(\Delta_i, \Delta_i) \ge p^2 - 1$.
- For p = 5, 7 or 11. $\overline{B}/\overline{K} \cong B/K \cong PSL(2, p) \Rightarrow \overline{B}$ is 2-transitive on $\Omega \Rightarrow \overline{B}_{\Delta_i}$ is transitive on $\Omega \setminus \{\Delta_i\}$.
- $\overline{B}_{\Delta_i} = \overline{H} \cdot \overline{B}_{\alpha_i}$ and $|\overline{B}_{\alpha_i}| = p^2 1 \Rightarrow \overline{B}_{\alpha_i}$ is transitive on $\Omega \setminus \{\Delta_i\}$ and $|(\overline{B}_{\alpha_i})_{\Delta_i}| = (p^2 - 1)/(p - 1) = p + 1 \Rightarrow$ $Out((\Delta_i, \Delta_i)) \geq p+1.$
- \overline{B} 2-transitive on $\Omega \Rightarrow Out(\Gamma_{\Phi(H)}) \ge (p+1)(p-1) = p^2 1$.

Based on the main results, we propose the following problem:

 Classify half arc-transitive graphs on a 2-genetic group of odd-prime power order pⁿ. In particular, do it for valency less than 2p.

There are only two non-isomorphic non-abelian groups of order p^3 , of which both are 2-genetic.

 Classify edge-transitive or half-arc-transitive graphs of prime-cube order.

In 1992, Xu [66] classified tetravalent half-arc-transitive graphs of prime-cube order. Based on the main theorem, a similar classification can be done for valencies 6 and 8.

Notations	Cayley and Coset digraphs	Motivation	Main Result	The proof	Further work
Definitio	n				

Let *p* be an odd prime. Denote

$$G_{1}(p) = \langle a, b \mid a^{p^{2}} = 1, b^{p} = 1, b^{-1}ab = a^{1+p} \rangle$$

$$G_{2}(p) = \langle a, b, c \mid a^{p} = b^{p} = c^{p} = 1, [a, b] = c, [a, c] = [b, c] = 1 \rangle.$$
Let *e* be an element of order *j* < *p* in $\mathbb{Z}_{p^{2}}^{*}$ and set
$$T^{j,k} = \{b^{k}a, b^{k}a^{e}, \dots, b^{k}a^{e^{j-1}}, (b^{k}a)^{-1}, (b^{k}a^{e})^{-1}, \dots, (b^{k}a^{e^{j-1}})^{-1}\}$$
for each $1 \leq k \leq p - 1$. Define

 $\Gamma^{j,k} = \operatorname{Cay}(G_1(p), T^{j,k}).$

Let λ be an element of order 4 in \mathbb{Z}_p^* . Then 4 | (p-1). For each $0 \le k \le p-1$ with $k \ne 2^{-1}(1+\lambda)$, let $S_{4,k} = R \cup R^{-1}$, where $R = \{a, b, a^{\lambda}b^{\lambda-1}c^k, a^{-\lambda-1}b^{-\lambda}c^{1-k}\}$ and define

Notations Cayley and Coset digraphs Motivation Main Result The proof Further work

 $\Gamma_{4,k} = \operatorname{Cay}(G_2(p), S_{4,k}).$

Half-arc-transitive graphs of order p^3 of small valency

Let Γ be a graph of order p^3 for an odd prime p. Then

- (1) If Γ has valency 6 then Γ is half-arc-transitive if and only if $3 \mid (p-1)$ and $\Gamma \cong \Gamma^{3,k}$. There are exactly (p-1)/2 nonisomorphic half-arc-transitive graphs in $\Gamma^{3,k}$;
- (2) If Γ has valency 8 then Γ is half-arc-transitive if and only if $4 \mid (p-1)$ and $\Gamma \cong \Gamma^{4,k}$ or $\Gamma_{4,k}$. There are exactly (p-1)/2 nonisomorphic half-arc-transitive graphs in $\Gamma^{4,k}$ and $\Gamma_{4,k}$, respectively.

The proof

Main Result

[36] B. Huppert, Endliche Gruppen I, Springer, Verlag, 1979.

[37] K. Kutnar, D. Marušič, P. Šparl, R.J. Wang and M.Y. Xu, Classification of half-arc-transitive graphs of order 4p, European J. Combin. 34 (2013), 1158-1176.

[38] C.H. Li, H.S. Sim, Automorphisms of Cayley graphs metacyclic groups of prime-power order, J. Austral. Math. Soc. 71(2001) 223-231.

[39] C.H. Li, H.S. Sim, On half-transitive metacirculant graphs of prime-power order, J. Combin. Theory B 81(2001) 45-57.

[40] Z.P. Lu and M.Y. Xu, On the normality of Cayley graphs of order *pq*, Australas J. Combin. 27(2003) 81-93.

[41] D. Marušič, Half-transitive group actions on finite graphs of valency 4, J. Combin. Theory Ser. B 73 (1998), 41-76.

[42] D. Marušič, Quartic half-arc-transitive graphs with large vertex stabilizers, Discrete Math. 299 (2005), 180-193.

[43] D. Marušič, Vertex transitive graphs and digraphs of order p^k , Ann. Discrete Math. 115 (1985), 115-128.

[44] D. Marušič and C.E. Praeger, Tetravalent graphs admitting half-transitive group actions: alternating cycles, J. Combin. Theory Ser. B 75 (1999), 188-205.

[45] G. Sabidussi, Vertex-transitive graphs, Monash Math. 68(1964) 426-438.

[46] J. Schur, Über die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen, J. Reine Angew. Math. 127(1904) 20-50.

[47] M. Suzuki, Group Theory I, Springer, New York, 1982.

- [48] M. Suzuki, Group Theory II, Springer, New York, 1986.
- [49] V.I. Trofimov, Stabilizers of the vertices of graphs with projective suborbits, Soviet Math. Dokl. 42(1991) 825-828.

[50] V.I. Trofimov, Graphs with projective suborbits (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 55(1991) 890-916.

[51] V.I. Trofimov, Graphs with projective suborbits, cases of small characteristics, I (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 58(1994) 124-171.

[52] V.I. Trofimov, Graphs with projective suborbits, cases of small characteristics, II (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 58(1994) 137-156.

[54] W.T. Tutte, Connectivity in Graphs, University of Toronto Press, Toronto, 1966.

[55] C.Q. Wang, D.J. Wang, M.Y. Xu, Normal Cayley graphs of finite groups, Sci. China 41(1998) 242-251.

[56] C.Q. Wang, D.J. Wang and M.Y. Xu, On normal Cayley graphs of finite groups, Sci. China A, 28(1998) 131-139.

[57] C.Q. Wang and M.Y. Xu, Non-normal one-regular and 4-valent Cayley graphs of dihedral groups D_{2n} , Europ. J. Combin. 27(2006) 750-766.

[58] R.J. Wang, Half-transitive graphs of order a product of two distinct primes, Comm. Algebra 22 (1994), 915-927.

[59] X.Y. Wang and Y.Q. Feng, Tetravalent half-edge-transitive graphs and non-normal Cayley graphs, J. Graph Theory 70(2012) 197-213.

- [60] R. Weiss, Groups with a (B,N)-pair and locally transitive graphs, Nagoya Math. J. 74(1979) 1-21.
- [61] R. Weiss, An application of p-factorization methods to symmetric graphs, Math. Proc. Cambr. Phil. Soc. 85(1979) 43-48.

[62] R. Weiss, Permutation groups with projective unitary subconstituents, Proc. Amer. Math. Soc 78(1980) 157-161.

[63] M.Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182(1998) 309-319.

- [64] M.Y. Xu, Q.H. Zhang and J.X. Zhou, On the normality of Cayley digraphs on abelian groups, Systems Science and Mathematical Sciences 25(2005) 700-710.
- [65] M.Y. Xu and S.J. Xu, Symmetry properties of Cayley graphs of small valencies on the alternating group A_5 , Sci. China A 47(2004) 593-604.

[66] M.Y. Xu, Half-transitive graphs of prime-cube order, J. Algebra. Combin. 1(1992) 275-282.

[67] S.J. Xu, X.G. Fang, J. Wang and M.Y. Xu, On cubic *s*-arc transitive Cayley graphs of finite simple groups, Europ. J. Combinatorics 26(2005) 133-143.

[68] S.J. Xu, X.G. Fang, J. Wang and M.Y. Xu, 5-Arc transitive cubic Cayley graphs on finite simple groups, Europ. J. Combinatorics 28(2007) 1023-1036.

[69] C. Zhang, J.X. Zhou and Y.Q. Feng, Automorphisms of cubic Cayley graphs of order 2pq, Discrete Math. 309 (2009) 2687-2695.

[70] J.X. Zhou, The automorphism group of the alternating group graph, Applied Mathematics Letters 24(2011) 229-231.

[71] J.X. Zhou and Y.Q. Feng, Automorphism groups of connected cubic Cayley graphs of order 4*p*, Algebra Colloq. 14(2007) 351-359.

[72] J.X. Zhou and Y.Q. Feng, Two sufficient conditions for non-normal Cayley graphs and their applications, Sci. China 50(2007) 201-216.

Notations Cayley and Coset digraphs Motivation Main Result The proof Further work

Thank you!