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I Let (G,V ) denote a group G of permutations
acting faithfully on a set V , i.e., G ≤ Sym (V ).

I (G,V ) is a Frobenius group if it is transitive
but not semi-regular and all 2-point
stabilizers are trivial.

I A graph Γ with vertex set V is a Graphical
Frobenius Representation (GFR) of a
(permutation) group G if Aut (Γ) ∼= G and
(Aut (Γ),V Γ) is a Frobenius group.
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I The set of fixed-point-free permutations in G together
with the identity form a normal subset K of G, called
the (Frobenius) kernel of G.

I When G is finite, then K is a regular subgroup of G
[F. G. Frobenius, 1901].

I When G is infinite, then K is not necessarily closed
[M. J. Collins, 1990]. However, . . .

I In today’s examples, K will be a subgroup.
I G = HK , where H −→ Aut (K ), called the (Frobenius)

complement, such that (∀u ∈ V ) [Gu
∼= H] and

(Gu,V \ {u}) is semi-regular, and so all orbits of Gu
on V \ {u} have the same cardinality (which in today’s
examples will be finite).

I A GFR of G must be a Cayley graph of K whose
(nontrivial) vertex-stabilizers are isomorphic to H.
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Classifying Infinite Graphs: Number of Ends

Let Γ be an infinite, locally finite graph; let R be the set of
all rays in Γ.

I For R1,R2 ∈ R, define R1
∼= R2 iff ∃R3 ∈ R such that

both V (R1 ∩ R3) and V (R2 ∩ R3) are infinite.
I An end of Γ is an equivalence class of (R,∼=).
I If Γ is a connected locally finite graph such that

Aut (Γ) has finitely many orbits, then Γ has exactly
ω(Γ) = 1,2, or 2ℵ0 ends [R. Halin, 1973].
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Classifying Infinite Graphs: Growth Rate
Suppose Γ is connected. For v ∈ V Γ, define

f (n, v) = |{w ∈ V Γ : d(v ,w) ≤ n}|.

(Asymptotically, the choice of v is arbitrary.)
Γ has:

I exponential growth if limn→∞ f (n)/cn > 0 for some
constant c > 1;

I subexponential growth otherwise;
I polynomial growth of degree δ if for some c > 0,
δ = min{d : ∀n ∈ N, f (n) ≤ cnd} (δ is always a
positive integer when Aut (Γ) has finitely many orbits
[M. Gromov, 1981]);

I linear growth when δ = 1.
I intermediate growth if growth is subexponential but

exceeds any polynomial. (Automorphism groups of
graphs with intermediate growth are not finitely
presentable, and so are not constructed here.)
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For connected vertex-transitive locally finite
graphs, these two notions come together with
exactly the following possibilities:



I Linear growth: ω = 2.
I Polynomial growth of degree ≥ 2: ω = 1.
I Intermediate growth: ω = 1 (?)
I Exponential growth: ω = 1 or 2ℵ0.
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Linear Growth

Examples:
1. The double ray is a GFR of

D∞ = 〈a,b : b2 = (ba)2 = 1〉 with K ∼= 〈a〉 ∼= Z and
H ∼= Z2.

2. Cay(D∞, {a,a−1,b,ba}) is a GFR of the normal
product [D∞, 〈ϕ〉] where ϕ ∈ Aut (D∞) is given by
ϕ(a) = a−1; ϕ(b) = ba. So K ∼= D∞ and H ∼= Z2.
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Quadratic Growth

I Theorem. [Seifter & Trofimov, 1997] If a graph Γ has
quadratic growth and Aut (Γ) is almost transitive, then
Aut (Γ) contains an almost transitive subgroup
isomorphic to Z2.

I In general, Γ is obtainable from a square tessellation
of the Euclidean plane by adding and/or contracting
edges, splitting vertices, etc., and H is cyclic of order
2, 3, 4, or 6.

I Example 1. The Cayley graph Cay(Z2,S) with

S = {±(1,0),±(0,1),±(m1,m2),±(−m2,m1)},

where m1 and m2 are nonzero integers such that
|m1| 6= |m2|, is a GFR of [Z2, 〈α〉], where α is a
90◦-degree rotation about (0,0).
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Quadratic growth; H ∼= C4; (m1,m2) = (−2,3)



Example 2. Quadratic growth; H ∼= C6

Γ = Cay(K ,S) where

K = 〈x , y : [x , y ] = 1〉

S = {x±1, y±1, z±1, (x2z−1)±1, (y2x−1)±1, (z2y−1)±1}

z = (xy)−1

H ∼= C6 = 〈ϕ〉

given by

ϕ(x) = z−1 = xy and ϕ(y) = x−1.





Polynomial Growth of degree δ ≥ 3

I Examples of GFRs having growth rate of degree δ are
of the form Cay(Zδ,S).

I Since Zδ is Abelian and S = S−1, the stabilizer of the
vertex labeled 1 admits the involution α : v ←→ v−1.

I Theorem. For δ ≥ 3, the Cayley graph Cay(Zδ,S) with

S = {±εi : i = 1, . . . δ}∪{±µ0}∪{±µi,j : 1 ≤ i < j ≤ δ}

is a GFR of [Zδ, 〈α〉] with polynomial growth of degree
δ and valence δ2 + δ + 2. Here µi,j = miεi + mjεj and
µ0 = (m1, . . . ,mδ) has nonzero integer terms such
that |m1|, . . . , |mδ| are all distinct.
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Exponential Growth with One End

Here is the “least” of a multi-parameter infinite family of
1-ended GFRs with exponential growth, all chiral maps in
the hyperbolic plane.
It is the Cayley graph Cay(K ,S) where

K = 〈x , y , z | (xy)2 = (yz)3 = (zx)4 = 1〉,

S = {x±1, y±1, z±1},

and H is a 180◦ rotation about a vertex.





Exponential Growth with One End

I For integers k ≥ 3 and ` ≥ 2, let (e1, . . . ,ek ) be a
cyclic k -sequence of integers ≥ 2 that is invariant
under rotation and reflection.

I Consider the group Kk ,` generated by the set
Sk ,` := {x±1

i,j : i = 1, . . . , k ; j = 1, . . . , `}, all of which
are involutions,

I that satisfy the relations

(xi,jxi+1,j)
ei = 1; (i = 1, . . . , k − 1; j = 1, . . . , `),

where subscripts i and j are read mod k and `, resp.
I THEOREM. The graph Γk ,` = Cay(Kk ,`,Sk ,`) is a GFR

of a Frobenius group with kernel Kk ,` and complement
Z`. It is bipartite, planar, and has valence 2k`.
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Exponential Growth with Infinitely Many Ends

Infinite-ended examples are obtainable from these
1-ended examples by

I deleting exactly one of the relations (xi,jxi+1,j)
ei = 1,

i.e., letting one of the exponents ei =∞ so that each
vertex becomes a cut vertex, and

I setting ` = 2, so that each vertex separates exactly
two infinite components.

I For example, in the previous example, delete the
relation (zx)4 = 1, leaving only

K = 〈x , y , z | (xy)2 = (yz)3 = 1〉,

I and so our GFR looks like this:
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