The real genus of the symmetric groups

(A result from Carmen Cano in her Ph. D. Thesis, 2011.) by
José Javier Etayo and Ernesto Martínez

$$
\begin{gathered}
o(\operatorname{Aut}(X)) \leq 12(g(X)-1) \\
G=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=(a b)^{2}=(a c)^{3}=1\right\rangle \\
X=a c \\
A=a b \\
B=a \\
G=\left\langle X, A, B \mid X^{3}=A^{2}=B^{2}=(X B)^{2}=(A B)^{2}=1\right\rangle
\end{gathered}
$$

$$
G=\left\langle X, A, B \mid X^{3}=A^{2}=B^{2}=(X B)^{2}=(A B)^{2}=1\right\rangle
$$

$$
\begin{aligned}
X & =[X A, B]^{2} \\
A & =X^{2}(X A)
\end{aligned}
$$

$$
\Downarrow
$$

$$
G=\langle X A, B\rangle
$$

Proposition: Let g and h be permutations which generate a transitive subgroup of S_{n}. Suppose that g contains a cycle of prime length p such that:
a) $p<n-2$.
b) p divides the length of no other cycle of g.
c) The p-cycle contains either a fixed point of h, or the points from a cycle of h.

Then, the subgroup generated by g and h is either A_{n} or S_{n}.

Initial diagram

Insider and Outsider blocks

The existence of diagrams for each t

Proposition: Let m be a prime number. For each prime s such that

$$
2\left(t-t_{0}\right)+m \leq s \leq 4\left(t-t_{0}\right)+m,
$$

the system

$$
\begin{aligned}
s & =m+4 x+2 y \\
t-t_{0} & =x+y
\end{aligned}
$$

has solution in \mathbb{Z}^{+}.

S_{13} and S_{19}

S_{15}

S_{10}

S_{11}

S_{7} and S_{9}

$$
\begin{gathered}
a=(2,4) \\
b=(1,5) \\
c=(1,4)(2,3) \\
a^{2}=b^{2}=c^{2}=(a b)^{2}=(a c)^{4}=1 \\
\circ(c a b)=5 \\
\langle a, b, c\rangle=S_{5}
\end{gathered}
$$

S_{6}

$$
\begin{aligned}
& a=(1,4)(2,3) \\
& b=(5,6) \\
& c=(1,6)(2,4) \\
& a^{2}=b^{2}=c^{2}=(a b)^{2}=(a c)^{5}=1 \\
& a c b=(1,2,3,4,5,6) \\
&\langle a, b, c\rangle=S_{6}
\end{aligned}
$$

S_{8}

$$
\begin{gathered}
a=(1,2)(3,4)(5,6)(7,8) \\
b=(1,2)(3,5)(4,6) \\
c=(1,3)(5,7)(6,8) \\
a^{2}=b^{2}=c^{2}=(a b)^{2}=(a c)^{4}=1 \\
\\
\\
\langle a, b, c\rangle=S_{8}
\end{gathered}
$$

The real genus of S_{n}

Theorem: Let $n \geq 4$. The symmetric group S_{n} has real genus

$$
\rho\left(S_{n}\right)=\frac{n!}{12}+1
$$

for all $n \notin\{5,6,8\}$, and

$$
\begin{aligned}
\rho\left(S_{5}\right) & =16 \\
\rho\left(S_{6}\right) & =109 \\
\rho\left(S_{8}\right) & =5041
\end{aligned}
$$

