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Automorphisms of a graph

A symmetry or an automorphism of a graphµ
A permutation on its vertex set preserving adjacency.
Automorphism group of a graph Γµthe permutation
group of all symmetries of the graph under the composition
of permutations, denoted by Aut(Γ).

Automorphism group of the graph corresponding to the
tetrahedron is S4.
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Automorphism group

Computing automorphism group of a graph is a basic and
difficult problem in algebraic graph theory. The problem
is NP-hard, and there are a lot of works on this area.
For "small" order up to 30000, one may compute the
automorphism group of a graph by MAGMA or GAP.

There is no general method to compute automorphism
group of a graph: combinatorics, group theory, covering...

Idea used often: Let G be a vertex transitive group of a
graph Γ. By Frattini argument, A = GAv , and for stabilizers,
there are many works relative to Weiss Conjecture.

All vertex-transitive graphs are coset graphs, and among
them, most are Cayley graphs.
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Cayley Digraphs

Let G be a finite group and S ⊂ G with 1 6∈ S.

Cayley digraph X = Cay(G,S): vertex set V (X ) = G,
directed edge set E(X ) = {(g, sg) | g ∈ G, s ∈ S}.
If S = S−1, view (g, sg) and (sg,g) as an edge {g, sg}
and X is a undirected graph, called Cayley graph.
For g ∈ G, define ĝ : x 7→ xg, x ∈ G. Then ĝ ∈ Aut(X ).
Ĝ = {ĝ : | g ∈ G} ≤ Aut(X ): transitive on V (X ).
Aut(G,S) = {α ∈ Aut(G) | Sα = S} ≤ Aut(X ).
ĝα = α−1ĝα = ĝα, ĝ ∈ Ĝ, α ∈ Aut(G,S). Then
Ĝ o Aut(G,S) ≤ Aut(X ), Ĝ ∩ Aut(G,S) = 1.
Characterization: X is a Cayley digraph on G⇔ Aut(X )
has a regular subgroup isomorphic to G, acting regularly
on vertices. Cay(G,S) is connected⇔ G = 〈S〉.
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Petersen graph, vertex-transitive but not Cayley

A graph X is Cayley⇔ Aut(X ) has a regular subgroup.
Petersen graph P is vertex-transitive and non-Cayley, the
smallest vertex-transitive non-Cayley graph.
Check criterion: Aut(P) = S5 and all involutions
(elements of order 2) fix a vertex.

彼得森图_百度百科

http://baike.baidu.com/view/6307067.htm[2014-3-22 16:55:42]

推广链接

获得彼得森超低优惠价的秘密
超值优惠的彼得森价格~优质的彼得森服
务~~尽在「风行烟斗俱乐部..
kunanren.taobao.com

一个图两点间的距离指其间最短路的长，而它的直径则指全图中最大的距离。在Petersen图中，其直径是2。

顶点数v=10

边数e=15

各顶点的度为d=3

分支数w=1

如图，Petersen图的顶点可以如此分为三个部分，使各个部分中的点互不相连。因

此，Petersen图是三部图。

Petersen图的补图是其所有性质中最漂亮的。若图G的顶点与图H的边可构成一一对应且图G的边与图H的顶点也能形成双

射，则称图G与图H互为补图。而Petersen图的补图是K5！

哈密尔顿路有240条

无哈密尔顿回路

非欧拉图

特征多项式(x-3)(x-1)^5(x+2)^4

4 Petersen图的直径 编辑

5 Petersen图的基本参数 编辑

6 Petersen图是三部图 编辑

7 Petersen图的补图 编辑

8 Petersen图的其他性质 编辑

9 Desargues图—Petersen图的推广 编辑

Any regular subgroup would
have order 10 (even), so would
contain an involution.

But, every involution fixes a ver-
tex, contrary to the regularity.



Notations Cayley and Coset digraphs Motivation Main Result The proof Further work

Coset digraphs – Subidussi

G: a finite group; H a subgroup of G; D a union of several
double-cosets of the form HgH with g /∈ H.

The coset digraph X = Cos(G,H,D) of G with respect to
H and D: V (X ) = [G : H], the set of right cosets of H in G,
E(X ) = {(Hg,Hdg)

∣∣ g ∈ G, d ∈ D}.
Similarly to the Cayley case, if D = D−1 we may view
(Hg,Hdg) and (Hdg,Hg) as a undirected edge {Hg,Hdg}
and X is a undirected graph, called coset graph.

If H = 1, Cos(G,H,D) is the Cayley digraph Cay(G,D).
Cayley digraph is a special case of coset digraph.

Every G-vertex-transitive digraph X is isomorphic to a
coset digraph Cos(G,H,D), where H is the stabilizer of
some v ∈ V (X ) and D consists of all elements of G which
map v to one of its out-neighbors.



Notations Cayley and Coset digraphs Motivation Main Result The proof Further work

Coset digraph – Subidussi

Let X = Cos(G,H,D) be a coset digraph.

For g ∈ G, define ĝH : Hx 7→ Hxg. Then
ĝH ∈ Aut(Cos(G,H,D)). Set ĜH = {ĝH | g ∈ G}. Then
ĜH ≤ Aut(X ) and X is vertex-transitive.

By group theory, ĜH
∼= G/HG, where HG is the largest

normal subgroup of G contained in H.

Let Aut(G,H,D) = {α ∈ Aut(G) | Hα = H,Dα = D}. For
α ∈ Aut(G,H,D), define αH : Hg 7→ Hgα,g ∈ G. Then
Aut(G,H,D)H = {αH | α ∈ Aut(G,H,D)} ≤ Aut(X )H .

H̃ = {h̃ : g 7→ gh,g ∈ G | h ∈ H}. Then H̃ ≤ Aut(G,H,D)
and H̃H ≤ Aut(G,H,D)H .
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Automorphism subgroups

Let X = Cos(G,H,D) and A = Aut(X ). If HG = 1 then
The above result can be reduced from:
C. Godsil, On the full automorphism group of a graph,
Combinatorica, 1 (1981), 243-256.
NA(ĜH) = ĜHAut(G,H,D)H with ĜH ∩ Aut(G,H,D)H = H̃.
And ĜH

∼= G, Aut(G,H,D)H
∼= Aut(G,H,D), H̃H

∼= H̃.
In particular, if X = Cay(G,S) and A = Aut(X ) then
NA(Ĝ) = Ĝ o Aut(G,S).
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Normality of Cayley graphs

Let X = Cay(G,S) and A = Aut(X ). The Cayley graph X is
called Normal if Ĝ E A.

By Godsil [33], if X is normal then Aut(X ) = Ĝ o Aut(G,S).

The normality of Cayley graph was first proposed and
systematically studied by Mingyao Xu [63].

Xu Conjectureµ

Number of Normal Cayley graphs on n vertices
————————————————————— → 1 (n→∞)
Number of Cayley graphs on n vertices

The conjecture is true only known for some special groups.
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Motivation

A group G is called 2-genetic if each normal subgroup of G
can be generated by two elements.
A group G is called metacyclic if G has cyclic normal
subgroup N such that G/N is cyclic.
A metacyclic gorup is 2-genetic, but the reverse is not true.
C.H. Li, H.S. Sim, Automorphisms ..., J. Austral. Math.
Soc. 71(2001) 223-231.
Let G be a non-abelian metacyclic group of order an
odd prime power pn, and let Γ = Cay(G,S) be a
connected Cayley graph on G. If Aut(G,S) is a p′-group,
then either Γ is normal, or ...
This was used to classify half-arc-transitive metacirculant
graphs of order pn with valency less than 2p by C.H. Li,
H.S. Sim, On ..., J. Combin. Theory B 81(2001) 45-57.
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Main Result

Main Theorem
G: nonabelian 2-genetic group of order pn for an odd prime p.
Γ = Cay(G,S): a connected Cayley digraph.
If Aut(G,S) is a p′-group then either Γ is normal, or p = 3,5,7,11,
and ASL(2,p) ≤ Aut(Γ)/Φ(Op(A)) ≤ AGL(2,p), where the kernel of
A := Aut(Γ) on ΓΦ(Op(A)) is Φ(Op(A)):

1 p = 3, n ≥ 5, and ΓΦ(Op(A)) has out-valency at least 8;

2 p = 5, n ≥ 3 and ΓΦ(Op(A)) has out-valency at least 24;

3 p = 7, n ≥ 3 and ΓΦ(Op(A)) has out-valency at least 48;

4 p = 11, n ≥ 3 and ΓΦ(Op(A)) has out-valency at least 120.

Non-normal examples exist for each case in (1)-(4).
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Remark on the main result

There are only a few constructions of half-arc-transitive
non-normal Cayley graphs on p-groups.

In the main theorem, the underlying graphs of non-normal
Cayley digraphs for p = 7,11 are half-arc-transitive.
Recently, Jin-Xin Zhou constructed an infinite family of
such graphs for valency 4.

Since a Sylow p-subgroup of ASL(2,p) is not metacyclic,
the Theorem implies that if G is metacyclic then Γ is
normal, which generalizes the main theorem in [C.H. Li,
H.S. Sim, Automorphisms ..., J. Austral. Math. Soc.
71(2001) 223-231].
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Proof of the main theorem

A = Aut(Γ), Aut(G,S) p′-group 7→ Ĝ ∈ Sylp(A).

Let H = Op(A), H = H/Φ(H) and A = A/Φ(H).
Lemma 1: CA(H) ≤ H.
Lemma 2: H is the kernel of A acting on H by
conjugate, that is, A/H ≤ Aut(H).
G is 2-genetic⇒ H = Zp or Zp × Zp.

H = Zp ⇒ H = Ĝ E A, the normal case.
H = Zp × Zp and A/H ≤ GL(2,p).
[47, Theorem 6.17], (A/H) ∩ SL(2,p) contains SL(2,p)⇒
SL(2,p) ≤ A/H≤ GL(2,p), the non-normal case.
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Proof of the main theorem

Let L be the kernel of A on V (ΓΦ(H)). Then L = Φ(H)Lα, Lα
p′-Hall, Frattini arg. ⇒ A = Φ(H)NA(Lα)⇒
H = H ∩ NA(Lα)⇒ Lα E A⇒ Lα = 1⇒ Φ(H) = L.
SL(2,p) ≤ A/H ≤ GL(2,p). U/H := Z (A/H) is p′-group 7→
U = HV , Frattini argument⇒ ASL(2,p) ≤ A ≤ AGL(2,p).
B/H:=SL(2,p) ≤ A/H ≤ GL(2,p), Ĝ ≤ B, F/H := Z (B/H),
B/F = PSL(2,p), K = the kernel of B on ΓH , |ΓH | = p.
p 6= 3 7→ K = F 7→ PSL(2,p) = B/K ≤ Aut(ΓH) (degree
≤ p + 1), Galois 7→ p = 5,7,11. Thus, p = 3,5,7,11.
Lemma 4: ΓΦ(H) has out-valency at least p2 − 1.
For p = 5,7,11, n ≥ 3 and out-valency ≥ 24,48,120 X

For p = 3, if n = 3,4 then Γ is normal × ⇒ n ≥ 5 X
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Ideas of the proof of Lemma 1

Lemma 1: Let A = Aut(Γ) and H = Op(A). Then CA(H) ≤ H.

Let B be a component of A, that is, a subnormal
quasisimple subgroup: B = B′ and B/Z (B) ∼= T (NS).
[38, Lemma 2.5]⇒ B has a proper subgroup C of
p-power index and Op′ (B) = 1⇒ Z (B) p-group, B/Z (B)
has a proper subgroup BZ (B)/Z (B) of p-power index.
[38, Lemma 2.3]⇒ p - |M(B/Z (B))| 7→ p - |Z (B)| ⇒
Z (B) = 1 and B ∼= T .
[48, 6.9(iv), p. 450]7→ any two distinct components of G
commute elementwise.
E(A) = product of all components of A⇒ B ≤ E(A).
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Ideas of the proof of Lemma 1

B ∼= T ⇒ B is a direct factor of E(A)⇒ Ba is also a direct
factor of E(A), ∀a ∈ A.
B contains a normal subgroup of A isomorphic to T n, but:
Lemma 3: Any m.n.s of A is abelian.
A has no component 7→ E(A) = 1.
F (A) = Op1(A)× · · · ×Opt (A), π(A) = {p1, · · · ,pt}.
Generalized Fitting subgroup: F ∗(A) = E(A)F (A) = F (A).
[38, Lemma 2.5]⇒ Op′ (A) = 1⇒ F ∗(A) = Op(A) = H.
[48, Theorem 6.11]⇒ CA(F ∗(A)) ≤ F ∗(A)⇒ CA(H) ≤ H.
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Ideas of the proof of Lemma 2

Lemma 2: Set H = Op(A) and H = H/Φ(H). Let CA(H) ≤ H.
Then H is the kernel of A acting on H by conjugate.

H ∼= Zn
p is a vector space of dimension n over the field Zp.

Let Aut(H) = GL(n,V ).
σ : A→ Aut(H), g 7→ σg , where σg : h 7→ hg , h ∈ H.
τ : Aut(H)→ GL(n,V ), α 7→ τα : hΦ(H) 7→ hαΦ(H), h ∈ H.
CA(H) ≤ H ⇒ Ker(σ) = CA(H) = Z (H). Set S := Ker(τ)
and K := Ker(στ)⇒ K/Z (H) ∼= K σ ≤ S.
Clearly, H ≤ K . It suffice to show K is a p-group.
Ω = {(h1t1,h2t2, . . . ,hntn) | ti ∈ Φ(H)}, |Ω| = |Φ(H)|n
p-power. S is semiregular on Ω 7→ S is p-group.
K is a p-group⇒ K ≤ H ⇒ H = K .
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Ideas of the proof of Lemma 3

Lemma 3: Any minimal normal subgroups of A is abelian.

Suppose N ∼= T1 × T2 × · · · × Tk , where Ti
∼= T is n.a.s.

Let Ω = {T1, . . . ,Tk}. Ĝ is 2-genetic⇒ k ≤ 2.
Let B = NA(T1). Then B E A and A/B . S2 ⇒ B is
transitive on V (Γ) and Ĝ ≤ B. Consider B instead of A
Let ∆i ∈ V (ΓT1) and |∆i | = pm.
p - (T1)u, [38, Corollary 2]⇒ T1 is 2-transitive on each ∆i
⇒ [∆i ] is complete digraph Kpm or a null graph.
We may assume that T1 has at least two orbits.
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Ideas of the proof of Lemma 3

T1 equivalent 2-transitive action on ∆i and ∆j ⇒ (∆i ,∆j) =
{(αil , αjl) | 1 ≤ l ≤ pm}, {(αik , αjl) | 1 ≤ k , l ≤ pm} or
{(αik , αjl) | 1 ≤ k , l ≤ pm, k 6= `}.
∀g ∈ Spm , σg : αil 7→ αilg , σg ∈ Aut(Γ).
Let Spm = {σg | g ∈ Spm} ≤ Aut(Γ)⇒ Apm ≤ K ≤ B, K is
the kernel of B acting on ΓT1 .
If m > 1 then pm+1

∣∣|K | ⇒ pn+1
∣∣|A| × ⇒ m = 1.

m = 1, [38, Lemma 2.3]⇒ p - |Out(T1)|.
p - |B/T1CB(T1)| ⇒ Ĝ ≤ T1CB(T1) = T1 × CB(T1),
2-genetic⇒ Ĝ is abelian, a contradiction.
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Ideas of the proof of Lemma 4

Lemma 4: ΓΦ(H) has out-valency at least p2− 1 (p = 3,5,7,11).

Φ(H) is the kernel of A on V (ΓΦ(H)). Let α ∈ V (ΓΦ(H)).

Let Ω = {∆1, · · · ,∆p} be the orbits of H on V (ΓΦ(H)).

B = B/Φ(H) = ASL(2,p)≤ A ≤ Aut(ΓΦ(H))⇒ |ΓΦ(H)| = p3,
|B| = p3(p2 − 1), |Bα| = p2 − 1.

∆ ∈ Ω, α ∈ ∆⇒ |∆| = p2, B∆ = H · Bα, |B∆| = p2(p2 − 1).

B∆ is sharply 2-transitive on ∆ and any p′-subgroup W of
B∆ fixe a vertex and has all other orbits of length |W |.

[∆] = K ∗p2 (Out [∆] = p2 − 1) or the null digraph of order p2.

One may assume [∆] is the null digraph of order p2.
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Ideas of the proof of Lemma 4

Let K be the kernel of B on V (ΓH). Set K = K/Φ(H).
B/H = SL(2,p)⇒ F/H := Z (SL(2,p) ∼= Z2, F = F/Φ(H)
⇒ F/H ∼= Z2, F ≤ B∆, and |Fα| = 2⇒ There exist some
i 6= j such that Out((∆i ,∆j)) ≥ 2.

For p = 3, B/K ∼= Z3 and B/K ∼= Z3 ⇒ K fixes each ∆i
and is 2-transitive on each ∆i ⇒ Out(∆i ,∆j) ≥ p2 − 1.

For p = 5, 7 or 11. B/K ∼= B/K ∼= PSL(2,p)⇒ B is
2-transitive on Ω⇒ B∆i is transitive on Ω\{∆i}.
B∆i = H · Bαi and |Bαi | = p2 − 1⇒ Bαi is transitive on
Ω\{∆i} and |(Bαi )∆j | = (p2 − 1)/(p − 1) = p + 1⇒
Out((∆i ,∆j)) ≥ p + 1.

B 2-transitive on Ω⇒ Out(ΓΦ(H)) ≥ (p + 1)(p−1) = p2−1.
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Further work

Based on the main results, we propose the following problem:

Classify half arc-transitive graphs on a 2-genetic
group of odd-prime power order pn. In particular, do it
for valency less than 2p.

There are only two non-isomorphic non-abelian groups of order
p3, of which both are 2-genetic.

Classify edge-transitive or half-arc-transitive graphs of
prime-cube order.

In 1992, Xu [66] classified tetravalent half-arc-transitive graphs
of prime-cube order. Based on the main theorem, a similar
classification can be done for valencies 6 and 8.
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Definition

Let p be an odd prime. Denote

G1(p) = 〈a,b | ap2
= 1,bp = 1,b−1ab = a1+p〉

G2(p) = 〈a,b, c | ap = bp = cp = 1, [a,b] = c, [a, c] = [b, c] = 1〉.

Let e be an element of order j < p in Z∗p2 and set

T j,k = {bka,bkae, . . . ,bkaej−1
, (bka)−1, (bkae)−1, . . . , (bkaej−1

)−1}

for each 1 ≤ k ≤ p − 1. Define

Γj,k = Cay(G1(p),T j,k ).

Let λ be an element of order 4 in Z∗p. Then 4 | (p − 1). For each
0 ≤ k ≤ p − 1 with k 6= 2−1(1 + λ), let S4,k = R ∪ R−1, where
R = {a,b,aλbλ−1ck ,a−λ−1b−λc1−k} and define
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Γ4,k = Cay(G2(p),S4,k ).

Half-arc-transitive graphs of order p3 of small valency

Let Γ be a graph of order p3 for an odd prime p. Then
(1) If Γ has valency 6 then Γ is half-arc-transitive if and only if

3 | (p − 1) and Γ ∼= Γ3,k . There are exactly (p − 1)/2
nonisomorphic half-arc-transitive graphs in Γ3,k ;

(2) If Γ has valency 8 then Γ is half-arc-transitive if and only if
4 | (p − 1) and Γ ∼= Γ4,k or Γ4,k . There are exactly (p − 1)/2
nonisomorphic half-arc-transitive graphs in Γ4,k and Γ4,k ,
respectively.
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