Locally triangular graphs and normal quotients of n-cubes

Joanna B. Fawcett

The University of Western Australia

15 February, 2016

Vertices 2-subsets of $\{1, \dots, n\}$. Adjacency $\{i, j\} \sim \{k, \ell\} \iff |\{i, j\} \cap \{k, \ell\}| = 1$.

Vertices 2-subsets of $\{1, \ldots, n\}$. Adjacency $\{i, j\} \sim \{k, \ell\} \iff |\{i, j\} \cap \{k, \ell\}| = 1$.

A graph Γ is locally T_n if for every vertex $u \in V\Gamma$, the graph induced by the neighbourhood $\Gamma(u)$ is isomorphic to T_n .

Vertices 2-subsets of $\{1, \ldots, n\}$. Adjacency $\{i, j\} \sim \{k, \ell\} \iff |\{i, j\} \cap \{k, \ell\}| = 1$.

A graph Γ is locally T_n if for every vertex $u \in V\Gamma$, the graph induced by the neighbourhood $\Gamma(u)$ is isomorphic to T_n .

VS

A rectagraph is a connected triangle-free graph in which any 2-arc lies in a unique quadrangle.

Vertices 2-subsets of $\{1, \dots, n\}$. Adjacency $\{i, j\} \sim \{k, \ell\} \iff |\{i, j\} \cap \{k, \ell\}| = 1$.

A graph Γ is locally T_n if for every vertex $u \in V\Gamma$, the graph induced by the neighbourhood $\Gamma(u)$ is isomorphic to T_n .

VS

A rectagraph is a connected triangle-free graph in which any 2-arc lies in a unique quadrangle.

```
e.g., the n-cube Q_n for n \ge 1:
Vertices \mathbb{F}_2^n.
Adjacency x, y \in \mathbb{F}_2^n differing in exactly one coordinate.
```

Vertices 2-subsets of $\{1, \ldots, n\}$. Adjacency $\{i, j\} \sim \{k, \ell\} \iff |\{i, j\} \cap \{k, \ell\}| = 1$.

A graph Γ is locally T_n if for every vertex $u \in V\Gamma$, the graph induced by the neighbourhood $\Gamma(u)$ is isomorphic to T_n .

e.g., the halved *n*-cube $\frac{1}{2}Q_n$ for $n \ge 2$.

VS

A rectagraph is a connected triangle-free graph in which any 2-arc lies in a unique quadrangle.

```
e.g., the n-cube Q_n for n \ge 1:
Vertices \mathbb{F}_2^n.
Adjacency x, y \in \mathbb{F}_2^n differing in exactly one coordinate.
```

Lemma (Neumaier, 1985)

- (i) Γ is a connected locally T_n graph.
- (ii) Γ is a halved graph of an *n*-valent bipartite rectagraph with $c_3 = 3$.

Lemma (Neumaier, 1985)

Let Γ be a graph. Let $n \ge 2$. The following are equivalent.

- (i) Γ is a connected locally T_n graph.
- (ii) Γ is a halved graph of an *n*-valent bipartite rectagraph with $c_3 = 3$.

Goal: refine this result using groups!

Let $K \leq \operatorname{Aut}(Q_n)$. The normal quotient $(Q_n)_K$ has Vertices $\{x^K : x \in \mathbb{F}_2^n\}$. Adjacency $x^K \sim y^K$ (distinct) $\iff \exists x' \in x^K, y' \in y^K$ such that $x' \sim y'$ in Q_n .

Let
$$K \leq \operatorname{Aut}(Q_n)$$
. The normal quotient $(Q_n)_K$ has
Vertices $\{x^K : x \in \mathbb{F}_2^n\}$.
Adjacency $x^K \sim y^K$ (distinct) $\iff \exists x' \in x^K, y' \in y^K$ such
that $x' \sim y'$ in Q_n .

Let $K \leq \operatorname{Aut}(Q_n)$. The minimum distance of K is

$$d_{K} := \begin{cases} \min\{d_{Q_{n}}(x, x^{k}) : x \in VQ_{n}, k \in K \setminus \{1\}\} & \text{if } K \neq 1, \\ \infty & \text{otherwise.} \end{cases}$$

(Matsumoto, 1991)

Let
$$K \leq \operatorname{Aut}(Q_n)$$
. The normal quotient $(Q_n)_K$ has
Vertices $\{x^K : x \in \mathbb{F}_2^n\}$.
Adjacency $x^K \sim y^K$ (distinct) $\iff \exists x' \in x^K, y' \in y^K$ such
that $x' \sim y'$ in Q_n .

Let $K \leq \operatorname{Aut}(Q_n)$. The minimum distance of K is

$$d_{K} := \begin{cases} \min\{d_{Q_{n}}(x, x^{k}) : x \in VQ_{n}, k \in K \setminus \{1\}\} & \text{if } K \neq 1, \\ \infty & \text{otherwise.} \end{cases}$$

(Matsumoto, 1991)

Generalises minimum distance for binary linear codes $C \leq \mathbb{F}_2^n$:

Let
$$K \leq \operatorname{Aut}(Q_n)$$
. The normal quotient $(Q_n)_K$ has
Vertices $\{x^K : x \in \mathbb{F}_2^n\}$.
Adjacency $x^K \sim y^K$ (distinct) $\iff \exists x' \in x^K, y' \in y^K$ such
that $x' \sim y'$ in Q_n .

Let $K \leq \operatorname{Aut}(Q_n)$. The minimum distance of K is

$$d_{K} := \begin{cases} \min\{d_{Q_{n}}(x, x^{k}) : x \in VQ_{n}, k \in K \setminus \{1\}\} & \text{if } K \neq 1, \\ \infty & \text{otherwise.} \end{cases}$$

(Matsumoto, 1991)

Generalises minimum distance for binary linear codes $C \leq \mathbb{F}_2^n$:

$$c \in C \implies d_{Q_n}(x, x^c) = d_{Q_n}(x, x+c) = |c|.$$

$$a_i(u,v) := |\Gamma_i(u) \cap \Gamma(v)|$$

 $c_i(u,v) := |\Gamma_{i-1}(u) \cap \Gamma(v)|.$

$$a_i(u,v) := |\Gamma_i(u) \cap \Gamma(v)|$$

 $c_i(u,v) := |\Gamma_{i-1}(u) \cap \Gamma(v)|.$

Write a_i and c_i when there is no dependence on the choice of u, v.

$$a_i(u,v) := |\Gamma_i(u) \cap \Gamma(v)|$$

$$c_i(u,v) := |\Gamma_{i-1}(u) \cap \Gamma(v)|.$$

Write a_i and c_i when there is no dependence on the choice of u, v.

Theorem (F., 2016) Let $K \leq \operatorname{Aut}(Q_n)$. Let $\ell \geq 1$. The following are equivalent. (i) $(Q_n)_K$ is *n*-valent with $a_{i-1} = 0$ and $c_i = i$ for $1 \leq i \leq \ell$. (ii) $d_K \geq 2\ell + 1$.

$$a_i(u,v) := |\Gamma_i(u) \cap \Gamma(v)|$$

$$c_i(u,v) := |\Gamma_{i-1}(u) \cap \Gamma(v)|.$$

Write a_i and c_i when there is no dependence on the choice of u, v.

Theorem (F., 2016) Let $K \leq \operatorname{Aut}(Q_n)$. Let $\ell \geq 1$. The following are equivalent. (i) $(Q_n)_K$ is *n*-valent with $a_{i-1} = 0$ and $c_i = i$ for $1 \leq i \leq \ell$. (ii) $d_K \geq 2\ell + 1$.

In particular, the following are equivalent for a graph Π .

(i) Π is an *n*-valent rectagraph with a₂ = 0 and c₃ = 3.
(ii) Π ≃ (Q_n)_K for some K ≤ Aut(Q_n) such that d_K ≥ 7.

- (i) Γ is a connected locally T_n graph.
- (ii) Γ is a halved graph of $(Q_n)_K$ for some $K \leq \operatorname{Aut}(Q_n)$ such that K is even and $d_K \geq 7$.

- (i) Γ is a connected locally T_n graph.
- (ii) Γ is a halved graph of $(Q_n)_K$ for some $K \leq \operatorname{Aut}(Q_n)$ such that K is even and $d_K \geq 7$.
 - K is even precisely when $(Q_n)_K$ is bipartite.

- (i) Γ is a connected locally T_n graph.
- (ii) Γ is a halved graph of $(Q_n)_K$ for some $K \leq \operatorname{Aut}(Q_n)$ such that K is even and $d_K \geq 7$.
 - K is even precisely when $(Q_n)_K$ is bipartite.
 - K acts semiregularly on \mathbb{F}_2^n ; in particular K is a 2-group.

- (i) Γ is a connected locally T_n graph.
- (ii) Γ is a halved graph of $(Q_n)_K$ for some $K \leq \operatorname{Aut}(Q_n)$ such that K is even and $d_K \geq 7$.
 - K is even precisely when $(Q_n)_K$ is bipartite.
 - K acts semiregularly on \mathbb{F}_2^n ; in particular K is a 2-group.
 - K is unique up to conjugacy in $Aut(Q_n)$.

- (i) Γ is a connected locally T_n graph.
- (ii) Γ is a halved graph of $(Q_n)_K$ for some $K \leq \operatorname{Aut}(Q_n)$ such that K is even and $d_K \geq 7$.
 - K is even precisely when $(Q_n)_K$ is bipartite.
 - K acts semiregularly on \mathbb{F}_2^n ; in particular K is a 2-group.
 - K is unique up to conjugacy in $Aut(Q_n)$.
 - Aut $(\Gamma) = N_{E_n:S_n}(K)/K$ where $E_n = \{c \in \mathbb{F}_2^n : |c| \equiv 0 \mod 2\}.$

Does this generalise to $K \leq \operatorname{Aut}(Q_n)$ with $d_K \geq 2$?

Does this generalise to $K \leq \operatorname{Aut}(Q_n)$ with $d_K \geq 2$? No:

When n = 8, \exists even $K \leq \operatorname{Aut}(Q_n)$ with $K \simeq Q_8$ and $d_K = 4$, but the halved graphs of $(Q_n)_K$ are regular with different valencies.

Does this generalise to $K \leq \operatorname{Aut}(Q_n)$ with $d_K \geq 2$? No:

When n = 8, \exists even $K \leq \operatorname{Aut}(Q_n)$ with $K \simeq Q_8$ and $d_K = 4$, but the halved graphs of $(Q_n)_K$ are regular with different valencies.

Proposition

Let $K \leq \operatorname{Aut}(Q_n)$ be even where $d_K \geq 2$. If *n* is odd, then $(Q_n)_K$ has isomorphic halved graphs.

Does this generalise to $K \leq \operatorname{Aut}(Q_n)$ with $d_K \geq 2$? No:

When n = 8, \exists even $K \leq \operatorname{Aut}(Q_n)$ with $K \simeq Q_8$ and $d_K = 4$, but the halved graphs of $(Q_n)_K$ are regular with different valencies.

Proposition

Let $K \leq \operatorname{Aut}(Q_n)$ be even where $d_K \geq 2$. If *n* is odd, then $(Q_n)_K$ has isomorphic halved graphs.

What about *n* even? And if $d_K \ge 7$?