An infinite family of trivalent vertex-transitive Haar garphs that are not Cayley graphs

István Estélyi estelyii@gmail.com

Joint work with Marston Conder and Tomaž Pisanski

Definition

A voltage graph is a graph X (possibly with loops, multiple edges and semi-edges) together with a mapping $\gamma : A(X) \to G$, from the arcs of X to some group G such that inverse arcs are mapped to inverse group elements and semi-edges are mapped to involutions.

Definition

The regular covering graph Y of X has vertex set $V(Y) = V(X) \times G$ and edges of the form $\{(u, g), (v, \gamma_{(u,v)}g)\}$ for all edges $\{u, v\} \in E(X)$ and all $g \in G$.

Definition

Let *G* be a group, and $S \subset G$ with $1_G \notin S$. Then the Cayley graph X = Cay(G, S) is the graph with V(X) = G and with edges of the form $\{g, sg\}$ for all $g \in G$ and $s \in S$.

Equivalently, since all edges can be written in the form $\{1, s\}g$, this is a covering graph over a single-vertex graph having loops and semi-edges, with voltages taken from *S*: the order of a voltage over a semi-edge is 2 (corresponding to an involution in *S*), while the order of voltage over a loop is greater than 2 (corresponding to a non-involution in *S*).

Theorem (Sabidussi)

A graph X is a Cayley graph over some group G if and only if Aut(X) contains a regular subgroup isomorphic to G.

Haar graphs, Bi-Cayley graphs

Definition

Given a group *G* and an arbitrary subset *S* of *G*, the Haar graph H(G, S) is the regular *G*-cover of a dipole with |S| parallel edges, labeled by elements of *S*. In other words, the vertex-set of H(G, S) is $G \times \{0, 1\}$, and the edges are of the form $\{(g, 0), (sg, 1)\}$ for all $g \in G$ and $s \in S$.

The name 'Haar graph' comes from the fact that when G is an abelian group, the Schur norm of the corresponding adjacency matrix can be evaluated via computing a discrete Haar integral on G.

The group *G* acts on H(G, S) as a group of automorphisms, by right multiplication, and moreover, *G* acts regularly on each of the two parts of H(G, S), namely $\{(g, 0) : g \in G\}$ and $\{(g, 1) : g \in G\}$.

Conversely, if Γ is any bipartite graph and its automorphism group Aut Γ has a subgroup *G* that acts regularly on each part of Γ , then Γ is a Haar graph — indeed Γ is isomorphic to H(G, S) where *S* is determined by the edges incident with a given vertex of Γ .

Bi-Cayley graphs

Haar graphs form a special subclass of *bi-Cayley graphs*, which are graphs that admit a semiregular group of automorphisms with two orbits of equal size. Every bi-Cayley graph can be realised as follows:

Definition

Let *G* be a group, and let *S* be arbitrary subset of *G*. The bi-Cayley graph of *G* with respect to the subsets *L*, *R*, *S* of *G* $(1 \notin L \cup R, L = L^{-1}, R = R^{-1})$, denoted by BCay(*G*, *L*, *R*, *S*) is the simple graph with vertex set $G \times \{0, 1\}$ and with edge set

$\{(x,0)(lx,0)\}\ (x\in G, l\in L)$	left edges,
$\{(x, 1)(rx, 1)\}\ (x \in G, r \in R)$	right edges,
$\{(x,0)(sx,1)\}\;(x\in {\it G},s\in {\it S})$	middle edges.

For any $g \in G$ the map g_r defined by $(x, i)^{g_r} = (xg, i)$ $(x \in G, i \in \{0, 1\})$ is an automorphism of BCay(G, L, R, S). Hence $G_R = \{g_r \mid g \in G\} \cong G$ is a semiregular automorphism group with orbits.

M Univerza na Primorsken

Connections between Haar-, Cayley-, VT graphs have been investigated recently by E., Pisanski.

- Q 1. For what finite non-abelian groups G are all Haar graphs H(G, S) Cayley graphs?
- Q 2. For what finite non-abelian groups G is there a Haar graph with Aut $H(G, S) \cong G$?
- Q 3. Is there a Haar graph H(G, S) which is vertex-transitive but non-Cayley?

In this talk we will answer Q 3.

- Hladnik et al.: Haar graphs over \mathbb{Z}_n are Cayley graphs over dihedral groups. If a *A* is belian, $H(A, S) \cong \operatorname{Cay}(D(A), \overline{S})$.
- Lu et al.: three infinite families of cubic semi-symmetric (edge- but not vertex-transitive) graphs as Haar graphs over the alternating group An.
- Exoo, Jajcay: the smallest known approximate (3,30)-cage as a Haar graph over *SL*(2,83).
- Zhou, Feng: a family of VT (both Cayley and non-Cayley) cubic graphs as bi-Cayley graphs over abelian groups

Named so by Zhou and Feng. Automorphism groups computed by Kutnar and Petecki. A direct construction:

Definition

Let D(n, r) be the simple graph with four types of vertices, called u_i, v_i, w_i and z_i (for $i \in \mathbb{Z}_n$), and three types of edges, given by the sets $\Omega = \{\{u_i, u_{i+1}\}, \{z_i, z_{i+1}\} : i \in \mathbb{Z}_n\}$ (the 'outer' edges), $\Sigma = \{\{u_i, v_i\}, \{w_i, z_i\} : i \in \mathbb{Z}_n\}$ (the spokes'), and $I = \{\{v_i, w_{i+r}\}, \{v_i, w_{i-r}\} : i \in \mathbb{Z}_n\}$ (the 'inner' edges).

> Univerza na Primorske Inštitut Andrei Maruš

Generalized- and Doubly generalized Petersen graphs

Proposition

Every D(n, r) is connected. The graph D(n, r) is bipartite if and only if n is even.

Proposition

For every n and r, the graph D(n,r) is isomorphic to D(n,n-r), and D(2n,r) is isomorphic to D(2n,n-r).

Proposition

For every *r*, the graph D(2r+1, r) is planar, and isomorphic to the generalised Petersen graph G(4r+2, 2).

A word of caution: it can happen that $D(n, r) \ncong D(n, s)$ even when $G(n, r) \cong G(n, s)$. For instance, $G(7, 2) \cong G(7, 3)$ but $D(7, 2) \ncong D(7, 3)$, since D(7, 3) is planar but D(7, 2) is not.

α :	$u_i\mapsto u_{i+1},$	$V_i \mapsto V_{i+1},$	$W_i \mapsto W_{i+1},$	$Z_i \mapsto Z_{i+1}$	(rotation),
β :	$U_i\mapsto Z_i,$	$V_i \mapsto W_i,$	$W_i \mapsto V_i,$	$Z_i \mapsto U_i$	(flip symmetry),
γ :	$u_i\mapsto u_{-i},$	$V_i \mapsto V_{-i},$	$W_i \mapsto W_{-i},$	$Z_i\mapsto Z_{-i}$	(reflection).

Note also that α and β commute with each other. In fact, Zhou and Feng proved that D(n, r) is isomorphic to the bi-Cayley graph BCay($G, R, L, \{1\}$) over $G = \langle \alpha, \beta \rangle \cong \mathbb{Z}_n \times \mathbb{Z}_2$, with $R = \{\alpha, \alpha^{-1}\}$ and $L = \{\alpha^r \beta, \alpha^{-r} \beta\}$.

"When is D(n, r) a Haar graph?"

Clue: Since the orbits of $G = \langle \alpha, \beta \rangle$ do not form the bipartition of D(n, r), it follows that if D(n, r) is a Haar graph, then it must be vertex-transitive.

Theorem (Zhou, Feng)

The graph D(n, r) is vertex-transitive if and only if n = 5 and r = 2, or n is even and $r^2 \equiv \pm 1 \mod \frac{n}{2}$. In the former case, D(n, r) is isomorphic to the dodecahedral graph G(10, 2), which is non-Cayley, and in the latter case, if $r^2 \equiv 1 \mod \frac{n}{2}$ then D(n, r) is a Cayley graph, while if $r^2 \equiv -1 \mod \frac{n}{2}$ then D(n, r) is non-Cayley.

Proposition

A Cayley graph Cay(G, S) is a Haar graph if and only if it is bipartite.

Theorem (Conder, E., Pisanski)

D(n,r) is a Haar graph if and only if it is vertex-transitive and n is even.

Cubic VT non-Cayley Haar graphs

Combining the previous theorems we get the following:

Theorem (Conder, E., Pisanski)

- (a) If n is odd, or if n is even and $r^2 \neq \pm 1 \mod \frac{n}{2}$, then D(n, r) is not a Haar graph, and is vertex-transitive only when (n, r) = (5, 2);
- (b) If n is even and $r^2 \equiv 1 \mod \frac{n}{2}$, then D(n, r) is a Haar graph and a Cayley graph;
- (c) If n is even and $r^2 \equiv -1 \mod \frac{n}{2}$, then D(n, r) is a Haar graph and is vertex-transitive but not a Cayley graph.

In particular, the graphs D(n, r) of case (c) give infinitely many Haar graphs that are vertex-transitive but non-Cayley, in answer to the original question:

Corollary

Each graph D(2m, r) with m > 2 and $r^2 \equiv -1 \mod m$ is a Haar graph that is vertex-transitive but non-Cayley.

.

Univerza na Primorske

- *D*(10, 2), is the smallest arc-transitive non-Cayley Haar graph
- | Aut *D*(10, 2)| = 480
- F040A in the Foster census
- in LCF notation [15, 9, -9, -15]¹⁰
- Ivić Weiss used it as the middle layer graph of the rank 4 self-dual regular polytope 4{3,6,3}4

D(10, 2) or F040A, the smallest arc-transitive example

IAM Univerza na Primorskem Inštitut Andrej Marušič

THANK YOU!

æ