An infinite family of trivalent vertex-transitive Haar garphs that are not Cayley graphs

István Estélyi
estelyii@gmail.com

Joint work with Marston Conder and Tomaž Pisanski

Voltage graphs and regular coverings

Definition

A voltage graph is a graph X (possibly with loops, multiple edges and semi-edges) together with a mapping $\gamma: A(X) \rightarrow G$, from the arcs of X to some group G such that inverse arcs are mapped to inverse group elements and semi-edges are mapped to involutions.

Definition

The regular covering graph Y of X has vertex set $V(Y)=V(X) \times G$ and edges of the form $\left\{(u, g),\left(v, \gamma_{(u, v)} g\right)\right\}$ for all edges $\{u, v\} \in E(X)$ and all $g \in G$.

Cayley graphs

Definition

Let G be a group, and $S \subset G$ with $1_{G} \notin S$. Then the Cayley graph $X=\operatorname{Cay}(G, S)$ is the graph with $V(X)=G$ and with edges of the form $\{g, s g\}$ for all $g \in G$ and $s \in S$.

Equivalently, since all edges can be written in the form $\{1, s\} g$, this is a covering graph over a single-vertex graph having loops and semi-edges, with voltages taken from S : the order of a voltage over a semi-edge is 2 (corresponding to an involution in S), while the order of voltage over a loop is greater than 2 (corresponding to a non-involution in S).

Theorem (Sabidussi)

A graph X is a Cayley graph over some group G if and only if $\operatorname{Aut}(X)$ contains a regular subgroup isomorphic to G.

Haar graphs, Bi-Cayley graphs

Definition

Given a group G and an arbitrary subset S of G, the Haar graph $H(G, S)$ is the regular G-cover of a dipole with $|S|$ parallel edges, labeled by elements of S. In other words, the vertex-set of $H(G, S)$ is $G \times\{0,1\}$, and the edges are of the form $\{(g, 0),(s g, 1)\}$ for all $g \in G$ and $s \in S$.

Haar graphs

The name 'Haar graph' comes from the fact that when G is an abelian group, the Schur norm of the corresponding adjacency matrix can be evaluated via computing a discrete Haar integral on G.

The group G acts on $H(G, S)$ as a group of automorphisms, by right multiplication, and moreover, G acts regularly on each of the two parts of $H(G, S)$, namely $\{(g, 0): g \in G\}$ and $\{(g, 1): g \in G\}$.

Conversely, if Γ is any bipartite graph and its automorphism group Aut Γ has a subgroup G that acts regularly on each part of Γ, then Γ is a Haar graph indeed Γ is isomorphic to $H(G, S)$ where S is determined by the edges incident with a given vertex of Γ.

Bi-Cayley graphs

Haar graphs form a special subclass of bi-Cayley graphs, which are graphs that admit a semiregular group of automorphisms with two orbits of equal size. Every bi-Cayley graph can be realised as follows:

Definition

Let G be a group, and let S be arbitrary subset of G. The bi-Cayley graph of G with respect to the subsets L, R, S of $G\left(1 \notin L \cup R, L=L^{-1}, R=R^{-1}\right)$, denoted by $\mathrm{BCay}(G, L, R, S)$ is the simple graph with vertex set $G \times\{0,1\}$ and with edge set

$$
\begin{aligned}
& \{(x, 0)(I x, 0)\}(x \in G, I \in L) \\
& \{(x, 1)(r x, 1)\}(x \in G, r \in R) \\
& \{(x, 0)(s x, 1)\}(x \in G, s \in S)
\end{aligned}
$$

left edges, right edges, middle edges.

For any $g \in G$ the map g_{r} defined by $(x, i)^{g_{r}}=(x g, i)(x \in G, i \in\{0,1\})$ is an automorphism of $\operatorname{BCay}(G, L, R, S)$. Hence $G_{R}=\left\{g_{r} \mid g \in G\right\} \cong G$ is a semiregular automorphism group with orbits.

The main questions

Connections between Haar-, Cayley-, VT graphs have been investigated recently by E., Pisanski.

Q 1. For what finite non-abelian groups G are all Haar graphs $H(G, S)$ Cayley graphs?

Q 2. For what finite non-abelian groups G is there a Haar graph with Aut $H(G, S) \cong G$?

Q 3. Is there a Haar graph $H(G, S)$ which is vertex-transitive but non-Cayley?

In this talk we will answer Q 3.

Some motivating results

- Hladnik et al.: Haar graphs over \mathbb{Z}_{n} are Cayley graphs over dihedral groups. If a A is belian, $H(A, S) \cong \operatorname{Cay}(D(A), \bar{S})$.
- Lu et al.: three infinite families of cubic semi-symmetric (edge- but not vertex-transitive) graphs as Haar graphs over the alternating group A_{n}.
- Exoo, Jajcay: the smallest known approximate $(3,30)$-cage as a Haar graph over $S L(2,83)$.
- Zhou, Feng: a family of VT (both Cayley and non-Cayley) cubic graphs as bi-Cayley graphs over abelian groups

Doubly generalized Petersen graphs

Named so by Zhou and Feng. Automorphism groups computed by Kutnar and Petecki. A direct construction:

Definition

Let $D(n, r)$ be the simple graph with four types of vertices, called u_{i}, v_{i}, w_{i} and z_{i} (for $i \in \mathbb{Z}_{n}$), and three types of edges, given by the sets

$$
\begin{aligned}
\Omega & =\left\{\left\{u_{i}, u_{i+1}\right\},\left\{z_{i}, z_{i+1}\right\}: i \in \mathbb{Z}_{n}\right\} \\
\Sigma & =\left\{\left\{u_{i}, v_{i}\right\},\left\{w_{i}, z_{i}\right\}: i \in \mathbb{Z}_{n}\right\} \\
I & =\left\{\left\{v_{i}, w_{i+r}\right\},\left\{v_{i}, w_{i-r}\right\}: i \in \mathbb{Z}_{n}\right\}
\end{aligned}
$$

(the 'outer' edges),
(the spokes'), and
(the 'inner' edges).

Generalized- and Doubly generalized Petersen graphs

$D(6,1)$
$G(6,1)$

Properties of the graphs $D(n, r)$

Proposition

Every $D(n, r)$ is connected. The graph $D(n, r)$ is bipartite if and only if n is even.

Proposition

For every n and r, the graph $D(n, r)$ is isomorphic to $D(n, n-r)$, and $D(2 n, r)$ is isomorphic to $D(2 n, n-r)$.

Proposition

For every r, the graph $D(2 r+1, r)$ is planar, and isomorphic to the generalised Petersen graph $G(4 r+2,2)$.

A word of caution: it can happen that $D(n, r) \not \not 二 D(n, s)$ even when $G(n, r) \cong G(n, s)$. For instance, $G(7,2) \cong G(7,3)$ but $D(7,2) \nsupseteq D(7,3)$, since $D(7,3)$ is planar but $D(7,2)$ is not.

Symmetries of $D(n, r)$

$$
\begin{array}{lllll}
\alpha: & u_{i} \mapsto u_{i+1}, & v_{i} \mapsto v_{i+1}, & w_{i} \mapsto w_{i+1}, & z_{i} \mapsto z_{i+1} \\
\beta: & u_{i} \mapsto z_{i}, & v_{i} \mapsto w_{i}, & w_{i} \mapsto v_{i}, & z_{i} \mapsto u_{i} \\
\gamma: & & u_{i} \mapsto u_{-i}, & v_{i} \mapsto v_{-i}, & \\
w_{i} \mapsto w_{-i}, & z_{i} \mapsto z_{-i}
\end{array}
$$

(flip symmetry),
(reflection).

Note also that α and β commute with each other. In fact, Zhou and Feng proved that $D(n, r)$ is isomorphic to the bi-Cayley graph $\operatorname{BCay}(G, R, L,\{1\})$ over $G=\langle\alpha, \beta\rangle \cong \mathbb{Z}_{n} \times \mathbb{Z}_{2}$, with $R=\left\{\alpha, \alpha^{-1}\right\}$ and $L=\left\{\alpha^{r} \beta, \alpha^{-r} \beta\right\}$.

$$
\text { "When is } D(n, r) \text { a Haar graph?" }
$$

Clue: Since the orbits of $G=\langle\alpha, \beta\rangle$ do not form the bipartition of $D(n, r)$, it follows that if $D(n, r)$ is a Haar graph, then it must be vertex-transitive.

Vertex-transitive $D(n, r)$

Theorem (Zhou, Feng)

The graph $D(n, r)$ is vertex-transitive if and only if $n=5$ and $r=2$, or n is even and $r^{2} \equiv \pm 1 \bmod \frac{n}{2}$. In the former case, $D(n, r)$ is isomorphic to the dodecahedral graph $G(10,2)$, which is non-Cayley, and in the latter case, if $r^{2} \equiv 1 \bmod \frac{n}{2}$ then $D(n, r)$ is a Cayley graph, while if $r^{2} \equiv-1 \bmod \frac{n}{2}$ then $D(n, r)$ is non-Cayley.

Proposition

A Cayley graph Cay (G, S) is a Haar graph if and only if it is bipartite.

Theorem (Conder, E., Pisanski)

$D(n, r)$ is a Haar graph if and only if it is vertex-transitive and n is even.

Cubic VT non-Cayley Haar graphs

Combining the previous theorems we get the following:

Theorem (Conder, E., Pisanski)

(a) If n is odd, or if n is even and $r^{2} \not \equiv \pm 1 \bmod \frac{n}{2}$, then $D(n, r)$ is not a Haar graph, and is vertex-transitive only when $(n, r)=(5,2)$;
(b) If n is even and $r^{2} \equiv 1 \bmod \frac{n}{2}$, then $D(n, r)$ is a Haar graph and a Cayley graph;
(c) If n is even and $r^{2} \equiv-1 \bmod \frac{n}{2}$, then $D(n, r)$ is a Haar graph and is vertex-transitive but not a Cayley graph.

In particular, the graphs $D(n, r)$ of case (c) give infinitely many Haar graphs that are vertex-transitive but non-Cayley, in answer to the original question:

Corollary

Each graph $D(2 m, r)$ with $m>2$ and $r^{2} \equiv-1$ mod m is a Haar graph that is vertex-transitive but non-Cayley.

$D(10,2)$ or $F 040 A$, the smallest arc-transitive example

- $D(10,2)$, is the smallest arc-transitive non-Cayley Haar graph
- \mid Aut $D(10,2) \mid=480$
- F040A in the Foster census
- in LCF notation $[15,9,-9,-15]^{10}$
- Ivić Weiss used it as the middle layer graph of the rank 4 self-dual regular polytope ${ }_{4}\{3,6,3\}_{4}$

$D(10,2)$ or $F 040 A$, the smallest arc-transitive example

THANK YOU!

