Automorphisms of Cayley Digraphs on 2-genetic p-groups

Yan-Quan Feng

Beijing Jiaotong University

Symmetries and Covers of Discrete Objects
Queenstown, New Zealand
Feb. 18, 2016

Outline

(1) Notations
(2) Cayley and Coset digraphs
(3) Motivation
(4) Main Result
(5) The proof

6 Further work

Automorphisms of a graph

- A symmetry or an automorphism of a graph: A permutation on its vertex set preserving adjacency.
- Automorphism group of a graph Γ : the permutation group of all symmetries of the graph under the composition of permutations, denoted bv Aut(Г).

Tetrahedron

- Automorphism group of the graph corresponding to the tetrahedron is S_{4}.

Automorphism group

- Computing automorphism group of a graph is a basic and difficult problem in algebraic graph theory. The problem is NP-hard, and there are a lot of works on this area.
- For "small" order up to 30000, one may compute the automorphism group of a graph by MAGMA or GAP.
- There is no general method to compute automorphism group of a graph: combinatorics, group theory, covering...
- Idea used often: Let G be a vertex transitive group of a graph Γ. By Frattini argument, $A=G A_{v}$, and for stabilizers, there are many works relative to Weiss Conjecture.
- All vertex-transitive graphs are coset graphs, and among them, most are Cayley graphs.

Cayley Digraphs

Let G be a finite group and $S \subset G$ with $1 \notin S$.

- Cayley digraph $X=\operatorname{Cay}(G, S)$: vertex set $V(X)=G$, directed edge set $E(X)=\{(g, s g) \mid g \in G, s \in S\}$.
- If $S=S^{-1}$, view $(g, s g)$ and $(s g, g)$ as an edge $\{g, s g\}$ and X is a undirected graph, called Cayley graph.
- For $g \in G$, define $\hat{g}: x \mapsto x g, x \in G$. Then $\hat{g} \in \operatorname{Aut}(X)$.
- $\hat{G}=\{\hat{g}: \mid g \in G\} \leq \operatorname{Aut}(X)$: transitive on $V(X)$.
- $\operatorname{Aut}(G, S)=\left\{\alpha \in \operatorname{Aut}(G) \mid S^{\alpha}=S\right\} \leq \operatorname{Aut}(X)$.
- $\hat{g}^{\alpha}=\alpha^{-1} \hat{g} \alpha=\hat{g}^{\alpha}, \hat{g} \in \hat{G}, \alpha \in \operatorname{Aut}(G, S)$. Then $\hat{G} \rtimes \operatorname{Aut}(G, S) \leq \operatorname{Aut}(X), \hat{G} \cap \operatorname{Aut}(G, S)=1$.
- Characterization: X is a Cayley digraph on $G \Leftrightarrow \operatorname{Aut}(X)$ has a regular subgroup isomorphic to G, acting regularly on vertices. $\operatorname{Cay}(G, S)$ is connected $\Leftrightarrow G=\langle S\rangle$.

Petersen graph, vertex-transitive but not Cayley

- A graph X is Cayley $\Leftrightarrow \operatorname{Aut}(X)$ has a regular subgroup.
- Petersen graph \mathbf{P} is vertex-transitive and non-Cayley, the smallest vertex-transitive non-Cayley graph.
- Check criterion: $\operatorname{Aut}(P)=S_{5}$ and all involutions (elements of order 2) fix a vertex.

Any regular subgroup would have order 10 (even), so would contain an involution.

But, every involution fixes a vertex, contrary to the regularity.

Coset digraphs - Subidussi

G : a finite group; H a subgroup of G; D a union of several double-cosets of the form HgH with $g \notin H$.

- The coset digraph $X=\operatorname{Cos}(G, H, D)$ of G with respect to H and $D: V(X)=[G: H]$, the set of right cosets of H in G, $E(X)=\{(H g, H d g) \mid g \in G, d \in D\}$.
- Similarly to the Cayley case, if $D=D^{-1}$ we may view $(H g, H d g)$ and $(H d g, H g)$ as a undirected edge $\{H g, H d g\}$ and X is a undirected graph, called coset graph.
- If $H=1, \operatorname{Cos}(G, H, D)$ is the Cayley digraph $\operatorname{Cay}(G, D)$. Cayley digraph is a special case of coset digraph.
- Every G-vertex-transitive digraph X is isomorphic to a coset digraph $\operatorname{Cos}(G, H, D)$, where H is the stabilizer of some $v \in V(X)$ and D consists of all elements of G which map v to one of its out-neighbors.

Coset digraph - Subidussi

Let $X=\operatorname{Cos}(G, H, D)$ be a coset digraph.

- For $g \in G$, define $\hat{g}_{H}: H x \mapsto H x g$. Then $\hat{g}_{H} \in \operatorname{Aut}(\operatorname{Cos}(G, H, D))$. Set $\hat{G}_{H}=\left\{\hat{g}_{H} \mid g \in G\right\}$. Then $\hat{G}_{H} \leq \operatorname{Aut}(X)$ and X is vertex-transitive.
- By group theory, $\hat{G}_{H} \cong G / H_{G}$, where H_{G} is the largest normal subgroup of G contained in H.
- Let $\operatorname{Aut}(G, H, D)=\left\{\alpha \in \operatorname{Aut}(G) \mid H^{\alpha}=H, D^{\alpha}=D\right\}$. For $\alpha \in \operatorname{Aut}(G, H, D)$, define $\alpha_{H}: H g \mapsto \boldsymbol{H g}^{\alpha}, g \in G$. Then $\operatorname{Aut}(G, H, D)_{H}=\left\{\alpha_{H} \mid \alpha \in \operatorname{Aut}(G, H, D)\right\} \leq \operatorname{Aut}(X)_{H}$.
- $\tilde{H}=\left\{\tilde{h}: g \mapsto g^{h}, g \in G \mid h \in H\right\}$. Then $\tilde{H} \leq \operatorname{Aut}(G, H, D)$ and $\tilde{H}_{H} \leq \operatorname{Aut}(G, H, D)_{H}$.

Automorphism subgroups

Let $X=\operatorname{Cos}(G, H, D)$ and $A=\operatorname{Aut}(X)$. If $H_{G}=1$ then

- The above result can be reduced from:
C. Godsil, On the full automorphism group of a graph, Combinatorica, 1 (1981), 243-256.
- $N_{A}\left(\hat{G}_{H}\right)=\hat{G}_{H} \operatorname{Aut}(G, H, D)_{H}$ with $\hat{G}_{H} \cap \operatorname{Aut}(G, H, D)_{H}=\tilde{H}$. And $\hat{G}_{H} \cong G, \operatorname{Aut}(G, H, D)_{H} \cong \operatorname{Aut}(G, H, D), \tilde{H}_{H} \cong \tilde{H}$.
- In particular, if $X=\operatorname{Cay}(G, S)$ and $A=\operatorname{Aut}(X)$ then $N_{A}(\hat{G})=\hat{G} \rtimes \operatorname{Aut}(G, S)$.

Normality of Cayley graphs

Let $X=\operatorname{Cay}(G, S)$ and $A=\operatorname{Aut}(X)$. The Cayley graph X is called Normal if $G \unlhd A$.

By Godsil [33], if X is normal then $\operatorname{Aut}(X)=\hat{G} \rtimes \operatorname{Aut}(G, S)$.
The normality of Cayley graph was first proposed and systematically studied by Mingyao Xu [63].

Xu Conjecture:
Number of Normal Cayley graphs on n vertices
Number of Cayley graphs on n vertices
The conjecture is true only known for some special groups.

Motivation

- A group G is called 2-genetic if each normal subgroup of G can be generated by two elements.
- A group G is called metacyclic if G has cyclic normal subgroup N such that G / N is cyclic.
- A metacyclic gorup is 2-genetic, but the reverse is not true.
- C.H. Li, H.S. Sim, Automorphisms ..., J. Austral. Math. Soc. 71(2001) 223-231.
Let G be a non-abelian metacyclic group of order an odd prime power p^{n}, and let $\Gamma=\operatorname{Cay}(G, S)$ be a connected Cayley graph on G. If $\operatorname{Aut}(G, S)$ is a p^{\prime}-group, then either 「 is normal, or ...
- This was used to classify half-arc-transitive metacirculant graphs of order p^{n} with valency less than $2 p$ by C.H. Li, H.S. Sim, On ..., J. Combin. Theory B 81(2001) 45-57.

Main Result

Main Theorem

G: nonabelian 2-genetic group of order p^{n} for an odd prime p.
$\Gamma=\operatorname{Cay}(G, S)$: a connected Cayley digraph.
If $\operatorname{Aut}(G, S)$ is a p^{\prime}-group then either Γ is normal, or $p=3,5,7,11$, and $\operatorname{ASL}(2, p) \leq \operatorname{Aut}(\Gamma) / \Phi\left(\mathrm{O}_{p}(A)\right) \leq \operatorname{AGL}(2, p)$, where the kernel of $A:=\operatorname{Aut}(\Gamma)$ on $\Gamma_{\Phi\left(O_{p}(A)\right)}$ is $\Phi\left(O_{p}(A)\right)$:
(1) $p=3, n \geq 5$, and $\Gamma_{\Phi\left(O_{\rho}(A)\right)}$ has out-valency at least 8 ;
(2) $p=5, n \geq 3$ and $\Gamma_{\Phi\left(\mathrm{O}_{\rho}(A)\right)}$ has out-valency at least 24;
(3) $p=7, n \geq 3$ and $\Gamma_{\Phi\left(\mathrm{O}_{p}(A)\right)}$ has out-valency at least 48;
(4) $p=11, n \geq 3$ and $\Gamma_{\Phi\left(\mathrm{O}_{\rho}(A)\right)}$ has out-valency at least 120 .

Non-normal examples exist for each case in (1)-(4).

Remark on the main result

- There are only a few constructions of half-arc-transitive non-normal Cayley graphs on p-groups.
- In the main theorem, the underlying graphs of non-normal Cayley digraphs for $p=7,11$ are half-arc-transitive. Recently, Jin-Xin Zhou constructed an infinite family of such graphs for valency 4.
- Since a Sylow p-subgroup of $\operatorname{ASL}(2, p)$ is not metacyclic, the Theorem implies that if G is metacyclic then Γ is normal, which generalizes the main theorem in [C.H. Li, H.S. Sim, Automorphisms ..., J. Austral. Math. Soc. 71(2001) 223-231].

Proof of the main theorem

- $A=\operatorname{Aut}(\Gamma), \operatorname{Aut}(G, S) p^{\prime}-$ group $\mapsto \hat{G} \in \operatorname{Syl}_{p}(A)$.
- Let $H=O_{p}(A), \bar{H}=H / \Phi(H)$ and $\bar{A}=A / \Phi(H)$.
- Lemma 1: $C_{A}(H) \leq H$.
- Lemma 2: H is the kernel of A acting on \bar{H} by conjugate, that is, $A / H \leq \operatorname{Aut}(\bar{H})$.
- G is 2-genetic $\Rightarrow \bar{H}=\mathbb{Z}_{p}$ or $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
- $\bar{H}=\mathbb{Z}_{p} \Rightarrow H=\hat{G} \unlhd A$, the normal case.
- $\bar{H}=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ and $A / H \leq \operatorname{GL}(2, p)$.
- [47, Theorem 6.17], $(A / H) \cap \operatorname{SL}(2, p)$ contains $\operatorname{SL}(2, p) \Rightarrow$ $\mathrm{SL}(2, p) \leq A / H \leq \mathrm{GL}(2, p)$, the non-normal case.

Proof of the main theorem

- Let L be the kernel of A on $V\left(\Gamma_{\Phi(H)}\right)$. Then $L=\Phi(H) L_{\alpha}, L_{\alpha}$ p^{\prime}-Hall, Frattini arg. $\Rightarrow A=\Phi(H) N_{A}\left(L_{\alpha}\right) \Rightarrow$ $H=H \cap N_{A}\left(L_{\alpha}\right) \Rightarrow L_{\alpha} \unlhd A \Rightarrow L_{\alpha}=1 \Rightarrow \Phi(H)=L$.
- $\mathrm{SL}(2, p) \leq \bar{A} / \bar{H} \leq \mathrm{GL}(2, p) . \bar{U} / \bar{H}:=Z(\bar{A} / \bar{H})$ is p^{\prime}-group \mapsto $\bar{U}=\overline{H V}$, Frattini argument $\Rightarrow \operatorname{ASL}(2, p) \leq \bar{A} \leq \operatorname{AGL}(2, p)$.
- $\mathrm{B} / \mathrm{H}:=\mathrm{SL}(2, \mathrm{p}) \leq A / H \leq \mathrm{GL}(2, p), \hat{G} \leq B, F / H:=Z(B / H)$, $B / F=\operatorname{PSL}(2, p), K=$ the kernel of B on $\Gamma_{H},\left|\Gamma_{H}\right|=p$.
- $p \neq 3 \mapsto K=F \mapsto \operatorname{PSL}(2, p)=B / K \leq \operatorname{Aut}\left(\Gamma_{H}\right)$ (degree $\leq p+1)$, Galois $\mapsto p=5,7,11$. Thus, $p=3,5,7,11$.
- Lemma 4: $\Gamma_{\Phi(H)}$ has out-valency at least $p^{2}-1$.
- For $p=5,7,11, n \geq 3$ and out-valency $\geq 24,48,120 \checkmark$
- For $p=3$, if $n=3,4$ then Γ is normal $\times \Rightarrow n \geq 5 \checkmark$

Ideas of the proof of Lemma 1

Lemma 1: Let $A=\operatorname{Aut}(\Gamma)$ and $H=O_{p}(A)$. Then $C_{A}(H) \leq H$.

- Let B be a component of A, that is, a subnormal quasisimple subgroup: $B=B^{\prime}$ and $B / Z(B) \cong T$ (NS).
- [38, Lemma 2.5] $\Rightarrow B$ has a proper subgroup C of p-power index and $O_{p^{\prime}}(B)=1 \Rightarrow Z(B) p$-group, $B / Z(B)$ has a proper subgroup $B Z(B) / Z(B)$ of p-power index.
- [38, Lemma 2.3] $\Rightarrow p \nmid|M(B / Z(B))| \mapsto p \nmid|Z(B)| \Rightarrow$ $Z(B)=1$ and $B \cong T$.
- [48, 6.9(iv), p. 450] \mapsto any two distinct components of G commute elementwise.
- $E(A)=$ product of all components of $A \Rightarrow B \leq E(A)$.

Ideas of the proof of Lemma 1

- $B \cong T \Rightarrow B$ is a direct factor of $E(A) \Rightarrow B^{a}$ is also a direct factor of $E(A), \forall a \in A$.
- B contains a normal subgroup of A isomorphic to T^{n}, but:
- Lemma 3: Any m.n.s of A is abelian.
- A has no component $\mapsto E(A)=1$.
- $F(A)=O_{p_{1}}(A) \times \cdots \times O_{p_{t}}(A), \pi(A)=\left\{p_{1}, \cdots, p_{t}\right\}$.
- Generalized Fitting subgroup: $F^{*}(A)=E(A) F(A)=F(A)$.
- [38, Lemma 2.5] $\Rightarrow O_{p^{\prime}}(A)=1 \Rightarrow F^{*}(A)=O_{p}(A)=H$.
- [48, Theorem 6.11] $\Rightarrow C_{A}\left(F^{*}(A)\right) \leq F^{*}(A) \Rightarrow C_{A}(H) \leq H$.

Ideas of the proof of Lemma 2

Lemma 2: Set $H=O_{p}(A)$ and $\bar{H}=H / \Phi(H)$. Let $C_{A}(H) \leq H$. Then H is the kernel of A acting on \bar{H} by conjugate.

- $\bar{H} \cong \mathbb{Z}_{p}^{n}$ is a vector space of dimension n over the field \mathbb{Z}_{p}. Let $\operatorname{Aut}(\bar{H})=\mathrm{GL}(n, V)$.
- $\sigma: A \rightarrow \operatorname{Aut}(H), g \mapsto \sigma_{g}$, where $\sigma_{g}: h \mapsto h^{g}, h \in H$.
- $\tau: \operatorname{Aut}(H) \rightarrow \mathrm{GL}(n, V), \alpha \mapsto \tau_{\alpha}: h \Phi(H) \mapsto h^{\alpha} \Phi(H), h \in H$.
- $C_{A}(H) \leq H \Rightarrow \operatorname{Ker}(\sigma)=C_{A}(H)=Z(H)$. Set $S:=\operatorname{Ker}(\tau)$ and $K:=\operatorname{Ker}(\sigma \tau) \Rightarrow K / Z(H) \cong K^{\sigma} \leq S$.
- Clearly, $H \leq K$. It suffice to show K is a p-group.
- $\Omega=\left\{\left(h_{1} t_{1}, h_{2} t_{2}, \ldots, h_{n} t_{n}\right) \mid t_{i} \in \Phi(H)\right\},|\Omega|=|\Phi(H)|^{n}$ p-power. S is semiregular on $\Omega \mapsto S$ is p-group.
- K is a p-group $\Rightarrow K \leq H \Rightarrow H=K$.

Ideas of the proof of Lemma 3

Lemma 3: Any minimal normal subgroups of A is abelian.

- Suppose $N \cong T_{1} \times T_{2} \times \cdots \times T_{k}$, where $T_{i} \cong T$ is n.a.s.
- Let $\Omega=\left\{T_{1}, \ldots, T_{k}\right\}$. \hat{G} is 2-genetic $\Rightarrow k \leq 2$.
- Let $B=N_{A}\left(T_{1}\right)$. Then $B \unlhd A$ and $A / B \lesssim S_{2} \Rightarrow B$ is transitive on $V(\Gamma)$ and $G \leq B$. Consider B instead of A
- Let $\Delta_{i} \in V\left(\Gamma_{T_{1}}\right)$ and $\left|\Delta_{i}\right|=p^{m}$.
- $p \nmid\left(T_{1}\right)_{u},\left[38\right.$, Corollary 2] $\Rightarrow T_{1}$ is 2-transitive on each Δ_{i} $\Rightarrow\left[\Delta_{i}\right]$ is complete digraph $K_{p^{m}}$ or a null graph.
- We may assume that T_{1} has at least two orbits.

Ideas of the proof of Lemma 3

- T_{1} equivalent 2-transitive action on Δ_{i} and $\Delta_{j} \Rightarrow\left(\Delta_{i}, \Delta_{j}\right)=$ $\left\{\left(\alpha_{i l}, \alpha_{j l}\right) \mid 1 \leq I \leq p^{m}\right\},\left\{\left(\alpha_{i k}, \alpha_{j l}\right) \mid 1 \leq k, I \leq p^{m}\right\}$ or $\left\{\left(\alpha_{i k}, \alpha_{j l}\right) \mid 1 \leq k, I \leq p^{m}, k \neq \ell\right\}$.
- $\forall g \in \mathrm{~S}_{p^{m},}, \sigma_{g}: \alpha_{i l} \mapsto \alpha_{i l g}, \sigma_{g} \in \operatorname{Aut}(\Gamma)$.
- Let $\mathrm{S}_{p^{m}}=\left\{\sigma_{g} \mid g \in \mathrm{~S}_{p^{m}}\right\} \leq \operatorname{Aut}(\Gamma) \Rightarrow A_{p^{m}} \leq K \leq B, K$ is the kernel of B acting on $\Gamma_{T_{1}}$.
- If $m>1$ then $p^{m+1}| | K\left|\Rightarrow p^{n+1}\right||A| \times \Rightarrow m=1$.
- $m=1$, [38, Lemma 2.3] $\Rightarrow p \nmid\left|\operatorname{Out}\left(T_{1}\right)\right|$.
- $p \nmid\left|B / T_{1} C_{B}\left(T_{1}\right)\right| \Rightarrow \hat{G} \leq T_{1} C_{B}\left(T_{1}\right)=T_{1} \times C_{B}\left(T_{1}\right)$,

2-genetic $\Rightarrow \hat{G}$ is abelian, a contradiction.

Ideas of the proof of Lemma 4

Lemma 4: $\Gamma_{\Phi(H)}$ has out-valency at least $p^{2}-1(p=3,5,7,11)$.

- $\Phi(H)$ is the kernel of A on $V\left(\Gamma_{\Phi(H)}\right)$. Let $\alpha \in V\left(\Gamma_{\Phi(H)}\right)$.
- Let $\Omega=\left\{\Delta_{1}, \cdots, \Delta_{p}\right\}$ be the orbits of \bar{H} on $V\left(\Gamma_{\Phi(H)}\right)$.
- $\bar{B}=B / \Phi(H)=\operatorname{ASL}(2, p) \leq \bar{A} \leq \operatorname{Aut}\left(\Gamma_{\Phi(H)}\right) \Rightarrow\left|\Gamma_{\Phi(H)}\right|=p^{3}$, $|\bar{B}|=p^{3}\left(p^{2}-1\right),\left|\bar{B}_{\alpha}\right|=p^{2}-1$.
- $\Delta \in \Omega, \alpha \in \Delta \Rightarrow|\Delta|=p^{2}, \bar{B}_{\Delta}=\bar{H} \cdot \bar{B}_{\alpha},\left|\bar{B}_{\Delta}\right|=p^{2}\left(p^{2}-1\right)$.
- \bar{B}_{Δ} is sharply 2 -transitive on Δ and any p^{\prime}-subgroup W of \bar{B}_{Δ} fixe a vertex and has all other orbits of length $|W|$.
- $[\Delta]=K_{p^{2}}^{*}\left(\operatorname{Out}[\Delta]=p^{2}-1\right)$ or the null digraph of order p^{2}.
- One may assume $[\Delta]$ is the null digraph of order p^{2}.

Ideas of the proof of Lemma 4

- Let K be the kernel of B on $V\left(\Gamma_{H}\right)$. Set $\bar{K}=K / \Phi(H)$.
- $B / H=\mathrm{SL}(2, p) \Rightarrow F / H:=Z\left(\mathrm{SL}(2, p) \cong \mathbb{Z}_{2}, \bar{F}=F / \Phi(H)\right.$ $\Rightarrow \bar{F} / \bar{H} \cong \mathbb{Z}_{2}, \bar{F} \leq \bar{B}_{\Delta}$, and $\left|\bar{F}_{\alpha}\right|=2 \Rightarrow$ There exist some $i \neq j$ such that $\operatorname{Out}\left(\left(\Delta_{i}, \Delta_{j}\right)\right) \geq 2$.
- For $p=3, B / K \cong \mathbb{Z}_{3}$ and $\bar{B} / \bar{K} \cong \mathbb{Z}_{3} \Rightarrow \bar{K}$ fixes each Δ_{i} and is 2-transitive on each $\Delta_{i} \Rightarrow \operatorname{Out}\left(\Delta_{i}, \Delta_{j}\right) \geq p^{2}-1$.
- For $p=5,7$ or $11 . \bar{B} / \bar{K} \cong B / K \cong \operatorname{PSL}(2, p) \Rightarrow \bar{B}$ is 2-transitive on $\Omega \Rightarrow \bar{B}_{\Delta_{i}}$ is transitive on $\Omega \backslash\left\{\Delta_{i}\right\}$.
- $\bar{B}_{\Delta_{i}}=\bar{H} \cdot \bar{B}_{\alpha_{i}}$ and $\left|\bar{B}_{\alpha_{i}}\right|=p^{2}-1 \Rightarrow \bar{B}_{\alpha_{i}}$ is transitive on $\Omega \backslash\left\{\Delta_{i}\right\}$ and $\left|\left(\bar{B}_{\alpha_{i}}\right)_{\Delta_{j}}\right|=\left(p^{2}-1\right) /(p-1)=p+1 \Rightarrow$ $\operatorname{Out}\left(\left(\Delta_{i}, \Delta_{j}\right)\right) \geq p+1$.
- \bar{B} 2-transitive on $\Omega \Rightarrow \operatorname{Out}\left(\Gamma_{\Phi(H)}\right) \geq(p+1)(p-1)=p^{2}-1$.

Further work

Based on the main results, we propose the following problem:

- Classify half arc-transitive graphs on a 2-genetic group of odd-prime power order p^{n}. In particular, do it for valency less than $2 p$.

There are only two non-isomorphic non-abelian groups of order p^{3}, of which both are 2-genetic.

- Classify edge-transitive or half-arc-transitive graphs of prime-cube order.

In 1992, Xu [66] classified tetravalent half-arc-transitive graphs of prime-cube order. Based on the main theorem, a similar classification can be done for valencies 6 and 8.

Definition

Let p be an odd prime. Denote

$$
\begin{gathered}
G_{1}(p)=\left\langle a, b \mid a^{p^{2}}=1, b^{p}=1, b^{-1} a b=a^{1+p}\right\rangle \\
G_{2}(p)=\left\langle a, b, c \mid a^{p}=b^{p}=c^{p}=1,[a, b]=c,[a, c]=[b, c]=1\right\rangle .
\end{gathered}
$$

Let e be an element of order $j<p$ in $\mathbb{Z}_{p^{2}}^{*}$ and set
$T^{j, k}=\left\{b^{k} a, b^{k} a^{e}, \ldots, b^{k} a^{e^{j-1}},\left(b^{k} a\right)^{-1},\left(b^{k} a^{e}\right)^{-1}, \ldots,\left(b^{k} a^{e^{-1}}\right)^{-1}\right\}$
for each $1 \leq k \leq p-1$. Define

$$
\Gamma^{j, k}=\operatorname{Cay}\left(G_{1}(p), T^{j, k}\right) .
$$

Let λ be an element of order 4 in \mathbb{Z}_{p}^{*}. Then $4 \mid(p-1)$. For each $0 \leq k \leq p-1$ with $k \neq 2^{-1}(1+\lambda)$, let $S_{4, k}=R \cup R^{-1}$, where $R=\left\{a, b, a^{\lambda} b^{\lambda-1} c^{k}, a^{-\lambda-1} b^{-\lambda} c^{1-k}\right\}$ and define

$$
\Gamma_{4, k}=\operatorname{Cay}\left(G_{2}(p), S_{4, k}\right) .
$$

Half-arc-transitive graphs of order p^{3} of small valency

Let Γ be a graph of order p^{3} for an odd prime p. Then
(1) If Γ has valency 6 then Γ is half-arc-transitive if and only if $3 \mid(p-1)$ and $\Gamma \cong \Gamma^{3, k}$. There are exactly $(p-1) / 2$ nonisomorphic half-arc-transitive graphs in $\Gamma^{3, k}$;
(2) If Γ has valency 8 then Γ is half-arc-transitive if and only if $4 \mid(p-1)$ and $\Gamma \cong \Gamma^{4, k}$ or $\Gamma_{4, k}$. There are exactly $(p-1) / 2$ nonisomorphic half-arc-transitive graphs in $\Gamma^{4, k}$ and $\Gamma_{4, k}$, respectively.
[1] B. Alspach, Point-symmetric graphs and digraphs of prime order and transitive permutation groups of prime degree, J. Combin. Theory 15(1973) 12-17.
[2] B. Alspach and M.Y. Xu, 1/2-transitive graphs of order 3p, J. Alg. Combin. 3 (1994), 347-355.
[3] Y.G. Baik, Y.Q. Feng, H.S. Sim and M.Y. Xu, On the normality of Cayley graphs of abelian groups, Algebra Colloq. 5(1998) 297-304.
[4] W. Bosma, C. Canon, C. Playoust, The MAGMA algebra system I: The user language, J. Symbolic Comput. 24(1997) 235-265.
[5] I.Z. Bouwer, Vertex and edge transitive but not 1-transitive graphs, Canad. Math. Bull. 13 (1970), 231-237.
[6] C.Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Am. Math. Soc. 158 (1971), 247-256.
[7] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B 42 (1987), 196-211.
[8] M.D.E. Conder and D. Marušič, A tetravalent half-arc-transitive graph with nonabelian vertex stabilizer, J. Combin. Theory Ser. B 88 (2003), 67-76.
[9] M.D. Conder, C.H. Li and C.E. Praeger, On the Weiss conjecture for finite locally primitive graphs, Proc. Edinburgh Math. Soc. 43(2000) 129-138.
[10] M.D.E. Conder, P. Potočnik and P. Šparl, Some recent discoveries about half-arc-transitive graphs, Ars Math. Contemp. 8 (2015), 149-162.
[11] M.D.E. Conder, T.W. Tucker, Regular Cayley maps for cyclic groups, Amer. Math. Soc. 366(2014) 3585-3609.
[12] M.D.E. Conder, Y.S. Kwon, J. Siron, Reflexibility of regular Cayley maps for abelian groups, J. Combin. Theory B 99(2009) 254-260.
[13] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Group, Clarendon Press, Oxford, 1985.
[14] J.D. Dixon, B. Mortimer, Permutation groups, Springer, New York, 1996.
[15] E. Dobson, Automorphism groups of metacirculant graphs of order a product of two distinct Primes, Combinatorics, Probability and Computing 15(2006) 105-130.
[16] E. Dobson, D. Witte, Transitive permutation groups of prime-squared degree, J. Algebraic Combin. 16(2002) 43-69.
[17] E. Dobson, I. Kovács, Automorphism groups of Cayley digraphs of \mathbb{Z}_{p}^{3}, The Electronic J. Combin. 16(2009) \#R149 pp.1-20.
[18] S.F. Du, R.J. Wang, M.Y. Xu, On the normality of Cayley digraphs of groups of order twice a prime, Austral. J. Combin. 18(1998) 227-234.
[19] X.G. Fang, C.H. Li, J. Wang, M.Y. Xu, On cubic Cayley graphs of finite simple groups, Discrete Math. 244(2002) 67-75.
[20] X.G. Fang, Z.P. Lu, J. Wang, M.Y. Xu, Cayley digraphs of finite simple groups with small out-valency, Communications in Algebra 32(2004) 1201-1211.
[21] X.G. Fang, X.S. Ma, J. Wang, On locally primitive Cayley graphs of finite simple groups, J. Combin. Theory A 118(2011) 1039-1051.
[22] X.G Fang, C.E. Praeger, J. Wang, On the automorphism groups of Cayley graphs of finite simple groups, J. London Math. Soc. 66(2002) 563-578.
[23] Y.Q. Feng, Automorphism groups of Cayley graphs on symmetric groups with generating transposition sets, J. Combin. Theory B 96(2006) 67-72.
[24] Y.Q. Feng, D.J. Wang and J.L. Chen, A family of nonnormal Cayley digraphs, Acta Math. Sin. Engl. Ser. 17 (2001) 147-152.
[25] Y.Q. Feng, J.H. Kwak and R.J. Wang, Automorphism groups of 4-valent connected Cayley graphs of p-groups, Chin. Ann.Math. 22B (2001) 281-286.
[26] Y.Q. Feng, J.H. Kwak and M.Y. Xu, On the stabilizer of the automorphism group of a 4-valent vertex-transitive graph with odd-prime-power order, Acta Math. Sin. Engl. Ser. 19(2003) 83-86.
[27] Y.Q. Feng, J.H. Kwak, M.Y. Xu and J.X. Zhou, Tetravalent half-arc-transitive graphs of order p^{4}, European J. Combin. 29 (2008), 555-567.
[28] Y.Q. Feng and M.Y. Xu, Automorphism groups of tetravalent Cayley graphs on regular p-groups, Discrete Math. 305(2005) 354-360.
[29] Y.Q. Feng and M.Y. Xu, Normality of tetravalent Cayley graphs of odd prime-cube order and its application, Acta Math. Sin. Engl. Ser. 21(2005) 903-912.
[30] A. Gardiner, Doubly primitive vertex stabilizers in graphs, Math. Z. 135(1974) 157-166.
[31] A. Gardiner, Arc transitivity in graphs, II, Quart. J. Math. Oxford 25(1974) 163-167.
[32] A. Gardiner, Arc transitivity in graphs, III, Quart. J. Math. Oxford 27(1976) 313-323.
[33] C. Godsil, On the full automorphism group of a graph, Combinatorica 1(1981) 243-256.
[34] C.D. Godsil, On the full automorphism group of a graph, Combinatorica 1(1981) 243-256.
[35] R.M. Guralnick, Subgroups of prime power index in a simple group, J. Algebra 81(1983) 304-311.
[36] B. Huppert, Endliche Gruppen I, Springer, Verlag, 1979.
[37] K. Kutnar, D. Marušič, P. Šparl, R.J. Wang and M.Y. Xu, Classification of half-arc-transitive graphs of order 4p, European J. Combin. 34 (2013), 1158-1176.
[38] C.H. Li, H.S. Sim, Automorphisms of Cayley graphs metacyclic groups of prime-power order, J. Austral. Math. Soc. 71(2001) 223-231.
[39] C.H. Li, H.S. Sim, On half-transitive metacirculant graphs of prime-power order, J. Combin. Theory B 81(2001) 45-57.
[40] Z.P. Lu and M.Y. Xu, On the normality of Cayley graphs of order pq, Australas J. Combin. 27(2003) 81-93.
[41] D. Marušič, Half-transitive group actions on finite graphs of valency 4, J. Combin. Theory Ser. B 73 (1998), 41-76.
[42] D. Marušič, Quartic half-arc-transitive graphs with large vertex stabilizers, Discrete Math. 299 (2005), 180-193.
[43] D. Marušič, Vertex transitive graphs and digraphs of order p^{k}, Ann. Discrete Math. 115 (1985), 115-128.
[44] D. Marušič and C.E. Praeger, Tetravalent graphs admitting half-transitive group actions: alternating cycles, J. Combin. Theory Ser. B 75 (1999), 188-205.
[45] G. Sabidussi, Vertex-transitive graphs, Monash Math. 68(1964) 426-438.
[46] J. Schur, Über die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen, J. Reine Angew. Math. 127(1904) 20-50.
[47] M. Suzuki, Group Theory I, Springer, New York, 1982.
[48] M. Suzuki, Group Theory II, Springer, New York, 1986.
[49] V.I. Trofimov, Stabilizers of the vertices of graphs with projective suborbits, Soviet Math. Dokl. 42(1991) 825-828.
[50] V.I. Trofimov, Graphs with projective suborbits (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 55(1991) 890-916.
[51] V.I. Trofimov, Graphs with projective suborbits, cases of small characteristics, I (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 58(1994) 124-171.
[52] V.I. Trofimov, Graphs with projective suborbits, cases of small characteristics, II (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 58(1994) 137-156.
[53] V.I. Trofimov and R. Weiss, Graphs with a locally linear group of automorphisms, Math. Proc. Cambr. Phil. Soc. 118(1995) 191-206.
[54] W.T. Tutte, Connectivity in Graphs, University of Toronto Press, Toronto, 1966.
[55] C.Q. Wang, D.J. Wang, M.Y. Xu, Normal Cayley graphs of finite groups, Sci. China 41(1998) 242-251.
[56] C.Q. Wang, D.J. Wang and M.Y. Xu, On normal Cayley graphs of finite groups, Sci. China A, 28(1998) 131-139.
[57] C.Q. Wang and M.Y. Xu, Non-normal one-regular and 4-valent Cayley graphs of dihedral groups $D_{2 n}$, Europ. J. Combin. 27(2006) 750-766.
[58] R.J. Wang, Half-transitive graphs of order a product of two distinct primes, Comm. Algebra 22 (1994), 915-927.
[59] X.Y. Wang and Y.Q. Feng, Tetravalent half-edge-transitive graphs and non-normal Cayley graphs, J. Graph Theory 70(2012) 197-213.
[60] R. Weiss, Groups with a (B,N)-pair and locally transitive graphs, Nagoya Math. J. 74(1979) 1-21.
[61] R. Weiss, An application of p-factorization methods to symmetric graphs, Math. Proc. Cambr. Phil. Soc. 85(1979) 43-48.
[62] R. Weiss, Permutation groups with projective unitary subconstituents, Proc. Amer. Math. Soc 78(1980) 157-161.
[63] M.Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182(1998) 309-319.
[64] M.Y. Xu, Q.H. Zhang and J.X. Zhou, On the normality of Cayley digraphs on abelian groups, Systems Science and Mathematical Sciences 25(2005) 700-710.
[65] M.Y. Xu and S.J. Xu, Symmetry properties of Cayley graphs of small valencies on the alternating group A_{5}, Sci. China A 47(2004) 593-604. .
[66] M.Y. Xu, Half-transitive graphs of prime-cube order, J. Algebra. Combin. 1(1992) 275-282.
[67] S.J. Xu, X.G. Fang, J. Wang and M.Y. Xu, On cubic s-arc transitive Cayley graphs of finite simple groups, Europ. J. Combinatorics 26(2005) 133-143.
[68] S.J. Xu, X.G. Fang, J. Wang and M.Y. Xu, 5-Arc transitive cubic Cayley graphs on finite simple groups, Europ. J. Combinatorics 28(2007) 1023-1036.
[69] C. Zhang, J.X. Zhou and Y.Q. Feng, Automorphisms of cubic Cayley graphs of order 2pq, Discrete Math. 309 (2009) 2687-2695.
[70] J.X. Zhou, The automorphism group of the alternating group graph, Applied Mathematics Letters 24(2011) 229-231.
[71] J.X. Zhou and Y.Q. Feng, Automorphism groups of connected cubic Cayley graphs of order 4p, Algebra Colloq. 14(2007) 351-359.
[72] J.X. Zhou and Y.Q. Feng, Two sufficient conditions for non-normal Cayley graphs and their applications, Sci. China 50(2007) 201-216.

Thank you!

