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Maŕıa del Ŕıo Francos

IMate, UNAM

SCDO’16, Queenstown, NZ.
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Content

Aim.

The aim of this work is to give a classification on the possible different
symmetry type of maniplexes.

I. Maniplexes and symmetry type graphs.

II. Map operations.
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I(a). Maniplexes

Maniplexes were first introduced by S. Wilson (2012), aiming to unify the notion

of maps and polytopes.

Given a set of flags F(M) and a sequence (s0, s1, . . . , sn−1), where each si
partitions F(M) into sets of size two and the partitions described by si
and sj are disjoint when i 6= j .

A maniplex M of rank n − 1 (or (n − 1)-maniplex) is defined by a
connected graph GM which vertex set is F(M) and with edges of colour i
corresponding to the matching si , to which we refer as the flag graph of
the maniplex M.
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Examples of maniplexes

0-maniplex.
Graph with two vertices joined by an edge

of colour 0.

1-maniplex.
It is associated to an l-gon, which graph

contains 2l vertices joined by a perfect

matching of colours 0 and 1 and each of

size l .

2-maniplex.
Can be considered as a map, as Lins and

Vince defined a map (1982-1983), by a

trivalent edge coloured graph.
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Thus, maniplexes generalize the notion of maps to higher rank.
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Monodromy (or connection) group of M
To each (n − 1)-maniplex M we can associate a subgroup of the
permutation group Sym(F(M)),

Mon(M) := 〈s0, s1, . . . , sn−1〉

known as the monodromy (or connection) group of the maniplex M.

The action of s0, s1, . . . , sn−1 on any flag Φ ∈ F(M) is defined by

Φ · si = Φi ; i = 0, 1, . . . , n − 1.

And satisfy the following

(i) All s0, s1, . . . , sn−1 are fixed-point free involutions.

(ii) si sj = sjsi and si sj is fixed-point free, whenever |i − j | ≥ 2.

(iii) The action of Mon(M) on F(M) is transitive.
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Faces of rank i = 0, 1, . . . , n − 1 of M

The set of i-faces of an (n − 1)-maniplex corresponds to the orbit of the
flags in F(M) under the action of the group generated by the set

Fi := {sj |i 6= j}.
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Automorphism group of M, Aut(M)

Every automorphism α of M induces a bijection on the flags.

The action of Aut(M) on the set of flags is semi-regular.

The action of Aut(M) on the set of flags is transitive only if M is
regular.

Aut(M) partitions the set F(M) into orbits of the same size.
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Aut(M) partitions the set F(M) into orbits of the same size.

Aut(M) is isomorphic to the edge-colour preserving automorphism group
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The action of the elements in Aut(M) commutes with the elements
of Mon(M).
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Maŕıa del Ŕıo Francos (IMate, UNAM) Flag graphs and symmetry type graphs SCDO’16, Queenstown, NZ. 8 / 27



k-orbit maniplex

We say that the maniplex M is a k-orbit maniplex whenever the
automorphism group Aut(M) has exactly k orbits on F(M).

A 1-orbit maniplex is known as regular (or reflexible).

A 2-orbit maniplex, with adjacent flags belonging to different orbits,
is known as a chiral maniplex.

It can be seen that there are 2n − 1 different possible types of 2-orbit
(n − 1)-maniplexes.
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I(b). Symmetry type graph of M, T (M)

Definition.

The symmetry type graph T (M) of a maniplex M is a quotient graph of
the flag graph GM obtained from the action of the group Aut(M) on the
flags of M.
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Symmetry type graph of M, T (M)

Thus, the symmetry type graph of a k-orbit map has k-vertices

Given two flag orbits OΦ and OΨ, as vertices of T (M), there is an edge
of colour i = 0, 1, . . . , n − 1 between them if and only if there exists flags
Φ′ ∈ OΦ and Ψ′ ∈ OΨ such that Φ′ and Ψ′ are i-adjacent in M.
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Counting symmetry types

The number of types of k-orbit maniplexes depends on the number of
n-valent pre-graphs on k vertices that can be properly edge coloured with
n colours and that the connected components of the 2-factor with colours
i and j , with |i − j | ≥ 2 are always as the following.
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The symmetry type graph of
a reflexible maniplex consist of
one vertex and n semi-edges.

There are 2n − 1 different
possible symmetry type graphs
on 2 vertices.

There are 2n − 3 different
possible symmetry type graphs
on 3 vertices.
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I IJ

J J
J

j − 1j

J J
J

j + 1j

J
J

j

j + 1

j − 1

J

j + 1

j − 1

J = {0, 1, . . . , n− 1} \ {j − 1, j, j + 1}

j + 1

j − 1

j − 1

j + 1

j + 1

j

j − 1

j

j + 1 j − 1

j

u v w u v w

u v w
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Face transitivity

Definition.

An (n − 1)-maniplex M is i-face-transitive if Aut(M) is transitive on the
faces of rank i = 0, 1, . . . , n − 1.

Definition.

An (n − 1)-maniplex M is fully-face-transitive if it is i-face-transitive for
every i = 0, 1, . . . , n − 1.
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Highly symmetric maniplexes

Given the symmetry type graph of a maniplex one can read from the
appropriate coloured subgraphs the different types of face-transitivities
that the maniplex has.

Theorem. (Number of face-orbits of M)

Let M be an (n − 1)-maniplex with symmetry type graph T (M). Then,
the number of connected components in the (n − 1)-factor of T (M) of
colours {0, 1, . . . , n − 1} \ {i}, determine the number of orbits of the
i-faces of M, where i ∈ {0, 1, . . . , n − 1}.
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Edge-transitive maps

1

212201

2 20 22 21

4Gd4F 4G

4H

4Gp

4Hd
4Hp
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Fully-transitivity on k-orbit maniplexes (k = 2, 3, 4)

Hubard showed that there are 2n − n − 3 classes of fully-transitive 2-orbit
(n − 1)-maniplexes.

We showed that 3-orbit maniplexes are never fully-transitive, but they are
i-face-transitive.

Also, that if a 4-orbit maniplex is not fully-transitive then it is
i-face-transitive for all i but at most three ranks.
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Generators of Aut(M) given T (M)

Let M be a k-orbit (n − 1)-maniplex and let T (M) its symmetry type
graph.

Suppose that v1, e1, v2, e2 . . . , eq−1, vq is a distinguished walk that
visits every vertex of T (M), with the edge ei having colour ai , for
each i = 1, . . . q − 1.

v1

v2 v5
v4

v3, v6

v7v9v10

v11

v8, v12

a1

a2 a3

a4
a5

a6
a7

a8
a11

a10
a9
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Generators of Aut(M) given T (M)

Let Si ⊂ {0, . . . , n − 1} be such that vi has a semi-edge of colour s if
and only if s ∈ Si .

Let Bi ,j ⊂ {0, . . . , n − 1} be the set of colours of the edges between
the vertices vi and vj (with i < j) that are not in the distinguished
walk

v1

v2 v5
v4

v3, v6

v7v9v10

v11

v8, v12

a1

a2 a3

a4
a5

a6
a7

a8
a11

a10
a9

b

s

Let Φ ∈ F(M) be a base flag of M such that Φ projects to v1 in
T (M).
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Generators of Aut(M) given T (M)

Theorem.

The automorphism group of M is generated by the union of the sets

{αa1,a2,...,ai ,s,ai ,ai−1,...,a1 | i = 1, . . . , k − 1, s ∈ Si},

and

{αa1,a2,...,ai ,b,aj ,aj−1,...,a1 | i , j ∈ {1, . . . , k − 1}, i < j , b ∈ Bi ,j}.

v1

v2 v5
v4

v3, v6

v7v9v10

v11

v8, v12

a1

a2 a3

a4
a5

a6
a7

a8
a11

a10
a9

b

s

αa1,a2,a3,s,a3,a2,a1 αa1,a2,b,a7,a6,a5,a4,a3,a2,a1
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II. Map operations
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Theorem. [Orbanić, Pellicer, Weiss]

Let M be a k-orbit map. Then the medial map Me(M) is a k-orbit or a
2k-orbit map, depending on whether or not M is a self-dual map.

Theorem. [Orbanić, Pellicer, Weiss]

Let M be a k-orbit map. Then the truncation map Tr(M) is a k-orbit,
3k
2 -orbit or a 3k-orbit map.
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Theorem.

Each of the 14 edge-transitive symmetry type graphs is the symmetry type
graph of a medial map.

Proposition.

Let M be a k-orbit map. Then Me(Me(M)) is a k-orbit map if M is a
map on the torus of type {4, 4}, or is a map on the Klein Bottle of type
{4, 4}|m,n|, where n is odd.
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Theorem.

Let M be a k-orbit map and Chamt(M) the t-times chamfering map of
M having s flag-orbits. Then one of the following holds.

1 s = 4tk, 2tk or k .

2 If s 6= 4tk, then χ(M) = 0 (M is on the torus or on the Klein bottle)
and M is of type {6, 3}.

3 If M is a the torus of type {6, 3} then s = k and k = 1, 2, 3, 4.

4 If M is on the Klein bottle of type {6, 3} then s = 2tk and 3|k .
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Conclusion

We extended the classification of all possible symmetry types of k-orbit
2-maniplexes

self-dual, properly and improperly, k-orbit maps with k ≤ 7.

with the operations medial and truncation on maps, up to k ≤ 6.

Also, we determined all possible symmetry types of maps that result from
other maps after applying the chamfering operation and give the number
of possible flag-orbits that has the chamfering map of a k-orbit map.
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Thank you
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Remarks

In order to characterize the symmetry types of k-orbit maniplexes, as well
it was done in this thesis for 2-maniplexes, we lead to the open problem of
study different operations on maniplexes and the symmetry types of
maniplexes that are obtained from applying such operations on a maniplex.
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