The real genus of the symmetric groups

(A result from Carmen Cano in her Ph. D. Thesis, 2011.)

by

José Javier Etayo and Ernesto Martínez

(A result from Carmen Cano in her Ph. D. The real genus of the symmetric groups

$$o(Aut(X)) \le 12(g(X) - 1)$$

$$G = \langle a, b, c \mid a^2 = b^2 = c^2 = (ab)^2 = (ac)^3 = 1 \rangle$$

$$X = ac$$

$$A = ab$$

$$B = a$$

$$G = \langle X, A, B \mid X^3 = A^2 = B^2 = (XB)^2 = (AB)^2 = 1 \rangle$$

$$G = \langle X, A, B \mid X^3 = A^2 = B^2 = (XB)^2 = (AB)^2 = 1 \rangle$$

$$X = [XA, B]^2$$
$$A = X^2(XA)$$

∜

$$G = \langle XA, B \rangle$$

(A result from Carmen Cano in her Ph. D. The real genus of the symmetric groups

Proposition: Let g and h be permutations which generate a transitive subgroup of S_n . Suppose that g contains a cycle of prime length p such that:

a) p < n - 2.

b) p divides the length of no other cycle of g.

c) The *p*-cycle contains either a fixed point of h, or the points from a cycle of h.

Then, the subgroup generated by g and h is either A_n or S_n .

э

Insider and Outsider blocks

Proposition: Let m be a prime number. For each prime s such that

$$2(t - t_0) + m \le s \le 4(t - t_0) + m,$$

the system

$$s = m + 4x + 2y$$
$$t - t_0 = x + y$$

has solution in \mathbb{Z}^+ .

æ

< 日 > < 同 > < 三 > < 三 >

 S_{14}

(A result from Carmen Cano in her Ph. D. The real genus of the symmetric groups

 S_{15}

10 / 18

Ξ.

 S_{10}

(A result from Carmen Cano in her Ph. D. The real genus of the symmetric groups

 S_{11}

≣ ৩৭ে 12 / 18

・ロン ・聞 と ・ ヨン ・ ヨン …

 S_{12}

(A result from Carmen Cano in her Ph. D. The real genus of the symmetric groups

æ -

S_7 and S_9

æ

<ロ> <同> <同> < 同> < 同>

$$a = (2,4)$$

 $b = (1,5)$
 $c = (1,4)(2,3)$

$$a^{2} = b^{2} = c^{2} = (ab)^{2} = (ac)^{4} = 1$$
$$o(cab) = 5$$
$$\langle a, b, c \rangle = S_{5}$$

$$(u, b, c) = 0.5$$

15 / 18

 S_6

$$a = (1,4)(2,3)$$

$$b = (5,6)$$

$$c = (1,6)(2,4)$$

$$a^2 = b^2 = c^2 = (ab)^2 = (ac)^5 = 1$$

$$egin{aligned} \mathsf{acb} &= (1,2,3,4,5,6) \ &\langle \mathsf{a},\mathsf{b},\mathsf{c}
angle &= S_6 \end{aligned}$$

16 / 18

$$a = (1,2)(3,4)(5,6)(7,8)$$

$$b = (1,2)(3,5)(4,6)$$

$$c = (1,3)(5,7)(6,8)$$

$$a^2 = b^2 = c^2 = (ab)^2 = (ac)^4 = 1$$

$$\langle a, b, c \rangle = S_8$$

(A result from Carmen Cano in her Ph. D. The real genus of the symmetric groups

Theorem: Let $n \ge 4$. The symmetric group S_n has real genus

$$\rho(S_n)=\frac{n!}{12}+1$$

for all $n \notin \{5, 6, 8\}$, and

$$\rho(S_5) = 16$$

 $\rho(S_6) = 109$

 $\rho(S_8) = 5041$