Skew-morphisms of cyclic p-groups

István Kovács
University of Primorska, Slovenia
istvan.kovacs@upr.si
Joint work with Roman Nedela

Skew-morphism

Definition (Jajcay-Širáň)

A permutation φ of a finite group G is a skew-morphism if

1. $\varphi\left(1_{G}\right)=1_{G}$;
2. $\forall x, y \in G: \varphi(x y)=\varphi(x) \varphi^{\pi(x)}(y)$ for a function $\pi: G \rightarrow\{1, \ldots, k\}$, where k is the order of φ.

The above function π is called the power function of φ.
We denote by $\operatorname{Skew}(G)$ the set of all skew-morphisms of G.

Regular Cayley maps

- Let $X \subset G$ with $1_{G} \notin X, X=X^{-1}$ and $\langle X\rangle=G$. The Cayley graph $\operatorname{Cay}(G, X)$ has vertex set G, and edges $\{y, y x\}, y \in G$ and $x \in X$.
- Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$ and $p=\left(x_{1}, \ldots, x_{k}\right)$. The Cayley map CM (G, X, p) is the embedding of $\operatorname{Cay}(G, X)$ in an oriantable surface with local orientation around the vertex y is given as

$$
\left(y x_{1}, \ldots, y x_{k}\right) .
$$

- A permutation γ of $V(\operatorname{Cay}(G, X))$ is an automorphism of $\operatorname{CM}(G, X, p)$ if

$$
\begin{gathered}
\forall x, y \in G: x \sim y \Longleftrightarrow \gamma(x) \sim \gamma(y) \\
\forall y \in G \forall x \in X: \gamma(y p(x))=\gamma(y) p(\gamma(x))
\end{gathered}
$$

- $\operatorname{CM}(G, X, p)$ is regular if its automorphism group acts regularly on the darts.

Regular Cayley maps

Theorem (Jajcay-Širáň)

The Cayley map $\operatorname{CM}(G, X, p)$ is regular if and only if there exsits a skew-morphism $\varphi \in \operatorname{Skew}(G)$ such that $\varphi(x)=p(x)$ for all $x \in X$.

Note that not every skew-morphism is related with a Cayley map.

The skew-product group

- For $g \in G$, the left translation L_{g} is the permutation of G acting as $L_{g}(x)=g x, x \in G$.
- Left translations form a regular group isomorphic to G, notation: $L(G)$.
- The skew-product group of $\varphi \in \operatorname{Skew}(G)$ is the group $\langle L(G), \varphi\rangle$.
- $\langle L(G), \varphi\rangle=L(G)\langle\varphi\rangle$.
- If ψ is any permutation of G with $\psi\left(1_{G}\right)=1_{G}$, then

$$
\psi \in \operatorname{Skew}(G) \Longleftrightarrow|\langle L(G), \psi\rangle|=|G| \cdot|\psi| .
$$

Skew-morphisms and factorizations of groups

- A group G has a complementary factorization if $G=A B$ where A and B are subgroups and $A \cap B=1$.
- If the above subgroup B is cyclic and b is a generator, then there is a unique permutation f of A defined by

$$
\forall a \in A: b a B=f(a) B
$$

- The above permutation $f \in \operatorname{Skew}(A)$.
- Every skew-morphism arises in this way through the natural factoriaztion of the skew-product group.

More on this relation can be found in:
M. Conder, R. Jajcay, T. Tucker. Cyclic complements and skew-morphisms of groups, to apper in J. Algebra.

Skew-morphisms of cyclic groups

In this rest of the talk we turn to skew-morphisms of cyclic groups.
The skew-morphisms are known in special cases:

- Skew-morphisms arising from Cayley maps (Conder-Tucker).
- Skew-morphisms arising from complementary factorizations $G=A B$, where A and B are cyclic groups of the same order switched by an involution in $\operatorname{Aut}(G)$ (Du, Feng, Jones, Kwak, Nedela, Škoviera).
- Computational results (Yuan-Wang-Kwak, Conder).
- Special orders: p, p^{2} and $p q$ for primes $p \neq q$. (K-Nedela, Conder-Jajcay-Tucker).
- Coset-preserving skew-morphisms (Bachratý-Jajcay).

Skew-morphism of cyclic p-groups, p is an odd prime

From now on p is an odd prime and e is a positive integer.
Some more notation:

- $\mathbb{Z}_{n}=\{0, \ldots, n-1\}$ is the additivie group modulo n;
- $t: x \mapsto x+1$;
- a : the automorphims of $\mathbb{Z}_{p^{e}}$ acting as $x \mapsto(p+1) x$;
- b : any automorphism of $\mathbb{Z}_{p^{e}}$ of order $p-1$;
- s : any skew-morphism of $\mathbb{Z}_{p^{e}}$.

On the order of a skew-morphism

$$
\begin{aligned}
& \text { Theorem (Conder-Jajcay-Tucker) } \\
& \text { If } \varphi \in \operatorname{Skew}(G) \text { then its order }|\varphi| \leq|G|-1 \text {. }
\end{aligned}
$$

Proposition (K-Nedela; Conder-Jajcay-Tucker)

If $\varphi \in \operatorname{Skew}\left(\mathbb{Z}_{n}\right)$ then its order $|\varphi|$ divides $n \phi(n)$, where ϕ is the Euler function.

Corollary

If $\varphi \in \operatorname{Skew}\left(\mathbb{Z}_{p^{e}}\right)$ then its order $|\varphi|$ divides $\phi\left(p^{e}\right)=p^{e-1}(p-1)$.

Reduction to skew product p-groups

- Let $s \in \operatorname{Skew}\left(\mathbb{Z}_{p^{e}}\right)$ of order $p^{c} d, c \in\{0,1, \ldots, e-1\}$ and $d \mid(p-1)$.
- Let P be the Sylow p-subgroup of $\langle t, s\rangle$ with $t \in P$.
- Then $P=\left\langle t, s^{d}\right\rangle, s^{d} \in \operatorname{Skew}\left(\mathbb{Z}_{p^{e}}\right)$, and by Sylow Theorems,

$$
\langle t, s\rangle=P \rtimes\left\langle s^{p^{c}}\right\rangle .
$$

- By Huppert Theorem, P is metacyclic.
- $s^{p^{c}}$ acts on P as an automorphism of order d.

If $d>1$, then P is a split metacyclic group, and we find $s^{p^{c}}$ using the description of Aut (P) due to Bidwell and Curran.

The skew-morpshisms $s_{i, j}$

Definition

For $i, j \in\left\{0, \ldots, p^{e-1}-1\right\}$, let

$$
s_{i, j}=b_{j}^{-1} a^{i} b_{j}
$$

where b_{j} is the permutation of $\mathbb{Z}_{p^{e}}$ such that $b_{j}(0)=0$ and

$$
b_{j}(x)=1+(p+1)^{j}+\cdots+(p+1)^{j(x-1)} \text { if } x>0
$$

Proposition

Every $s_{i, j}$ is a skew-morphism of $\mathbb{Z}_{p^{e}}$. Furthermore, if $e \geq 2$ then

$$
s_{i, j}=s_{i^{\prime}, j^{\prime}} \Longleftrightarrow i=i^{\prime} \text { and } j \equiv j^{\prime} \quad\left(\bmod p^{e-2} / \operatorname{gcd}\left(i, p^{e-2}\right)\right)
$$

The skew-morpshisms $s_{i, j}$

The proof of the first part of the proposition explains the choice of b_{j} :

Proposition

Every $s_{i, j}$ is a skew-morphism of $\mathbb{Z}_{p^{e}}$.

Proof.

We use the following property: if s is a skew-morphism of $\mathbb{Z}_{p^{e}}$ of p-power order, then s^{p} is a skew-morphism too.

Let $i=p^{c} i^{\prime}$ with $\operatorname{gcd}\left(i^{\prime}, p\right)=1$. Then $s_{i, j}=s_{i^{\prime}, j}^{p^{c}}$, and

$$
\left|\left\langle t, s_{i^{\prime}, j}\right\rangle\right|=\left|\left\langle t^{b_{j}}, s_{i^{\prime}, j}^{b_{j}}\right\rangle\right|=\left|\left\langle t a^{j}, a^{i^{\prime}}\right\rangle\right|=p^{e} \cdot\left|s_{i^{\prime}, j}\right|,
$$

hence $s_{i^{\prime}, j}$ is a skew-morphism.

The skew-morphisms of $\mathbb{Z}_{p^{e}}$ of p-power order

Theorem

The skew-morphisms of $\mathbb{Z}_{p^{e}}$ of p-power order are exactly the skew-morphisms $s_{i, j}$.

The key step in the proof was the following lemma.

Lemma

If s is any skew-morphism of $\mathbb{Z}_{p^{e}}$ of p-power order, then $\langle t, s\rangle$ is isomorphic to some $\left\langle t, s_{i, j}\right\rangle$.

In the proof of the lemma we used a result of King about unique presentations of split metacyclic groups.

The skew-morpshisms $s_{i, j, k, l}$

Definition

Let

$$
s_{i, j, k, l}=b_{j}^{-1} a^{i} b^{k} b_{l} b_{j}
$$

where the integers i, j, k, I satisfy the following conditions
(C0) $i, I \in\left\{0, \ldots, p^{e-1}-1\right\}, k \in\{0, \ldots, p-2\}, j \in\left\{0, \ldots, p^{e-2-c}-1\right\}$, where $p^{C}=\operatorname{gcd}\left(i, p^{e-2}\right) ;$
(C1) if $i=0$ or $k=0$, then $I=0$;
(C2) if $i \neq 0$ and $k \neq 0$, then $p^{c} \mid j$ and $p^{\max \{c, e-2-c\}} \mid I$.
A 4-tuple (i, j, k, l) of integers satisfying (CO)-(C2) is called admissible.

The skew-morpshisms of $\mathbb{Z}_{p^{e}}$ whose order is not a p-power

Theorem

The skew-morphisms of $\mathbb{Z}_{p^{e}}$ whose order is not a p-power are exactly the skew-morphisms $s_{i, j, k, l}$ with $k \neq 0$.

Enumeration

Proposition

Every skew-morphism $s_{i, j, k, l}$ is uniquelly determined by the admissible 4-tuple (i,j, k, I).

Theorem

The number of skew-morphisms of $\mathbb{Z}_{p^{e}}$ is eqal to

$$
\frac{(p-1)\left(p^{2 e-1}-p^{2 e-2}+2\right)}{p+1}
$$

$$
\left|\operatorname{Aut}\left(\mathbb{Z}_{p^{e}}\right)\right|=(p-1) p^{e-1} .
$$

$\left|\operatorname{Skew}\left(\mathbb{Z}_{p^{2}}\right)\right|=(p-1)\left(p^{2}-2 p+2\right)$.

