Graphical Frobenius Representations with even complements.

Thomas Tucker
Colgate University, Hamilton, New York, 13346 with Marston Conder, University of Auckland, NZ and Mark Watkins, Syracuse University, Syracuse, NY

Graphical Regular Representations: Review

Basic problem:

Graphical Regular Representations: Review

Basic problem: given a (finite) permutation group G on set X, give X a structure so that $G=\operatorname{Aut}(X)$.

Graphical Regular Representations: Review

Basic problem: given a (finite) permutation group G on set X, give X a structure so that $G=\operatorname{Aut}(X)$.
For graph theory, obvious choice is $X=V(\Gamma)$, the vertex set of graph 「.

Graphical Regular Representations: Review

Basic problem: given a (finite) permutation group G on set X, give X a structure so that $G=\operatorname{Aut}(X)$.
For graph theory, obvious choice is $X=V(\Gamma)$, the vertex set of graph 「.
Suppose we wanted a a graphical regular representation (GRR), where G acts regularly (transitive, free) on $V(\Gamma)$.

Graphical Regular Representations: Review

Basic problem: given a (finite) permutation group G on set X, give X a structure so that $G=\operatorname{Aut}(X)$.
For graph theory, obvious choice is $X=V(\Gamma)$, the vertex set of graph Γ.
Suppose we wanted a a graphical regular representation (GRR), where G acts regularly (transitive, free) on $V(\Gamma)$. That makes Γ a Cayley graph $C(G, S)$, with inverse-closed connection set S

Graphical Regular Representations: Review

Basic problem: given a (finite) permutation group G on set X, give X a structure so that $G=\operatorname{Aut}(X)$.
For graph theory, obvious choice is $X=V(\Gamma)$, the vertex set of graph Γ.
Suppose we wanted a a graphical regular representation (GRR), where G acts regularly (transitive, free) on $V(\Gamma)$. That makes Γ a Cayley graph $C(G, S)$, with inverse-closed connection set S Difficulty: Any group automorphism of G leaving the connection set S invariant induces an extra graph automorphism fixing the identity.

Graphical Regular Representations: Review

Basic problem: given a (finite) permutation group G on set X, give X a structure so that $G=\operatorname{Aut}(X)$.
For graph theory, obvious choice is $X=V(\Gamma)$, the vertex set of graph Γ.
Suppose we wanted a a graphical regular representation (GRR), where G acts regularly (transitive, free) on $V(\Gamma)$. That makes Γ a Cayley graph $C(G, S)$, with inverse-closed connection set S Difficulty: Any group automorphism of G leaving the connection set S invariant induces an extra graph automorphism fixing the identity.
And maybe there are other extra graph automorphism not induced by such group autos.

Graphical Regular Representations: Review

Basic problem: given a (finite) permutation group G on set X, give X a structure so that $G=\operatorname{Aut}(X)$.
For graph theory, obvious choice is $X=V(\Gamma)$, the vertex set of graph Γ.
Suppose we wanted a a graphical regular representation (GRR), where G acts regularly (transitive, free) on $V(\Gamma)$. That makes Γ a Cayley graph $C(G, S)$, with inverse-closed connection set S Difficulty: Any group automorphism of G leaving the connection set S invariant induces an extra graph automorphism fixing the identity.
And maybe there are other extra graph automorphism not induced by such group autos. So worry about extra "group" autos and extra "graph" autos.

History of the GRR problem

Started around 1970 and finished in 1981: Imrich, Watkins, Babai, Godsil et al.

History of the GRR problem

Started around 1970 and finished in 1981: Imrich, Watkins, Babai, Godsil et al.

Two observations:

History of the GRR problem

Started around 1970 and finished in 1981: Imrich, Watkins, Babai, Godsil et al.

Two observations:

1) no GRR for abelian groups other than elem 2-groups:

History of the GRR problem

Started around 1970 and finished in 1981: Imrich, Watkins, Babai, Godsil et al.

Two observations:

1) no GRR for abelian groups other than elem 2-groups: inversion $x \rightarrow x^{-1}$ is always an extra group auto
2) also no GRR for generalized dicyclic groups G (has abelian index two subgroup A and if $x \notin A$, then $x^{4}=1$ and $x a x^{-1}=a^{-1}$ for all $a \in A$)

History of the GRR problem

Started around 1970 and finished in 1981: Imrich, Watkins, Babai, Godsil et al.

Two observations:

1) no GRR for abelian groups other than elem 2-groups: inversion $x \rightarrow x^{-1}$ is always an extra group auto
2) also no GRR for generalized dicyclic groups G (has abelian index two subgroup A and if $x \notin A$, then $x^{4}=1$ and $x a x^{-1}=a^{-1}$ for all $a \in A$) Here $f(a)=a, a \in A$ and $f(x)=x^{-1}, x \notin A$ is an extra group auto (easy to prove).

History of the GRR problem

Started around 1970 and finished in 1981: Imrich, Watkins, Babai, Godsil et al.

Two observations:

1) no GRR for abelian groups other than elem 2-groups: inversion $x \rightarrow x^{-1}$ is always an extra group auto
2) also no GRR for generalized dicyclic groups G (has abelian index two subgroup A and if $x \notin A$, then $x^{4}=1$ and $x a x^{-1}=a^{-1}$ for all $a \in A$) Here $f(a)=a, a \in A$ and $f(x)=x^{-1}, x \notin A$ is an extra group auto (easy to prove).

But that is it except for a little small noise.

History of the GRR problem

Started around 1970 and finished in 1981: Imrich, Watkins, Babai, Godsil et al.

Two observations:

1) no GRR for abelian groups other than elem 2-groups: inversion $x \rightarrow x^{-1}$ is always an extra group auto
2) also no GRR for generalized dicyclic groups G (has abelian index two subgroup A and if $x \notin A$, then $x^{4}=1$ and $x a x^{-1}=a^{-1}$ for all $a \in A$) Here $f(a)=a, a \in A$ and $f(x)=x^{-1}, x \notin A$ is an extra group auto (easy to prove).

But that is it except for a little small noise.
Theorem(finished Godsil 1981) The only finite groups failing to have a GRR are abelian (not elem 2-group), generalized dicyclic, or 13 groups all of order at most 32 .

On the small noise

Babai's Conjecture: Almost all Cayley graphs are GRRs.

On the small noise

Babai's Conjecture: Almost all Cayley graphs are GRRs. Babai-Godsil (1982): For odd order nilpotent groups G, as $|G|$ gets large, proportion of generating sets X with $C(G, X)$ a GRR approaches 1 .

On the small noise

Babai's Conjecture: Almost all Cayley graphs are GRRs. Babai-Godsil (1982): For odd order nilpotent groups G, as $|G|$ gets large, proportion of generating sets X with $C(G, X)$ a GRR approaches 1 .

If look at directed graphs, where automorphisms respect direction, then

On the small noise

Babai's Conjecture: Almost all Cayley graphs are GRRs. Babai-Godsil (1982): For odd order nilpotent groups G, as $|G|$ gets large, proportion of generating sets X with $C(G, X)$ a GRR approaches 1 .
If look at directed graphs, where automorphisms respect direction, then
Theorem(Babai 1980) The only groups failing to have a DGRR are $C_{2}^{k}, k=2,3,4$ and $C_{3} \times C_{3}$ and quaternions.

Frobenius groups

After regular group actions where point stabilizer is trivial, next smallest is where point stabilizer nontrivial, but two-point stabilizer is trivial.

Frobenius groups

After regular group actions where point stabilizer is trivial, next smallest is where point stabilizer nontrivial, but two-point stabilizer is trivial.
A permutation group G on $\{1,2, \ldots n\}$ is a Frobenius group if it is transitive, not regular, and only the identity fixes 2 points (point stabilizers intersect only in id).

Frobenius groups

After regular group actions where point stabilizer is trivial, next smallest is where point stabilizer nontrivial, but two-point stabilizer is trivial.
A permutation group G on $\{1,2, \ldots n\}$ is a Frobenius group if it is transitive, not regular, and only the identity fixes 2 points (point stabilizers intersect only in id).
If H is a point stabilizer $(|H| \neq 1$ since not regular $)$, then $|G|=n|H|$

Frobenius groups

After regular group actions where point stabilizer is trivial, next smallest is where point stabilizer nontrivial, but two-point stabilizer is trivial.
A permutation group G on $\{1,2, \ldots n\}$ is a Frobenius group if it is transitive, not regular, and only the identity fixes 2 points (point stabilizers intersect only in id).
If H is a point stabilizer $(|H| \neq 1$ since not regular $)$, then $|G|=n|H|$ but union of all point stabilizers is $n|H|-(n-1)$, so there are $(n-1)$ elements of A that fix nothing.

Frobenius groups

After regular group actions where point stabilizer is trivial, next smallest is where point stabilizer nontrivial, but two-point stabilizer is trivial.
A permutation group G on $\{1,2, \ldots n\}$ is a Frobenius group if it is transitive, not regular, and only the identity fixes 2 points (point stabilizers intersect only in id).
If H is a point stabilizer $(|H| \neq 1$ since not regular $)$, then $|G|=n|H|$ but union of all point stabilizers is $n|H|-(n-1)$, so there are $(n-1)$ elements of A that fix nothing. Let K be the set of those elements together with id.

Frobenius groups

After regular group actions where point stabilizer is trivial, next smallest is where point stabilizer nontrivial, but two-point stabilizer is trivial.
A permutation group G on $\{1,2, \ldots n\}$ is a Frobenius group if it is transitive, not regular, and only the identity fixes 2 points (point stabilizers intersect only in id).
If H is a point stabilizer $(|H| \neq 1$ since not regular $)$, then $|G|=n|H|$ but union of all point stabilizers is $n|H|-(n-1)$, so there are $(n-1)$ elements of A that fix nothing. Let K be the set of those elements together with id.
We call H the complement and K the kernel of the Frobenius group.

Observations

1) K closed under conjugation

Frobenius groups

After regular group actions where point stabilizer is trivial, next smallest is where point stabilizer nontrivial, but two-point stabilizer is trivial.
A permutation group G on $\{1,2, \ldots n\}$ is a Frobenius group if it is transitive, not regular, and only the identity fixes 2 points (point stabilizers intersect only in id).
If H is a point stabilizer $(|H| \neq 1$ since not regular $)$, then $|G|=n|H|$ but union of all point stabilizers is $n|H|-(n-1)$, so there are $(n-1)$ elements of A that fix nothing. Let K be the set of those elements together with id.
We call H the complement and K the kernel of the Frobenius group.

Observations

1) K closed under conjugation
2) H acts freely on $K-\{i d\}$ by conjugation

Frobenius groups

After regular group actions where point stabilizer is trivial, next smallest is where point stabilizer nontrivial, but two-point stabilizer is trivial.
A permutation group G on $\{1,2, \ldots n\}$ is a Frobenius group if it is transitive, not regular, and only the identity fixes 2 points (point stabilizers intersect only in id).
If H is a point stabilizer $(|H| \neq 1$ since not regular $)$, then $|G|=n|H|$ but union of all point stabilizers is $n|H|-(n-1)$, so there are $(n-1)$ elements of A that fix nothing. Let K be the set of those elements together with id.
We call H the complement and K the kernel of the Frobenius group.

Observations

1) K closed under conjugation
2) H acts freely on $K-\{i d\}$ by conjugation ($h k h^{-1}=k$ implies $k h k^{-1}=h$ so H and $k H k^{-1}$ intersect).

Frobenius groups

After regular group actions where point stabilizer is trivial, next smallest is where point stabilizer nontrivial, but two-point stabilizer is trivial.
A permutation group G on $\{1,2, \ldots n\}$ is a Frobenius group if it is transitive, not regular, and only the identity fixes 2 points (point stabilizers intersect only in id).
If H is a point stabilizer $(|H| \neq 1$ since not regular $)$, then $|G|=n|H|$ but union of all point stabilizers is $n|H|-(n-1)$, so there are $(n-1)$ elements of A that fix nothing. Let K be the set of those elements together with id.
We call H the complement and K the kernel of the Frobenius group.

Observations

1) K closed under conjugation
2) H acts freely on $K-\{i d\}$ by conjugation ($h k h^{-1}=k$ implies $k h k^{-1}=h$ so H and $k H k^{-1}$ intersect).
3) $|H|$ divides $|K|-1$.

Frobenius groups

After regular group actions where point stabilizer is trivial, next smallest is where point stabilizer nontrivial, but two-point stabilizer is trivial.
A permutation group G on $\{1,2, \ldots n\}$ is a Frobenius group if it is transitive, not regular, and only the identity fixes 2 points (point stabilizers intersect only in id).
If H is a point stabilizer $(|H| \neq 1$ since not regular $)$, then $|G|=n|H|$ but union of all point stabilizers is $n|H|-(n-1)$, so there are $(n-1)$ elements of A that fix nothing. Let K be the set of those elements together with id.
We call H the complement and K the kernel of the Frobenius group.

Observations

1) K closed under conjugation
2) H acts freely on $K-\{i d\}$ by conjugation ($h k h^{-1}=k$ implies $k h k^{-1}=h$ so H and $k H k^{-1}$ intersect).
3) $|H|$ divides $|K|-1$.

Frobenius's Theorem. Thompson's Theorem

Theorem (Frobenius 1901) The kernel is a subgroup of A.

Frobenius's Theorem. Thompson's Theorem

Theorem (Frobenius 1901) The kernel is a subgroup of A.
Thus a Frobenius group is algebraically $G=K \rtimes H$, where H injects to a subgroup of $\operatorname{Aut}(K)$ that acts freely on $K-\{i d\}$.

Frobenius's Theorem. Thompson's Theorem

Theorem (Frobenius 1901) The kernel is a subgroup of A.
Thus a Frobenius group is algebraically $G=K \rtimes H$, where H injects to a subgroup of $\operatorname{Aut}(K)$ that acts freely on $K-\{i d\}$. Moreover, K is the Fitting subgroup of G, so it is uniquely determined.

Frobenius's Theorem. Thompson's Theorem

Theorem (Frobenius 1901) The kernel is a subgroup of A.
Thus a Frobenius group is algebraically $G=K \rtimes H$, where H injects to a subgroup of $\operatorname{Aut}(K)$ that acts freely on $K-\{i d\}$. Moreover, K is the Fitting subgroup of G, so it is uniquely determined.
Thus when we are given a Frobenius group G we simply write $G=H K$.

Frobenius's Theorem. Thompson's Theorem

Theorem (Frobenius 1901) The kernel is a subgroup of A.
Thus a Frobenius group is algebraically $G=K \rtimes H$, where H injects to a subgroup of $\operatorname{Aut}(K)$ that acts freely on $K-\{i d\}$. Moreover, K is the Fitting subgroup of G, so it is uniquely determined.
Thus when we are given a Frobenius group G we simply write $G=H K$.

The condition that H act freely on K is highly restrictive on K and H :

Frobenius's Theorem. Thompson's Theorem

Theorem (Frobenius 1901) The kernel is a subgroup of A.
Thus a Frobenius group is algebraically $G=K \rtimes H$, where H injects to a subgroup of $\operatorname{Aut}(K)$ that acts freely on $K-\{i d\}$. Moreover, K is the Fitting subgroup of G, so it is uniquely determined.
Thus when we are given a Frobenius group G we simply write $G=H K$.

The condition that H act freely on K is highly restrictive on K and H:
Theorem (Thompson 1959, thesis) The kernel K is nilpotent.

Frobenius's Theorem. Thompson's Theorem

Theorem (Frobenius 1901) The kernel is a subgroup of A.
Thus a Frobenius group is algebraically $G=K \rtimes H$, where H injects to a subgroup of $\operatorname{Aut}(K)$ that acts freely on $K-\{i d\}$. Moreover, K is the Fitting subgroup of G, so it is uniquely determined.
Thus when we are given a Frobenius group G we simply write $G=H K$.

The condition that H act freely on K is highly restrictive on K and H:
Theorem (Thompson 1959, thesis) The kernel K is nilpotent.
And on H :
Theorem (Burnside) All Sylow p-subgroups of H are cyclic or possibly for $p=2$ generalized quaternion.

Model example

The Example Let F be a (finite) field. Then the group of affine transformations $k \rightarrow r k+b$ is a Frobenius group with $K=F^{+}$and $H=K^{*}$ or restrict to subgroup of K^{*}

Model example

The Example Let F be a (finite) field. Then the group of affine transformations $k \rightarrow r k+b$ is a Frobenius group with $K=F^{+}$and $H=K^{*}$ or restrict to subgroup of K^{*}
Think of multiplication by r as a rotation and the $+b$ part as translation

Model example

The Example Let F be a (finite) field. Then the group of affine transformations $k \rightarrow r k+b$ is a Frobenius group with $K=F^{+}$and $H=K^{*}$ or restrict to subgroup of K^{*}
Think of multiplication by r as a rotation and the $+b$ part as translation

More generally, Z_{n} with H generated by multiplication by unit r such that $r^{i}-1$ coprime to n for all i.

Model example

The Example Let F be a (finite) field. Then the group of affine transformations $k \rightarrow r k+b$ is a Frobenius group with $K=F^{+}$and $H=K^{*}$ or restrict to subgroup of K^{*}
Think of multiplication by r as a rotation and the $+b$ part as translation

More generally, Z_{n} with H generated by multiplication by unit r such that $r^{i}-1$ coprime to n for all i.
Or $K=Z_{p}^{n}$ and $H \subset G L(n, p)$ such that no element of H has eigen value 1 .

When $|H|$ is even

Proposition Suppose that f is an involution in $\operatorname{Aut}(K)$ that fixes only the identity (so $|K|$ is odd).

When $|H|$ is even

Proposition Suppose that f is an involution in $\operatorname{Aut}(K)$ that fixes only the identity (so $|K|$ is odd). Then $f(k)=k^{-1}$ for all k.

When $|H|$ is even

Proposition Suppose that f is an involution in $\operatorname{Aut}(K)$ that fixes only the identity (so $|K|$ is odd). Then $f(k)=k^{-1}$ for all k.In particular, K is abelian and $|K|$ is odd.

When $|H|$ is even

Proposition Suppose that f is an involution in $\operatorname{Aut}(K)$ that fixes only the identity (so $|K|$ is odd). Then $f(k)=k^{-1}$ for all k.In particular, K is abelian and $|K|$ is odd.

Proof(Isaacs) Suppose $k=x^{-1} f(x)$ for some x. Then

When $|H|$ is even

Proposition Suppose that f is an involution in $\operatorname{Aut}(K)$ that fixes only the identity (so $|K|$ is odd). Then $f(k)=k^{-1}$ for all k.In particular, K is abelian and $|K|$ is odd.

Proof(Isaacs) Suppose $k=x^{-1} f(x)$ for some x. Then

$$
f(k)=f(x)^{-1} f^{2}(x)=f(x)^{-1} x=k^{-1}
$$

When $|H|$ is even

Proposition Suppose that f is an involution in $\operatorname{Aut}(K)$ that fixes only the identity (so $|K|$ is odd). Then $f(k)=k^{-1}$ for all k.In particular, K is abelian and $|K|$ is odd.

Proof(Isaacs) Suppose $k=x^{-1} f(x)$ for some x. Then

$$
f(k)=f(x)^{-1} f^{2}(x)=f(x)^{-1} x=k^{-1}
$$

Now just verify that $x \rightarrow x^{-1} f(x)$ is one-to-one:

When $|H|$ is even

Proposition Suppose that f is an involution in $\operatorname{Aut}(K)$ that fixes only the identity (so $|K|$ is odd). Then $f(k)=k^{-1}$ for all k.In particular, K is abelian and $|K|$ is odd.
Proof(Isaacs) Suppose $k=x^{-1} f(x)$ for some x. Then

$$
f(k)=f(x)^{-1} f^{2}(x)=f(x)^{-1} x=k^{-1}
$$

Now just verify that $x \rightarrow x^{-1} f(x)$ is one-to-one:

$$
x^{-1} f(x)=y^{-1} f(y) \text { implies } f\left(x y^{-1}\right)=x y^{-1} .
$$

When $|H|$ is even

Proposition Suppose that f is an involution in $\operatorname{Aut}(K)$ that fixes only the identity (so $|K|$ is odd). Then $f(k)=k^{-1}$ for all k.In particular, K is abelian and $|K|$ is odd.
Proof(Isaacs) Suppose $k=x^{-1} f(x)$ for some x. Then

$$
f(k)=f(x)^{-1} f^{2}(x)=f(x)^{-1} x=k^{-1}
$$

Now just verify that $x \rightarrow x^{-1} f(x)$ is one-to-one:

$$
x^{-1} f(x)=y^{-1} f(y) \text { implies } f\left(x y^{-1}\right)=x y^{-1}
$$

Corollary For a Frobenius group $G=H K$, if $|H|$ is even, then K is an odd order abelian group and inversion is the only involution in H.

The GFR problem

Given a Frobenius group $G=H K$, find a graphical Frobenius representation (GFR),

The GFR problem

Given a Frobenius group $G=H K$, find a graphical Frobenius representation (GFR), namely a Cayley graph $C(K, X)$ where stabilizer of identity is H.

So we first want to choose X such that stabilizer of $S=X \cup X^{-1}$ in $\operatorname{Aut}(K)$ is H.

The GFR problem

Given a Frobenius group $G=H K$, find a graphical Frobenius representation (GFR), namely a Cayley graph $C(K, X)$ where stabilizer of identity is H.

So we first want to choose X such that stabilizer of $S=X \cup X^{-1}$ in $\operatorname{Aut}(K)$ is H.
That means S is a union of orbits of H.

The GFR problem

Given a Frobenius group $G=H K$, find a graphical Frobenius representation (GFR), namely a Cayley graph $C(K, X)$ where stabilizer of identity is H.

So we first want to choose X such that stabilizer of $S=X \cup X^{-1}$ in $\operatorname{Aut}(K)$ is H.
That means S is a union of orbits of H.
Then make sure there are no extra group or graph automorphisms.

The GFR problem

Given a Frobenius group $G=H K$, find a graphical Frobenius representation (GFR), namely a Cayley graph $C(K, X)$ where stabilizer of identity is H.

So we first want to choose X such that stabilizer of $S=X \cup X^{-1}$ in $\operatorname{Aut}(K)$ is H.
That means S is a union of orbits of H.
Then make sure there are no extra group or graph automorphisms. The group part is easier (well not exactly).

The GFR problem

Given a Frobenius group $G=H K$, find a graphical Frobenius representation (GFR), namely a Cayley graph $C(K, X)$ where stabilizer of identity is H.

So we first want to choose X such that stabilizer of $S=X \cup X^{-1}$ in $\operatorname{Aut}(K)$ is H.
That means S is a union of orbits of H.
Then make sure there are no extra group or graph automorphisms. The group part is easier (well not exactly).

History: This problem was proposed in 1970s by Mark Watkins to his PhD student Kevin Doyle. Doyle died recently, with an unpublished manuscript finding which Frobenius group $G=H K$ with $|G| \leq 300$ have a GFR.

The GFR problem

Given a Frobenius group $G=H K$, find a graphical Frobenius representation (GFR), namely a Cayley graph $C(K, X)$ where stabilizer of identity is H.

So we first want to choose X such that stabilizer of $S=X \cup X^{-1}$ in $\operatorname{Aut}(K)$ is H.
That means S is a union of orbits of H.
Then make sure there are no extra group or graph automorphisms. The group part is easier (well not exactly).

History: This problem was proposed in 1970s by Mark Watkins to his PhD student Kevin Doyle. Doyle died recently, with an unpublished manuscript finding which Frobenius group $G=H K$ with $|G| \leq 300$ have a GFR. There are no papers on GFRs.

The GFR problem

Given a Frobenius group $G=H K$, find a graphical Frobenius representation (GFR), namely a Cayley graph $C(K, X)$ where stabilizer of identity is H.

So we first want to choose X such that stabilizer of $S=X \cup X^{-1}$ in $\operatorname{Aut}(K)$ is H.
That means S is a union of orbits of H.
Then make sure there are no extra group or graph automorphisms. The group part is easier (well not exactly).

History: This problem was proposed in 1970s by Mark Watkins to his PhD student Kevin Doyle. Doyle died recently, with an unpublished manuscript finding which Frobenius group $G=H K$ with $|G| \leq 300$ have a GFR. There are no papers on GFRs. First talk on them by Mark in Israel 2014.

The GFR problem

Given a Frobenius group $G=H K$, find a graphical Frobenius representation (GFR), namely a Cayley graph $C(K, X)$ where stabilizer of identity is H.

So we first want to choose X such that stabilizer of $S=X \cup X^{-1}$ in $\operatorname{Aut}(K)$ is H.
That means S is a union of orbits of H.
Then make sure there are no extra group or graph automorphisms. The group part is easier (well not exactly).

History: This problem was proposed in 1970s by Mark Watkins to his PhD student Kevin Doyle. Doyle died recently, with an unpublished manuscript finding which Frobenius group $G=H K$ with $|G| \leq 300$ have a GFR. There are no papers on GFRs. First talk on them by Mark in Israel 2014. Followed by lots of discussion at Rogia!!!

Obvious Frobenius groups not having a GFR

Just as for GRRs, abelian groups are trouble: K abelian, not an elem 2-group and $|H|$ odd, no GFR

Obvious Frobenius groups not having a GFR

Just as for GRRs, abelian groups are trouble: K abelian, not an elem 2-group and $|H|$ odd, no GFR because inversion is always an extra group auto

Obvious Frobenius groups not having a GFR

Just as for GRRs, abelian groups are trouble: K abelian, not an elem 2-group and $|H|$ odd, no GFR because inversion is always an extra group auto

Other obvious case: $|H|=|K|-1$

Obvious Frobenius groups not having a GFR

Just as for GRRs, abelian groups are trouble: K abelian, not an elem 2-group and $|H|$ odd, no GFR because inversion is always an extra group auto

Other obvious case: $|H|=|K|-1$ since then Cayley graph is K_{n} and has too many autos.

Obvious Frobenius groups not having a GFR

Just as for GRRs, abelian groups are trouble: K abelian, not an elem 2-group and $|H|$ odd, no GFR because inversion is always an extra group auto

Other obvious case: $|H|=|K|-1$ since then Cayley graph is K_{n} and has too many autos.
But note this doesn't happen much because

Obvious Frobenius groups not having a GFR

Just as for GRRs, abelian groups are trouble: K abelian, not an elem 2-group and $|H|$ odd, no GFR because inversion is always an extra group auto

Other obvious case: $|H|=|K|-1$ since then Cayley graph is K_{n} and has too many autos.
But note this doesn't happen much because Important observation If N characteristic in K, then $N K$ and $H(K / N)$ are Frob groups, so $|H|$ divides $|N|-1$ and $|K| /|N|-1$.

Obvious Frobenius groups not having a GFR

Just as for GRRs, abelian groups are trouble: K abelian, not an elem 2-group and $|H|$ odd, no GFR because inversion is always an extra group auto

Other obvious case: $|H|=|K|-1$ since then Cayley graph is K_{n} and has too many autos.
But note this doesn't happen much because Important observation If N characteristic in K, then $N K$ and $H(K / N)$ are Frob groups, so $|H|$ divides $|N|-1$ and $|K| /|N|-1$. Since K is nilpotent, the only possibility is an elementary p-group for some prime p.

Obvious Frobenius groups not having a GFR

Just as for GRRs, abelian groups are trouble: K abelian, not an elem 2-group and $|H|$ odd, no GFR because inversion is always an extra group auto

Other obvious case: $|H|=|K|-1$ since then Cayley graph is K_{n} and has too many autos.
But note this doesn't happen much because Important observation If N characteristic in K, then $N K$ and $H(K / N)$ are Frob groups, so $|H|$ divides $|N|-1$ and $|K| /|N|-1$. Since K is nilpotent, the only possibility is an elementary p-group for some prime p.

Note that unlike abelian case, K can't be generalized dicyclic

Obvious Frobenius groups not having a GFR

Just as for GRRs, abelian groups are trouble: K abelian, not an elem 2-group and $|H|$ odd, no GFR because inversion is always an extra group auto

Other obvious case: $|H|=|K|-1$ since then Cayley graph is K_{n} and has too many autos.
But note this doesn't happen much because Important observation If N characteristic in K, then $N K$ and $H(K / N)$ are Frob groups, so $|H|$ divides $|N|-1$ and $|K| /|N|-1$. Since K is nilpotent, the only possibility is an elementary p-group for some prime p.

Note that unlike abelian case, K can't be generalized dicyclic its unique involution would get fixed by H.

What to attack?

So the GFR problem, like the GRR problem, has lots of cases:

What to attack?

So the GFR problem, like the GRR problem, has lots of cases:

1) First do H cyclic since H is almost Sylow-cyclic anyway.

What to attack?

So the GFR problem, like the GRR problem, has lots of cases:

1) First do H cyclic since H is almost Sylow-cyclic anyway.
2) $|H|$ even (so K is odd order abelian).

What to attack?

So the GFR problem, like the GRR problem, has lots of cases:

1) First do H cyclic since H is almost Sylow-cyclic anyway.
2) $|H|$ even (so K is odd order abelian).
a) K cyclic

What to attack?

So the GFR problem, like the GRR problem, has lots of cases:

1) First do H cyclic since H is almost Sylow-cyclic anyway.
2) $|H|$ even (so K is odd order abelian).
a) K cyclic
b) $K=C_{p}^{2}$

What to attack?

So the GFR problem, like the GRR problem, has lots of cases:

1) First do H cyclic since H is almost Sylow-cyclic anyway.
2) $|H|$ even (so K is odd order abelian).
a) K cyclic
b) $K=C_{p}^{2}$ since K nilpotent so every K has a characteristic subgroup that is an elem p-group.

What to attack?

So the GFR problem, like the GRR problem, has lots of cases:

1) First do H cyclic since H is almost Sylow-cyclic anyway.
2) $|H|$ even (so K is odd order abelian).
a) K cyclic
b) $K=C_{p}^{2}$ since K nilpotent so every K has a characteristic subgroup that is an elem p-group.
3) $|H|$ odd

What to attack?

So the GFR problem, like the GRR problem, has lots of cases:

1) First do H cyclic since H is almost Sylow-cyclic anyway.
2) $|H|$ even (so K is odd order abelian).
a) K cyclic
b) $K=C_{p}^{2}$ since K nilpotent so every K has a characteristic subgroup that is an elem p-group.
3) $|\mathrm{H}|$ odd
a) $K=C_{2}^{n}$

What to attack?

So the GFR problem, like the GRR problem, has lots of cases:

1) First do H cyclic since H is almost Sylow-cyclic anyway.
2) $|H|$ even (so K is odd order abelian).
a) K cyclic
b) $K=C_{p}^{2}$ since K nilpotent so every K has a characteristic subgroup that is an elem p-group.
3) $|H|$ odd
a) $K=C_{2}^{n}$
b) K a general 2-group.

What to attack?

So the GFR problem, like the GRR problem, has lots of cases:

1) First do H cyclic since H is almost Sylow-cyclic anyway.
2) $|H|$ even (so K is odd order abelian).
a) K cyclic
b) $K=C_{p}^{2}$ since K nilpotent so every K has a characteristic subgroup that is an elem p-group.
3) $|H|$ odd
a) $K=C_{2}^{n}$
b) K a general 2-group.
c) K a p-group for odd prime p.

What to attack?

So the GFR problem, like the GRR problem, has lots of cases:

1) First do H cyclic since H is almost Sylow-cyclic anyway.
2) $|H|$ even (so K is odd order abelian).
a) K cyclic
b) $K=C_{p}^{2}$ since K nilpotent so every K has a characteristic subgroup that is an elem p-group.
3) $|H|$ odd
a) $K=C_{2}^{n}$
b) K a general 2-group.
c) K a p-group for odd prime p.
4) $|G|$ small.

What to attack?

So the GFR problem, like the GRR problem, has lots of cases:

1) First do H cyclic since H is almost Sylow-cyclic anyway.
2) $|H|$ even (so K is odd order abelian).
a) K cyclic
b) $K=C_{p}^{2}$ since K nilpotent so every K has a characteristic subgroup that is an elem p-group.
3) $|H|$ odd
a) $K=C_{2}^{n}$
b) K a general 2-group.
c) K a p-group for odd prime p.
4) $|G|$ small. Have done $|G| \leq 300$ by hand. Good for small noise and to experiment with

What to attack?

So the GFR problem, like the GRR problem, has lots of cases:

1) First do H cyclic since H is almost Sylow-cyclic anyway.
2) $|H|$ even (so K is odd order abelian).
a) K cyclic
b) $K=C_{p}^{2}$ since K nilpotent so every K has a characteristic subgroup that is an elem p-group.
3) $|H|$ odd
a) $K=C_{2}^{n}$
b) K a general 2-group.
c) K a p-group for odd prime p.
4) $|G|$ small. Have done $|G| \leq 300$ by hand. Good for small noise and to experiment withAlso have MAGMA data.

H even order cyclic, K odd order abelian

How about $|H|=2$?

H even order cyclic, K odd order abelian

How about $|H|=2$? This was done by the GRR people (Imrich-Watkins 1976): all except C_{3}^{2}, C_{3}^{3}.
What about K cyclic?

H even order cyclic, K odd order abelian

How about $|H|=2$? This was done by the GRR people (Imrich-Watkins 1976): all except C_{3}^{2}, C_{3}^{3}.

What about K cyclic?
$K=C_{p}$ and $|H|>2$ already done 1967. But general C_{n} ?

H even order cyclic, K odd order abelian

How about $|H|=2$? This was done by the GRR people (Imrich-Watkins 1976): all except C_{3}^{2}, C_{3}^{3}.

What about K cyclic?
$K=C_{p}$ and $|H|>2$ already done 1967. But general C_{n} ?
Note that here H must be cyclic since it leaves invariant any Sylow p-subgroup. Also n must be odd since $|H|$ even

H even order cyclic, K odd order abelian

How about $|H|=2$? This was done by the GRR people (Imrich-Watkins 1976): all except C_{3}^{2}, C_{3}^{3}.

What about K cyclic?
$K=C_{p}$ and $|H|>2$ already done 1967. But general C_{n} ?
Note that here H must be cyclic since it leaves invariant any Sylow p-subgroup. Also n must be odd since $|H|$ even Theorem(CTW, 2015) Let $G=H K$ where $K=C_{n}$ and $|H|$ even (so n odd). Then G has a GFR.

H even order cyclic, K odd order abelian

How about $|H|=2$? This was done by the GRR people (Imrich-Watkins 1976): all except C_{3}^{2}, C_{3}^{3}.

What about K cyclic?
$K=C_{p}$ and $|H|>2$ already done 1967. But general C_{n} ?
Note that here H must be cyclic since it leaves invariant any Sylow p-subgroup. Also n must be odd since $|H|$ even Theorem(CTW, 2015) Let $G=H K$ where $K=C_{n}$ and $|H|$ even (so n odd). Then G has a GFR.

Proof

Theorem (Caiheng Li 2005). If Γ is an arc-transitive circulant (Cayley graph for C_{n}), then either every graph automorphism fixing the identity is a group automorphism,

Proof

Theorem (Caiheng Li 2005). If Γ is an arc-transitive circulant (Cayley graph for C_{n}), then either every graph automorphism fixing the identity is a group automorphism,or $n=m b$ and Γ has valence $(m-1) b$ or $(m-1)(b-1)$ (actually $\Gamma=K_{m}$ lex K_{b}^{c} or deleted diagonal of that)

Proof

Theorem (Caiheng Li 2005). If Γ is an arc-transitive circulant (Cayley graph for C_{n}), then either every graph automorphism fixing the identity is a group automorphism, or $n=m b$ and Γ has valence $(m-1) b$ or $(m-1)(b-1)$ (actually $\Gamma=K_{m}$ lex K_{b}^{c} or deleted diagonal of that)
The graph $\Gamma=\operatorname{Cay}\left(C_{n}, S\right)$ where S is an orbit of H.

Proof

Theorem (Caiheng Li 2005). If Γ is an arc-transitive circulant (Cayley graph for C_{n}), then either every graph automorphism fixing the identity is a group automorphism,or $n=m b$ and Γ has valence $(m-1) b$ or $(m-1)(b-1)$ (actually $\Gamma=K_{m}$ lex K_{b}^{c} or deleted diagonal of that)
The graph $\Gamma=\operatorname{Cay}\left(C_{n}, S\right)$ where S is an orbit of H.It is arc transitive.

Proof

Theorem (Caiheng Li 2005). If Γ is an arc-transitive circulant (Cayley graph for C_{n}), then either every graph automorphism fixing the identity is a group automorphism,or $n=m b$ and Γ has valence $(m-1) b$ or $(m-1)(b-1)$ (actually $\Gamma=K_{m}$ lex K_{b}^{c} or deleted diagonal of that)
The graph $\Gamma=\operatorname{Cay}\left(C_{n}, S\right)$ where S is an orbit of H.It is arc transitive. Note we do not have $|H|=n-1$, so $b>1$. Also $m>1$ else 「 not connected.

Proof

Theorem (Caiheng Li 2005). If Γ is an arc-transitive circulant (Cayley graph for C_{n}), then either every graph automorphism fixing the identity is a group automorphism,or $n=m b$ and Γ has valence $(m-1) b$ or $(m-1)(b-1)$ (actually $\Gamma=K_{m}$ lex K_{b}^{c} or deleted diagonal of that)
The graph $\Gamma=\operatorname{Cay}\left(C_{n}, S\right)$ where S is an orbit of H.It is arc transitive. Note we do not have $|H|=n-1$, so $b>1$. Also $m>1$ else Γ not connected.
There are no group automorphisms of C_{n} leaving S invariant other than H itself

Proof

Theorem (Caiheng Li 2005). If Γ is an arc-transitive circulant (Cayley graph for C_{n}), then either every graph automorphism fixing the identity is a group automorphism,or $n=m b$ and Γ has valence $(m-1) b$ or $(m-1)(b-1)$ (actually $\Gamma=K_{m}$ lex K_{b}^{c} or deleted diagonal of that)
The graph $\Gamma=\operatorname{Cay}\left(C_{n}, S\right)$ where S is an orbit of H.It is arc transitive. Note we do not have $|H|=n-1$, so $b>1$. Also $m>1$ else Γ not connected.
There are no group automorphisms of C_{n} leaving S invariant other than H itself
So our problem is to show the other two cases cannot occur.

Proof

Theorem (Caiheng Li 2005). If Γ is an arc-transitive circulant (Cayley graph for C_{n}), then either every graph automorphism fixing the identity is a group automorphism,or $n=m b$ and Γ has valence $(m-1) b$ or $(m-1)(b-1)$ (actually $\Gamma=K_{m} / e x K_{b}^{c}$ or deleted diagonal of that)
The graph $\Gamma=\operatorname{Cay}\left(C_{n}, S\right)$ where S is an orbit of H.It is arc transitive. Note we do not have $|H|=n-1$, so $b>1$. Also $m>1$ else Γ not connected.
There are no group automorphisms of C_{n} leaving S invariant other than H itself
So our problem is to show the other two cases cannot occur.
First has valence $(m-1) b=|H|$ but $|H|$ is coprime to n since $|H|$ divides $n-1$.

Proof

Theorem (Caiheng Li 2005). If Γ is an arc-transitive circulant (Cayley graph for C_{n}), then either every graph automorphism fixing the identity is a group automorphism,or $n=m b$ and Γ has valence $(m-1) b$ or $(m-1)(b-1)$ (actually $\Gamma=K_{m}$ lex K_{b}^{c} or deleted diagonal of that)
The graph $\Gamma=\operatorname{Cay}\left(C_{n}, S\right)$ where S is an orbit of H.It is arc transitive. Note we do not have $|H|=n-1$, so $b>1$. Also $m>1$ else Γ not connected.
There are no group automorphisms of C_{n} leaving S invariant other than H itself
So our problem is to show the other two cases cannot occur.
First has valence $(m-1) b=|H|$ but $|H|$ is coprime to n since $|H|$ divides $n-1$.
For second, valence is $|H|=(m-1)(b-1)$ let p be smallest prime dividing n

Proof

Theorem (Caiheng Li 2005). If Γ is an arc-transitive circulant (Cayley graph for C_{n}), then either every graph automorphism fixing the identity is a group automorphism,or $n=m b$ and Γ has valence $(m-1) b$ or $(m-1)(b-1)$ (actually $\Gamma=K_{m}$ lex K_{b}^{c} or deleted diagonal of that)
The graph $\Gamma=\operatorname{Cay}\left(C_{n}, S\right)$ where S is an orbit of H.It is arc transitive. Note we do not have $|H|=n-1$, so $b>1$. Also $m>1$ else 「 not connected.
There are no group automorphisms of C_{n} leaving S invariant other than H itself
So our problem is to show the other two cases cannot occur.
First has valence $(m-1) b=|H|$ but $|H|$ is coprime to n since $|H|$ divides $n-1$.
For second, valence is $|H|=(m-1)(b-1)$ let p be smallest prime dividing n. Then $|H| \mid(p-1)$ so $|H| \leq p-1$. But either $m-1 \geq p-1$ or $b-1 \geq p-1$ and $m-1>2$ and $b-1>2$ (since both are odd).

$$
K=C_{p}^{2}
$$

The next easiest (?!) thing to look at is $|H|>2$ even and $K=C_{p}^{2}$.

$$
K=C_{p}^{2}
$$

The next easiest (?!) thing to look at is $|H|>2$ even and $K=C_{p}^{2}$. Theorem (CWT 2016) Suppose $K=C_{p}^{2}, p>5$ and H is generated by the matrix $M=[0-1 \mid 10]$ (which has order 4 and $M^{2}=-l$.). Then $\operatorname{Cay}(K, S)$ is a GFR for K where S is the union of the orbits of $(1,0),(2,0),(1,2)$.

$$
K=C_{p}^{2}
$$

The next easiest (?!) thing to look at is $|H|>2$ even and $K=C_{p}^{2}$. Theorem (CWT 2016) Suppose $K=C_{p}^{2}, p>5$ and H is generated by the matrix $M=[0-1 \mid 10]$ (which has order 4 and $M^{2}=-l$.). Then $\operatorname{Cay}(K, S)$ is a GFR for K where S is the union of the orbits of $(1,0),(2,0),(1,2)$.
Proof Just look at the 1 -sphere (subgraph spanning vertices adjacent to $(0,0)$ As a graph it has only the symmetry induced by H (e.g look at valence of each vertex)

$$
K=C_{p}^{2}
$$

The next easiest (?!) thing to look at is $|H|>2$ even and $K=C_{p}^{2}$. Theorem (CWT 2016) Suppose $K=C_{p}^{2}, p>5$ and H is generated by the matrix $M=[0-1 \mid 10]$ (which has order 4 and $M^{2}=-l$.). Then $\operatorname{Cay}(K, S)$ is a GFR for K where S is the union of the orbits of $(1,0),(2,0),(1,2)$.
Proof Just look at the 1-sphere (subgraph spanning vertices adjacent to $(0,0)$ As a graph it has only the symmetry induced by H (e.g look at valence of each vertex)
Notice there is no graph automorphism fixing the 1-sphere (other than the identity) because the vertex stabilizer acts freely on each 1 -sphere, so if you fix one, you fix the neighboring one.

$$
K=C_{p}^{2}
$$

The next easiest (?!) thing to look at is $|H|>2$ even and $K=C_{p}^{2}$. Theorem (CWT 2016) Suppose $K=C_{p}^{2}, p>5$ and H is generated by the matrix $M=[0-1 \mid 10]$ (which has order 4 and $M^{2}=-l$.). Then $\operatorname{Cay}(K, S)$ is a GFR for K where S is the union of the orbits of $(1,0),(2,0),(1,2)$.
Proof Just look at the 1-sphere (subgraph spanning vertices adjacent to $(0,0)$ As a graph it has only the symmetry induced by H (e.g look at valence of each vertex)
Notice there is no graph automorphism fixing the 1-sphere (other than the identity) because the vertex stabilizer acts freely on each 1 -sphere, so if you fix one, you fix the neighboring one.
We conclude that $\operatorname{Cay}(K, S)$ is a GFR for G.

A class of non-GFRs for $K=C_{p} \times C_{p}$

Let $K=C_{p} \times C_{p}$ for some odd prime p, where $p \equiv 1(\bmod 4)$.

A class of non-GFRs for $K=C_{p} \times C_{p}$

Let $K=C_{p} \times C_{p}$ for some odd prime p, where $p \equiv 1(\bmod 4)$. Let $M \in G L(2, p)$ be a matrix of order $p+1$ with $M^{(p+1) / 2}=-l$ (e.g multiplication in $G F\left(p^{2}\right)$ by x^{p-1} where x generates the cyclic multiplicative group $\left.G F\left(p^{2}\right)^{*}\right)$.

A class of non-GFRs for $K=C_{p} \times C_{p}$

Let $K=C_{p} \times C_{p}$ for some odd prime p, where $p \equiv 1(\bmod 4)$. Let $M \in G L(2, p)$ be a matrix of order $p+1$ with $M^{(p+1) / 2}=-l$ (e.g multiplication in $G F\left(p^{2}\right)$ by x^{p-1} where x generates the cyclic multiplicative group $\left.G F\left(p^{2}\right)^{*}\right)$.

Theorem(CTW, 2015) The Frobenius group $G=H K$, where $H=\langle M\rangle$ and $K=C_{p}^{2}$ has no GFR because every orbit of H is invariant under linear transformation interchanging $u, M u$.

A class of non-GFRs for $K=C_{p} \times C_{p}$

Let $K=C_{p} \times C_{p}$ for some odd prime p, where $p \equiv 1(\bmod 4)$. Let $M \in G L(2, p)$ be a matrix of order $p+1$ with $M^{(p+1) / 2}=-I$ (e.g multiplication in $G F\left(p^{2}\right)$ by x^{p-1} where x generates the cyclic multiplicative group $\left.G F\left(p^{2}\right)^{*}\right)$.

Theorem(CTW, 2015) The Frobenius group $G=H K$, where $H=\langle M\rangle$ and $K=C_{p}^{2}$ has no GFR because every orbit of H is invariant under linear transformation interchanging $u, M u$.

Note that $\operatorname{det}(M)=1$

A class of non-GFRs for $K=C_{p} \times C_{p}$

Let $K=C_{p} \times C_{p}$ for some odd prime p, where $p \equiv 1(\bmod 4)$. Let $M \in G L(2, p)$ be a matrix of order $p+1$ with $M^{(p+1) / 2}=-l$ (e.g multiplication in $G F\left(p^{2}\right)$ by x^{p-1} where x generates the cyclic multiplicative group $\left.G F\left(p^{2}\right)^{*}\right)$.
Theorem(CTW, 2015) The Frobenius group $G=H K$, where $H=\langle M\rangle$ and $K=C_{p}^{2}$ has no GFR because every orbit of H is invariant under linear transformation interchanging $u, M u$.

Note that $\operatorname{det}(M)=1$ since $\left(\operatorname{det}(M)^{p+1} \equiv\left(\operatorname{det}(M)^{2} \equiv 1 \bmod \right.\right.$ (p). Also $\left.(\operatorname{det}(M))^{(p+1) / 2}\right)=1$ and $(p+1) / 2$ is odd.

Proof

Rewrite M with respect to the basis $u, M u$. Since $\operatorname{det}(M)=1$, we get:

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & \operatorname{Tr}(M)
\end{array}\right]
$$

If A is matrix $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$ that interchanges u and $M u$, you easily check that $A M A^{-1}=M^{-1}$.

Proof

Rewrite M with respect to the basis $u, M u$. Since $\operatorname{det}(M)=1$, we get:

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & \operatorname{Tr}(M)
\end{array}\right]
$$

If A is matrix $[01 \mid 10$] that interchanges u and $M u$, you easily check that $A M A^{-1}=M^{-1}$.
We claim that conjugation by A preserves each orbit of $H=\langle M\rangle$.

Proof

Rewrite M with respect to the basis $u, M u$. Since $\operatorname{det}(M)=1$, we get:

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & \operatorname{Tr}(M)
\end{array}\right],
$$

If A is matrix $\left[\begin{array}{lll}0 & 1 \mid & 0\end{array}\right]$ that interchanges u and $M u$, you easily check that $A M A^{-1}=M^{-1}$.
We claim that conjugation by A preserves each orbit of $H=\langle M\rangle$.
Then A preserves any generating set of K made up of orbits of H and therefore gives an extra automorphism for any candidate GFR.

Proof

Rewrite M with respect to the basis $u, M u$. Since $\operatorname{det}(M)=1$, we get:

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & \operatorname{Tr}(M)
\end{array}\right],
$$

If A is matrix $\left[\begin{array}{lll}0 & 1 \mid & 0\end{array}\right]$ that interchanges u and $M u$, you easily check that $A M A^{-1}=M^{-1}$.
We claim that conjugation by A preserves each orbit of $H=\langle M\rangle$.
Then A preserves any generating set of K made up of orbits of H and therefore gives an extra automorphism for any candidate GFR.
Note that since $|H|=p+1$ divides $|K|-1=p^{2}-1$, there are $p-1$ orbits all together.

Counting orbits stabilized by A

First, because A normalizes M, it takes orbits to orbits.

Counting orbits stabilized by A

First, because A normalizes M, it takes orbits to orbits. Of course, so does multiplication by a scalar c.

Counting orbits stabilized by A

First, because A normalizes M, it takes orbits to orbits. Of course, so does multiplication by a scalar c.

Next, since the only eigenvalue for M is -1 , mult. by c takes an orbit to itself only for $c=-1$.

Counting orbits stabilized by A

First, because A normalizes M, it takes orbits to orbits. Of course, so does multiplication by a scalar c.

Next, since the only eigenvalue for M is -1 , mult. by c takes an orbit to itself only for $c=-1$.

Any orbit containing $c u$ also contains $c M u$ and A interchanges the two

Counting orbits stabilized by A

First, because A normalizes M, it takes orbits to orbits. Of course, so does multiplication by a scalar c.

Next, since the only eigenvalue for M is -1 , mult. by c takes an orbit to itself only for $c=-1$.

Any orbit containing $c u$ also contains $c M u$ and A interchanges the two That gives $(p-1) / 2$ orbits, each invariant under A

Counting orbits stabilized by A

First, because A normalizes M, it takes orbits to orbits. Of course, so does multiplication by a scalar c.

Next, since the only eigenvalue for M is -1 , mult. by c takes an orbit to itself only for $c=-1$.

Any orbit containing $c u$ also contains $c M u$ and A interchanges the two That gives $(p-1) / 2$ orbits, each invariant under A Same is true for any orbit containing $c u+c M u$.

Counting orbits stabilized by A

First, because A normalizes M, it takes orbits to orbits. Of course, so does multiplication by a scalar c.

Next, since the only eigenvalue for M is -1 , mult. by c takes an orbit to itself only for $c=-1$.

Any orbit containing $c u$ also contains $c M u$ and A interchanges the two That gives $(p-1) / 2$ orbits, each invariant under A Same is true for any orbit containing $c u+c M u$. That also provides another $(p-1) / 2$ orbits invariant under A

Counting orbits stabilized by A

First, because A normalizes M, it takes orbits to orbits. Of course, so does multiplication by a scalar c.

Next, since the only eigenvalue for M is -1 , mult. by c takes an orbit to itself only for $c=-1$.

Any orbit containing $c u$ also contains $c M u$ and A interchanges the two That gives $(p-1) / 2$ orbits, each invariant under A Same is true for any orbit containing $c u+c M u$. That also provides another $(p-1) / 2$ orbits invariant under A
Note no orbit has both kinds because then dihedral action of A, M would both interchange two adjacent points $(u, M u)$ in cyclic order induced by M, and fix two $(u+M u,-u-M u)$.

Dihedral vertex stabilizer

Notice that the trouble with the $p+1$ is the dihedral stabilizer.

Dihedral vertex stabilizer

Notice that the trouble with the $p+1$ is the dihedral stabilizer.
. There is one nice thing about dihedral stabilizers.

Dihedral vertex stabilizer

Notice that the trouble with the $p+1$ is the dihedral stabilizer.
. There is one nice thing about dihedral stabilizers.
Theorem (CWT 2015) Suppose that $H=C_{n}$ with n even and S is an orbit generating K such that Stabid acts in the natural way as D_{n} or C_{n} on the neighborhood of id. Then that action is faithful and the only extra automorphisms of $C(K, S)$ are group automorphisms.

Theorem (CWT 2015) Suppose $|H|=4$ and an orbit S of H generates K, then $C(K, S)$ has natural D_{4} or C_{4} symmetry. In particular, if K has a characteristic cyclic group (e.g. $K=C_{3}^{2} \times C_{5}$), then $C(K, S)$ is a GFR for $G=H K$.

Small noise

For $|G| \leq 300$, only the following Frobenius groups fail to have GFRs (other than odd order abelian with $|H|$ odd and $|H|=|K|-1$:

Small noise

For $|G| \leq 300$, only the following Frobenius groups fail to have GFRs (other than odd order abelian with $|H|$ odd and $|H|=|K|-1$:

1) $H=C_{3}, K=C_{2}^{4}$

Small noise

For $|G| \leq 300$, only the following Frobenius groups fail to have GFRs (other than odd order abelian with $|H|$ odd and $|H|=|K|-1$:

1) $H=C_{3}, K=C_{2}^{4}$
2) $K=C_{3}^{2},|H|=2,4$ and $K=C_{3}^{3},|H|=2$

Small noise

For $|G| \leq 300$, only the following Frobenius groups fail to have GFRs (other than odd order abelian with $|H|$ odd and $|H|=|K|-1$:

1) $H=C_{3}, K=C_{2}^{4}$
2) $K=C_{3}^{2},|H|=2,4$ and $K=C_{3}^{3},|H|=2$
3) $K=C_{5}^{2}$ and $|H|=4$ generated by a scalar matrix or $|H| \geq 6$

Small noise

For $|G| \leq 300$, only the following Frobenius groups fail to have GFRs (other than odd order abelian with $|H|$ odd and $|H|=|K|-1$:

1) $H=C_{3}, K=C_{2}^{4}$
2) $K=C_{3}^{2},|H|=2,4$ and $K=C_{3}^{3},|H|=2$
3) $K=C_{5}^{2}$ and $|H|=4$ generated by a scalar matrix or $|H| \geq 6$
4) $K=C_{7}^{2}$ and $|H|=6$ generated by a scalar matrix.

Small noise

For $|G| \leq 300$, only the following Frobenius groups fail to have GFRs (other than odd order abelian with $|H|$ odd and $|H|=|K|-1$:

1) $H=C_{3}, K=C_{2}^{4}$
2) $K=C_{3}^{2},|H|=2,4$ and $K=C_{3}^{3},|H|=2$
3) $K=C_{5}^{2}$ and $|H|=4$ generated by a scalar matrix or $|H| \geq 6$
4) $K=C_{7}^{2}$ and $|H|=6$ generated by a scalar matrix.

For example in (1) in orbit of x you must have $x+h(x)+h^{2}(x)=0$ orbits look like $1000,0100,1100$ and $0010,0001,0011$. Clearly these don't work since invariant under interchanging of 1000, 0100 and 0010,0001 . And three orbits has complement of valence 6.

Small noise

For $|G| \leq 300$, only the following Frobenius groups fail to have GFRs (other than odd order abelian with $|H|$ odd and $|H|=|K|-1$:

1) $H=C_{3}, K=C_{2}^{4}$
2) $K=C_{3}^{2},|H|=2,4$ and $K=C_{3}^{3},|H|=2$
3) $K=C_{5}^{2}$ and $|H|=4$ generated by a scalar matrix or $|H| \geq 6$
4) $K=C_{7}^{2}$ and $|H|=6$ generated by a scalar matrix.

For example in (1) in orbit of x you must have $x+h(x)+h^{2}(x)=0$ orbits look like $1000,0100,1100$ and $0010,0001,0011$. Clearly these don't work since invariant under interchanging of 1000, 0100 and 0010,0001 . And three orbits has complement of valence 6.
(2) for $|H|=2$ done by GRR people.

Small noise

For $|G| \leq 300$, only the following Frobenius groups fail to have GFRs (other than odd order abelian with $|H|$ odd and $|H|=|K|-1$:

1) $H=C_{3}, K=C_{2}^{4}$
2) $K=C_{3}^{2},|H|=2,4$ and $K=C_{3}^{3},|H|=2$
3) $K=C_{5}^{2}$ and $|H|=4$ generated by a scalar matrix or $|H| \geq 6$
4) $K=C_{7}^{2}$ and $|H|=6$ generated by a scalar matrix.

For example in (1) in orbit of x you must have $x+h(x)+h^{2}(x)=0$ orbits look like $1000,0100,1100$ and 0010, 0001, 0011. Clearly these don't work since invariant under interchanging of 1000, 0100 and 0010,0001 . And three orbits has complement of valence 6. (2) for $|H|=2$ done by GRR people. For $K=C_{3}^{2}$ and $|H|-=4$ must have valence 4 and easy to check all have dihedral symmetry.

Small noise

For $|G| \leq 300$, only the following Frobenius groups fail to have GFRs (other than odd order abelian with $|H|$ odd and $|H|=|K|-1$:

1) $H=C_{3}, K=C_{2}^{4}$
2) $K=C_{3}^{2},|H|=2,4$ and $K=C_{3}^{3},|H|=2$
3) $K=C_{5}^{2}$ and $|H|=4$ generated by a scalar matrix or $|H| \geq 6$
4) $K=C_{7}^{2}$ and $|H|=6$ generated by a scalar matrix.

For example in (1) in orbit of x you must have $x+h(x)+h^{2}(x)=0$ orbits look like $1000,0100,1100$ and $0010,0001,0011$. Clearly these don't work since invariant under interchanging of 1000, 0100 and 0010,0001 . And three orbits has complement of valence 6. (2) for $|H|=2$ done by GRR people. For $K=C_{3}^{2}$ and $|H|-=4$ must have valence 4 and easy to check all have dihedral symmetry. For scalar matrices, can always express and third vector as linear comb of other two, so can write orbits as $u, \ldots v, \ldots u+v, \ldots$ so need more than 3 orbits.

MAGMA

Marston has long list of Frob groups of small order (e.g at most 500?) having or not having a GFR.

MAGMA

Marston has long list of Frob groups of small order (e.g at most 500?) having or not having a GFR.
This includes the Frob group with $|K|=7^{3}$ and $|H|=3$ (smallest group of odd over having a GFR).

Seems like the generic situation is for a Frobenius group to have a GFR when we use enough orbits of H.

MAGMA

Marston has long list of Frob groups of small order (e.g at most 500?) having or not having a GFR.
This includes the Frob group with $|K|=7^{3}$ and $|H|=3$ (smallest group of odd over having a GFR).

Seems like the generic situation is for a Frobenius group to have a GFR when we use enough orbits of H. For example, the 7^{3} example smallest possible connection set has size 6 , but we need valence 18 to get a GFR.

MAGMA

Marston has long list of Frob groups of small order (e.g at most 500?) having or not having a GFR.
This includes the Frob group with $|K|=7^{3}$ and $|H|=3$ (smallest group of odd over having a GFR).

Seems like the generic situation is for a Frobenius group to have a GFR when we use enough orbits of H. For example, the 7^{3} example smallest possible connection set has size 6 , but we need valence 18 to get a GFR.
But the $p+1$ non-GFRs are not like anything for GRRs.

MAGMA

Marston has long list of Frob groups of small order (e.g at most 500?) having or not having a GFR.
This includes the Frob group with $|K|=7^{3}$ and $|H|=3$ (smallest group of odd over having a GFR).

Seems like the generic situation is for a Frobenius group to have a GFR when we use enough orbits of H. For example, the 7^{3} example smallest possible connection set has size 6 , but we need valence 18 to get a GFR.
But the $p+1$ non-GFRs are not like anything for GRRs. Notice also works when order is $r(p+1)$ for odd $r \mid p-1$ so even for one prime p, there may be many H which do not have a GFR.

MAGMA

Marston has long list of Frob groups of small order (e.g at most 500?) having or not having a GFR.
This includes the Frob group with $|K|=7^{3}$ and $|H|=3$ (smallest group of odd over having a GFR).

Seems like the generic situation is for a Frobenius group to have a GFR when we use enough orbits of H. For example, the 7^{3} example smallest possible connection set has size 6 , but we need valence 18 to get a GFR.
But the $p+1$ non-GFRs are not like anything for GRRs. Notice also works when order is $r(p+1)$ for odd $r \mid p-1$ so even for one prime p, there may be many H which do not have a GFR.

A Conjecture

So here is one, not so bold conjecture:
Conjecture There are only finitely many Frobenius groups with a given complement H not having a GFR (other than $|H|$ odd with K abelian.)
It seems as soon as $|K| \gg|H|$ we have enough room to make S the union of many orbits of H and then destroy extra automorphisms.

A Conjecture

So here is one, not so bold conjecture:
Conjecture There are only finitely many Frobenius groups with a given complement H not having a GFR (other than $|H|$ odd with K abelian.)
It seems as soon as $|K| \gg|H|$ we have enough room to make S the union of many orbits of H and then destroy extra automorphisms. If you can handle the extra graph automorphism part, then some sort of counting argument should work since number $2^{|K| /|H|}$ of possible S grows fast than $\operatorname{Aut}(K)$.

A Conjecture

So here is one, not so bold conjecture:
Conjecture There are only finitely many Frobenius groups with a given complement H not having a GFR (other than $|H|$ odd with K abelian.)
It seems as soon as $|K| \gg|H|$ we have enough room to make S the union of many orbits of H and then destroy extra automorphisms. If you can handle the extra graph automorphism part, then some sort of counting argument should work since number $2^{|K| /|H|}$ of possible S grows fast than $\operatorname{Aut}(K)$. Note that the $p+1$ example shows we need something like $|K|>|H|^{2}$.

