Flag graphs and symmetry type graphs

María del Río Francos

IMate, UNAM

SCDO'16, Queenstown, NZ.

Content

Aim.

The aim of this work is to give a classification on the possible different symmetry type of maniplexes.
I. Maniplexes and symmetry type graphs.
II. Map operations.

I(a). Maniplexes

Maniplexes were first introduced by S. Wilson (2012), aiming to unify the notion of maps and polytopes.

I(a). Maniplexes

Maniplexes were first introduced by S. Wilson (2012), aiming to unify the notion of maps and polytopes.

Given a set of flags $\mathcal{F}(\mathcal{M})$ and a sequence $\left(s_{0}, s_{1}, \ldots, s_{n-1}\right)$, where each s_{i} partitions $\mathcal{F}(\mathcal{M})$ into sets of size two and the partitions described by s_{i} and s_{j} are disjoint when $i \neq j$.

I(a). Maniplexes

Maniplexes were first introduced by S. Wilson (2012), aiming to unify the notion of maps and polytopes.

Given a set of flags $\mathcal{F}(\mathcal{M})$ and a sequence $\left(s_{0}, s_{1}, \ldots, s_{n-1}\right)$, where each s_{i} partitions $\mathcal{F}(\mathcal{M})$ into sets of size two and the partitions described by s_{i} and s_{j} are disjoint when $i \neq j$.

A maniplex \mathcal{M} of rank $n-1$ (or ($n-1$)-maniplex) is defined by a connected graph $\mathcal{G}_{\mathcal{M}}$ which vertex set is $\mathcal{F}(\mathcal{M})$ and with edges of colour i corresponding to the matching s_{i}, to which we refer as the flag graph of the maniplex \mathcal{M}.

Examples of maniplexes

0-maniplex.

Graph with two vertices joined by an edge of colour 0 .

1-maniplex.

It is associated to an I-gon, which graph contains $2 /$ vertices joined by a perfect matching of colours 0 and 1 and each of size 1 .

2-maniplex.

Can be considered as a map, as Lins and Vince defined a map (1982-1983), by a trivalent edge coloured graph.

Examples of maniplexes

0 -maniplex.

Graph with two vertices joined by an edge of colour 0 .

1-maniplex.

It is associated to an I-gon, which graph contains $2 /$ vertices joined by a perfect matching of colours 0 and 1 and each of size 1 .

2-maniplex.

Can be considered as a map, as Lins and Vince defined a map (1982-1983), by a trivalent edge coloured graph.

Thus, maniplexes generalize the notion of maps to higher rank.

Monodromy (or connection) group of \mathcal{M}

To each ($n-1$)-maniplex \mathcal{M} we can associate a subgroup of the permutation group $\operatorname{Sym}(\mathcal{F}(\mathcal{M}))$,

$$
\operatorname{Mon}(\mathcal{M}):=\left\langle s_{0}, s_{1}, \ldots, s_{n-1}\right\rangle
$$

known as the monodromy (or connection) group of the maniplex \mathcal{M}.

Monodromy (or connection) group of \mathcal{M}

To each ($n-1$)-maniplex \mathcal{M} we can associate a subgroup of the permutation group $\operatorname{Sym}(\mathcal{F}(\mathcal{M}))$,

$$
\operatorname{Mon}(\mathcal{M}):=\left\langle s_{0}, s_{1}, \ldots, s_{n-1}\right\rangle
$$

known as the monodromy (or connection) group of the maniplex \mathcal{M}.
The action of $s_{0}, s_{1}, \ldots, s_{n-1}$ on any flag $\Phi \in \mathcal{F}(\mathcal{M})$ is defined by

$$
\Phi \cdot s_{i}=\Phi^{i} ; \quad i=0,1, \ldots, n-1
$$

Monodromy (or connection) group of \mathcal{M}

To each ($n-1$)-maniplex \mathcal{M} we can associate a subgroup of the permutation group $\operatorname{Sym}(\mathcal{F}(\mathcal{M}))$,

$$
\operatorname{Mon}(\mathcal{M}):=\left\langle s_{0}, s_{1}, \ldots, s_{n-1}\right\rangle
$$

known as the monodromy (or connection) group of the maniplex \mathcal{M}.
The action of $s_{0}, s_{1}, \ldots, s_{n-1}$ on any flag $\Phi \in \mathcal{F}(\mathcal{M})$ is defined by

$$
\Phi \cdot s_{i}=\Phi^{i} ; \quad i=0,1, \ldots, n-1 .
$$

And satisfy the following
(i) All $s_{0}, s_{1}, \ldots, s_{n-1}$ are fixed-point free involutions.
(ii) $s_{i} s_{j}=s_{j} s_{i}$ and $s_{i} s_{j}$ is fixed-point free, whenever $|i-j| \geq 2$.
(iii) The action of $\operatorname{Mon}(\mathcal{M})$ on $\mathcal{F}(\mathcal{M})$ is transitive.

Faces of rank $i=0,1, \ldots, n-1$ of \mathcal{M}

The set of i-faces of an $(n-1)$-maniplex corresponds to the orbit of the flags in $\mathcal{F}(\mathcal{M})$ under the action of the group generated by the set

$$
F_{i}:=\left\{s_{j} \mid i \neq j\right\} .
$$

Automorphism group of $\mathcal{M}, \operatorname{Aut}(\mathcal{M})$

- Every automorphism α of \mathcal{M} induces a bijection on the flags.

Automorphism group of $\mathcal{M}, \operatorname{Aut}(\mathcal{M})$

- Every automorphism α of \mathcal{M} induces a bijection on the flags.
- The action of $\operatorname{Aut}(\mathcal{M})$ on the set of flags is semi-regular.

Automorphism group of $\mathcal{M}, \operatorname{Aut}(\mathcal{M})$

- Every automorphism α of \mathcal{M} induces a bijection on the flags.
- The action of $\operatorname{Aut}(\mathcal{M})$ on the set of flags is semi-regular.
- The action of $\operatorname{Aut}(\mathcal{M})$ on the set of flags is transitive only if \mathcal{M} is regular.

Automorphism group of $\mathcal{M}, \operatorname{Aut}(\mathcal{M})$

- Every automorphism α of \mathcal{M} induces a bijection on the flags.
- The action of $\operatorname{Aut}(\mathcal{M})$ on the set of flags is semi-regular.
- The action of $\operatorname{Aut}(\mathcal{M})$ on the set of flags is transitive only if \mathcal{M} is regular.
- $\operatorname{Aut}(\mathcal{M})$ partitions the set $\mathcal{F}(\mathcal{M})$ into orbits of the same size.

Automorphism group of $\mathcal{M}, \operatorname{Aut}(\mathcal{M})$

- Every automorphism α of \mathcal{M} induces a bijection on the flags.
- The action of $\operatorname{Aut}(\mathcal{M})$ on the set of flags is semi-regular.
- The action of $\operatorname{Aut}(\mathcal{M})$ on the set of flags is transitive only if \mathcal{M} is regular.
- Aut (\mathcal{M}) partitions the set $\mathcal{F}(\mathcal{M})$ into orbits of the same size.
$\operatorname{Aut}(\mathcal{M})$ is isomorphic to the edge-colour preserving automorphism group of $\mathcal{G}_{\mathcal{M}}$.

Automorphism group of $\mathcal{M}, \operatorname{Aut}(\mathcal{M})$

- Every automorphism α of \mathcal{M} induces a bijection on the flags.
- The action of $\operatorname{Aut}(\mathcal{M})$ on the set of flags is semi-regular.
- The action of $\operatorname{Aut}(\mathcal{M})$ on the set of flags is transitive only if \mathcal{M} is regular.
- $\operatorname{Aut}(\mathcal{M})$ partitions the set $\mathcal{F}(\mathcal{M})$ into orbits of the same size.
$\operatorname{Aut}(\mathcal{M})$ is isomorphic to the edge-colour preserving automorphism group of $\mathcal{G}_{\mathcal{M}}$.
- The action of the elements in $\operatorname{Aut}(\mathcal{M})$ commutes with the elements of $\operatorname{Mon}(\mathcal{M})$.

k-orbit maniplex

We say that the maniplex \mathcal{M} is a k-orbit maniplex whenever the automorphism group $\operatorname{Aut}(\mathcal{M})$ has exactly k orbits on $\mathcal{F}(\mathcal{M})$.

k-orbit maniplex

We say that the maniplex \mathcal{M} is a k-orbit maniplex whenever the automorphism group $\operatorname{Aut}(\mathcal{M})$ has exactly k orbits on $\mathcal{F}(\mathcal{M})$.

- A 1-orbit maniplex is known as regular (or reflexible).

k-orbit maniplex

We say that the maniplex \mathcal{M} is a k-orbit maniplex whenever the automorphism group $\operatorname{Aut}(\mathcal{M})$ has exactly k orbits on $\mathcal{F}(\mathcal{M})$.

- A 1-orbit maniplex is known as regular (or reflexible).
- A 2-orbit maniplex, with adjacent flags belonging to different orbits, is known as a chiral maniplex.

k-orbit maniplex

We say that the maniplex \mathcal{M} is a k-orbit maniplex whenever the automorphism group $\operatorname{Aut}(\mathcal{M})$ has exactly k orbits on $\mathcal{F}(\mathcal{M})$.

- A 1-orbit maniplex is known as regular (or reflexible).
- A 2-orbit maniplex, with adjacent flags belonging to different orbits, is known as a chiral maniplex.

It can be seen that there are $2^{n}-1$ different possible types of 2 -orbit ($n-1$)-maniplexes.

I(b). Symmetry type graph of $\mathcal{M}, T(\mathcal{M})$

Definition.

The symmetry type graph $T(\mathcal{M})$ of a maniplex \mathcal{M} is a quotient graph of the flag graph $\mathcal{G}_{\mathcal{M}}$ obtained from the action of the $\operatorname{group} \operatorname{Aut}(\mathcal{M})$ on the flags of \mathcal{M}.

Symmetry type graph of $\mathcal{M}, T(\mathcal{M})$

Thus, the symmetry type graph of a k-orbit map has k-vertices

Given two flag orbits \mathcal{O}_{Φ} and \mathcal{O}_{Ψ}, as vertices of $T(\mathcal{M})$, there is an edge of colour $i=0,1, \ldots, n-1$ between them if and only if there exists flags $\Phi^{\prime} \in \mathcal{O}_{\Phi}$ and $\Psi^{\prime} \in \mathcal{O}_{\Psi}$ such that Φ^{\prime} and Ψ^{\prime} are i-adjacent in \mathcal{M}.

Counting symmetry types

The number of types of k-orbit maniplexes depends on the number of n-valent pre-graphs on k vertices that can be properly edge coloured with n colours and that the connected components of the 2 -factor with colours i and j, with $|i-j| \geq 2$ are always as the following.

The symmetry type graph of a reflexible maniplex consist of one vertex and n semi-edges.

There are $2^{n}-1$ different possible symmetry type graphs on 2 vertices.

$$
I \subset\{0,1, \ldots, n-1\}
$$

$$
J=\{0,1, \ldots, n-1\} \backslash I
$$

There are $2 n-3$ different possible symmetry type graphs on 3 vertices.

$$
J=\{0,1, \ldots, n-1\} \backslash\{j-1, j, j+1\}
$$

Face transitivity

Definition.

An $(n-1)$-maniplex \mathcal{M} is i-face-transitive if $\operatorname{Aut}(\mathcal{M})$ is transitive on the faces of rank $i=0,1, \ldots, n-1$.

Face transitivity

Definition.

An ($n-1$)-maniplex \mathcal{M} is i-face-transitive if $\operatorname{Aut}(\mathcal{M})$ is transitive on the faces of rank $i=0,1, \ldots, n-1$.

Definition.

An ($n-1$)-maniplex \mathcal{M} is fully-face-transitive if it is i-face-transitive for every $i=0,1, \ldots, n-1$.

Highly symmetric maniplexes

Given the symmetry type graph of a maniplex one can read from the appropriate coloured subgraphs the different types of face-transitivities that the maniplex has.

Theorem. (Number of face-orbits of \mathcal{M})
Let \mathcal{M} be an $(n-1)$-maniplex with symmetry type $\operatorname{graph} T(\mathcal{M})$. Then, the number of connected components in the $(n-1)$-factor of $T(\mathcal{M})$ of colours $\{0,1, \ldots, n-1\} \backslash\{i\}$, determine the number of orbits of the i-faces of \mathcal{M}, where $i \in\{0,1, \ldots, n-1\}$.

Edge-transitive maps

Fully-transitivity on k-orbit maniplexes $(k=2,3,4)$

Hubard showed that there are $2^{n}-n-3$ classes of fully-transitive 2-orbit ($n-1$)-maniplexes.

We showed that 3-orbit maniplexes are never fully-transitive, but they are i-face-transitive.

Also, that if a 4-orbit maniplex is not fully-transitive then it is i-face-transitive for all i but at most three ranks.

Generators of $\operatorname{Aut}(\mathcal{M})$ given $T(\mathcal{M})$

Let \mathcal{M} be a k-orbit $(n-1)$-maniplex and let $T(\mathcal{M})$ its symmetry type graph.

- Suppose that $v_{1}, e_{1}, v_{2}, e_{2} \ldots, e_{q-1}, v_{q}$ is a distinguished walk that visits every vertex of $T(\mathcal{M})$, with the edge e_{i} having colour a_{i}, for each $i=1, \ldots q-1$.

Generators of $\operatorname{Aut}(\mathcal{M})$ given $T(\mathcal{M})$

- Let $S_{i} \subset\{0, \ldots, n-1\}$ be such that v_{i} has a semi-edge of colour s if and only if $s \in S_{i}$.
- Let $B_{i, j} \subset\{0, \ldots, n-1\}$ be the set of colours of the edges between the vertices v_{i} and v_{j} (with $i<j$) that are not in the distinguished walk

- Let $\Phi \in \mathcal{F}(\mathcal{M})$ be a base flag of \mathcal{M} such that Φ projects to v_{1} in $T(\mathcal{M})$.

Generators of $\operatorname{Aut}(\mathcal{M})$ given $T(\mathcal{M})$

Theorem.

The automorphism group of \mathcal{M} is generated by the union of the sets

$$
\left\{\alpha_{a_{1}, a_{2}, \ldots, a_{i}, s, a_{i}, a_{i-1}, \ldots, a_{1}} \mid i=1, \ldots, k-1, s \in S_{i}\right\}
$$

and

$$
\left\{\alpha_{a_{1}, a_{2}, \ldots, a_{i}, b, a_{j}, a_{j-1}, \ldots, a_{1}} \mid i, j \in\{1, \ldots, k-1\}, i<j, b \in B_{i, j}\right\} .
$$

II. Map operations

Theorem. [Orbanić, Pellicer, Weiss]

Let \mathcal{M} be a k-orbit map. Then the medial map $\operatorname{Me}(\mathcal{M})$ is a k-orbit or a $2 k$-orbit map, depending on whether or not \mathcal{M} is a self-dual map.

Theorem. [Orbanić, Pellicer, Weiss]
Let \mathcal{M} be a k-orbit map. Then the truncation map $\operatorname{Tr}(\mathcal{M})$ is a k-orbit, $\frac{3 k}{2}$-orbit or a $3 k$-orbit map.

Theorem.

Each of the 14 edge-transitive symmetry type graphs is the symmetry type graph of a medial map.

Proposition.

Let \mathcal{M} be a k-orbit map. Then $\operatorname{Me}(\operatorname{Me}(\mathcal{M}))$ is a k-orbit map if \mathcal{M} is a map on the torus of type $\{4,4\}$, or is a map on the Klein Bottle of type $\{4,4\}_{|m, n|}$, where n is odd.

Theorem.

Let \mathcal{M} be a k-orbit map and $\operatorname{Cham}_{t}(\mathcal{M})$ the t-times chamfering map of \mathcal{M} having s flag-orbits. Then one of the following holds.
(1) $s=4^{t} k, 2^{t} k$ or k.
(2) If $s \neq 4^{t} k$, then $\chi(\mathcal{M})=0(\mathcal{M}$ is on the torus or on the Klein bottle) and \mathcal{M} is of type $\{6,3\}$.
(3) If \mathcal{M} is a the torus of type $\{6,3\}$ then $s=k$ and $k=1,2,3,4$.
(4) If \mathcal{M} is on the Klein bottle of type $\{6,3\}$ then $s=2^{t} k$ and $3 \mid k$.

Conclusion

We extended the classification of all possible symmetry types of k-orbit 2-maniplexes

- self-dual, properly and improperly, k-orbit maps with $k \leq 7$.
- with the operations medial and truncation on maps, up to $k \leq 6$.

Also, we determined all possible symmetry types of maps that result from other maps after applying the chamfering operation and give the number of possible flag-orbits that has the chamfering map of a k-orbit map.

Thank you

Remarks

In order to characterize the symmetry types of k-orbit maniplexes, as well it was done in this thesis for 2-maniplexes, we lead to the open problem of study different operations on maniplexes and the symmetry types of maniplexes that are obtained from applying such operations on a maniplex.

