Locally triangular graphs and normal quotients of n-cubes

Joanna B. Fawcett
The University of Western Australia

15 February, 2016

The triangular graph T_{n} for $n \geqslant 2$:
Vertices 2 -subsets of $\{1, \ldots, n\}$.
Adjacency $\{i, j\} \sim\{k, \ell\} \Longleftrightarrow|\{i, j\} \cap\{k, \ell\}|=1$.

The triangular graph T_{n} for $n \geqslant 2$:
Vertices 2 -subsets of $\{1, \ldots, n\}$.
Adjacency $\{i, j\} \sim\{k, \ell\} \Longleftrightarrow|\{i, j\} \cap\{k, \ell\}|=1$.
A graph Γ is locally T_{n} if for every vertex $u \in V \Gamma$, the graph induced by the neighbourhood $\Gamma(u)$ is isomorphic to T_{n}.

The triangular graph T_{n} for $n \geqslant 2$:
Vertices 2 -subsets of $\{1, \ldots, n\}$.
Adjacency $\{i, j\} \sim\{k, \ell\} \Longleftrightarrow|\{i, j\} \cap\{k, \ell\}|=1$.
A graph Γ is locally T_{n} if for every vertex $u \in V \Gamma$, the graph induced by the neighbourhood $\Gamma(u)$ is isomorphic to T_{n}.

VS

A rectagraph is a connected triangle-free graph in which any 2-arc lies in a unique quadrangle.

The triangular graph T_{n} for $n \geqslant 2$:
Vertices 2 -subsets of $\{1, \ldots, n\}$.
Adjacency $\{i, j\} \sim\{k, \ell\} \Longleftrightarrow|\{i, j\} \cap\{k, \ell\}|=1$.
A graph Γ is locally T_{n} if for every vertex $u \in V \Gamma$, the graph induced by the neighbourhood $\Gamma(u)$ is isomorphic to T_{n}.

VS

A rectagraph is a connected triangle-free graph in which any 2-arc lies in a unique quadrangle.
e.g., the n-cube Q_{n} for $n \geqslant 1$:

Vertices \mathbb{F}_{2}^{n}.
Adjacency $x, y \in \mathbb{F}_{2}^{n}$ differing in exactly one coordinate.

The triangular graph T_{n} for $n \geqslant 2$:
Vertices 2-subsets of $\{1, \ldots, n\}$.
Adjacency $\{i, j\} \sim\{k, \ell\} \Longleftrightarrow|\{i, j\} \cap\{k, \ell\}|=1$.
A graph Γ is locally T_{n} if for every vertex $u \in V \Gamma$, the graph induced by the neighbourhood $\Gamma(u)$ is isomorphic to T_{n}.
e.g., the halved n-cube $\frac{1}{2} Q_{n}$ for $n \geqslant 2$.

VS

A rectagraph is a connected triangle-free graph in which any 2-arc lies in a unique quadrangle.
e.g., the n-cube Q_{n} for $n \geqslant 1$:

Vertices \mathbb{F}_{2}^{n}.
Adjacency $x, y \in \mathbb{F}_{2}^{n}$ differing in exactly one coordinate.

Lemma (Neumaier, 1985)

Let Γ be a graph. Let $n \geqslant 2$. The following are equivalent.
(i) Γ is a connected locally T_{n} graph.
(ii) Γ is a halved graph of an n-valent bipartite rectagraph with $c_{3}=3$.

Lemma (Neumaier, 1985)

Let Γ be a graph. Let $n \geqslant 2$. The following are equivalent.
(i) Γ is a connected locally T_{n} graph.
(ii) Γ is a halved graph of an n-valent bipartite rectagraph with $c_{3}=3$.

Goal: refine this result using groups!

Let $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$. The normal quotient $\left(Q_{n}\right)_{K}$ has
Vertices $\left\{x^{K}: x \in \mathbb{F}_{2}^{n}\right\}$.
Adjacency $x^{K} \sim y^{K}($ distinct $) \Longleftrightarrow \exists x^{\prime} \in x^{K}, y^{\prime} \in y^{K}$ such that $x^{\prime} \sim y^{\prime}$ in Q_{n}.

Let $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$. The normal quotient $\left(Q_{n}\right)_{K}$ has
Vertices $\left\{x^{K}: x \in \mathbb{F}_{2}^{n}\right\}$.
Adjacency $x^{K} \sim y^{K}$ (distinct) $\Longleftrightarrow \exists x^{\prime} \in x^{K}, y^{\prime} \in y^{K}$ such that $x^{\prime} \sim y^{\prime}$ in Q_{n}.

Let $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$. The minimum distance of K is

$$
d_{K}:= \begin{cases}\min \left\{d_{Q_{n}}\left(x, x^{k}\right): x \in V Q_{n}, k \in K \backslash\{1\}\right\} & \text { if } K \neq 1 \\ \infty & \text { otherwise } .\end{cases}
$$

(Matsumoto, 1991)

Let $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$. The normal quotient $\left(Q_{n}\right)_{K}$ has
Vertices $\left\{x^{K}: x \in \mathbb{F}_{2}^{n}\right\}$.
Adjacency $x^{K} \sim y^{K}$ (distinct) $\Longleftrightarrow \exists x^{\prime} \in x^{K}, y^{\prime} \in y^{K}$ such that $x^{\prime} \sim y^{\prime}$ in Q_{n}.

Let $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$. The minimum distance of K is

$$
d_{K}:= \begin{cases}\min \left\{d_{Q_{n}}\left(x, x^{k}\right): x \in V Q_{n}, k \in K \backslash\{1\}\right\} & \text { if } K \neq 1 \\ \infty & \text { otherwise }\end{cases}
$$

(Matsumoto, 1991)
Generalises minimum distance for binary linear codes $C \leqslant \mathbb{F}_{2}^{n}$:

Let $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$. The normal quotient $\left(Q_{n}\right)_{K}$ has
Vertices $\left\{x^{K}: x \in \mathbb{F}_{2}^{n}\right\}$.
Adjacency $x^{K} \sim y^{K}$ (distinct) $\Longleftrightarrow \exists x^{\prime} \in x^{K}, y^{\prime} \in y^{K}$ such that $x^{\prime} \sim y^{\prime}$ in Q_{n}.

Let $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$. The minimum distance of K is

$$
d_{K}:= \begin{cases}\min \left\{d_{Q_{n}}\left(x, x^{k}\right): x \in V Q_{n}, k \in K \backslash\{1\}\right\} & \text { if } K \neq 1 \\ \infty & \text { otherwise }\end{cases}
$$

(Matsumoto, 1991)
Generalises minimum distance for binary linear codes $C \leqslant \mathbb{F}_{2}^{n}$:

$$
c \in C \Longrightarrow d_{Q_{n}}\left(x, x^{c}\right)=d_{Q_{n}}(x, x+c)=|c| .
$$

In a graph Γ, for $u, v \in V \Gamma$ such that $d_{\Gamma}(u, v)=i$, define

$$
\begin{aligned}
& a_{i}(u, v):=\left|\Gamma_{i}(u) \cap \Gamma(v)\right| \\
& c_{i}(u, v):=\left|\Gamma_{i-1}(u) \cap \Gamma(v)\right| .
\end{aligned}
$$

In a graph Γ, for $u, v \in V \Gamma$ such that $d_{\Gamma}(u, v)=i$, define

$$
\begin{aligned}
& a_{i}(u, v):=\left|\Gamma_{i}(u) \cap \Gamma(v)\right| \\
& c_{i}(u, v):=\left|\Gamma_{i-1}(u) \cap \Gamma(v)\right| .
\end{aligned}
$$

Write a_{i} and c_{i} when there is no dependence on the choice of u, v.

In a graph Γ, for $u, v \in V \Gamma$ such that $d_{\Gamma}(u, v)=i$, define

$$
\begin{aligned}
& a_{i}(u, v):=\left|\Gamma_{i}(u) \cap \Gamma(v)\right| \\
& c_{i}(u, v):=\left|\Gamma_{i-1}(u) \cap \Gamma(v)\right| .
\end{aligned}
$$

Write a_{i} and c_{i} when there is no dependence on the choice of u, v.

Theorem (F., 2016)

Let $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$. Let $\ell \geqslant 1$. The following are equivalent.
(i) $\left(Q_{n}\right)_{K}$ is n-valent with $a_{i-1}=0$ and $c_{i}=i$ for $1 \leqslant i \leqslant \ell$.
(ii) $d_{K} \geqslant 2 \ell+1$.

In a graph Γ, for $u, v \in V \Gamma$ such that $d_{\Gamma}(u, v)=i$, define

$$
\begin{aligned}
& a_{i}(u, v):=\left|\Gamma_{i}(u) \cap \Gamma(v)\right| \\
& c_{i}(u, v):=\left|\Gamma_{i-1}(u) \cap \Gamma(v)\right| .
\end{aligned}
$$

Write a_{i} and c_{i} when there is no dependence on the choice of u, v.

Theorem (F., 2016)

Let $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$. Let $\ell \geqslant 1$. The following are equivalent.
(i) $\left(Q_{n}\right)_{K}$ is n-valent with $a_{i-1}=0$ and $c_{i}=i$ for $1 \leqslant i \leqslant \ell$.
(ii) $d_{K} \geqslant 2 \ell+1$.

In particular, the following are equivalent for a graph Π.
(i) Π is an n-valent rectagraph with $a_{2}=0$ and $c_{3}=3$.
(ii) $\Pi \simeq\left(Q_{n}\right)_{K}$ for some $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$ such that $d_{K} \geqslant 7$.

Theorem (F., 2016)

Let Γ be a graph. Let $n \geqslant 2$. The following are equivalent.
(i) Γ is a connected locally T_{n} graph.
(ii) 「 is a halved graph of $\left(Q_{n}\right)_{K}$ for some $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$ such that K is even and $d_{K} \geqslant 7$.

Theorem (F., 2016)

Let Γ be a graph. Let $n \geqslant 2$. The following are equivalent.
(i) Γ is a connected locally T_{n} graph.
(ii) 「 is a halved graph of $\left(Q_{n}\right)_{K}$ for some $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$ such that K is even and $d_{K} \geqslant 7$.

- K is even precisely when $\left(Q_{n}\right)_{K}$ is bipartite.

Theorem (F., 2016)

Let Γ be a graph. Let $n \geqslant 2$. The following are equivalent.
(i) Γ is a connected locally T_{n} graph.
(ii) 「 is a halved graph of $\left(Q_{n}\right)_{K}$ for some $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$ such that K is even and $d_{K} \geqslant 7$.

- K is even precisely when $\left(Q_{n}\right)_{K}$ is bipartite.
- K acts semiregularly on \mathbb{F}_{2}^{n}; in particular K is a 2-group.

Theorem (F., 2016)

Let Γ be a graph. Let $n \geqslant 2$. The following are equivalent.
(i) Γ is a connected locally T_{n} graph.
(ii) Γ is a halved graph of $\left(Q_{n}\right)_{K}$ for some $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$ such that K is even and $d_{K} \geqslant 7$.

- K is even precisely when $\left(Q_{n}\right)_{K}$ is bipartite.
- K acts semiregularly on \mathbb{F}_{2}^{n}; in particular K is a 2-group.
- K is unique up to conjugacy in $\operatorname{Aut}\left(Q_{n}\right)$.

Theorem (F., 2016)

Let Γ be a graph. Let $n \geqslant 2$. The following are equivalent.
(i) Γ is a connected locally T_{n} graph.
(ii) Γ is a halved graph of $\left(Q_{n}\right)_{K}$ for some $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$ such that K is even and $d_{K} \geqslant 7$.

- K is even precisely when $\left(Q_{n}\right)_{K}$ is bipartite.
- K acts semiregularly on \mathbb{F}_{2}^{n}; in particular K is a 2-group.
- K is unique up to conjugacy in $\operatorname{Aut}\left(Q_{n}\right)$.
- Aut $(\Gamma)=N_{E_{n}: S_{n}}(K) / K$ where $E_{n}=\left\{c \in \mathbb{F}_{2}^{n}:|c| \equiv 0 \bmod 2\right\}$.

If $C \leqslant \mathbb{F}_{2}^{n}$ and $d_{C} \geqslant 2$, then $\left(Q_{n}\right)_{C}$ has isomorphic halved graphs.

If $C \leqslant \mathbb{F}_{2}^{n}$ and $d_{C} \geqslant 2$, then $\left(Q_{n}\right)_{C}$ has isomorphic halved graphs.
Does this generalise to $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$ with $d_{K} \geqslant 2$?

If $C \leqslant \mathbb{F}_{2}^{n}$ and $d_{C} \geqslant 2$, then $\left(Q_{n}\right)_{C}$ has isomorphic halved graphs.
Does this generalise to $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$ with $d_{K} \geqslant 2$? No:
When $n=8$, \exists even $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$ with $K \simeq Q_{8}$ and $d_{K}=4$, but the halved graphs of $\left(Q_{n}\right)_{K}$ are regular with different valencies.

If $C \leqslant \mathbb{F}_{2}^{n}$ and $d_{C} \geqslant 2$, then $\left(Q_{n}\right)_{C}$ has isomorphic halved graphs.
Does this generalise to $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$ with $d_{K} \geqslant 2$? No:
When $n=8$, \exists even $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$ with $K \simeq Q_{8}$ and $d_{K}=4$, but the halved graphs of $\left(Q_{n}\right)_{K}$ are regular with different valencies.

Proposition

Let $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$ be even where $d_{K} \geqslant 2$. If n is odd, then $\left(Q_{n}\right)_{K}$ has isomorphic halved graphs.

If $C \leqslant \mathbb{F}_{2}^{n}$ and $d_{C} \geqslant 2$, then $\left(Q_{n}\right)_{C}$ has isomorphic halved graphs.
Does this generalise to $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$ with $d_{K} \geqslant 2$? No:
When $n=8$, \exists even $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$ with $K \simeq Q_{8}$ and $d_{K}=4$, but the halved graphs of $\left(Q_{n}\right)_{K}$ are regular with different valencies.

Proposition

Let $K \leqslant \operatorname{Aut}\left(Q_{n}\right)$ be even where $d_{K} \geqslant 2$. If n is odd, then $\left(Q_{n}\right)_{K}$ has isomorphic halved graphs.

What about n even? And if $d_{K} \geqslant 7$?

