Infinite Graphical Frobenius Representations

Mark E. Watkins
Syracuse University, Syracuse, NY, USA

Symmetries and Covers of Discrete Objects
Queenstown, New Zealand
15 February, 2016

- Let (G, V) denote a group G of permutations acting faithfully on a set V, i.e., $G \leq \operatorname{Sym}(V)$.

but not semi-regular and all 2-point stabilizers are trivial.

A graph 「 with vertex set V is a Graphical Frobenius Representation (GFR) of a (permutation) group G if $\operatorname{Aut}(\Gamma) \cong G$ and (Aut $(\Gamma), V \Gamma$) is a Frobenius group.

- Let (G, V) denote a group G of permutations acting faithfully on a set V, i.e., $G \leq \operatorname{Sym}(V)$.
- (G, V) is a Frobenius group if it is transitive but not semi-regular and all 2-point stabilizers are trivial.

- Let (G, V) denote a group G of permutations acting faithfully on a set V, i.e., $G \leq \operatorname{Sym}(V)$.
- (G, V) is a Frobenius group if it is transitive but not semi-regular and all 2-point stabilizers are trivial.
- A graph Γ with vertex set V is a Graphical Frobenius Representation (GFR) of a (permutation) group G if $\operatorname{Aut}(\Gamma) \cong G$ and (Aut $(\Gamma), V \Gamma$) is a Frobenius group.
- The set of fixed-point-free permutations in G together with the identity form a normal subset K of G, called the (Frobenius) kernel of G.

- The set of fixed-point-free permutations in G together with the identity form a normal subset K of G, called the (Frobenius) kernel of G.
- When G is finite, then K is a regular subgroup of G [F. G. Frobenius, 1901].
- When G is infinite, then K is not necessarily closed [M.J.Collins, 1990]. However,
- In today's examples, K will be a subgroup.
 examples will be finite).
- A GFR of G must be a Cayley graph of K whose (nontrivial) vertex-stabilizers are isomorphic to H .
- The set of fixed-point-free permutations in G together with the identity form a normal subset K of G, called the (Frobenius) kernel of G.
- When G is finite, then K is a regular subgroup of G [F. G. Frobenius, 1901].
- When G is infinite, then K is not necessarily closed [M.J.Collins, 1990]. However, ...
- In today's examples, K will be a subgroup.
 examples will be finite).
- A GFR of G must be a Cayley graph of K whose (nontrivial) vertex-stabilizers are isomorphic to H.
- The set of fixed-point-free permutations in G together with the identity form a normal subset K of G, called the (Frobenius) kernel of G.
- When G is finite, then K is a regular subgroup of G [F. G. Frobenius, 1901].
- When G is infinite, then K is not necessarily closed [M.J.Collins, 1990]. However, ...
- In today's examples, K will be a subgroup.
examples will be finite).
- A GFR of G must be a Cayley graph of K whose (nontrivial) vertex-stabilizers are isomorphic to H .
- The set of fixed-point-free permutations in G together with the identity form a normal subset K of G, called the (Frobenius) kernel of G.
- When G is finite, then K is a regular subgroup of G [F. G. Frobenius, 1901].
- When G is infinite, then K is not necessarily closed [M.J.Collins, 1990]. However, ...
- In today's examples, K will be a subgroup.
- $G=H K$, where $H \longrightarrow$ Aut (K), called the (Frobenius) complement, such that $(\forall u \in V)\left[G_{u} \cong H\right]$ and $\left(G_{u}, V \backslash\{u\}\right)$ is semi-regular, and so all orbits of G_{u} on $V \backslash\{u\}$ have the same cardinality (which in today's examples will be finite).
- A GFR of G must be a Cayley graph of K whose (nontrivial) vertex-stabilizers are isomorphic to H .
- The set of fixed-point-free permutations in G together with the identity form a normal subset K of G, called the (Frobenius) kernel of G.
- When G is finite, then K is a regular subgroup of G [F. G. Frobenius, 1901].
- When G is infinite, then K is not necessarily closed [M.J.Collins, 1990]. However, ...
- In today's examples, K will be a subgroup.
- $G=H K$, where $H \longrightarrow$ Aut (K), called the (Frobenius) complement, such that $(\forall u \in V)\left[G_{u} \cong H\right]$ and $\left(G_{u}, V \backslash\{u\}\right)$ is semi-regular, and so all orbits of G_{u} on $V \backslash\{u\}$ have the same cardinality (which in today's examples will be finite).
- A GFR of G must be a Cayley graph of K whose (nontrivial) vertex-stabilizers are isomorphic to H.

Classifying Infinite Graphs: Number of Ends

Let Γ be an infinite, locally finite graph; let \mathscr{R} be the set of all rays in Γ.

- For $R_{1}, R_{2} \in \mathscr{R}$, define $R_{1} \cong R_{2}$ iff $\exists R_{3} \in \mathscr{R}$ such that both $V\left(R_{1} \cap R_{3}\right)$ and $V\left(R_{2} \cap R_{3}\right)$ are infinite.
- An end of Γ is an equivalence class of (\mathscr{R}, \cong).
- If Γ is a connected locally finite graph such that Aut (Γ) has finitely many orbits, then Γ has exactly $\omega(\Gamma)=1,2$, or $2^{x_{0}}$ ends [R. Halin, 1973].

Classifying Infinite Graphs: Number of Ends

Let Γ be an infinite, locally finite graph; let \mathscr{R} be the set of all rays in Γ.

- For $R_{1}, R_{2} \in \mathscr{R}$, define $R_{1} \cong R_{2}$ iff $\exists R_{3} \in \mathscr{R}$ such that both $V\left(R_{1} \cap R_{3}\right)$ and $V\left(R_{2} \cap R_{3}\right)$ are infinite.
- An end of Γ is an equivalence class of ($\mathscr{R} \cong$).
- If Γ is a connected locally finite graph such that Aut (Γ) has finitely many orbits, then Γ has exactly $\omega(\Gamma)=1,2$, or $2^{\aleph_{0}}$ ends [R. Halin, 1973].

Classifying Infinite Graphs: Number of Ends

Let Γ be an infinite, locally finite graph; let \mathscr{R} be the set of all rays in Γ.

- For $R_{1}, R_{2} \in \mathscr{R}$, define $R_{1} \cong R_{2}$ iff $\exists R_{3} \in \mathscr{R}$ such that both $V\left(R_{1} \cap R_{3}\right)$ and $V\left(R_{2} \cap R_{3}\right)$ are infinite.
- An end of Γ is an equivalence class of (\mathscr{R}, \cong).
- If Γ is a connected locally finite graph such that Aut (Γ) has finitely many orbits, then Γ has exactly $\omega(\Gamma)=1,2$, or $2^{\aleph_{0}}$ ends [R. Halin, 1973].

Classifying Infinite Graphs: Growth Rate Suppose Γ is connected. For $v \in V \Gamma$, define

$$
f(n, v)=|\{w \in V \Gamma: d(v, w) \leq n\}| .
$$

(Asymptotically, the choice of v is arbitrary.)
Γ has:

- exponential growth if $\lim _{n \rightarrow \infty} f(n) / c^{n}>0$ for some constant $c>1$;

Classifying Infinite Graphs: Growth Rate

 Suppose Γ is connected. For $v \in V \Gamma$, define$$
f(n, v)=|\{w \in V \Gamma: d(v, w) \leq n\}| .
$$

(Asymptotically, the choice of v is arbitrary.)
Γ has:

- exponential growth if $\lim _{n \rightarrow \infty} f(n) / c^{n}>0$ for some constant $c>1$;
- subexponential growth otherwise;

Classifying Infinite Graphs: Growth Rate

 Suppose Γ is connected. For $v \in V \Gamma$, define$$
f(n, v)=|\{w \in V \Gamma: d(v, w) \leq n\}| .
$$

(Asymptotically, the choice of v is arbitrary.)
Γ has:

- exponential growth if $\lim _{n \rightarrow \infty} f(n) / c^{n}>0$ for some constant $c>1$;
- subexponential growth otherwise;
- polynomial growth of degree δ if for some $c>0$, $\delta=\min \left\{d: \forall n \in \mathbb{N}, f(n) \leq c n^{d}\right\}$ (δ is always a positive integer when Aut (Γ) has finitely many orbits [M. Gromov, 1981]);
- intermediate growth if growth is subexponential but exceeds any polynomial.

Classifying Infinite Graphs: Growth Rate

 Suppose Γ is connected. For $v \in V \Gamma$, define$$
f(n, v)=|\{w \in V \Gamma: d(v, w) \leq n\}| .
$$

(Asymptotically, the choice of v is arbitrary.)
Γ has:

- exponential growth if $\lim _{n \rightarrow \infty} f(n) / c^{n}>0$ for some constant $c>1$;
- subexponential growth otherwise;
- polynomial growth of degree δ if for some $c>0$, $\delta=\min \left\{d: \forall n \in \mathbb{N}, f(n) \leq c n^{d}\right\}$ (δ is always a positive integer when Aut (Γ) has finitely many orbits [M. Gromov, 1981]);
- linear growth when $\delta=1$.

Classifying Infinite Graphs: Growth Rate

Suppose Γ is connected. For $v \in V \Gamma$, define

$$
f(n, v)=|\{w \in V \Gamma: d(v, w) \leq n\}| .
$$

(Asymptotically, the choice of v is arbitrary.)
Γ has:

- exponential growth if $\lim _{n \rightarrow \infty} f(n) / c^{n}>0$ for some constant $c>1$;
- subexponential growth otherwise;
- polynomial growth of degree δ if for some $c>0$, $\delta=\min \left\{d: \forall n \in \mathbb{N}, f(n) \leq c n^{d}\right\}(\delta$ is always a positive integer when Aut (Γ) has finitely many orbits [M. Gromov, 1981]);
- linear growth when $\delta=1$.
- intermediate growth if growth is subexponential but exceeds any polynomial. (Automorphism groups of graphs with intermediate growth are not finitely presentable, and so are not constructed here.)

For connected vertex-transitive locally finite graphs, these two notions come together with exactly the following possibilities:

- Linear growth: $\omega=2$.
- Polynomial growth of degree $\geq 2: \omega=1$. - Intermediate growth: $\omega=1$ (?) - Exponential growth: $\omega=1$ or $2^{\aleph_{0}}$.
- Linear growth: $\omega=2$.
- Polynomial growth of degree ≥ 2 : $\omega=1$. - Intermediate growth: $\omega=1$ (?) - Exponential growth:
- Linear growth: $\omega=2$.
- Polynomial growth of degree ≥ 2 : $\omega=1$.
- Intermediate growth: $\omega=1$ (?)
- Linear growth: $\omega=2$.
- Polynomial growth of degree ≥ 2 : $\omega=1$.
- Intermediate growth: $\omega=1$ (?)
- Exponential growth: $\omega=1$ or $2^{\aleph_{0}}$.

Linear Growth

Examples:

1. The double ray is a GFR of
$D_{\infty}=\left\langle a, b: b^{2}=(b a)^{2}=1\right\rangle$ with $K \cong\langle a\rangle \cong \mathbb{Z}$ and $H \cong \mathbb{Z}_{2}$.

Linear Growth

Examples:

1. The double ray is a GFR of

$$
\begin{aligned}
& D_{\infty}=\left\langle a, b: b^{2}=(b a)^{2}=1\right\rangle \text { with } K \cong\langle a\rangle \cong \mathbb{Z} \text { and } \\
& H \cong \mathbb{Z}_{2} .
\end{aligned}
$$

2. $\operatorname{Cay}\left(D_{\infty},\left\{a, a^{-1}, b, b a\right\}\right)$ is a GFR of the normal product $\left[D_{\infty},\langle\varphi\rangle\right]$ where $\varphi \in \operatorname{Aut}\left(D_{\infty}\right)$ is given by $\varphi(a)=a^{-1} ; \varphi(b)=b a$. So $K \cong D_{\infty}$ and $H \cong \mathbb{Z}_{2}$.

Quadratic Growth

- Theorem. [Seifter \& Trofimov, 1997] If a graph Γ has quadratic growth and Aut (Γ) is almost transitive, then Aut (Γ) contains an almost transitive subgroup isomorphic to \mathbb{Z}^{2}.

$$
S=\left\{ \pm(1,0), \pm(0,1), \pm\left(m_{1}, m_{2}\right), \pm\left(-m_{2}, m_{1}\right)\right\}
$$

where m_{1} and m_{2} are nonzero integers such that $\left|m_{1}\right| \neq\left|m_{2}\right|$, is a GFR of $\left[\mathbb{Z}^{2},\langle\alpha\rangle\right]$, where α is a 90°-degree rotation about $(0,0)$.

Quadratic Growth

- Theorem. [Seifter \& Trofimov, 1997] If a graph Γ has quadratic growth and Aut (Γ) is almost transitive, then Aut (Γ) contains an almost transitive subgroup isomorphic to \mathbb{Z}^{2}.
- In general, Γ is obtainable from a square tessellation of the Euclidean plane by adding and/or contracting edges, splitting vertices, etc., and H is cyclic of order 2, 3, 4, or 6 .
where m_{1} and m_{2} are nonzero integers such that $\left|m_{1}\right| \neq\left|m_{2}\right|$, is a GFR of $\left[\mathbb{Z}^{2},\langle\alpha\rangle\right]$, where α is a

Quadratic Growth

- Theorem. [Seifter \& Trofimov, 1997] If a graph Γ has quadratic growth and Aut (Γ) is almost transitive, then Aut (Γ) contains an almost transitive subgroup isomorphic to \mathbb{Z}^{2}.
- In general, Γ is obtainable from a square tessellation of the Euclidean plane by adding and/or contracting edges, splitting vertices, etc., and H is cyclic of order 2, 3, 4, or 6 .
- Example 1. The Cayley graph $\operatorname{Cay}\left(\mathbb{Z}^{2}, S\right)$ with

$$
S=\left\{ \pm(1,0), \pm(0,1), \pm\left(m_{1}, m_{2}\right), \pm\left(-m_{2}, m_{1}\right)\right\}
$$

where m_{1} and m_{2} are nonzero integers such that $\left|m_{1}\right| \neq\left|m_{2}\right|$, is a GFR of $\left[\mathbb{Z}^{2},\langle\alpha\rangle\right]$, where α is a 90°-degree rotation about $(0,0)$.

Quadratic growth; $H \cong C_{4} ;\left(m_{1}, m_{2}\right)=(-2,3)$

Example 2. Quadratic growth; $H \cong C_{6}$

$\Gamma=\operatorname{Cay}(K, S)$ where

$$
\begin{gathered}
K=\langle x, y:[x, y]=1\rangle \\
S=\left\{x^{ \pm 1}, y^{ \pm 1}, z^{ \pm 1},\left(x^{2} z^{-1}\right)^{ \pm 1},\left(y^{2} x^{-1}\right)^{ \pm 1},\left(z^{2} y^{-1}\right)^{ \pm 1}\right\} \\
z=(x y)^{-1} \\
H \cong C_{6}=\langle\varphi\rangle
\end{gathered}
$$

given by

$$
\varphi(x)=z^{-1}=x y \quad \text { and } \quad \varphi(y)=x^{-1}
$$

Polynomial Growth of degree $\delta \geq 3$

- Examples of GFRs having growth rate of degree δ are of the form $\operatorname{Cay}\left(\mathbb{Z}^{\delta}, S\right)$.
- Since \mathbb{Z}^{δ} is Abelian and $S=S^{-1}$, the stabilizer of the
vertex labeled 1 admits the involution $\alpha: V \longleftrightarrow v^{-1}$.
- Theorem. For $\delta \geq 3$, the Cayley graph $\operatorname{Cay}\left(\mathbb{Z}^{\delta}, S\right)$ with $S=\left\{ \pm \epsilon_{i}: i=1, \ldots \delta\right\} \cup\left\{ \pm \mu_{0}\right\} \cup\left\{ \pm \mu_{i, j}: 1 \leq i<j \leq \delta\right\}$
is a GFR of $\left[\mathbb{Z}^{\delta},\langle\alpha\rangle\right]$ with polynomial growth of degree δ and valence $\delta^{2}+\delta+2$. Here $\mu_{i, j}=m_{i} \epsilon_{i}+m_{j} \epsilon_{j}$ and $\mu_{0}=\left(m_{1}, \ldots, m_{\delta}\right)$ has nonzero integer terms such that $\left|m_{1}\right|, \ldots,\left|m_{\delta}\right|$ are all distinct.

Polynomial Growth of degree $\delta \geq 3$

- Examples of GFRs having growth rate of degree δ are of the form $\operatorname{Cay}\left(\mathbb{Z}^{\delta}, S\right)$.
- Since \mathbb{Z}^{δ} is Abelian and $S=S^{-1}$, the stabilizer of the vertex labeled 1 admits the involution $\alpha: v \longleftrightarrow v^{-1}$.
- Theorem. For $\delta \geq 3$, the Cayley graph $\operatorname{Cay}\left(\mathbb{Z}^{\delta}, S\right)$ with $S=\left\{+\epsilon_{i}: i=1\right.$ is a GFR of $\left[\mathbb{Z}^{\delta},\langle\alpha\rangle\right]$ with polynomial growth of degree δ and valence $\delta^{2}+\delta+2$. Here $\mu_{i, j}=m_{i} \epsilon_{i}+m_{j} \epsilon_{j}$ and $\mu_{0}=\left(m_{1}, \ldots, m_{\delta}\right)$ has nonzero integer terms such that $\left|m_{1}\right|, \ldots,\left|m_{\delta}\right|$ are all distinct.

Polynomial Growth of degree $\delta \geq 3$

- Examples of GFRs having growth rate of degree δ are of the form $\operatorname{Cay}\left(\mathbb{Z}^{\delta}, S\right)$.
- Since \mathbb{Z}^{δ} is Abelian and $S=S^{-1}$, the stabilizer of the vertex labeled 1 admits the involution $\alpha: v \longleftrightarrow v^{-1}$.
- Theorem. For $\delta \geq 3$, the Cayley graph $\operatorname{Cay}\left(\mathbb{Z}^{\delta}, S\right)$ with $S=\left\{ \pm \epsilon_{i}: i=1, \ldots \delta\right\} \cup\left\{ \pm \mu_{0}\right\} \cup\left\{ \pm \mu_{i, j}: 1 \leq i<j \leq \delta\right\}$ is a GFR of $\left[\mathbb{Z}^{\delta},\langle\alpha\rangle\right]$ with polynomial growth of degree δ and valence $\delta^{2}+\delta+2$. Here $\mu_{i, j}=m_{i} \epsilon_{i}+m_{j} \epsilon_{j}$ and $\mu_{0}=\left(m_{1}, \ldots, m_{\delta}\right)$ has nonzero integer terms such that $\left|m_{1}\right|, \ldots,\left|m_{\delta}\right|$ are all distinct.

Exponential Growth with One End

Here is the "least" of a multi-parameter infinite family of 1 -ended GFRs with exponential growth, all chiral maps in the hyperbolic plane.
It is the Cayley graph Cay (K, S) where

$$
\begin{gathered}
K=\left\langle x, y, z \mid(x y)^{2}=(y z)^{3}=(z x)^{4}=1\right\rangle, \\
S=\left\{x^{ \pm 1}, y^{ \pm 1}, z^{ \pm 1}\right\},
\end{gathered}
$$

and H is a 180° rotation about a vertex.

Exponential Growth with One End

- For integers $k \geq 3$ and $\ell \geq 2$, let $\left(e_{1}, \ldots, e_{k}\right)$ be a cyclic k-sequence of integers ≥ 2 that is invariant under rotation and reflection.
- Consider the group $K_{k, \ell}$ generated by the set

are involutions,
- that satisfy the relations
where subscripts i and j are read $\bmod k$ and ℓ, resp. THEOREM. The graph $\Gamma_{k \ell \ell}=\operatorname{Cay}\left(K_{k \ell}, S_{k, \ell}\right)$ is a GFR of a Frobenius group with kernel $K_{k, \ell}$ and complement \mathbb{Z}_{ℓ}. It is bipartite, planar, and has valence $2 k \ell$.

Exponential Growth with One End

- For integers $k \geq 3$ and $\ell \geq 2$, let $\left(e_{1}, \ldots, e_{k}\right)$ be a cyclic k-sequence of integers ≥ 2 that is invariant under rotation and reflection.
- Consider the group $K_{k, \ell}$ generated by the set $S_{k, \ell}:=\left\{x_{i, j}^{ \pm 1}: i=1, \ldots, k ; j=1, \ldots, \ell\right\}$, all of which are involutions,
- that satisfy the relations
\square of a Frobenius group with kernel $K_{k, \ell}$ and complement \mathbb{Z}_{ℓ}. It is bipartite, planar, and has valence $2 k \ell$.

Exponential Growth with One End

- For integers $k \geq 3$ and $\ell \geq 2$, let $\left(e_{1}, \ldots, e_{k}\right)$ be a cyclic k-sequence of integers ≥ 2 that is invariant under rotation and reflection.
- Consider the group $K_{k, \ell}$ generated by the set $S_{k, \ell}:=\left\{x_{i, j}^{ \pm 1}: i=1, \ldots, k ; j=1, \ldots, \ell\right\}$, all of which are involutions,
- that satisfy the relations

$$
\left(x_{i, j} x_{i+1, j}\right)^{e_{i}}=1 ; \quad(i=1, \ldots, k-1 ; j=1, \ldots, \ell),
$$

where subscripts i and j are read $\bmod k$ and ℓ, resp.
of a Frobenius group with kernel $K_{k, \ell}$ and complement \mathbb{Z}_{ℓ}. It is bipartite, planar, and has valence $2 k \ell$.

Exponential Growth with One End

- For integers $k \geq 3$ and $\ell \geq 2$, let $\left(e_{1}, \ldots, e_{k}\right)$ be a cyclic k-sequence of integers ≥ 2 that is invariant under rotation and reflection.
- Consider the group $K_{k, \ell}$ generated by the set $S_{k, \ell}:=\left\{x_{i, j}^{ \pm 1}: i=1, \ldots, k ; j=1, \ldots, \ell\right\}$, all of which are involutions,
- that satisfy the relations

$$
\left(x_{i, j} x_{i+1, j}\right)^{e_{i}}=1 ; \quad(i=1, \ldots, k-1 ; j=1, \ldots, \ell),
$$

where subscripts i and j are read $\bmod k$ and ℓ, resp.

- THEOREM. The graph $\Gamma_{k, \ell}=\operatorname{Cay}\left(K_{k, \ell}, S_{k, \ell}\right)$ is a GFR of a Frobenius group with kernel $K_{k, \ell}$ and complement \mathbb{Z}_{ℓ}. It is bipartite, planar, and has valence $2 k \ell$.

Exponential Growth with Infinitely Many Ends

Infinite-ended examples are obtainable from these 1 -ended examples by

- deleting exactly one of the relations $\left(x_{i, j} x_{i+1, j}\right)^{e_{i}}=1$, i.e., letting one of the exponents $e_{i}=\infty$ so that each vertex becomes a cut vertex, and
- setting $\ell=2$, so that each vertex separates exactly two infinite components.
- For example, in the previous example, delete the relation $(z x)^{4}=1$, leaving only

$$
K=\left\langle x, y, z \mid(x y)^{2}=(y z)^{3}=1\right\rangle,
$$

- and so our GFR looks like this:

Exponential Growth with Infinitely Many Ends

Infinite-ended examples are obtainable from these 1 -ended examples by

- deleting exactly one of the relations $\left(x_{i, j} x_{i+1, j}\right)^{e_{i}}=1$, i.e., letting one of the exponents $e_{i}=\infty$ so that each vertex becomes a cut vertex, and
- setting $\ell=2$, so that each vertex separates exactly two infinite components.
- For example, in the previous example, delete the
relation $(z x)^{4}=1$, leaving only

$$
K=\left\langle x, y, z \mid(x y)^{2}=(y z)^{3}=1\right\rangle,
$$

- and so our GFR looks like this:

Exponential Growth with Infinitely Many Ends

Infinite-ended examples are obtainable from these
1 -ended examples by

- deleting exactly one of the relations $\left(x_{i, j} x_{i+1, j}\right)^{e_{i}}=1$, i.e., letting one of the exponents $e_{i}=\infty$ so that each vertex becomes a cut vertex, and
- setting $\ell=2$, so that each vertex separates exactly two infinite components.
- For example, in the previous example, delete the relation $(z x)^{4}=1$, leaving only

$$
K=\left\langle x, y, z \mid(x y)^{2}=(y z)^{3}=1\right\rangle,
$$

- and so our GFR looks like this:

Exponential Growth with Infinitely Many Ends

Infinite-ended examples are obtainable from these
1 -ended examples by

- deleting exactly one of the relations $\left(x_{i, j} x_{i+1, j}\right)^{e_{i}}=1$, i.e., letting one of the exponents $e_{i}=\infty$ so that each vertex becomes a cut vertex, and
- setting $\ell=2$, so that each vertex separates exactly two infinite components.
- For example, in the previous example, delete the relation $(z x)^{4}=1$, leaving only

$$
K=\left\langle x, y, z \mid(x y)^{2}=(y z)^{3}=1\right\rangle,
$$

- and so our GFR looks like this:

Thank you

