Orbit matrices of symmetric designs and related self-dual codes

Orbit matrices
of symmetric designs and related self-dual codes

Introduction
Orbit matrices of symmetric designs

Codes from orbit matrices
(a joint work with Dean Crnković)

Sanja Rukavina
sanjar@math.uniri.hr
Department of Mathematics
University of Rijeka, Croatia

Supported by CSF under the project 1637.

Orbit matrices of symmetric designs and related self-dual codes

Introduction
Orbit matrices of symmetric designs
(1) Introduction

Orbit matrices of symmetric designs
(2) Codes from orbit matrices of symmetric designs
(3) Self-dual codes from extended orbit matrices

Orbit matrices
of symmetric designs and

A $t-(v, k, \lambda)$ design is a finite incidence structure
$\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ satisfying the following requirements:
(1) $|\mathcal{P}|=v$,
(2) every element of \mathcal{B} is incident with exactly k elements of \mathcal{P},
(3) every t elements of \mathcal{P} are incident with exactly λ elements of \mathcal{B}.

Every element of \mathcal{P} is incident with exactly r elements of \mathcal{B}. The number of blocks is denoted by b. If $|\mathcal{P}|=|\mathcal{B}|$ (or equivalently $k=r$) then the design is called symmetric.

The incidence matrix of a design is a $b \times v$ matrix [$m_{i j}$] where b and v are the numbers of blocks and points respectively, such that $m_{i j}=1$ if the point P_{j} and the block x_{i} are incident, and $m_{i j}=0$ otherwise.

Tactical decomposition

Let A be the incidence matrix of a design $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$. A decomposition of A is any partition B_{1}, \ldots, B_{s} of the rows of A (blocks of \mathcal{D}) and a partition P_{1}, \ldots, P_{t} of the columns of A (points of \mathcal{D}).

For $i \leq s, j \leq t$ define

$$
\begin{aligned}
& \alpha_{i j}=\left|\left\{P \in P_{j} \mid P \mathcal{I} x\right\}\right|, \text { for } x \in B_{i} \text { arbitrarily chosen, } \\
& \beta_{i j}=\left|\left\{x \in B_{i} \mid P \mathcal{I} x\right\}\right|, \text { for } P \in P_{j} \text { arbitrarily chosen. }
\end{aligned}
$$

We say that a decomposition is tactical if the $\alpha_{i j}$ and $\beta_{i j}$ are well defined (independent from the choice of $x \in B_{i}$ and $P \in P_{j}$, respectively).

Automorphism group

An isomorphism from one design to other is a bijective mapping of points to points and blocks to blocks which preserves incidence. An isomorphism from a design \mathcal{D} onto itself is called an automorphism of \mathcal{D}. The set of all automorphisms of \mathcal{D} forms a group called the full automorphism group of \mathcal{D} and is denoted by $\operatorname{Aut}(\mathcal{D})$.

Let $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a symmetric (v, k, λ) design and $G \leq \operatorname{Aut}(\mathcal{D})$. The group action of G produces the same number of point and block orbits. We denote that number by t, the G-orbits of points by $\mathcal{P}_{1}, \ldots, \mathcal{P}_{t}, G$-orbits of blocks by $\mathcal{B}_{1}, \ldots, \mathcal{B}_{t}$, and put $\left|\mathcal{P}_{r}\right|=\omega_{r},\left|\mathcal{B}_{i}\right|=\Omega_{i}, 1 \leq i, r \leq t$.

Orbit matrices of symmetric designs and
related self-dual codes

The group action of G induces a tactical decomposition of the incidence matrix of \mathcal{D}. Denote by $\gamma_{i j}$ the number of points of \mathcal{P}_{j} incident with a representative of the block orbit \mathcal{B}_{i}. For these numbers the following equalities hold:

$$
\begin{align*}
\sum_{j=1}^{t} \gamma_{i j} & =k \tag{1}\\
\sum_{i=1}^{t} \frac{\Omega_{i}}{\omega_{j}} \gamma_{i j} \gamma_{i s} & =\lambda \omega_{s}+\delta_{j s} \cdot n \tag{2}
\end{align*}
$$

where $n=k-\lambda$ is the order of the symmetric design \mathcal{D}.

Orbit matrix

Definition 1

A $(t \times t)$-matrix $M=\left(\gamma_{i j}\right)$ with entries satisfying conditions (1) and (2) is called an orbit matrix for the parameters (v, k, λ) and orbit lengths distributions $\left(\omega_{1}, \ldots, \omega_{t}\right),\left(\Omega_{1}, \ldots, \Omega_{t}\right)$.

Orbit matrices are often used in construction of designs with a presumed automorphism group. Construction of designs admitting an action of the presumed automorphism group consists of two steps:
(1) Construction of orbit matrices for the given automorphism group,
(2) Construction of block designs for the obtained orbit matrices.

Codes from orbit matrices of symmetric designs

Orbit matrices

Let \mathcal{D} be a $2-(v, k, \lambda)$ design with a fixed-point-free and fixed-block-free automorphism ϕ of order q, where q is prime. Further, let M be the orbit matrix induced by the action of the group $G=\langle\phi\rangle$ on the design \mathcal{D}. If p is a prime dividing r and λ then the orbit matrix M generates a self-orthogonal code of length $b \mid q$ over \mathbf{F}_{p}.
of symmetric designs and
related self-dual codes

Let a group G acts on a symmetric (v, k, λ) design with $t=\frac{v}{\Omega}$ orbits of length Ω on the set of points and set of blocks.

Theorem 1a

Let \mathcal{D} be a symmetric (v, k, λ) design admitting an automorphism group G that acts on the sets of points and blocks with $t=\frac{v}{\Omega}$ orbits of length Ω. Further, let M be the orbit matrix induced by the action of the group G on the design \mathcal{D}. If p is a prime dividing k and λ, then the rows of the matrix M span a self-orthogonal code of length t over \mathbf{F}_{p}.

Self-dual codes from extended orbit matrices

Orbit matrices of symmetric designs and
related

In the sequel we will study codes spanned by orbit matrices for a symmetric (v, k, λ) design and orbit lengths distribution (Ω, \ldots, Ω), where $\Omega=\frac{v}{t}$. We follow the ideas presented in:

- E. Lander, Symmetric designs: an algebraic approach, Cambridge University Press, Cambridge (1983).
- R. M. Wilson, Codes and modules associated with designs and t-uniform hypergraphs, in: D. Crnković, V. Tonchev, (eds.) Information security, coding theory and related combinatorics, pp. 404-436. NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur. 29 IOS, Amsterdam (2011).
(Lander and Wilson have considered codes from incidence matrices of symmetric designs.)

Orbit matrices of symmetric designs and related self-dual codes

Introduction

Theorem 2

Let p be a prime. Suppose that C is the code over \mathbf{F}_{p} spanned by the incidence matrix of a symmetric (v, k, λ) design.
(1) If $p \mid(k-\lambda)$, then $\operatorname{dim}(C) \leq \frac{1}{2}(v+1)$.
(2) If $p \nmid(k-\lambda)$ and $p \mid k$, then $\operatorname{dim}(C)=v-1$.
(3) If $p \nmid(k-\lambda)$ and $p \nmid k$, then $\operatorname{dim}(C)=v$.

Orbit matrices of symmetric

Theorem 3 [D. Crnković, SR]

Let a group G acts on a symmetric (v, k, λ) design \mathcal{D} with $t=\frac{v}{\Omega}$ orbits of length Ω, on the set of points and the set of blocks, and let M be an orbit matrix of \mathcal{D} induced by the action of G. Let p be a prime. Suppose that C is the code over \mathbf{F}_{p} spanned by the rows of M.
(1) If $p \mid(k-\lambda)$, then $\operatorname{dim}(C) \leq \frac{1}{2}(t+1)$.
(2) If $p \nmid(k-\lambda)$ and $p \mid k$, then $\operatorname{dim}(C)=t-1$.
(3) If $p \nmid(k-\lambda)$ and $p \nmid k$, then $\operatorname{dim}(C)=t$.
of symmetric designs and
related self-dual codes

Let a group G acts on a symmetric (v, k, λ) design with $t=\frac{v}{\Omega}$ orbits of length Ω on the set of points and set of blocks.

Theorem 1a

Let \mathcal{D} be a symmetric (v, k, λ) design admitting an automorphism group G that acts on the sets of points and blocks with $t=\frac{v}{\Omega}$ orbits of length Ω. Further, let M be the orbit matrix induced by the action of the group G on the design \mathcal{D}. If p is a prime dividing k and λ, then the rows of the matrix M span a self-orthogonal code of length t over \mathbf{F}_{p}.

Let V be a vector space of finite dimension n over a field \mathbf{F}, let $b: V \times V \rightarrow \mathbf{F}$ be a symmetric bilinear form, i.e. a scalar product, and $\left(e_{1}, \ldots, e_{n}\right)$ be a basis of V. The bilinear form b gives rise to a matrix $B=\left[b_{i j}\right]$, with

$$
b_{i j}=b\left(e_{i}, e_{j}\right)
$$

The matrix B determines b completely. If we represent vectors x and y by the row vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$, then

$$
b(x, y)=x B y^{T} .
$$

Since the bilinear form b is symmetric, B is a symmetric matrix. A bilinear form b is nondegenerate if and only if its matrix B is nonsingular.

Orbit matrices of symmetric designs and
related self-dual codes

We may use a symmetric nonsingular matrix U over a field \mathbf{F}_{p} to introduce a scalar product $\langle\cdot, \cdot\rangle_{U}$ for row vectors in \mathbf{F}_{p}^{n}, namely

$$
\langle a, c\rangle_{U}=a U c^{\top} .
$$

For a linear p-ary code $C \subset F_{p}^{n}$, the U-dual code of C is

$$
C^{U}=\left\{a \in \mathbf{F}_{p}^{n}:\langle a, c\rangle_{U}=0 \quad \text { for all } c \in C\right\} .
$$

We call C self- U-dual, or self-dual with respect to U, when $C=C^{U}$.

Let a group G acts on a symmetric (v, k, λ) design \mathcal{D} with $t=\frac{v}{\Omega}$ orbits of length Ω, on the set of points and the set of blocks, and let M be the corresponding orbit matrix.

If p divides $k-\lambda$, but does not divide k, we use a different code. Define the extended orbit matrix

$$
M^{\text {ext }}=\left[\begin{array}{ccc|c}
& & & 1 \\
& M & & \vdots \\
& & & 1 \\
\hline \lambda \Omega & \cdots & \lambda \Omega & k
\end{array}\right]
$$

and denote by $C^{e x t}$ the extended code spanned by $M^{e x t}$.

Orbit matrices
of symmetric
designs and
related self-dual codes

Define the symmetric bilinear form ψ by

$$
\psi(\bar{x}, \bar{y})=x_{1} y_{1}+\ldots+x_{t} y_{t}-\lambda \Omega x_{t+1} y_{t+1}
$$

for $\bar{x}=\left(x_{1}, \ldots, x_{t+1}\right)$ and $\bar{y}=\left(y_{1}, \ldots, y_{t+1}\right)$. Since $p \mid n$ and $p \nmid k$, it follows that $p \nmid \Omega$ and $p \nmid \lambda$. Hence ψ is a nondegenerate form on \mathbf{F}_{p}. The extended code $C^{\text {ext }}$ over \mathbf{F}_{p} is self-orthogonal (or totally isotropic) with respect to ψ.

Orbit matrices of symmetric designs and related self-dual codes

Introduction
Orbit matrices of symmetric designs

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices

The matrix of the bilinear form ψ is the $(t+1) \times(t+1)$ matrix

$$
\Psi=\left[\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
0 & 0 & \cdots & 0 & -\lambda \Omega
\end{array}\right]
$$

Orbit matrices
of symmetric
designs and
related self-dual codes
roduction

Theorem 4 [D. Crnković, SR]

Let \mathcal{D} be a symmetric (v, k, λ) design admitting an automorphism group G that acts on the set of points and the set of blocks with $t=\frac{v}{\Omega}$ orbits of length Ω. Further, let M be the orbit matrix induced by the action of the group G on the design \mathcal{D}, and $C^{\text {ext }}$ be the corresponding extended code over F_{p}. If a prime p divides $(k-\lambda)$, but $p^{2} \nmid(k-\lambda)$ and $p \nmid k$, then $C^{e x t}$ is self-dual with respect to ψ.

Theorem 5

If there exists a self-dual p-ary code of length n with respect to a nondegenerate scalar product ψ, where p is an odd prime, then $(-1)^{\frac{n}{2}} \operatorname{det}(\psi)$ is a square in \mathbf{F}_{p}.

A direct consequence of Theorems 4 and 5 is the following theorem.

Theorem 6

Let \mathcal{D} be a symmetric (v, k, λ) design admitting an automorphism group G that acts on the set of points and the set of blocks with $t=\frac{v}{\Omega}$ orbits of length Ω. If an odd prime p divides $(k-\lambda)$, but $p^{2} \nmid(k-\lambda)$ and $p \nmid k$, then $-\lambda \Omega(-1)^{\frac{t+1}{2}}$ is a square in \mathbf{F}_{p}.

If $p^{2} \mid(k-\lambda)$ we use a chain of codes to obtain a self-dual code from an orbit matrix.

Given an $m \times n$ integer matrix A, denote by $\operatorname{row}_{\mathbf{F}}(A)$ the linear code over the field \mathbf{F} spanned by the rows of A. By $\operatorname{row}_{p}(A)$ we denote the p-ary linear code spanned by the rows of A. For a given matrix A, we define, for any prime p and nonnegative integer i,

$$
\mathcal{M}_{i}(A)=\left\{x \in \mathbb{Z}^{n}: p^{i} x \in \operatorname{row}_{\mathbb{Z}}(A)\right\}
$$

We have $\mathcal{M}_{0}(A)=\operatorname{row}_{\mathbb{Z}}(A)$ and

$$
\mathcal{M}_{0}(A) \subseteq \mathcal{M}_{1}(A) \subseteq \mathcal{M}_{2}(A) \subseteq \ldots
$$

Orbit matrices of symmetric designs and related self-dual codes

Let

$$
C_{i}(A)=\pi_{p}\left(\mathcal{M}_{i}(A)\right)
$$

where π_{p} is the homomorphism (projection) from \mathbb{Z}^{n} onto \mathbf{F}_{p}^{n} given by reading all coordinates modulo p. Then each $C_{i}(A)$ is a p-ary linear code of length $n, C_{0}(A)=\operatorname{row}_{p}(A)$, and

$$
C_{0}(A) \subseteq C_{1}(A) \subseteq C_{2}(A) \subseteq \ldots
$$

Orbit matrices

Theorem 7

Suppose A is an $n \times n$ integer matrix such that $A U A^{T}=p^{e} V$ for some integer e, where U and V are square matrices with determinants relatively prime to p. Then $C_{e}(A)=\mathbf{F}_{p}^{n}$ and

$$
C_{j}(A)^{U}=C_{e-j-1}(A), \quad \text { for } \quad j=0,1, \ldots, e-1 .
$$

In particular, if $e=2 f+1$, then $C_{f}(A)$ is a self- U-dual p-ary code of length n.

In the next theorem the above result is used to associate a self-dual code to an orbit matrix of a symmetric design.

Theorem 8 [D. Crnković, SR]

Let \mathcal{D} be a symmetric (v, k, λ) design admitting an automorphism group G that acts on the set of points and the set of blocks with $t=\frac{v}{\Omega}$ orbits of length Ω. Suppose that $n=k-\lambda$ is exactly divisible by an odd power of a prime p and λ is exactly divisible by an even power of p, e.g. $n=p^{e} n_{0}$, $\lambda=p^{2 a} \lambda_{0}$ where e is odd, $a \geq 0$, and $\left(n_{0}, p\right)=\left(\lambda_{0}, p\right)=1$. If $p \nmid \Omega$, then there exists a self-dual p-ary code of length $t+1$ with respect to the scalar product corresponding to $U=\operatorname{diag}\left(1, \ldots, 1,-\lambda_{0} \Omega\right)$.

If λ is exactly divisible by an odd power of p, we apply the above case to the complement of the given symmetric design, which is a symmetric $\left(v, k^{\prime}, \lambda^{\prime}\right)$ design, where $k^{\prime}=v-k$ and $\lambda^{\prime}=v-2 k+\lambda$.
of symmetric designs and
related

Theorem 9

Let \mathcal{D} be a symmetric (v, k, λ) design admitting an automorphism group G that acts on the set of points and the set of blocks with $t=\frac{v}{\Omega}$ orbits of length Ω. Suppose that $n=k-\lambda$ is exactly divisible by an odd power of a prime p and λ is also exactly divisible by an odd power of p, e.g. $n=p^{e} n_{0}$, $\lambda=p^{2 a+1} \lambda_{0}$ where e is odd, $a \geq 0$, and $\left(n_{0}, p\right)=\left(\lambda_{0}, p\right)=1$. If $p \nmid \Omega$, then there exists a self-dual p-ary code of length $t+1$ with respect to the scalar product corresponding to $U=\operatorname{diag}\left(1, \ldots, 1, \lambda_{0} n_{0} \Omega\right)$.

Orbit matrices

As a consequence of Theorems 5, 8 and 9, we have

Theorem 10

Let \mathcal{D} be a symmetric (v, k, λ) design admitting an automorphism group G that acts on the set of points and the set of blocks with $t=\frac{v}{\Omega}$ orbits of length Ω. Suppose that p is an odd prime such that $n=p^{e} n_{0}$ and $\lambda=p^{b} \lambda_{0}$, where $\left(n_{0}, p\right)=\left(\lambda_{0}, p\right)=1$, and $p \nmid \Omega$. Then

- $-(-1)^{(t+1) / 2} \lambda_{0} \Omega$ is a square $(\bmod p)$ if b is even,
- $(-1)^{(t+1) / 2} n_{0} \lambda_{0} \Omega$ is a square $(\bmod p)$ if b is odd.

Similarly ...

An incidence structure with v points, b blocks and constant block size k in which every point appears in exactly r blocks is a (group) divisible design (GDD) with parameters ($v, b, r, k, \lambda_{1}, \lambda_{2}, m, n$) whenever the point set can be partitioned into m classes of size n, such that two points from the same class appear together in exactly λ_{1} blocks, and two points from different classes appear together in exactly λ_{2} blocks.
A GDD is called a symmetric GDD (SGDD) if $v=b$ (or, equivalently, $r=k)$. It is then denoted by $D\left(v, k, \lambda_{1}, \lambda_{2}, m, n\right)$. A SGDD D is said to have the dual property if the dual of D (that is, the design with the transposed incidence matrix) is again a divisible design with the same parameters as D.

Let $D\left(v, k, \lambda_{1}, \lambda_{2}, m, n\right)$ be a $S G D D$ with the dual property, and let N be the incidence matrix of D. If p is a prime such that $p\left|\lambda_{1}, p\right| k$ and $p \mid \lambda_{2}$, then the rows of N span a self-orthogonal code of length v over \mathbb{F}_{p}.

Theorem

Let $D\left(v, k, \lambda_{1}, \lambda_{2}, m, n\right)$ be a $S G D D$ with the dual property. Suppose that $k^{2}-v \lambda_{2}$ is exactly divisible by an odd power of a prime p and λ_{2} is exactly divisible by an even power of p, e.g. $k^{2}-v \lambda_{2}=p^{e} n_{0}, \lambda_{2}=p^{2 a} \lambda_{0}$, where e is odd, $a \geq 0$ and $\left(n_{o}, p\right)=\left(\lambda_{0}, p\right)=1$. If $p \nmid n$ then there exists a self-dual p-ary code of length $m+1$ with respect to the scalar product corresponding to $U=\operatorname{diag}\left(1, \ldots, 1,-n \lambda_{0}\right)$.
LMivesily of misk
Orbit matrices
of symmetric
designs and
related
self-dual codes
Introduction

Thank you for your attention!

