The real genus of the symmetric groups

(A result from Carmen Cano in her Ph. D. Thesis, 2011.)

by

José Javier Etayo and Ernesto Martínez
\[o(\text{Aut}(X)) \leq 12(g(X) - 1) \]

\[G = \langle a, b, c \mid a^2 = b^2 = c^2 = (ab)^2 = (ac)^3 = 1 \rangle \]

\[X = ac \]
\[A = ab \]
\[B = a \]

\[G = \langle X, A, B \mid X^3 = A^2 = B^2 = (XB)^2 = (AB)^2 = 1 \rangle \]
\[G = \langle X, A, B \mid X^3 = A^2 = B^2 = (XB)^2 = (AB)^2 = 1 \rangle \]

\[X = [XA, B]^2 \]
\[A = X^2(XA) \]

\[\Downarrow \]

\[G = \langle XA, B \rangle \]
Proposition: Let g and h be permutations which generate a transitive subgroup of S_n. Suppose that g contains a cycle of prime length p such that:

a) $p < n - 2$.

b) p divides the length of no other cycle of g.

c) The p-cycle contains either a fixed point of h, or the points from a cycle of h.

Then, the subgroup generated by g and h is either A_n or S_n.

(A result from Carmen Cano in her Ph. D.)
Initial diagram

(A result from Carmen Cano in her Ph. D. The real genus of the symmetric groups)
Insider and Outsider blocks

(A result from Carmen Cano in her Ph. D.) by José Javier Etayo and Ernesto Martínez

The real genus of the symmetric groups
Proposition: Let m be a prime number. For each prime s such that

$$2(t - t_0) + m \leq s \leq 4(t - t_0) + m,$$

the system

$$s = m + 4x + 2y$$

$$t - t_0 = x + y$$

has solution in \mathbb{Z}^+.

(A result from Carmen Cano in her Ph. D.)

The real genus of the symmetric groups
S_{13} and S_{19}

(A result from Carmen Cano in her Ph. D. The real genus of the symmetric groups)
S_{14}
S_{15}
S_{10}
(A result from Carmen Cano in her Ph. D. The real genus of the symmetric groups)
A result from Carmen Cano in her Ph. D. The real genus of the symmetric groups
S_7 and S_9

(A result from Carmen Cano in her Ph.D.)
$a = (2, 4)$

$b = (1, 5)$

$c = (1, 4)(2, 3)$

$a^2 = b^2 = c^2 = (ab)^2 = (ac)^4 = 1$

$o(cab) = 5$

$\langle a, b, c \rangle = S_5$
\[a = (1, 4)(2, 3) \]
\[b = (5, 6) \]
\[c = (1, 6)(2, 4) \]

\[a^2 = b^2 = c^2 = (ab)^2 = (ac)^5 = 1 \]

\[acb = (1, 2, 3, 4, 5, 6) \]
\[\langle a, b, c \rangle = S_6 \]
\[a = (1, 2)(3, 4)(5, 6)(7, 8) \]
\[b = (1, 2)(3, 5)(4, 6) \]
\[c = (1, 3)(5, 7)(6, 8) \]

\[a^2 = b^2 = c^2 = (ab)^2 = (ac)^4 = 1 \]

\[\langle a, b, c \rangle = S_8 \]
Theorem: Let $n \geq 4$. The symmetric group S_n has real genus

$$\rho(S_n) = \frac{n!}{12} + 1$$

for all $n \notin \{5, 6, 8\}$, and

$$\rho(S_5) = 16$$
$$\rho(S_6) = 109$$
$$\rho(S_8) = 5041$$

(A result from Carmen Cano in her Ph. D.)