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Introduction

An ancient example of an invariant:

The quadratic form q(x , y) = ax2 + 2bxy + cy2 may be
transformed by linear substitutions for x , y :(

x
y

)
=

(
α β

γ δ

)(
x ′

y ′

)

into q′(x ′, y ′) = a′(x ′)2 + 2b′x ′y ′ + c′(y ′)2 such that
q′(x ′, y ′) = q(x , y).

If det
(
α β

γ δ

)
= 1 then b2 − ac = (b′)2 − a′c′.

Thus the discriminant ∆ = b2 − ac is an invariant of quadratic
forms under transformations by SL2. (c.1000)
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Modern interpretation.
The modern version of the subject might be said to have
started with Gauss’ Disquisitiones Arithmeticae in 1802, where
he considered the classification of certain forms under linear
transformation.

The question we shall address is:
Let V , W be vector spaces, and suppose V , W are module for
U, a group, Lie algebra or Hopf algebra, so that V⊗W is also a
U-module.

Basic problem: decompose T r (V ) := V⊗r = V⊗ . . .⊗V as a
U-module.(Associative algebra)
Equivalent formulations (when U = G, a group):

• Describe (T r (V ∗)⊗T s(V ))G (generators and
relations-Linear).

• For a KG-module M (K a commutative ring), describe K [M]G

(generators and relations). (Commutative algebra)
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Applications
The third formulation is equivalent to studying the orbit space
M//G–geometric invariant theory.

The basic question includes some very difficult classical
problems, such as: what are the dimensions of the irreducible
representations of the symmetric groups over a finite field?

Or classical analogues: what are the dimensions of the simple
rational G modules where G is an algebraic group over a field
of positive characteristic (cf. the Lusztig conjectures).

The indecomposable summands of T r (V ) are called tilting
modules; understanding their composition factors is a key to
the representation theory of reductive groups.

Quantum group analogues of the above questions, with
applications to representation theory, math. physics,
unitarisability,...
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We will focus (mainly) on the first formulation of the basic
problem: describe generators and relations for EndU(T r (V )).
Two aspects: generators: FFT (first fundamental theorem);
relations SFT (second fundamental theorem). We will:

I see how diagrammatic methods are used to study these
problems; in particular how the ‘Brauer category’ and the
braid group come into play, providing a solution to an
ancient problem of Brauer.

I see how algebraic geometric arguments can be used to
understand the fundamental theorems for classical groups
and Lie algebras.

I see how EndU(T r (V )) often has a cellular structure, which
permits deformation, both of the characteristic, and to the
quantum case.

I sketch how to apply these ideas to super-algebras
(Z2-graded algebras), using Z2-graded algebraic geometry,
and to quantum groups.
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The most basic case: Schur’s thesis (1901)
Take V = Cm, G = GL(V ) ∼= GLm(C).

G acts on T r (V ) via g(v1⊗ . . .⊗vr ) = gv1⊗ . . .⊗gvr .

Symr also acts on T r (V ):
ωr (π) : v1⊗ . . .⊗vr = vπ−11⊗ . . .⊗vπ−1r (π ∈ Symr )

Clearly gωr (π) =ωr (π)g, so we have an algebra
homomorphismωr : CSymr−→EndG(T r (V )).

Theorem
FFT:ωr is surjective for all r .

Proof: Let A =ωr (CSymr ) ⊆ E , where E = EndC(T r (V )), and
let B be the subalgebra of E generated by {g ∈ GL(V )}.

Then A ⊆ ZE (B) and B ⊆ ZE (A).
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Now A is evidently semisimple, so (by double centraliser
theory) A = ZE (B) if and only if B = ZE (A), and the former
statement is the FFT.

We prove the latter using the easy:

Lemma
Let U be a f.d. vector space over C, with a spanning set U0

such that for any u, u′ ∈ U0, there are infinitely many λ ∈ C
such that u + λu′ ∈ U0. Then the space T r (U)Symr of
symmetric elements of U⊗r is spanned by elements of the form
u⊗u⊗ . . .⊗u with u ∈ U0.

Now E = EndC(T r (V )) ∼= T r (EndC(V )) via
A1⊗ . . .⊗Ar (v1⊗ . . .⊗vr ) = A1v1⊗ . . .⊗Ar vr ,
and so ZE (A) = T r (U)Symr , where U = EndC(V ).

Applying the Lemma with U = EndC(V ) and U0 = GL(V ),
we see that ZE (A) is spanned by the elements g⊗g⊗ . . .⊗g
(g ∈ EndC(V )), which proves the FFT. �
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The second fundamental theorem for GL(V )
We have a finite set of generators for EndGL(V )(T r (V )), namely
the permutations π ∈ Symr . The SFT asks for all relations
among these; thus the question is: what is
ker(ωr : CSymr−→EndG(T r (V ))?

An obvious element of ker(ωr ):
Let e−r = (r !)−1

∑π∈Symr
ε(π)π ∈ CSymr .

Then e−m+1(T m+1(V )) ⊆ ∧m+1(V ) = 0 (since dim(V ) = m).

Hence: if r ≥ m + 1, ker(ωr ) 3 e−m+1. This leads to

Theorem
SFT: If r ≤ m, ker(ωr ) = 0. If r ≥ m + 1, ker(ωr ) is the ideal of
CSymr generated by e−m+1.
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Sketch of a proof of the SFT
Let N = ker(ωr ). We have CSymr = ⊕λI(λ), where λ runs over
all partitions of r , and I(λ) is a minimal 2-sided ideal.

So N is a sum of certain I(λ). Each λ corresponds to a Young
diagram, which has rows (corresponding to the parts of λ) and
columns.

Let Ik = ∑λ has at least k parts I(λ).

One shows that (e−m+1) ⊆ N ⊆ Im+1 ⊆ (e−m+1).

First inequality: done; second: show explicitly that if λ has at
most m rows, thenωr (I(λ)) 6= 0. By Frobenius’ theory, one
knows an explicit idempotent e(λ) which generates I(λ); one
constructs an element v ∈ T r (V ) such that e(λ)v 6= 0.
The third inequality is a standard fact about inducing
representations of the symmetric group.
This shows that N = (e−m+1), which is the SFT. �
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Equivalent formulations.
Here are two equivalent formulations of the FFT for GL(V )

Second formulation (linear):

((T r (V ∗)⊗T s(V ))∗)G =

{
0 if r 6= s
span{δπ | π ∈ Symr} if r = s,

where δπ(φ1⊗ . . .⊗φr⊗v1⊗ . . .⊗vr ) = ∏
r
i=1φi(vπ(i)).

Third formulation (commutative algebra): Let
W = V⊕

r ⊕ (V ∗)⊕s

Then C[W ]GL(V ) is generated as commutative algebra by the
quadratic functions (v1, . . . , vr ,φ1, . . . ,φs) 7→ φi(vj).

The SFT may be formulated in these contexts as well, but we
leave that until we have the language of diagrams.
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The classical groups
Now assume that our space V = Cm has a non-degenerate
bilinear form (−,−) : V × V−→C, and let G be the isometry
group of (−,−):

G = {g ∈ GL(V ) | (gv , gw) = (v , w) for all v , w ∈ V}.

We assume that (−,−) is either symmetric or skew
(symplectic); its matrix can therefore be respectively chosen to
be Im (orthogonal case) or Jm, where

Jm = diag(σ ,σ , . . . ,σ), and σ =

(
0 −1
1 0

)
.

So m = 2n is even in the symplectic case.

We wish to prove an FFT and SFT for EndG(T r (V )). Since
G ( GL(V ), we still have EndG(T r (V )) ⊇ ηr (Symr ), where, for
π ∈ Symr ,

ηr (π) =

{
ωr (π) if G = O(V )(symmetric case)

ε(π)ωr (π) if G = Sp(V )(symplectic case)
.
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ε(π)ωr (π) if G = Sp(V )(symplectic case)
.
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Classical groups (contd)

Since G ( GL(V ), one would expect that
EndG(T r (V )) ) EndGL(V )(T r (V ))

Here is an extra invariant: Let b1, . . . , bm be a basis of V , and
let b′1, . . . , b′m be the dual basis with respect to the form (−.−)
(so (b′i , bj) = δij ).

Define c0 := ∑
m
a=1 ba⊗b′a ∈ V⊗V . Then c0 is independent of

the basis, and is G-invariant.

If e : v⊗w 7→ (v , w)c0, then e ∈ EndG(T 2(V )), and since
e(c0) = ∑a(ba, b′a)c0 = ±mc0,

we have e2 = εme, where ε =

{
1 in the orthogonal case
−1 in the symplectic case.
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Classical group invariants (contd)
If L, M and N are G-modules, then by Schur’s Lemma,
HomG(L⊗M , N) ∼= HomG(L, M∗⊗N).

Since V ∼= V ∗, it follows that
HomG(T r (V ), T s(V )) ∼= HomG(T r+1(V ), T s−1(V )) ∼=
HomG(T r+s(V ),C) ∼= (T r+s(V )∗)G.

Note that −idV ∈ G; since −idV acts as (−1)r on T r (V ), it
follows that HomG(T r (V ), T s(V )) 6= 0 =⇒ r ≡ s mod 2.

Let us explore relations among the elements of EndG(T r (V ))
which we have: Let ei , si resp. be the elements of EndG(T r (V ))
defined resp. by 1⊗1⊗ . . . 1⊗e⊗1⊗ . . .⊗1, and ηr (i , i + 1).

We’ve seen that s2
i = 1 and e2

i = εmei (m = dim V ). Also, the
si satisfy the familiar braid relations (e.g. sisi+1si = si+1sisi+1),
and we have siei = eisi = ei
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Classical group invariants (cont). The Brauer category.

Less obvious relations: eisi±1ei = ei , eiei±1ei = ei ,
siei+1si = si+1eisi+1.

Theorem
(FFT) Let G = O(V ) or Sp(V ). Then EndG(T r (V )) is generated
by η(Symr ) and the ei .

Equivalently: (T 2d (V ))G is spanned by the functions δπ
(π ∈ Sym2d ), where δπ(v1⊗ . . .⊗v2d ) = ∏

d
i=1(vπ(2i−1), vπ(2i)).

Brauer diagrams and the Brauer category
We next show how to interpret these endomorphisms as
diagrams, which are morphisms in the Brauer category.
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The Brauer category
Given a ring R and element δ ∈ R, we define the Brauer
category B(R, δ) = B(δ).

Objects: the natural numbers N = {0, 1, 2, . . . }.

For r , s ∈ N, a diagram from r to s is a picture with 2 rows of
dots, r in the bottom row, s in the top, where the dots are joined
in pairs.

Example: a diagram from 6 to 4:
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Structure of the Brauer category.

HomB(δ)(r , s) = Bs
r is the free R-module on the set of diagrams

from r to s.

Composition of morphisms: concatenation of diagrams, with
closed loops replaced by δ.

B(δ) is a tensor category: r⊗s := r + s

and for diagrams D1, D2, D1 ⊗ D2 = D1D2 (juxtaposition)

16
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Theorem
The category B(δ) is generated as tensor category by the 4
morphisms

,

I=

�
�
�
�

A
A
A
A

,

X=

,

A=

,

U=

subject to a set of 7 relations, the most substantial of which can
be depicted as follows.
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Relations in the Brauer category

=

;

Double crossing

X ◦ X = I⊗I

=

Braid relation

(X⊗I) ◦ (I⊗X ) ◦ (X⊗I) =

(I⊗X ) ◦ (X⊗I) ◦ (I⊗X )

18
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=

;

De-looping

= δ : 0−→0

Loop Removal

=

;

Sliding

(A⊗I) ◦ (I⊗X ) = (I⊗A) ◦ (X⊗I);

=

Straightening

(A⊗I) ◦ (I⊗U) = I
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Some calculus in the Brauer category

The Brauer algebras are the endomorphism algebras
Br (δ) := EndB(δ)(r).

For all r , s we have an isomorphism of R-modules
Bs

r = HomB(r , s)
∼−→HomB(r + 1, s− 1) = Bs−1

r+1 , given by

D 7→ (I⊗(s−1)⊗A) ◦ (D⊗I).

The inverse is
D 7→ (D⊗I) ◦ (I⊗r⊗U) : HomB(r + 1, s− 1)−→HomB(r , s).

Thus, in B, the R-module HomB(r , s) depends only on r + s.

Important fact (due to Rui & Si, using cellular structure): The
Brauer algebra Br (C, z) is non-semisimple only if z ∈ Z. If
z ∈ Z≥0, the algebras Br (z) and Br (−2z) are semisimple
⇐⇒ r ≤ z + 1.

20



Some calculus in the Brauer category

The Brauer algebras are the endomorphism algebras
Br (δ) := EndB(δ)(r).

For all r , s we have an isomorphism of R-modules
Bs

r = HomB(r , s)
∼−→HomB(r + 1, s− 1) = Bs−1

r+1 , given by

D 7→ (I⊗(s−1)⊗A) ◦ (D⊗I).

The inverse is
D 7→ (D⊗I) ◦ (I⊗r⊗U) : HomB(r + 1, s− 1)−→HomB(r , s).

Thus, in B, the R-module HomB(r , s) depends only on r + s.

Important fact (due to Rui & Si, using cellular structure): The
Brauer algebra Br (C, z) is non-semisimple only if z ∈ Z. If
z ∈ Z≥0, the algebras Br (z) and Br (−2z) are semisimple
⇐⇒ r ≤ z + 1.

20



Some calculus in the Brauer category

The Brauer algebras are the endomorphism algebras
Br (δ) := EndB(δ)(r).

For all r , s we have an isomorphism of R-modules
Bs

r = HomB(r , s)
∼−→HomB(r + 1, s− 1) = Bs−1

r+1 , given by

D 7→ (I⊗(s−1)⊗A) ◦ (D⊗I).

The inverse is
D 7→ (D⊗I) ◦ (I⊗r⊗U) : HomB(r + 1, s− 1)−→HomB(r , s).

Thus, in B, the R-module HomB(r , s) depends only on r + s.

Important fact (due to Rui & Si, using cellular structure): The
Brauer algebra Br (C, z) is non-semisimple only if z ∈ Z. If
z ∈ Z≥0, the algebras Br (z) and Br (−2z) are semisimple
⇐⇒ r ≤ z + 1.

20



Some calculus in the Brauer category

The Brauer algebras are the endomorphism algebras
Br (δ) := EndB(δ)(r).

For all r , s we have an isomorphism of R-modules
Bs

r = HomB(r , s)
∼−→HomB(r + 1, s− 1) = Bs−1

r+1 , given by

D 7→ (I⊗(s−1)⊗A) ◦ (D⊗I).

The inverse is
D 7→ (D⊗I) ◦ (I⊗r⊗U) : HomB(r + 1, s− 1)−→HomB(r , s).

Thus, in B, the R-module HomB(r , s) depends only on r + s.

Important fact (due to Rui & Si, using cellular structure): The
Brauer algebra Br (C, z) is non-semisimple only if z ∈ Z. If
z ∈ Z≥0, the algebras Br (z) and Br (−2z) are semisimple
⇐⇒ r ≤ z + 1.

20



Some calculus in the Brauer category

The Brauer algebras are the endomorphism algebras
Br (δ) := EndB(δ)(r).

For all r , s we have an isomorphism of R-modules
Bs

r = HomB(r , s)
∼−→HomB(r + 1, s− 1) = Bs−1

r+1 , given by

D 7→ (I⊗(s−1)⊗A) ◦ (D⊗I).

The inverse is
D 7→ (D⊗I) ◦ (I⊗r⊗U) : HomB(r + 1, s− 1)−→HomB(r , s).

Thus, in B, the R-module HomB(r , s) depends only on r + s.

Important fact (due to Rui & Si, using cellular structure): The
Brauer algebra Br (C, z) is non-semisimple only if z ∈ Z. If
z ∈ Z≥0, the algebras Br (z) and Br (−2z) are semisimple
⇐⇒ r ≤ z + 1.

20



Some calculus in the Brauer category

The Brauer algebras are the endomorphism algebras
Br (δ) := EndB(δ)(r).

For all r , s we have an isomorphism of R-modules
Bs

r = HomB(r , s)
∼−→HomB(r + 1, s− 1) = Bs−1

r+1 , given by

D 7→ (I⊗(s−1)⊗A) ◦ (D⊗I).

The inverse is
D 7→ (D⊗I) ◦ (I⊗r⊗U) : HomB(r + 1, s− 1)−→HomB(r , s).

Thus, in B, the R-module HomB(r , s) depends only on r + s.

Important fact (due to Rui & Si, using cellular structure): The
Brauer algebra Br (C, z) is non-semisimple only if z ∈ Z. If
z ∈ Z≥0, the algebras Br (z) and Br (−2z) are semisimple
⇐⇒ r ≤ z + 1.

20



Some special morphisms in B(δ)
If Xi = I⊗i−1⊗X⊗I⊗r−i−1, then X 2

i = idr , and the Xi satisfy the
braid relations.

Thus we have Symr ⊆ Br
r , realised as permutation diagrams.

An important special morphism in B(δ) is
Σε(r) = ∑π∈Symr

(−ε)`(π)π ∈ Br (δ). Denote diagrammatically by

...

r

...
.

Note that for i < r , XiΣε(r) = Σε(r)Xi = −εΣε(r).
Since XiUi = Ui and AiXi = Ai , it follows that if ε = 1, then for
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An example of a relation: for all positive integers r , k with
0 ≤ k ≤ r

2 , we have:

r

· · ·

... ...
k

= 4k(r + δ
2 − k − 1) r − 2

· · ·

... ...
k − 1

+

(r − 2− 2k)!−1

r − 2

...
...
k

r − 2k

· · ·

· · · .
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A covariant functor

Return to G, the isometry group of V = Cm, (−,−). Define
TG(V ) to be the full subcategory of G-modules with objects
T r (V ), r = 0, 1, 2, . . . .

The usual tensor product of modules and G-module
homomorphisms makes TG(V ) into a tensor category.

Recall c0 = ∑a ba⊗b′a, a G-invariant element of V⊗2.

Theorem
(Brauer, 1937) There is a unique covariant functor of tensor
categories F : B(C,εm)−→TG(V ) such that F (r) = T r (V ),
F (I) = id : V → V, F (X ) : V⊗2 → V⊗2 is given by
v⊗w 7→ εw⊗v, F (A) : V⊗2 → V⊗0 = C is given by
v⊗w 7→ (v , w) and F (U) : C→ V⊗2 is given by 1 7→ c0.
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Statements of the fundamental theorems.

Theorem
(FFT, Brauer, 1937) The functor F is full. This means simply
that the induced maps Bs

r−→HomG(T r (V ), T s(V )) are
surjective for all r , s.

Brauer proved this for r = s, but that suffices, since Bs
r and

HomG(T r (V ), T s(V )) both depend only on r + s.
Since Br (m) and Br (−2m) are both non-semisimple for
r > m + 1, the surjective map ηr : Br (εm)−→EndG(T r (V )) has
a non-trivial kernel, at least for r > m + 1 in the orthogonal
case, and for r > m

2 + 1 in the symplectic case.
Theorem (SFT L-Zhang, 2012-13) Let d = m if G = O(V ), and
d = m

2 if G = Sp(V ). The kernel of the map ηr is zero if r ≤ d .
If r ≥ d + 1 the kernel is generated by a single idempotent in
Bd+1(εm) which is explicitly described in terms of diagrams as
follows.
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Generating idempotent: the symplectic case.
Here m = 2d , and we first take r = d + 1. For k ≤ d

2 , let Ψk be
the element of Bd+1(−2d) described below

...

d + 1

... ...
Ψk = k...

d + 1

...
.

Now define Φ ∈ Bd+1(−2d) by

Φ =
[ n+1

2 ]

∑
k=0

ak Ψk where ak =
1

(2kk !)2(n + 1− 2k)!
. (1)
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SFT-symplectic case

Theorem

I eiΦ = Φei = 0 for all i ≤ d.
I Φ2 = (d + 1)!Φ.
I (d + 1)!−1Φ is the idempotent corresponding to the ‘trivial’

representation of Bd+1(−2d) (‘Jones idempotent’).
I Φ is equal to the sum of all the diagrams in Bd+1(−2d).
I For all r ≥ d + 1, ker ηr = 〈Φ〉.
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SFT- The orthogonal case
For p = 0, 1, . . . , m + 1, the element Em+1−p ∈ Bm+1(m) is
defined by:

Em+1−p =

...

...
p

m + 1

...

...
p

Special case: E0 = Σ+(m + 1). Some facts about the Ej :

I eiEp = Epei = 0 for all i .
I E2

p = p!(m + 1− p)!Ep.
I If r ≥ m + 1, ker(ηr ) is generated by E0, E1, . . . , E[ m+1

2 ].

I For 0 ≤ i ≤ j ≤
[m+1

2

]
, Ei is in the ideal 〈Ej〉.

I Ep is a sum of diagrams in Bm+1(m) each of which has
coefficient ±1.
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SFT-the orthogonal case.
Theorem
Let G = O(V ).

If r ≤ m, then ker ηr : Br (m)−→EndG(T r (V )) is
zero. If r ≥ m + 1, then ker ηr = 〈E[ m+1

2 ]〉.

Proof: this is immediate from the properties of the Ep.

This form of the SFT provides a more precise form of
Schur-Weyl duality. It has been generalised to all fields of
characteristic 6= 2 by Jun Hu and Z. Xiao.

The proofs of both the FFT and SFT in the above form depend
on knowing other formulations, generally proved using some
identities, e.g. Capelli identities.

We will next sketch an independent proof, which essentially
reduces the problem to the case of GL(V ).
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Algebraic geometric proof of the FFT and SFT for
classical groups

We sketch a proof (which uses an algebraic geometric idea of
Atiyah) of the FFT and SFT for the classical groups, which
generalises to the case of the orthosymplectic Lie superalgebra

V , (−,−) and G are as before.

Let E = EndC(V ), an affine space, and define the
anti-involution A 7→ A† by (Av , w) = (v , A†w) for all v , w ∈ V .
Note that G = {g ∈ E | g†g = 1}.

Let E+ = {A ∈ E | A† = A}-another affine space. Since
(AB)† = B†A†, for any A ∈ E,ω(A) := A†A ∈ E+.

Write C[Y ] for the coordinate ring (ring of polynomial functions)
of an affine variety Y over C. Note that C[E] and C[E+] are
graded algebras.
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Geometric proof of FFT, SFT
Main Lemma (d’après Atiyah) Let f : E−→C be an element of
C[E] such that f (gA) = f (A) for all g ∈ G.

Then ∃ F ∈ C[E+]
such that f (A) = F (ω(A)) ∀ A ∈ E.

Note that ω(gA) = A†g†gA = A†A =ω(A) for g ∈ G.

Note also that the 3rd formulation of the FFT for G is that if
W = V⊕s, then C[W ]G is generated by the polynomials
(v1, . . . , vs) 7→ (vi , vj).

So the main lemma is a special case of the FFT; we will get
some intuition later as to how to prove it, even in the more
general setting of graded-symmetric polynomials.

We now show how to prove the FFT, given the main lemma.
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Some canonical identifications
• V ∼−→V ∗ via v 7→ φv : w 7→ (v , w).

If g ∈ GL(V ), then
φgv = ĝφv , where ĝ = (g†)−1.

• ξ∗ : V ∗⊗V ∗ ∼−→E given by φv⊗φw 7→ (x 7→ v(w , x)). If
h ∈ GL(V ), then ξ∗(h(φv⊗φw )) = ĥξ∗(φv⊗φw )h−1.

• If W is a complex vector space, define
Sr
ε(W ) = {w ∈ T r (W ) | ωr (π)w = (ε)`(π)w for all π ∈ Symr},
∧r
ε(W ) = {w ∈ T r (W ) |ωr (π)w = (−ε)`(π)w for all π ∈ Symr}

.

Write τ = ε-flip: v⊗w 7→ εw⊗v , etc. Then ξ∗ ◦ τ = † ◦ξ∗, so:
Under the isom ξ∗, S2

ε (V ∗) ∼→ E+ and ∧2
ε (V ∗) ∼→ E−.

• So E = E+ ⊗E− is a canonical GL(V )-equivariant
decomposition.
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• If W is a complex vector space, define
Sr
ε(W ) = {w ∈ T r (W ) | ωr (π)w = (ε)`(π)w for all π ∈ Symr},
∧r
ε(W ) = {w ∈ T r (W ) |ωr (π)w = (−ε)`(π)w for all π ∈ Symr}.

Write τ = ε-flip: v⊗w 7→ εw⊗v , etc. Then ξ∗ ◦ τ = † ◦ξ∗, so:
Under the isom ξ∗, S2

ε (V ∗) ∼→ E+ and ∧2
ε (V ∗) ∼→ E−.

• So E = E+ ⊗E− is a canonical GL(V )-equivariant
decomposition.

31



Some canonical identifications
• V ∼−→V ∗ via v 7→ φv : w 7→ (v , w). If g ∈ GL(V ), then
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h ∈ GL(V ), then ξ∗(h(φv⊗φw )) = ĥξ∗(φv⊗φw )h−1.

• If W is a complex vector space, define
Sr
ε(W ) = {w ∈ T r (W ) | ωr (π)w = (ε)`(π)w for all π ∈ Symr},
∧r
ε(W ) = {w ∈ T r (W ) |ωr (π)w = (−ε)`(π)w for all π ∈ Symr}.

Write τ = ε-flip: v⊗w 7→ εw⊗v , etc. Then ξ∗ ◦ τ = † ◦ξ∗, so:
Under the isom ξ∗, S2

ε (V ∗) ∼→ E+ and ∧2
ε (V ∗) ∼→ E−.

• So E = E+ ⊗E− is a canonical GL(V )-equivariant
decomposition.
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Proof of FFT for classical (later super) G

Statement of

Theorem:(T r (V )∗)G =

{
0 if r is odd
Span{κπ | π ∈ Sym2d if r = 2d ,

where κπ(v1⊗ . . .⊗v2d ) = ∏
d
i=1(vπ(2i−1), vπ(2i)).

First note that −idV ∈ G, so if L ∈ (T r (V )∗)G,
L(v) = L(−idV v) = (−1)r L(v), proving the first statement.

Now take r = 2d , and let L ∈ (T r (V )∗)G. Define
ΨL : E× T r (V )−→C by:

ΨL(A, v1⊗ . . .⊗v2d ) = L(Av1⊗Av2⊗ . . .⊗Av2d ).

Then ΨL ∈ C2d [E]⊗T 2d (V )∗.

For g ∈ G, by invariance of L, ΨL(gA, v) = ΨL(A, v), so we may
apply the Main Lemma:
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Proof of FFT (ctd).
There is a function FL ∈ Cd [E+]⊗T r (V )∗ such that
ΨL(A, v) = FL(A†A, v) = FL(ω(A), v)

Key point: FL is invariant under GL(V ).

Proof: If g ∈ GL(V ),
ω(Xg−1) = (Xg−1)†Xg−1 = ĝω(X )g−1 = g ·ω(X )

Hence:
FL(g ·ω(X ), gv) = ΨL(Xg−1, gv) = ΨL(X , v) = FL(ω(X ), v),
and since the elementsω(X ) are Zariski-dense in E+ (*),
we have FL(g · A, gv) = FL(A, v), for A ∈ E and v ∈ T 2d (V ).

(*) This is because: (i)ω : E→ E+ has generic fibre G; (ii) The
Cayley transform C : A 7→ (1− A)(1 + A)−1 defines a birational
equivalence between E− and G, and (iii) so
dim(E+) = dim(E)−dim(E−) = dim(E)−dim(G) = dim(ω(E)).
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Proof of FFT (ctd).
From L ∈ (T 2d (V )∗)G, we have constructed
FL ∈

(
Cd [E+]⊗T 2d (V )∗

)GL(V )

But Cd [E+] ' Sd (S2
ε (V ∗)∗) ' (Sd (S2

ε (V ∗))∗;

so the canonical map T 2d (V ∗)→ Sd (S2
ε (V ∗)) induces a

canonical GL(V )-map Cd [E+]−→T 2d (V ∗)∗.

So have a canonical map from
(
Cd [E+]⊗T 2d (V )∗

)GL(V ) to
((T 2d (V ∗)⊗T 2d (V ))∗)GL(V ) = ((T d (E)⊗T 2d (V ))∗)GL(V ).

CONSEQUENCE: We have a map h : L 7→ HL ∈
((T 2d (V ∗)⊗T 2d (V ))∗)GL(V ) '

(
(T d (E)⊗T 2d (V ))∗

)GL(V )

,

with the property that for A =ω(X ) ∈ E+,
HL(A⊗A⊗A⊗ . . .⊗A⊗v) = FL(A, v) = ΨL(X , v).
In particular, HL(I⊗I⊗ . . .⊗I⊗v) = L(v), so h : L 7→ HL is an

INJECTIVE MAP h : ((T 2d (V ))∗)G →
(
(T d (E)⊗T 2d (V ))∗

)GL(V ).
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Completion of proof of FFT.

Now the FFT for GL(V ) describes
(
(T d (E)⊗T 2d (V ))∗

)GL(V ):
this space is spanned by the maps hπ (π ∈ Sym2d ), where

hπ(A1⊗ . . .⊗Ad⊗v1⊗ . . .⊗v2d ) = ∏
d
i=1(vπ(2i−1), Aivπ(2i))

Since hπ(I⊗I⊗ . . .⊗I⊗v) = ∏
d
i=1(vπ(2i−1), vπ(2i)) = κπ(v),

if h(L) = ∑π απhπ , then
L(v) = ∑π απhπ(I⊗I⊗ . . .⊗I⊗v) = ∑π απκπ(v), and it follows
that L = ∑π απκπ , i.e. L is a linear combination of the κπ . �

Next, we show how the injective map
h : ((T 2d (V ))∗)G →

(
(T 2d (V ∗)⊗T 2d (V ))∗

)GL(V ) may be used
to prove the SFT for classical (and orthosymplectic
super-)groups.
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Diagrammatic formulation of the SFT

Diagrams D ∈ B0
2d may be identified with partitionings of

{1, 2, . . . , 2d} into pairs (i , i ′) as shown:

...

i ′i

FFT (just proved): There is a surjective map
κ : B2d

0 −→((T 2d (V ))∗)G, given by D 7→ κD, where
κD(v1⊗ . . .⊗v2d ) = ∏(i ,i ′) is an arc of D(vi , vi ′).

The SFT identifies ker(κ).
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Geometric proof of the SFT

Sym2r acts transitively on the set of diagrams in B0
2d (by right

multiplication). Let D0 be the diagram

......

Its stabiliser C in Sym2d is the centraliser of the involution
(1, 2)(3, 4) . . . (2d − 1, 2d), a group of order 2dd !.

Every diagram D ∈ B0
2d may be expressed D = D0πD with

πD ∈ Sym2d unique up to premultiplication by an element
c ∈ C, as shown below.
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Proof of SFT (ctd)

...

- - - - - - - - - - - - - - - - - - - - - - - - - - -

D0

πD

Now in addition to κ : B0
2d−→((T 2d (V ))∗)G, we also have

δ : B2d
2d−→

(
(T 2d (V ∗)⊗T 2d (V ))∗

)GL(V ), defined by δ(π) = δπ ,
for π ∈ Sym2d , and δ(D) = 0 for non-monic diagrams D ∈ B2d

2d ,

where δπ(φ1⊗ . . .⊗φ2d⊗v1⊗ . . .⊗v2d ) = ∏
2d
i=1φi(vπ(i)).
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Geometric proof of SFT
The key idea is

Theorem
There is a commutative diagram as shown below:

B0
2d

χ

��

κ // (T 2d (V )∗)G

h
��

B2d
2d

δ //
(
(T 2d (V ∗)⊗T 2d (V ))∗

)GL(V )

where:

I The maps κ and δ are as just described.
I h is the injective map we have constructed geometrically

using the Main Lemma.
I The map χ : B0

2d → B2d
2d is given by D 7→ e(C)πD,

where πD is such that D = D0πD and e(C) = |C|−1
∑c∈C c.
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SFT-completion of statement and proof

Corollary: ker(κ) = χ−1(ker(δ)) = D0 ker(δ) and ker(δ) is
known (it is the GL(V ) case): ker(δ) = 〈Σε(m + 1)〉 ⊆ CSym2d .
A typical element of ker(κ):

...

θ

...

with θ ∈ 〈Σε(m + 1)〉.

Example: orthogonal case: We have seen that ‘capping’
Σ+(m + 1) gives zero: i.e. eiΣ

+(m + 1) = 0 for 1 ≤ i ≤ m.
Hence if d ≤ m, D0Σ+(m + 1) = 0:

40
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Examples: the classical groups
A zero element in B0

2d :

......

Σ+(m + 1)

... ... ... ...

To get a non-zero element in ker(κ) we require 2d ≥ 2(m + 1),
since each of the first m + 1 points must be joined to a point
outside that set.
Thus when G = O(V ), ker(κ) 6= 0 ⇐⇒ d ≥ m + 1.

When G = Sp(V ), m = 2n, and the only constraint

(for ker(κ) 6= 0) is 2d ≥ m + 1 = 2n + 1, i.e. d ≥ n + 1
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About the proof of the Main Lemma
Recall the statement:

The involution † on E is defined by
(Av , w) = (v , A†w), all v , w;ω(A) := A†A ∈ E+. Then: given
f ∈ C[E]G, ∃ F ∈ C[E+] such that f (A) = F (ω(A)).

Step 1: Enlarge the domain C in order to deal with ‘generic’
endomorphisms. Take indeterminates xij corresponding to
matrix entries for A ∈ E.

Let R := C[xij ], K = the field of fractions of R, K ⊆ L := the
splitting field of det(t2− (xij)), R̃ = the integral closure of R in L.
Step 2: Extend V etc to V⊗CL := VL, (−,−) to (−,−)L, E to
EL := EndL(VL), G to GL. Interpret elements of EL as matrices
wrt a fixed basis of V , and † as an L-linear anti-involution on
this space of matrices.

Step 3: If A = (xij), impose the (linear) relations on the xij
implied by the equation A† = A. These depend on whether one
is in the orthogonal, symplectic or orthosymplectic case.
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The main lemma (ctd)

Step 4: Prove that If A = (xij) is the ‘generic’ matrix in E+
L , there

exists X ∈ EL such thatω(X ) = A.

In the orthosymplectic case,
this is a non-trivial calculation.

Step 5: Take f ∈ C[E]G; f has a unique extension to
fL : L[EL]GL . One proves Galois-theoretically that with X as in
Step 4, fL(X ) ∈ K .

Step 6: The value of fL(X ) is therefore a rational function of the
entries xij ofω(X ). Hence there is a rational function F , defined
on a Zariski-dense subset of E+, such that f = F ◦ω. (need to
avoid zeros of the denominator of fL(X ) ∈ K )

Step 7: By the irreducibility of E, f − F ◦ω is zero on all of E.�

43



The main lemma (ctd)

Step 4: Prove that If A = (xij) is the ‘generic’ matrix in E+
L , there

exists X ∈ EL such thatω(X ) = A. In the orthosymplectic case,
this is a non-trivial calculation.

Step 5: Take f ∈ C[E]G; f has a unique extension to
fL : L[EL]GL . One proves Galois-theoretically that with X as in
Step 4, fL(X ) ∈ K .

Step 6: The value of fL(X ) is therefore a rational function of the
entries xij ofω(X ). Hence there is a rational function F , defined
on a Zariski-dense subset of E+, such that f = F ◦ω. (need to
avoid zeros of the denominator of fL(X ) ∈ K )

Step 7: By the irreducibility of E, f − F ◦ω is zero on all of E.�

43



The main lemma (ctd)

Step 4: Prove that If A = (xij) is the ‘generic’ matrix in E+
L , there

exists X ∈ EL such thatω(X ) = A. In the orthosymplectic case,
this is a non-trivial calculation.

Step 5: Take f ∈ C[E]G; f has a unique extension to
fL : L[EL]GL . One proves Galois-theoretically that with X as in
Step 4, fL(X ) ∈ K .

Step 6: The value of fL(X ) is therefore a rational function of the
entries xij ofω(X ). Hence there is a rational function F , defined
on a Zariski-dense subset of E+, such that f = F ◦ω. (need to
avoid zeros of the denominator of fL(X ) ∈ K )

Step 7: By the irreducibility of E, f − F ◦ω is zero on all of E.�

43



The main lemma (ctd)

Step 4: Prove that If A = (xij) is the ‘generic’ matrix in E+
L , there

exists X ∈ EL such thatω(X ) = A. In the orthosymplectic case,
this is a non-trivial calculation.

Step 5: Take f ∈ C[E]G; f has a unique extension to
fL : L[EL]GL . One proves Galois-theoretically that with X as in
Step 4, fL(X ) ∈ K .

Step 6: The value of fL(X ) is therefore a rational function of the
entries xij ofω(X ). Hence there is a rational function F , defined
on a Zariski-dense subset of E+, such that f = F ◦ω. (need to
avoid zeros of the denominator of fL(X ) ∈ K )

Step 7: By the irreducibility of E, f − F ◦ω is zero on all of E.�

43



The main lemma (ctd)

Step 4: Prove that If A = (xij) is the ‘generic’ matrix in E+
L , there

exists X ∈ EL such thatω(X ) = A. In the orthosymplectic case,
this is a non-trivial calculation.

Step 5: Take f ∈ C[E]G; f has a unique extension to
fL : L[EL]GL . One proves Galois-theoretically that with X as in
Step 4, fL(X ) ∈ K .

Step 6: The value of fL(X ) is therefore a rational function of the
entries xij ofω(X ). Hence there is a rational function F , defined
on a Zariski-dense subset of E+, such that f = F ◦ω. (need to
avoid zeros of the denominator of fL(X ) ∈ K )

Step 7: By the irreducibility of E, f − F ◦ω is zero on all of E.�

43



The case of Lie superalgebras
Let V = V0̄ ⊕ V1̄ be a Z2-graded C-vector space.

If dim V0̄ = m, dim V1̄ = n, say that sdimV = (m|n).

Suppose V has an even non-degenerate bilinear form (−,−)
which is symmetric on V0̄, skew symmetric on V1̄, and satisfies
(V0̄, V1̄) = (V1̄, V0̄) = 0. So sdimV = (m|2n). This is an
orthosymplectic superspace.

If V , W are Z2-graded , so are V ∗, V⊗CW and
HomC(V , W ) ' W⊗CV ∗. In particular, so is EndC(V ).
• If sdim(V ) = (m|n) the general linear Lie superalgebra
gl(V ) = gl(m|n) is the Z2-graded Lie algebra EndC(V ), with Lie
product [X , Y ] = XY − (−1)[X ][Y ]YX .
• The orthosymplectic Lie algebra osp(m|2n) is the
Z2-graded subalgebra of gl(m|2n) defined by
{X ∈ gl(m|2n) | (Xv , w) + (−1)[X ][v ](v ; Xw) = 0}.
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Action of superalgebras on tensors
The Lie superalgebra gl(V ) acts on V⊗r via

X .v1⊗ . . .⊗vr =
r

∑
i=1

(−1)[X ]([v1]+···+[vi−1])v1⊗ . . .⊗Xvi⊗ . . .⊗vr .

The subalgebra osp(m|2n) acts correspondingly on V⊗r .
Further the group G := O(V0̄)× Sp(V1̄) also acts on V⊗r ,
compatibly with osp.
We have the endomorphisms τ , e ∈ Endosp,G(V⊗V ):

τ(v⊗w) = (−1)[v ][w ]w⊗v .
e is defined in a similar way to the classical orthogonal and
symplectic cases, using dual homogeneous bases of V .
This leads to a functor F from B(m− 2n) to
Rep(osp(m|2n), G); so the Brauer algebra Br (m− 2n) acts on
V⊗r . This action commutes with that of osp and of G.
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FFT and SFT for osp(m|2n)

Theorem (FFT–LZ 2013, see also Serge’ev) The map
Br (m− 2n)→ Endosp,G(V⊗r ) is surjective.

Theorem (SFT–LZ 2014) The kernel of the map
ηr : Br (m− 2n)→ Endosp,G(V⊗r ) is described as follows.
There is a canonical isomorphism of vector spaces : Br

r−→B0
2r .

The image of ker(ηr ) under this isomorphism is D0I(m, n),
where I(m, n) is the ideal of CSym(m+1)(2n+1) generated by the
Frobenius idempotent corresponding to the Young diagram
which is a (m + 1)× (2n + 1) rectangle.

We therefore require at least 2r ≥ (m + 1)(2n + 1); the exact
constraint is an unsolved problem.

NOTE: the image of ηr is almost always non-semisimple,

as are the modules T r (V ).
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Comments about the proof-supergroups over the
Grassmann algebra.

We turn the problem into one about groups, as follows. Let

Λp = ∧(Cp); and Λ := lim
→

Λp .

Λ is the ‘Grassmann algebra’; generators θ1,θ2, . . . ,
θiθj = −θjθi , C-basis the set of θ(i) = θi1 . . .θiN ,
i1 < i2 < · · · < iN , N = 0, 1, 2, . . . .

Λ is a Z2-graded C-algebra: Λ0̄ = span{θ(i) | N is even},
Λ1̄ = span{θ(i) | N is odd}.
Given VC with sdim(VC) = (m|`), we form V := V⊗CΛ, a Z2
graded Λ-module.

Def: GL(V ) := {g ∈ EndΛ(V )0̄ | g is invertible}.
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The orthosymplectic supergroup-proof of the FFT and
SFT

If VC has an even non-degenerate form (−,−)C, then ` = 2n
and (−,−)C extends uniquely to (−,−) on V = VC⊗CΛ.

The orthosymplectic supergroup OSp(V ) is defined as
{g ∈ GL(V ) | (gv , gw) = (v , w) ∀v , w ∈ V}.
We work in the category of Λ-modules with a G-action, and the
proof of the FFT and SFT (for OSp(V )) proceeds as outlined in
the classical cases. The main differences are:
• Much care needs to be taken with signs.
• The FFT and SFT for GL(V ) is an input to the proof for
OSp(V ). This was developed by several authors, including
Serge’ev, Berele and Regev, and Deligne and Morgan.
• The SFT for GL(V ) is where the ideal I(m, n) arises.
• One develops a theory of affine varieties over Λ, and proves
the (geometric) Main Lemma in this context. �
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Quantum invariant theory.
Let K = C(q), q an indeterminate, g a finite dimensional
reductive complex Lie algebra; e.g. g = gln(C).

The associated quantum group (Drinfeld) Uq = Uq(g), is a
K -Hopf algebra, which is a non-co-commutative deformation of
the universal enveloping algebra U(g) of g. It has generators
Ei , Fi , K±1

i , i = 1, 2, . . . , `.

C: the category of f.d. g-modules.
If Cq is the category of f.d. Uq-modules of type (1, 1, ..., 1),
we have a weight-preserving equivalence C ∼→ Cq,
where v ∈ Wq ∈ Cq has weight λ if Kiv = q〈αi ,λ〉v ∀i . Here Ki is
a ‘diagonal generator’ of Uq and αi is a simple root.

There is a universal R-matrix R ∈ ˜(Uq⊗Uq) such that
(i) For u ∈ Uq(g), R∆(u)R−1 = ∆′(u), and
(ii) We have R12R13R23 = R23R13R12 ∈ Uq(g)⊗3 (Y-B equation).
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Quantum groups and the braid group action

It follows that (i) If Ř := PR, where P(v⊗w) = w⊗v then
Ř ∈ HomUq (Vq⊗Wq , Wq⊗Vq) for modules Vq , Wq ∈ Cq .

(ii) If Ri = Ř acting on the (i , i + 1) factors of V⊗r
q ,

then R1R2R1 = R2R1R2, etc.

Hence we have µr ,q : KBr → EndUq (V⊗r
q )

for any Vq ∈ Cq, where Br is the r -string braid group.
The generator σi ∈ Br is mapped to Ri , i = 1, . . . , r − 1.

Let P be the lattice of weights of g wrt a Cartan subalgebra h,
and let P+ be the dominant weights. The simple modules in
both C and Cq are indexed by P+. For λ ∈ P+, write Lλ (Lλ,q)
for the corresponding simple module in C (resp. Cq).

In certain cases we can understand the action of Ř on V⊗V
‘generically’.
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Ř ∈ HomUq (Vq⊗Wq , Wq⊗Vq) for modules Vq , Wq ∈ Cq .

(ii) If Ri = Ř acting on the (i , i + 1) factors of V⊗r
q ,

then R1R2R1 = R2R1R2, etc.

Hence we have µr ,q : KBr → EndUq (V⊗r
q )

for any Vq ∈ Cq, where Br is the r -string braid group.
The generator σi ∈ Br is mapped to Ri , i = 1, . . . , r − 1.

Let P be the lattice of weights of g wrt a Cartan subalgebra h,
and let P+ be the dominant weights. The simple modules in
both C and Cq are indexed by P+. For λ ∈ P+, write Lλ (Lλ,q)
for the corresponding simple module in C (resp. Cq).

In certain cases we can understand the action of Ř on V⊗V
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Ř ∈ HomUq (Vq⊗Wq , Wq⊗Vq) for modules Vq , Wq ∈ Cq .
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Eigenvalues of the R-matrix
Write C = ∑j XjX j ∈ U(g) for the Casimir element (Xj , X j dual
bases of g). It is canonical, and central.

Therefore (by Schur’s Lemma) C acts on the simple module Lλ
as a scalar, and that scalar is given by χλ(C) = (λ+ 2ρ, λ),
where ρ = half-sum of the positive roots, and (−,−) is a
W -invariant form on h∗, normalised so that (α,α) = 2 for short
roots.

Proposition

Assume L⊗2
λ,q = Lµ1,q ⊕ · · · ⊕ Lµs ,q, where the µi are distinct

weights. Then Ř acts on Lµi ,q as the scalar

ε(i)q
1
2 (χµi (C)−2χλ(C)),

where ε(i) is the sign by which the simple interchange acts on
Lµi in the classical limit.
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Quantum tensors-from the braid group algebra to finite
dimensions

Some examples of the above.

Let g = gln(C). If ε1, ...,εn are the standard weights, the
standard Uq-module Vq = Lε1,q, and Vq⊗Vq ' L2ε1,q ⊕ Lε1+ε2,q.
By the above proposition, it follows that Ř acts on L2ε1,q and
Lε1+ε2,q as the scalar q,−q−1 respectively.

Hence µr ,q factors through
νr : KBr/〈(R1 − q)(R1 + q−1)〉 = Hr (q)→ EndUq (V⊗r

q ),
Hr (q) is the ‘Hecke algebra of type An−1’.
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Lε1+ε2,q as the scalar q,−q−1 respectively.

Hence µr ,q factors through
νr : KBr/〈(R1 − q)(R1 + q−1)〉 = Hr (q)→ EndUq (V⊗r

q ),
Hr (q) is the ‘Hecke algebra of type An−1’.

52



Quantum FFT and SFT for type A

FFT: If Vq is the ‘natural module’ for Uq(gln), νr is surjective.

This is proved by reducing to the classical case (q = 1) using
integral forms of Uq and Vq over the ring C[q](q−1)-the
localisation of C[q] at (q − 1):

By the equivalence of categories C ' Cq, , it suffices to show
that dimC(Im(ωr )) = dimK (Im(νr )). One proves by a
degeneration argument that dimC(Im(ωr )) ≤ dimK (Im(νr )).
So dimC(EndU(T r (V )) = dimC(Im(ωr )) ≤ dimK (Im(νr )) ≤
dimK (EndUq (T r (Vq)), and equality pertains.�

*************************************
Now Hr (q) has a K -basis {Tw | w ∈ Symr}.

For any r , let e−q (r) = ∑w∈Symr
(−q)−`(w)Tw ∈ Hr (q) (The

Hr (q)-alternator). This is the ‘q-analogue’ of the alternator e−r .
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Fundamental theorems for quantum type A

Recall n = dimC(V ).

SFT: ker(νr ) = 〈e−q (n + 1)〉. If r < n + 1, νr is an isomorpism.

This is also proved by a degeneration-dimension argument.

Important example: take n = 2. Then Uq = Uq(gl2), and the
FFT and SFT tell us that if Vq is the natural 2-dimensional
Uq-module, then

EndUq (T r (Vq)) ' Hr (q)/〈e−q (3)〉 := TLr (q).

The algebra TLr (q) is the famous Temperley-Lieb algebra. It
has a description in terms of diagrams which will not have time
to discuss (see [GL-DA;ENS2003]).
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Quantum groups of type B, C, D (orthogonal and
symplectic cases)

We will apply our earlier results (FFT, SFT) to the quantum
case.

If the Euclidean space Rm has an orthonormal basis ε1, . . . ,εm,
the relevant lattice of weights is a sublattice of ∑i Zεi .

The ‘natural module’ in these cases is Lε1 , and we have (in the
category C):

Lε1⊗Lε1 ' L2ε1 ⊕ Lε1+ε2 ⊕ L0.

By the equivalence C ' Cq, for the Uq(g)-module Lε1,q:

Lε1,q⊗Lε1,q ' L2ε1,q ⊕ Lε1+ε2,q ⊕ L0,q ,

where L0,q is the trivial Uq-module.
Now let’s look at the braid group action on the RHS:
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Eigenvalues of Ř and the BMW algebra

The eigenvalues of Ř on the 3 summands are respectively
q,−q−1,εqε−m

So the map µr ,q : CBr → EndUq(g)(T r (Vq)) factors through
CBr/〈(σi − q)(σi + q−1)(σi −εqε−m)〉.

This algebra is still too big–it’s ∞-dimensional. We cut it down
by proving further relations among the µr ,q(σi)

Let y , z be indeterminates over C and write A = C[y±1, z]. The
BMW algebra BMWr (y , z) over A is the associative A-algebra
with generators g±1

1 , . . . , g±1
r−1 and e1, . . . , er−1, subject to the

following relations:
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The eigenvalues of Ř on the 3 summands are respectively
q,−q−1,εqε−m

So the map µr ,q : CBr → EndUq(g)(T r (Vq)) factors through
CBr/〈(σi − q)(σi + q−1)(σi −εqε−m)〉.

This algebra is still too big–it’s ∞-dimensional. We cut it down
by proving further relations among the µr ,q(σi)

Let y , z be indeterminates over C and write A = C[y±1, z]. The
BMW algebra BMWr (y , z) over A is the associative A-algebra
with generators g±1

1 , . . . , g±1
r−1 and e1, . . . , er−1, subject to the

following relations:

56
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The BMW algebra

The braid relations for the gi :

gigj = gjgi if |i − j | ≥ 2
gigi+1gi = gi+1gigi+1 for 1 ≤ i ≤ r − 1;

The Kauffman skein relations:

gi − g−1
i = z(1− ei) for all i ;

The de-looping relations:

giei = eigi = yei ;

eig±1
i−1ei = y∓1ei ;

eig±1
i+1ei = y∓1ei .

Then: (gi − y)(g2
i − zgi − 1) = 0 (cubic!!)
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BMW and invariants

Take y = εqε−m and z = q − q−1 in the above definition.

Proposition

The map µr ,q factors through BMWr (εqε−m, q − q−1). The
element ei is mapped to ε([m−ε]q +ε)P0, where P0 is the
projection to the trivial component of V⊗2

q .

Theorem (FFT) The map
νr ,q : BMWr (εqε−m, q − q−1)−→EndUq (T r (Vq)) is surjective.

This is proved in similar fashion to the case of GL(V ). The
BMW algebra BMWr (εqε−m, q − q−1) := BMWr ,q(εm) is a
q-analogue of Br (εm). In particular
dimK (BMWr (εqε−m, q − q−1)) = dimC(Br (εm)).
One uses an integrality argument, as well as the FFT for the
classical limit (limq→1), to prove the result.
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Quantum SFT and further analysis-cellular algebras.
To compare the quantum and classical cases of O(V ) and
Sp(V ), it is convenient to use the notion of a cellular algebra.
These are algebras which are generically semisimple, but
which have non-semisimple specialisations.

A cellular algebra A over a commutative ring R consists of
the following data:
(i) A partially ordered set Λ, and (ii) for each λ ∈ Λ, a set M(λ).
(iii) A map C : qλ∈ΛM(λ)×M(λ)−→A, whose image is an
R-basis of A. Write C(S, T ) := Cλ

S,T

(iv) For S, T ∈ M(λ) and a ∈ A, we have

aCλ
S,T = ∑

S′∈M(λ)

ra(S′, S)Cλ
S′ ,T + lower terms.

(v) The anti-involution ∗ of A, defined by (Cλ
S,T )∗ = Cλ

T ,S.
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Cellular algebras-representation theory
The tuple (Λ, M , C) is called the cell datum of A; the ra(S′, S)
are the structure constants.

Given the cellular algebra A, we may form the cell modules
W (λ): R-basis {bS | S ∈ M(λ)} and A-action defined by
a · bS = ∑S′∈M(λ) ra(S′, S)bS′ .

Theorem
I There is a canonical symmetric bilinear form on W (λ),

defined by (bS , bT )λ = r(S, T ), where
(Cλ

S,T )2 = r(S, T )Cλ
S,T + lower terms.

I (−,−)λ is A-invariant: (aw , w ′)λ = (w , a∗w ′)λ. So
Rad(λ) := {w ∈ W (λ) | (w , w ′)λ = 0 ∀w ′ ∈ W (λ)} is a
submodule of W (λ).

I (R a field) A is semisimple ⇐⇒ Rad(λ) = 0 for all λ
(⇐⇒ Hom(W (λ), W (µ)) = 0 for µ 6= λ).

I In general L(λ) is simple or is zero. The set of non-zero
L(λ) forms a complete set of non-isomorphic A-modules.
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Application to the quantum SFT
We work over the ring C[q]1, the localisation of C[q] at (q − 1),
and define ψ1 : C[q]1 → C by ψ1(q) = 1.

1. For each r , the algebras BMWr ,q(εm) and Br (εm) have a
cellular structure with the same cell datum (Λ, M , C).

2. The structure constants of Br (εm) are obtained from those
of BMWr ,q(εm) by putting q = 1.

3. For each λ ∈ Λ, denote the cell module of BMWr ,q(εm) by
Wq(λ) and that of Br (εm) by W (λ). Then
W (λ) = limq→1 Wq(λ)(= C⊗ψ1Wq(λ)), and

4. The Gram matrix of the canonical form on W (λ) is
obtained from that of Wq(λ) by setting q = 1, as is the
matrix of of limq→1 b ∈ Br (εm) from that of b.

61



Application to the quantum SFT
We work over the ring C[q]1, the localisation of C[q] at (q − 1),
and define ψ1 : C[q]1 → C by ψ1(q) = 1.

1. For each r , the algebras BMWr ,q(εm) and Br (εm) have a
cellular structure with the same cell datum (Λ, M , C).

2. The structure constants of Br (εm) are obtained from those
of BMWr ,q(εm) by putting q = 1.

3. For each λ ∈ Λ, denote the cell module of BMWr ,q(εm) by
Wq(λ) and that of Br (εm) by W (λ). Then
W (λ) = limq→1 Wq(λ)(= C⊗ψ1Wq(λ)), and

4. The Gram matrix of the canonical form on W (λ) is
obtained from that of Wq(λ) by setting q = 1, as is the
matrix of of limq→1 b ∈ Br (εm) from that of b.

61



Application to the quantum SFT
We work over the ring C[q]1, the localisation of C[q] at (q − 1),
and define ψ1 : C[q]1 → C by ψ1(q) = 1.

1. For each r , the algebras BMWr ,q(εm) and Br (εm) have a
cellular structure with the same cell datum (Λ, M , C).

2. The structure constants of Br (εm) are obtained from those
of BMWr ,q(εm) by putting q = 1.

3. For each λ ∈ Λ, denote the cell module of BMWr ,q(εm) by
Wq(λ) and that of Br (εm) by W (λ). Then
W (λ) = limq→1 Wq(λ)(= C⊗ψ1Wq(λ)), and

4. The Gram matrix of the canonical form on W (λ) is
obtained from that of Wq(λ) by setting q = 1, as is the
matrix of of limq→1 b ∈ Br (εm) from that of b.

61



Application to the quantum SFT
We work over the ring C[q]1, the localisation of C[q] at (q − 1),
and define ψ1 : C[q]1 → C by ψ1(q) = 1.

1. For each r , the algebras BMWr ,q(εm) and Br (εm) have a
cellular structure with the same cell datum (Λ, M , C).

2. The structure constants of Br (εm) are obtained from those
of BMWr ,q(εm) by putting q = 1.

3. For each λ ∈ Λ, denote the cell module of BMWr ,q(εm) by
Wq(λ) and that of Br (εm) by W (λ). Then
W (λ) = limq→1 Wq(λ)(= C⊗ψ1Wq(λ)), and

4. The Gram matrix of the canonical form on W (λ) is
obtained from that of Wq(λ) by setting q = 1, as is the
matrix of of limq→1 b ∈ Br (εm) from that of b.

61



Application to the quantum SFT
We work over the ring C[q]1, the localisation of C[q] at (q − 1),
and define ψ1 : C[q]1 → C by ψ1(q) = 1.

1. For each r , the algebras BMWr ,q(εm) and Br (εm) have a
cellular structure with the same cell datum (Λ, M , C).

2. The structure constants of Br (εm) are obtained from those
of BMWr ,q(εm) by putting q = 1.

3. For each λ ∈ Λ, denote the cell module of BMWr ,q(εm) by
Wq(λ) and that of Br (εm) by W (λ). Then
W (λ) = limq→1 Wq(λ)(= C⊗ψ1Wq(λ)), and

4. The Gram matrix of the canonical form on W (λ) is
obtained from that of Wq(λ) by setting q = 1, as is the
matrix of of limq→1 b ∈ Br (εm) from that of b.

61



Application to the quantum SFT
We work over the ring C[q]1, the localisation of C[q] at (q − 1),
and define ψ1 : C[q]1 → C by ψ1(q) = 1.

1. For each r , the algebras BMWr ,q(εm) and Br (εm) have a
cellular structure with the same cell datum (Λ, M , C).

2. The structure constants of Br (εm) are obtained from those
of BMWr ,q(εm) by putting q = 1.

3. For each λ ∈ Λ, denote the cell module of BMWr ,q(εm) by
Wq(λ) and that of Br (εm) by W (λ). Then
W (λ) = limq→1 Wq(λ)(= C⊗ψ1Wq(λ)), and

4. The Gram matrix of the canonical form on W (λ) is
obtained from that of Wq(λ) by setting q = 1, as is the
matrix of of limq→1 b ∈ Br (εm) from that of b.

61



Proof of the quantum SFT
Suppose Φ is an idempotent in Br (εm) such that the ideal 〈Φ〉
is equal to ker(νr : Br (εm)−→EndG(V⊗r )).

Suppose that Φq ∈ BMWr ,q(εm) is such that

1. Φ2
q = f (q)Φq where f (q) ∈ Aq.

2. limq→1 Φq = cΦ, where c 6= 0.

Then (Proposition:) Φq generates
ker(νr ,q : BMWr ,q(εm)−→EndUq (V⊗r

q )).

Theorem(SFT, quantum case) There exists such an
idempotent Φq in the orthogonal and symplectic cases.

In the symplectic case, there is a canonical choice. In the
orthogonal case an explicit formula is known only for the case
m = 3. (It is complicated!)
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The idempotent in the case O(3)

Recall that this will be an element of BMW4(q)

Let fi = −gi − (1− q−2)ei + q2, and set Fq = f1f3.
Also define e14 = g−1

3 g1e2g−1
1 g3 and e1234 = e2g1g−1

3 g2g−1
1 g3.

Now define Φq ∈ BMW4(q) ⊆ BMWr (q):

Φq = aFqe2Fq − bFq − cFqe2e14Fq + dFqe1234Fq ,

where

a = 1 + (1− q−2)2,

b = 1 + (1− q2)2 + (1− q−2)2,

c =
1 + (2 + q−2)(1− q−2)2 + (1 + q2)(1− q−2)4

([3]q − 1)2 ,

d = (q − q−1)2 = q2(a− 1).
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Positive characteristic and roots of unity

The results I have outlined are ‘generic’; however they hold in
much greater generality than I have stated them.

The results about classical O(V ) and Sp(V ) hold for all fields of
characteristic 6= 2.

The results about quantum GL are true over Z[q±1]
(Du-Parshall-Scott)

Tilting modules for quantum gln, om, sp2d (i.e. indecomposable
summands of T r (V )) at roots of unity may be analysed using
the above results/methods (e.g. Andersen-L-Zhang, to appear,
Pacific J M.)

64



Positive characteristic and roots of unity

The results I have outlined are ‘generic’; however they hold in
much greater generality than I have stated them.

The results about classical O(V ) and Sp(V ) hold for all fields of
characteristic 6= 2.

The results about quantum GL are true over Z[q±1]
(Du-Parshall-Scott)

Tilting modules for quantum gln, om, sp2d (i.e. indecomposable
summands of T r (V )) at roots of unity may be analysed using
the above results/methods (e.g. Andersen-L-Zhang, to appear,
Pacific J M.)

64



Positive characteristic and roots of unity

The results I have outlined are ‘generic’; however they hold in
much greater generality than I have stated them.

The results about classical O(V ) and Sp(V ) hold for all fields of
characteristic 6= 2.

The results about quantum GL are true over Z[q±1]
(Du-Parshall-Scott)

Tilting modules for quantum gln, om, sp2d (i.e. indecomposable
summands of T r (V )) at roots of unity may be analysed using
the above results/methods (e.g. Andersen-L-Zhang, to appear,
Pacific J M.)

64



Positive characteristic and roots of unity

The results I have outlined are ‘generic’; however they hold in
much greater generality than I have stated them.

The results about classical O(V ) and Sp(V ) hold for all fields of
characteristic 6= 2.

The results about quantum GL are true over Z[q±1]
(Du-Parshall-Scott)

Tilting modules for quantum gln, om, sp2d (i.e. indecomposable
summands of T r (V )) at roots of unity may be analysed using
the above results/methods (e.g. Andersen-L-Zhang, to appear,
Pacific J M.)

64



Unsolved problems–directions for future research.
Determine, in the orthosymplectic case, the smallest r for which
the homomorphism Br (m− 2n)→ T r (V ) has a non-trivial
kernel. (We know 2r ≥ (m + 1)(2n + 1) is necessary).

In the orthosymplectic SFT, is the kernel generated by a single
idempotent? This is unknown even for simple cases like
osp(2|2).

Integral versions of all cases; analysis at roots of unity; tilting
modules

For which pairs g, V do we have ABr → EndUA(g)(V⊗r )
surjective? And for which subrings A of K = C(q)?

When does the above map factor through a cellular algebra?
(cf. ALZ)
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Integral versions of all cases; analysis at roots of unity; tilting
modules

For which pairs g, V do we have ABr → EndUA(g)(V⊗r )
surjective? And for which subrings A of K = C(q)?

When does the above map factor through a cellular algebra?
(cf. ALZ)
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