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In lecture 1 and 2 we met: 

 O’Nan—Scott Theorem for primitive permutation groups 

 Maximal factorisations of all almost simple groups 

 Primitive Inclusions: G < H < Sym(X) 

 

 Discussed using these tools to solve problems: 

• Classifying maximal subgroups of Sym(X) and Alt(X) 

• Deciding when a graph could have “very different” vertex-primitive, arc-
transitive  G < H < Aut() 

• Detecting whether a permutation group preserves a cartesian 
decomposition   

 

 This last lecture:  using these tools to study Cayley graphs 
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Comparison of the applications 

Previous applications:  Have transitive group G < Sym(X) and searched for 

overgroups H using factorisation H = G Hα 

 

What is different in new application: we search for transitive subgroups B of the 

given G. Again we have a factorisation G = B Gα  

 

Long history (discuss later):  first look at Cayley graphs – why factorisations 

might be involved 
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Is a given graph a Cayley graph? 

 Cayley graphs: visualisations of groups with given generating set 

 

 Input:  

• Group  H = < S >  where  s in S  iff  s-1 in  S  [inverse-closed] 

 

 Construction:  

• Cay(H,S) has vertex set H.   Edges { h sh }  for h in H, s in S 

 

 Example:    

• H = Z5  under addition and  S = { 1, 4 } 
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Some facts about Cayley graphs 

 Cay(H,S) admits the right multiplication action of H as a group of 
automorphisms  

• Right multiplication by u in H maps the edges { h, sh } to edge { hu, shu} 

• The only u in H which fixes ANY vertex is u=1H  

 So Cayley graphs  are vertex-transitive 

 

 Arise in many areas 

• Circulant graphs  [Cayley graphs for cyclic groups] 
– Experimental layouts for statistical expermients, and many constructions in combinatorics 

• Expander graphs 
– Difficut to find explicit constructions – Ramanujan graphs of Lubotzky/Phillips/Sarnak are Cayley  

• Random selection for group computation 
– Modelled and analysed as random walk on a Cayley graph 

Such H called regular 
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Is a given graph a Cayley graph? 

 It had better be vertex transitive!   

 Sometime not obvious whether a famous graph is a Cayley graph 

 

 Higman Sims graph   (HS)     100 vertices, valency 22    Aut (HS)  = HS.2 

 

 Related to the Steiner system S(3,6,22)  vertex stab. Is  M22.2 

 

 Not obvious that 

 

  (HS) = Cay(H,S) for  

       H = ( Z5 x Z5 ) : [4] 
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A given (vertex-transitive) graph  is a Cayley graph 

 If and only if  Aut() contains a regular subgroup R 

 

 In this case   Cay( R, S ) for some S 

 

 If G =  Aut()  and  R < G  then  R  is regular  if and only if 

1. R is transitive   G = R G α   

2. Vertex stabiliser Rα = 1  R  G α = 1 

 

 G is a “general product” – 

 these days we say G = R G α  is an exact factorisation 

Now we go back in history 

Regular means  

transitive and  

only the identity  

fixes a vertex 

Criterion: 



The University of Western Australia 

The story starts with 

 

Primitive groups G < Sym(n) containing an n-cycle 
 

Old problem: goes back more than 100 years to work of William 
Burnside 

 

 Burnside (1911): if n = pm with m > 1 and G primitive contains             
an n-cycle then G is 2-transitive  

[all ordered pairs equivalent under G-action] 

 

 Burnside’s Question (1911): Is the same true                                    
for ANY non-prime n ?     [known false if n prime]                                            
 

 

  According to PM Neumann: generalisation of  

Burside’s Theorem: a transitive group of prime  

degree is either 2-transitive or soluble 
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A lot of work inspired by  

Burnside’s work 

 1921 Burnside had tried to prove that every primitive group containing a 
regular subgroup B that is abelian but not elementary abelian  must be 2-
transitive -- but his proof wrong -- his error was pointed out by Dorothy 
Manning in 1936 

 

 1933 Schur: G primitive contains an n-cycle and n is not prime, then G is 2-
transitive 

• Schur’s methods led to Schur’s theory of S-rings (Wielandt school), 
coherant configurations (D. G. Higman), and centraliser algebras 
and Hecke algebras 

 

 1935, 1950, 1955  Wielandt:  various kinds of regular subgroups B force G 
to be 2-transitive 
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A lot of work inspired by  

Burnside’s result 

 1955  Wielandt:  named such groups B-groups in honour of Burnside 

 

 A group B is a B-group  if every primitive permutation group G containing B 
as a regular subgroup is 2-transitive 

 

 So Wielandt knew that most cyclic groups, many abelian groups, all dihedral 
groups are B-groups 

 

 Nowadays not so interested in 2-transitivity: general study led to         
“Regular subgroup problem” 

 

• Find all pairs (G, B) with G primitive and B regular 

 

 

G=AB  

A maximal 

A  B = 1 
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Permutation group hierarchy 

  For studying Cayley graphs we want to decide existence of regular 

subgroups maybe in primitive groups – but a graph has a 2-transitive 

automorphism group only if it is empty (no edges) or complete  

We need to know which groups  

in each circle contain regular  

subgroups,  in particular which  

primitive groups do 
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Regular subgroup problem:  

Find all pairs (G, B) with  

G primitive and B regular 
 

 Equivalently: find all exact factorisations of finite                                 

primitive groups G 

 

 Even this was an old problem: 

 

 1935 G. A. Miller:  gave examples of integers n such that the ONLY exact 

factorisations of G isomorphic to Alt(n)  have A = Alt(n-1)  

 

 1980  Wiegold & Williamson: classified all exact factorisations with G 

isomorphic to Alt(n) or Sym(n) 

G=AB  

A maximal 

A  B = 1 
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A cute reality check:  a “density result” 

 1982  Cameron, Neumann, Teague:  for “almost all n” the only primitive 

subgroups of Sym(n) are Alt(n) and Sym(n)  

 

 More precisely: If N(x) := Number of n ≤ x such that there exists primitive    

G < Sym(n) with G  Sym(n) or Alt(n)   then  N(x)/x   1  as  x    
 

 

 

 Consequence for us:  for “almost all n”  every group of order n (that is, every 

possibility for B) is a B-group!  

 

Proof uses simple group  

classification and gives  

more refined information 
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But we still want answers 

 Finding all exact factorisations of finite primitive groups G implies 

 

 Finding all vertex-primitive Cayley graphs  

 

 First determines all                          then G-action yields all S for Cay(B,S) 

 

 

 Generic example (to avoid):  For any group B of order n take S = B \ { 1 }  
Then  Cay(B,S) is the complete graph Kn with primitive automorphism group 
Sym(n) 

 

 So every group B has this generic primitive Cayley graph!   

G=AB  

A maximal 

A  B = 1 



The University of Western Australia 

Chronologically 

 ~ 2000 know all exact factorisations with B cyclic  

 

• Hence know all vertex-primitive circulants  [details next slide] 

 

 By 2007  know  all exact factorisations for certain other B …  

 

 By 2010 know all exact factorisations for all ONS-types of G EXCEPT 
product action 

 

 Identified explicitly lots more B-groups 

 

 Details following   

G=AB  

A maximal 

A  B = 1 
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Finite primitive groups 

containing an n-cycle 

known explicitly 

• Early important work of ( Galois, Schur,  Ritt ) 

• Application of finite simple group classification (Feit) 

• Final details (McSorley 1997, Jones 2002) 
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By 2007  know  all exact factorisations G=AB for certain other G, B …  

Who When What 

Liebeck, CEP, Saxl 2000 All possible ONS-types 

Cai Heng Li 2003, 2007 All G with B abelian or 

dihedral 

Cai Heng Li and Akos 

Seress 

2005 All G if n square-free and 

B   Soc(G) 

Michael Giudici 2007 All G, B if G sporadic 

almost simple 

Barbara Baumeister 2006, 2007 All G, B with G sporadic, 

exceptional Lie type, 

PSU, or +(8,q) 

Open cases left after these results:  G classical simple (heart of the problem) 

And G of product action type – still unresolved 
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Exact factorisations G = AB of almost simple classical groups G 

 Principal tool:  Maximal factorisations  yield all possibilities for G = A M with 

M maximal subgroup of G and M containing B    Then the hard work begins! 

 

 An “easy example”:  G = PGL(d,q),  A = stabiliser of k-subspace of V(d,q) 

 

• Maxl Factns gives all maximal M that are transitive on k-subspaces 

• Need to search in each M for a minimal transitive B – hoping B regular 

 

• Special case k=1:  apply Hering’s classification of transitive linear 

groups – find metacyclic examples B < L(1, qd)  

2010 AMS Memoir: Liebeck CEP Saxl 
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Exact factorisations G = AB of almost simple classical groups G 

 Strategy:  Proved sequence of lemmas – for each kind of classical group (PSL, PSU, PSp, 
P) classifying subgroups which are transitive on various kinds of subspaces 

 

 Factorisations “propagate”:  If G = A M and B < M then  

• also M = (A  M) B   and sometimes this helps.  

• also if K normal in M then M/K = ((A  M)K/K) (BK/K) – good if M/N al’t simple  

 

 Main Theorem:  Complete lists of all possibilities for G, A, B 

 

 Many small cases but:  if degree  n > 3 x 29!  and G  Alt(n) or Sym(n) then   

 

• B metacyclic of order (qd-1)/(q-1)  or   

• B of odd order q(q-1)/2  in A L(1, q) with q  3 (mod 4)   

• B = Alt(p), Sym(p) (p prime) or B=Alt(p-2) x Z2 (p prime, p  1 (mod 4)), or B=Alt(p2-2) 
(p prime, p  3 (mod 4)) 

2010 AMS Memoir: Liebeck CEP Saxl 
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What did we learn? 

 Complete information about almost simple groups B: when they are B-

groups and if not which primitive groups arise 

 

• B is a B-group    B not simple and not one of Sym(p-2) (p prime), 

PSL(2,16).4, PSL(3,4).2 

 

• If B is simple or one of Sym(p-2) (p prime), PSL(2,16).4, PSL(3,4).2 and 

if B is a regular subgroup of a primitive G < Sym(n) (and G  Alt(n))  

then  

– (generic case)   B x B  G  Holomorph of B 

– or G, A, B in short explicit list of possibilities 
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What did we learn about primitive Cayley graphs? 

 B simple: Cay(B,S) is vertex-primitive but not a complete graph then 

 

• Either S is a union of B-conjugacy classes 

 

• Or  B = Alt(p2-2) (p prime, p  3 (mod 4)) 

 

 In both cases examples exist (for each S, and each p respectively) 
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What did we notice: interesting coincidences 

 Among the examples:  

• sometimes several primitive groups share the same regular subgroup  

• notably SEVEN primitive groups on 120 points contain a regular 

subgroup Sym(5)    [lattice of containments below] 

 
Sp(8,2) 

Sp(4,4).2 O+(8,2) 

Alt(9) Sp(6,2) 

Sym(7) 
Sym(8) 
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Some open problems 

1. Regular subgroups of primitive product action groups 

• Does there exist an almost simple primitive H < Sym(Y) with NO regular 
subgroup such that H wr Sym(k) acting on Yk has a regular subgroup? 

 

2. Determine the kinds of regular subgroups of affine primitive groups apart 
from the translation subgroup (Some exist: Hegedus  2000) 

 

3. Find groups with a regular subgroup among the quasiprimitive and innately 
transitive permutation groups – hence find Cayley graphs admitting these 
actions  

 

4. Extend the classification of almost simple group factorisations (not just 
maximal ones) 
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Thank you 

 I tried to 

 

 Describe simple groups                                                                      

factorisations 

 

 Sample of applications in                                                                            

group theory and combinatorics 
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