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» Let denote a group G of permutations
acting faithfully on a set V, i.e., G < Sym (V).

» (G, V) is a Frobenius group if it is transitive
but not semi-regular and all 2-point
stabilizers are ftrivial.

» A graph I with vertex set V is a Graphical
Frobenius Representation (GFR) of a
(permutation) group G if Aut(I') = G and
(Aut (I'), VI') is a Frobenius group.
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» The set of fixed-point-free permutations in G together
with the identity form a normal subset K of G, called
the (Frobenius) kernel of G.

» When G is finite, then K is a regular subgroup of G
[F. G. Frobenius, 1901].

» When G is infinite, then K is not necessarily closed
[M. J.Collins, 1990]. However, ...

» In today’s examples, K will be a subgroup.

» G = HK, where H — Aut (K), called the (Frobenius)
complement, such that (Vu € V) [G, = H] and
(Gy, V' \ {u}) is semi-regular, and so all orbits of G,
on V'\ {u} have the same cardinality (which in today’s
examples will be finite).

» A GFR of G must be a Cayley graph of K whose
(nontrivial) vertex-stabilizers are isomorphic to H.
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Classifying Infinite Graphs: Number of Ends

Let I be an infinite, locally finite graph; let # be the set of
allraysinT.

» For Ry, R» € #, define Ry = R, iff 3R3 € &% such that
both V(R;: N Rs) and V(R> N R;) are infinite.

» An end of I is an equivalence class of (%, =).

» If I is a connected locally finite graph such that

Aut (I') has finitely many orbits, then I has exactly
w(l) = 1,2, or 2% ends [R. Halin, 1973].
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(Asymptotically, the choice of v is arbitrary.)
[ has:

» exponential growth if lim,_,., f(n)/c" > 0 for some
constant ¢ > 1;

» subexponential growth otherwise;

» polynomial growth of degree ¢ if for some ¢ > 0,

§ =min{d :VneN, f(n) <cn?} (§is always a
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[M. Gromov, 1981]);

» linear growth when § = 1.

» intermediate growth if growth is subexponential but
exceeds any polynomial. (Automorphism groups of
graphs with intermediate growth are not finitely
presentable, and so are not constructed here.)




For connected vertex-transitive locally finite
graphs, these two notions come together with
exactly the following possibilities:
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» Linear growth: w=2.
» Polynomial growth of degree > 2: w =1.
» Intermediate growth: w=1(?)

» Exponential growth: ~ w =1 or 2%,



Linear Growth

Examples:

1. The double ray is a GFR of
D, ={(a b: b?= (ba)? = 1) with K = (a) = Z and
H > 7Z,.
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Linear Growth

Examples:
1. The double ray is a GFR of
D, = (a,b: b?=(ba)> =1) with K = (a) 2 Z and
H = Zs.
2. Cay(D,,{a,a', b, ba}) is a GFR of the normal
product [D.., (¢)] where ¢ € Aut(D,,) is given by
p(@)=a"'; p(b)=ba. So K =D, and H = Z,.

b.[f ‘ ba; . bAQ ‘ &A) b4
N
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Quadratic Growth

» Theorem. [Seifter & Trofimov, 1997] If a graph T has
quadratic growth and Aut (') is almost transitive, then
Aut (I") contains an almost transitive subgroup
isomorphic to Z2.

» In general, I is obtainable from a square tessellation
of the Euclidean plane by adding and/or contracting
edges, splitting vertices, etc., and H is cyclic of order
2,3,4,0r6.

» Example 1. The Cayley graph Cay(Z2, S) with

S ={£(1,0),£(0,1), £(my, mz), &(—mp, my)},

where my and m, are nonzero integers such that
|my| # |my|, is a GFR of [Z2, (a)], where o is a
90°-degree rotation about (0, 0).



Quadratic growth; H = Cy4; (my, m2) = (-2, 3)

l(-z,sx |
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Example 2. Quadratic growth; H = Cg

[ = Cay(K, S) where
K=xy:[xyl=1)
S:{X:H y:|:1 Z:H (X22—1):|:1 (y2X—1):|:1 (ZZy—1):t1}

z=(xy)"

given by

p(x)=2z"=xy and o(y)=x



AAAAAAA
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Polynomial Growth of degree § > 3

» Examples of GFRs having growth rate of degree ¢ are
of the form Cay(Z°, S).

» Since Z° is Abelian and S = S, the stabilizer of the
vertex labeled 1 admits the involution o : v +— v,

» Theorem. For § > 3, the Cayley graph Cay(Z°, S) with

SI{:l:E,’II':'I,...(;}U{:l:,u,o}U{:t/uL,"/‘Z1 §I<j§5}

is a GFR of [Z°, («)] with polynomial growth of degree
& and valence 6% + 6 + 2. Here p;j = mje; + mje; and
wo = (my, ..., ms) has nonzero integer terms such
that |m4|, ..., |ms| are all distinct.



Exponential Growth with One End

Here is the “least” of a multi-parameter infinite family of
1-ended GFRs with exponential growth, all chiral maps in
the hyperbolic plane.

It is the Cayley graph Cay(K, S) where

K=(xy,z|(xy)? = (y2)° = (zx)* = 1),

S: {X:H y:|:1 Z:|:1}
and H is a 180° rotation about a vertex.
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Exponential Growth with One End

» Forintegers k >3 and ¢ > 2, let (ey,...,ex) be a
cyclic k-sequence of integers > 2 that is invariant
under rotation and reflection.

» Consider the group Ki . generated by the set
Sk = {x,f;1 i=1,...,k, j=1,..., ¢}, all of which
are involutions,

» that satisfy the relations

(XX ) =1, (i=1,... . k=1, j=1,....0),

where subscripts / and j are read mod k and ¢, resp.

» THEOREM. The graph 'k, = Cay(Kx ., Sk.) is a GFR
of a Frobenius group with kernel K, and complement
Zy. It is bipartite, planar, and has valence 2k/.
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Exponential Growth with Infinitely Many Ends

Infinite-ended examples are obtainable from these
1-ended examples by

» deleting exactly one of the relations (x; jxi.1,)% =1,
i.e., letting one of the exponents e; = co so that each
vertex becomes a cut vertex, and

» setting ¢ = 2, so that each vertex separates exactly
two infinite components.

» For example, in the previous example, delete the
relation (zx)* = 1, leaving only

K=(xy,z|(xy)?=(yz)°=1),

» and so our GFR looks like this:






Thank you
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