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Abstract

Complete lists are given of all reflexible orientable regular maps of genus 2 to 15,
all non-orientable regular maps of genus 4 to 30, and all (orientable) rotary but chiral
(irreflexible) maps of genus 2 to 15 inclusive. On each list the maps are classified according
to genus and type (viz. {p,q} where every face is incident with p edges and every vertex
is incident with g edges). The complete lists were determined with the help of a parallel
program which finds all normal subgroups of low index in a finitely-presented group.

1991 Mathematics Subject Classification: 05C25, 57M15

1. Introduction

A map is a 2-cell embedding of a connected graph (or multigraph) into a closed
surface without boundary. Such a map M is composed of a vertex-set V = V(M), an
edge-set £ = E(M), and a set of faces which we will denote by FF = F(M). The map
is called orientable or non-orientable according to whether the underlying surface (on
which the graph is embedded) is orientable or non-orientable. The faces of M are the
simply-connected components of the space obtained by removing the embedded graph
from the surface; alternatively, in the orientable case, they can be defined more directly by

considering just the underlying graph together with a ‘rotation’ at each vertex (see [2]).

Associated also with any map is a set of darts, or arcs, which are the incident vertex-

edge pairs (v,e) € V x E. Each dart is made up of two blades, one corresponding to each
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face containing the edge e (except in degenerate situations where an edge lies in just one

face, but these will not concern us here.)

An automorphism of a map M is a permutation of its blades, preserving the properties
of incidence, and as usual these form a group under composition, called the automorphism
group of the map, and denoted by Aut M. From connectedness of the underlying graph,
it follows that every automorphism is uniquely determined by its effect on any blade, and
hence the number of automorphisms of M is bounded above by the number of blades, or

equivalently, |[Aut M| < 4|E/|.

Now if there exist automorphisms R and S with the property that R cyclically per-
mutes the consecutive edges of some face f (in single steps around f), and S cyclically
permutes the consecutive edges incident to some vertex v of f (in single steps around v),
then following Wilson [10] we may call M a rotary map. Under more currently acceptable

terminology, M is also called a regular map (in the sense of Brahana [4]).

In this case (again by connectedness) the group Aut M acts transitively on the vertices,
on edges, and on faces of M, and it follows that all the faces are bordered by the same
number of edges, say p, while all the vertices have the same degree, say ¢q. The pair
{p,q} is known as the type of the regular map M. Note that the topological dual of
M, denoted by M* and obtainable by defining V(M*) = F(M), E(M*) = E(M) and
F(M*) =V (M) and taking the same relations of incidence, will also be regular, with the
same automorphism group as M and of type {q, p}.

Notice also that R and S may be chosen (replacing one of them by its inverse if nec-
essary) so that the automorphism RS interchanges the vertex v with one of its neighbours
along an edge e (on the border of f), interchanging f with the other face containing e
in the process. The three automorphisms R, S and RS may thus be viewed as rotations

which satisfy the relations RP = §¢ = (RS)? = 1.

If a rotary map M admits also an automorphism a which (like RS) ‘flips’ the edge e
but (unlike RS) preserves the face f, then we say the regular map M is reflexible. This
automorphism a is may be thought of geometrically as a reflection, about an axis passing

through the midpoints of the edge e and the face f. Similarly, the automorphisms b = aR

2



and ¢ = bS may also be thought of as reflections, and the following relations are satisfied:
a? =02 =c? = (ab)? = (bc)? = (ca)? = 1. Also in this case, Aut M is transitive (indeed

regular) on blades, and can be generated by the three reflections a,b and c.

If the map M is orientable, then the elements R = ab and S = bc generate a normal
subgroup of index 2 in Aut M, consisting of all elements expressible as a word of even length
in {a,b,c}, called the rotation subgroup Aut™M. In this case the elements of Aut™M are
precisely those automorphisms which preserve the orientation of the underlying surface,
while all those in Aut M\ Aut™M are orientation-reversing. In the non-orientable case,
however, there are no true reflections: every ‘reflection’ is a product of rotations. In

particular, each of a,b and c is expressible as a word in the rotations R and S, and hence

(R,S) = (ab, bc) has index 1 in Aut M.

On the other hand, if no such automorphism a exists, then the rotary map M is called
chiral, and its automorphism group can be generated by the rotations R and S. Chiral
maps are necessarily orientable. Also chiral maps occur in opposite pairs, with one member

of each pair obtainable from the other by reflection.
Further details and some historical background may be found in [1, 2, 7, 9, 10].

The genus of a map M is defined as the genus g of the surface on which M is embedded,

and is given by the usual formula in terms of the Euler characteristic:

2—2g if M is orientable

x(M) = [V|=|E[+|F| = { 2—g if M is non-orientable.

For regular maps of type {p,q}, counting the number of blades containing a given
edge e yields |[Aut M| = 2|E| when the regular map M is chiral, while |Aut M| = 4|E)|
when M is reflexible, and also in either case, counting the number of darts incident with
a given vertex, edge or face gives the well known identities ¢|V| = 2|E| = p|F|. These

together with the formula above make the calculation of the genus straightforward:

|Aut M|(1/8 —1/4p — 1/4q) +1 if M is orientable and reflexible
g=9gM)=< |[AutM|(1/4—1/2p—1/2q) +1 if M is orientable but chiral
|Aut M|(1/4—1/2p—1/2q) +2 if M is non-orientable.

In this paper we describe the determination of all regular maps of small genus, using
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the above background information and a program to systematically enumerate all possibil-

ities for the automorphism group. Specifically, we provide complete lists of the following:

e all reflexible orientable regular maps of genus between 2 and 15 inclusive,
e all chiral regular maps of genus between 2 and 15 inclusive, and

e all non-orientable regular maps of genus between 3 and 30 inclusive.

Orientable regular maps of genus 0 (spherical maps) and those of genus 1 (toroidal maps)
are known and well understood — see [7, 9]. The lists we produce now considerably extend
the current state of knowledge. Indeed at the time of writing we understand that orientable
regular maps have been classified for genus up to only 7 (see [1, 7] for example), and there

has been no serious attempt to classify non-orientable regular maps of small genus at all.

Further background is given in Section 2, including the connection with group presen-
tations which is fundamental to our approach, and a brief description of the computational
methods involved. Further details are available in [5, 8]. The resulting complete lists are

produced in Section 3, and a few concluding remarks are offered in Section 4.

2. Further background

As follows from the sort of analysis provided earlier, the rotation group Aut*M of
any rotary map M of type {p, ¢} is a homomorphic image of the (p, q,2) triangle group
A= A(p,q,2) = (u,v | u? = v? = (uw)? = 1), via some homomorphism taking u to R
and v to S; in particular, this homomorphism from A onto Aut*™M is non-degenerate,
meaning that the orders of the two generators and their product are preserved. Conversely,
any non-degenerate homomorphism from A(p, ¢, 2) to a finite group G yields a rotary map
M of type {p,q} on which G acts as rotation group. In fact if R and S are the images
in G of the generators u and v of A(p,q,2), then the vertices, edges and faces of M may
be taken as the (right) cosets in G of the subgroups V = (S), E = (RS) and F = (R)
respectively, with incidence defined by non-empty intersection. The group G acts by right
multiplication, and the three subgroups V', E and F' then become the stabilizers of some

mutually incident vertex v, edge e and face f respectively.

This correspondence also extends to reflexible maps: the automorphism group of any
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reflexible regular map M of type {p,q} is a non-degenerate homomorphic image of the
extended (p,q,2) triangle group A* = A*(p,q,2) = (t,u,v | t2 = (ut)? = (tv)? = wP =
v? = (uv)? = 1), via some homomorphism taking u to R and v to S, and ¢ to the
reflection b = aR described earlier; and conversely, any non-degenerate homomorphism
from A*(p,q,2) to a finite group G yields a reflexible regular map M of type {p,q} on
which G acts as automorphism group. Here the vertices, edges and faces of M may be
taken as the (right) cosets in G of the subgroups V = (b,¢), E = (a,c) and F = {(a,b)
respectively, again with incidence defined by non-empty intersection, where a,b and c are
the images of ut, t and tv respectively. Also the corresponding map M is orientable if and

only if the subgroup (ab, bc) of G =Aut M has index 2 in G.

Now using this correspondence between regular maps and generators for their au-
tomorphism groups, we can set about finding regular maps on surfaces of up to given
genus by determining groups with the appropriate properties — or more specifically, non-
degenerate finite homomorphic images of the groups A(p,q,2) and A*(p,q,2). To do
this, rather than consider all possibilities for the type {p, ¢} for (up to) given genus, we

determine all suitable images of the following two finitely-presented groups:

® = (u,v|(w) =1) and @* = (t,u,v|t>=(ut)’>= (tv)?>=(w)?=1).

If G is a finite homomorphic image of ®*, via some homomorphism which preserves
the orders of ¢, ut, vt and uv, then if p and ¢ denote the orders of the images in G of v and
v respectively, then there exists a regular map M of type {p, ¢} on which the group G acts
as automorphism group. This map M is non-orientable if and only if the image of ¢ lies
in the subgroup generated by the images of v and v, or equivalently, since ¢ inverts each
of u and v by conjugation, if and only if there exists some relation involving the images
of u, v and t in which the number of occurrences of ¢ is odd. Otherwise (when there is
no such relation) the map is orientable and reflexible. Further, once the orders of G and
of the images of v and v are known, the genus of M can be calculated using the formula

given in the Introduction.

Hence the problem of finding all reflexible regular maps is reduced to determining

finite factor groups of ®* (and examining their properties).
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For example, the symmetric group Sy of degree 4 is obtainable as a factor group
of ®* via a homomorphism taking ¢ to (1,2), u to (1,2,3), and v to (1,2,4), and so
is the automorphism group of a reflexible regular map of type {3,3}. As the images
of u and v generate the alternating group A4, the map is orientable, and the genus is
24(1/8 = 1/12 — 1/12) + 1 = 0. Of course this is nothing more than the tetrahedral
graph embedded on the sphere, however it serves to illustrate the point. Similarly, Sy is
obtainable as a factor group of ®* via a different homomorphism taking ¢ to (1,2), u to
(1,2,3), and v to (1,3,2,4), and so is also the automorphism group of reflexible regular
map of type {3,4}. As the images of u and v generate Sy, the map is non-orientable, and

its genus is 24(1/4—-1/6 —1/8) +2 = 1.

More generally, suppose G is the automorphism group of a reflexible regular map
M of genus g. If M is orientable then g — 1 = |G|(1/8 — 1/4p — 1/4q), and so for given
(orientable) genus g > 1 the largest possible order for G is achieved when (1/8—1/4p—1/4q)
takes its minimum possible value, namely 1/168, when {p,q} = {3,7}. Rearranging,
this gives |G| < 168(9g — 1) for g > 1. On the other hand, if M is non-orientable then
9g—2=1G|(1/4—1/2p—1/2q), and so for given (non-orientable) genus g > 2 the largest
possible order for G is achieved when (1/4—1/2p—1/2q) takes its minimum possible value,
namely 1/84, again when {p, ¢} = {3, 7}, but this time we find |G| < 84(g — 2) for g > 2.
Thus to find reflexible orientable regular maps of genus 2 to 15, we need to consider finite
factor groups of ®* of order up to 168(15 — 1) = 2352, and as also 2352 = 84(30 — 2), the

same information can be used to determine non-orientable regular maps of genus 3 to 30.

Now the problem of determining all finite factor groups of a given finitely-presented
group A of up to some prescribed order N is equivalent to finding all normal subgroups
of index up to N in A, and the development and implementation of an algorithm for
doing this have been described in detail in [5]. Our algorithm is an adaptation of one
due to Charles Sims and others for finding conjugacy classes of all subgroups of up to
a given index. To find a representative of each such class of subgroups, the standard
algorithm uses a back-track search through a tree, with nodes at level k£ corresponding

to certain subgroups generated by k elements. The search begins (at level 0) with the



identity subgroup, generated by the empty set ¢, and successively adjoins and removes
elements to and from the generating set for the subgroup, on a last-in first-out basis.
Standard techniques of coset enumeration are used at each node to determine how to
proceed. In our adaptation, the additional subgroup generators are treated as relators
(representatives of conjugacy classes of elements generating a normal subgroup), rather

than simply elements which usually generate a subgroup that is not normal.

In practice the application of this algorithm to finding normal subgroups of index up to
2352 in ®* takes an excessive amount of computing time, and produces a significant number
of examples corresponding to maps of much higher genus (but not all such examples), so

we split the problem into four manageable sub-problems as follows:
(a) finding normal subgroups of the group A*(3,7,2) of index up to 2352,

(b) finding normal subgroups of the group (t,u,v | t2 = (ut)? = (tv)? = u® = (w)?2 = 1)
of index up to 1344,

(c) finding normal subgroups of the group (t,u,v | t2 = (ut)? = (tv)? = u* = (w)? = 1)
of index up to 1120,

(d) finding normal subgroups of ®* of index up to 560.

The rationale behind this may be explained as follows. First, by replacing a map by
its dual if necessary, we may assume each regular map has type {p, ¢} where 3 < p < ¢
(and 1/p+1/q < 1/2 for orientable genus g > 1 or non-orientable genus g > 2). Next if
the type {p, ¢} of the regular map M is not {3, 7}, then the largest possible order for its
automorphism group is 96(g — 1) if M is orientable, or 48(g — 2) if M is non-orientable,
and hence the maximum index can be reduced to 96(15 — 1) = 1344 = 48(30 — 2) when
{p,q} # {3,7}. Similarly if 4 < p < ¢, then the largest possible order for Aut M is
80(¢g—1) if M is orientable or 40(g —2) if M is non-orientable (with the maximum achieved
in both cases when {p,q} = {4,5}), and hence the maximum index can be reduced to
80(15 — 1) = 1120 = 40(30 — 2) in this case. Finally if both p and ¢ are at least 5, then
the largest possible order for Aut M is 40(¢g — 1) if M is orientable or 20(g — 2) if M is

non-orientable (with the maximum achieved in both cases when {p, ¢} = {5,5}), and hence



the maximum index can be reduced to 40(15 — 1) = 560 = 20(30 — 2) when 5 < p < q.

The algorithm produces all normal subgroups of up to the specified index, giving a set
of representatives of conjugacy classes of elements generating each one (or equivalently a set
of additional relators which yield the associated factor group when adjoined to the group’s
presentation), along with a coset table indicating the natural permutation representation of
the group on the cosets of the normal subgroup in each case. From the former it is a simple
matter to determine whether or not the corresponding map is orientable (by checking for
any relator in which the generator “t” occurs an odd number of times), and from the latter
it is easy to determine the orders of the images of the generators, and hence the type of the
map. Also using the coset table (or associated permutation representation), it is a simple
matter to test whether the corresponding map is self-dual, by interchanging the columns
(or permutations) corresponding to the generators u and v and checking whether or not
the resulting coset table (or permutation representation) is equivalent to the original. If it
is, then the map is self-dual, while on the other hand if they are not equivalent, then the

map and its dual are distinct (and one of them can then be eliminated).

The same sort of approach can be taken for chiral rotary maps. If G is a finite factor
group of the group ® = (u,v | (uv)?> = 1) via some homomorphism which preserves the
order of uv, and p and ¢ denote the orders of the images of u and v in GG, then there exists
a rotary map M of type {p, ¢} on which the group G acts as rotation group. This map is
chiral (and then necessarily orientable) if and only if there exists no automorphism of G
which inverts the images of each of u and v by conjugation, and once more the genus of

M can be calculated using the formula given in the Introduction.

In particular, if M is chiral then ¢ — 1 = |G|(1/4 — 1/2p — 1/2q), and so for given
(orientable) genus g > 1 the largest possible order for G is achieved when (1/4—1/2p—1/2q)
takes its minimum possible value, namely 1/84, when {p, ¢} = {3,7}. Rearranging, this
gives |G| < 84(g — 1) for g > 1. Thus to find chiral rotary maps of genus 2 to 15, we need
to consider finite factor groups of ® of order up to 84(15 — 1) = 1176, or equivalently, all
normal subgroups of index up to 1176 in ®. Again this can be split into sub-problems in

which the order of u is 3, 4 or arbitrary (but at least 5), however the computations are



much easier for given orientable genus than in the reflexible case.

Chirality can be tested using the coset tables in a similar way to the duality test:
simply replace the columns defining the actions of the generators w and v by columns
which give the actions of u=! and v~! respectively, and check whether the resulting coset
table (or permutation representation) is equivalent to the original. If it is, then the map
is reflexible and so can be eliminated, while on the other hand if is not, then no reflection
exists and so the map is chiral. (Note: although this test can be used to show reflexibility,
it does not give additional information about the reflections themselves, and in particular

does not help with the question of orientability in the reflexible case.)

The computations were carried out on a distributed processing system using at times
well over 100 separate processors (the “Kaldka” system developed by the second author
and described in his PhD thesis [8]). The following indicate the time taken for the longest

branch of each computation:

Computation Group Index Time
Reflexible, type {3, 7} (* |ud=v"=1) 2352 1 hour 57 minutes
Reflexible, type {3, -} (®* |ud =1) 1344 5 hours 1 minute
Reflexible, type {4, —} (®* |ut=1) 1120 14 hours 51 minutes
Reflexible, any type P* 560 11 hours 55 minutes
Chiral, type {3,7} (®|lud=2v"=1) 1176 47 minutes
Chiral, type {3, —} (®u®=1) 672 2 hours 8 minutes
Chiral, type {4,—} (®|ut=1) 560 5 hours 37 minutes
Chiral, any type P 280 5 hours 35 minutes

3. Results

The results of our computations are summarised in the tables below. We give three
separate tables: reflexible orientable maps, chiral rotary maps, and non-orientable regular
maps. In each table the maps are classified according to their genus, and we give a label
of the form Rg.i, Cg.i or Ng.i for the ith map of genus g in the respective list. Also for

each map we give its type, the order of its automorphism group (in the column headed
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“Automs”), and the edge-multiplicities of the underlying graph of the map and its dual
(in the columns headed my and mp). The latter multiplicities are easily seen to be the
orders of the normal cores of the subgroups generated by the vertex rotation S and the
face rotation R respectively. The presence of an asterisk following the label of the map
indicates that the map is self-dual. Finally for each we provide additional relators which
are sufficient to define the automorphism group of the map in terms of canonical generators
R and S for orientable maps, either reflexible or chiral, and also T' (replacing the reflection

b = aR) in the case of non-orientable maps.

These relators are essentially representatives of conjugacy classes which generate the
corresponding normal subgroup of the appropriate finitely-presented group (® or ®*), or
equivalently, additional relators which produce the full automorphism group of the map
when inserted into the given presentation for ® or ®* as appropriate — but with R, S and
T denoting the images of u, v and ¢ respectively. Exactly one map is listed from each class

under map isomorphism, duality and reflection.

Table 1: Orientable reflexible regular maps of genus 2 to 15

Map |Genus| Type |Automs|my |mp| Additional relators

R2.1 2 {3,8} 96 2 | 1| R3(RS3)?

R2.2 2 {4,6} 48 31 2| (RSY)2, R4 SS

R2.3 2 {4,8} 32 8 | 2 | (RSTH2 R, RS3R™IS!
R2.4 2 {5,10} 20 10| 5 | [R,S],S?R™3

R2.5* 2 {6,6} 24 6 | 6 | [R,S],R2S™*

R2.6* 2 {8, 8} 16 8 | 8 | [R,S],RS™3

R3.1 3 {3,7} 336 1| 1] R3S", (RS2

R3.2 3 {3,8} 192 1| 1| R3S8(S?2R™1)3

R3.3 3 | {3,12} 96 4 | 1| R3R,S?

R3.4 3 {4,6} 96 2 | 1 | R*Y(RS?)?26¢

R3.5 3 {4,8} 64 4 | 1 | RYI[R,S?Y

R3.6 3 {4,8} 64 4 | 2| (RS™YH)2,R%, S8

R3.7 3 {4,12} 48 12| 2 | (RS™H2,R* RS5R™'S!
R3.8* 3 {6,6} 48 2 | 2 | R’S?2R7'S—! R3§°3
R3.9 3 {7,14} 28 14| 7 | [R,S],S?R~°

R3.10%| 3 {8, 8} 32 8 | 8 | R2S7?

R3.11*| 3 {8,8} 32 8 | 8 | [R,S],RtS™*

R3.12*| 3 |{12,12} 24 12 | 12 | [R,S],R3873
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Map |Genus| Type |Automs|my |mp | Additional relators

R4.1 4 | {3,12} | 144 3| 1] R3(S?°R71)3,[R,S%]
R4.2 4 {4,5} 240 1 |1 | R*SS (RS'RS2?)?
R4.3 4 {4,6} 144 1 | 1| R*SS[RS,SR]

R4.4 4 | {4,10} 80 51 2 | (RS™Y)2, R4 S0

R4.5 4 | {4,16} 64 16| 2 | (RSTYH2, RYRSTR1S1!
R4.6* 4 {5,5} 120 1| 1| R°S5(RS™Y)3

R4.7* 4 {6,6} 72 3| 3| (RS™H2 RE S6

R4.8 4 {6,6} 72 2 | 3 | [R%S],(RS™2)2,56

R4.9 4 | {6,12} 48 12 | 3 | [R%S),[R,S?,R2S~*
R4.10 4 | {9,18} 36 18| 9 | [R,S],S*R™®

R4.11*| 4 |{10,10}| 40 10 | 10 | [R,S], R*S—¢

R4.12%| 4 |{16,16}| 32 16 | 16 | [R,S],R3875

R5.1 5 {3,8} 384 1 | 1| R3S8 RS*RS2R'S?R™152
R5.2 5 {3,10} | 240 2 | 1| R3(RS™)?

R5.3 5 {4,5} 320 1 |1 | RYSS5 (RS™V)4

R5.4 5 {4,6} 192 1| 1] RYSS (RS™H4 RS3RS'R™1SR1S!
R5.5 5 {4,8} 128 2 | 1 | RY[RS,SR],(RS™3)2
R5.6 5 {4,8} 128 2 | 1| R*YRS2?2RS"'R26°1! S8
R5.7 5 | {4,12} 96 6 | 2| (RS™1)2 R S™2

R5.8 5 | {4,20} 80 20| 2 | (RS™H%, R* RS°R™151!
R5.9* 5 {5,5} 160 1 | 1| R5S%[RS,SR]

R5.10%| 5 {6,6} 96 2 | 2| (RS™2)% (R?S71)2, RS
R5.11 5 {6,15} 60 15| 3 | [R%S],(RS™2%)?2, R2S5
R5.12%| 5 {8,8} 64 4 | 4| (RSYH2,RS3R3571!
R5.13*%| 5 {8,8} 64 4 | 4 | [R%S],[R,S%,R*S*
R5.14 5 | {11,22}| 44 22 | 11 | [R,S],S*R~7

R5.15% | 5 |{12,12}| 48 12 | 12 | [R,S],R¢S~¢

R5.16% | 5 |{20,20}| 40 20 | 20 | [R,S],R°S™°

R6.1 6 {3,10} | 300 1 | 1| R3(S?2R™1)3,810

R6.2 6 {4,6} 240 1 |1 | R*Y(RS1)3,66

R6.3 6 {4,9} 144 3| 1| RY(RS2)28°

R6.4 6 | {4,14} | 112 712 | (RSTYH2 R, SM

R6.5 6 | {4,24} 96 24 | 2 | (RS™YH2%, R, RSY'R™'S7!
R6.6 6 | {510} | 100 5 | 1| RI[R,S?

R6.7 6 {6,8} 96 4 | 3| (RS™Y)? RS, S8

R6.8 6 {6, 8} 96 2 | 2 | (R?2S™ )% RS R3S4
R6.9* 6 {9,9} 72 3|3 | R2S?R™1S571,83R°S
R6.10 6 |{10,15}| 60 15| 5 | S3R™2

R6.11 6 |{13,26}| 52 26 | 13 | [R,S],S°R~7

R6.12%¥| 6 |{14,14}| 56 14 | 14 | [R,S],R5S7®

R6.13*| 6 |{24,24}| 48 24 | 24 | [R,S],R°S™"
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Map |Genus| Type |Automs|my |mp | Additional relators

R7.1 7 {3,7y | 1008 | 1 | 1 | R3S",RS?R1S3RS?(R~15%)2R"15?2
R7.2 7 | {3,12} | 288 2 | 1| R%RSS3RS2?R'SR™'S?
R7.3 7 | {4,16} | 128 8 | 1 | RYLYRS2RS™'R265"' RSSR~152
R7.4 7 | {4,16} | 128 8 | 2| (RS™1)2, R4 St6

R7.5 7 | {4,28} | 112 | 28| 2 | (RS™H% R* RSBR1S!

R7.6 7 {6,9} 108 3 | 3 | [R%S],(RS™2)2,8°

R7.7 7 | {6,12} 96 4 | 2| (R*SYH2 R, S~2RS—2R™2

R7.8 7 | {6,21} 84 21 | 3 | [R%S],(RS™2)2,S"R~2

R7.9 7 |{15,30}| 60 30 | 15 | [R,S],S°R~°

R7.10%| 7 |{16,16}| 64 16 | 16 | [R,S], R®S~8

R7.11*| 7 |{16,16}| 64 16 | 16 | [R% S],[R,S?,R%S~¢

R7.12%| 7 |{28,28}| 56 28 | 28 | [R,S],R"S™"

R8.1 8 {3,8} 672 1 | 1| R3S%(RS?)*

R8.2 8 {3,8} 672 1 | 1| R3S8[RS S3RS™?

R8.3 8 {4,18} | 144 9 | 2 | (RSY)?2, R4 S8

R8.4 8 {4,32} | 128 |32 ] 2 | (RS™Y)2 RY RSVPR-15!

R8.5 8 | {6,10} | 120 53 | (RS™1)% RS, 810

R8.6 8 | {6,24} 96 24 | 3 | [R%S],(RS™2)2, RS"R~'S1
R8.7 8 {8,12} 96 6 | 4 | (RS™1)?, R RS°R35!

RS.8 8 |{10,20}| 80 20 | 5 | [R?S],[R,S%,R3S1RS—°

R8.9 8 | {17,34}| 68 34| 17| [R,S],S®R°

R8.10*| 8 |{18,18}| 72 18 | 18 | [R,S], R8S—10

R8.11*| 8 |{32,32}| 64 32|32| [R,S],R"S7®

R9.1 9 {3,12} | 384 2 | 1| R3(RS™%?2 (RS2

R9.2 9 {4,5} 640 1| 1| RYS’ RS?2RIS2RS~Y(R71S9)2R~'S1
R9.3 9 {4,6} 384 1| 1| R*S% RS 'RS?R2§-2R26-!
R9.4 9 {4,6} 384 1 | 1| RYSS (RS™H4,[RS,SRS?
R9.5 9 {4,8} 256 1 | 1| R'S%[RS3 SR]

R9.6 9 {4,8} 256 1 | 1| RY[RS SR],S®

R9.7 9 {4,8} 256 2 | 1| RY (RS2, (RS 1)4, 88

R9.8 9 {4,8} 256 2 | 1| RY(RS3)2, 8% RS?(R18)2R"152
R9.9 9 | {4,12} | 192 4 | 1| RY[R,S3,(RS™1)*

R9.10 9 {4,12} | 192 3 | 1| RYRS2RS'R26-1 512
R9.11 9 | {4,12} | 192 4 | 1 | R*Y(RS?)2 512

R9.12 9 | {4,20} | 160 |10 | 2 | (RS™%Y)% R* S0

R9.13 9 {4,36} | 144 |36 | 2 | R*(RS Y% RSYR1S!
R9.14%| 9 {5,5} 320 1 | 1| R?S8%RS'R?2S?2R-'SR-15°1
R9.15 9 {5,6} 240 2 | 1| R°(RS™?)?

R9.16 9 {5,6} 240 1 | 1| R5SS[RS,SR]

R9.17*| 9 {6,6} 192 1| 1| RSS[RS2 SR]

R9.18*| 9 {6,6} 192 1| 1| (RSY)3 RS S%[RS,SR]
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Map Genus | Type |Automs|my |mp| Additional relators

R9.19* 9 {8,8} 128 4 | 4] (RS™V)? RB,S®

R9.20 9 {8, 8} 128 2 | 4| [R%S],(RS3)% 58

R9.21* 9 {8,8} 128 2 | 2 | RS3R3571

R9.22* 9 {8,8} 128 2 | 2 | [RS,SR],[RS7'R,S],R*S~*
R9.23* 9 {8,8} 128 2 | 2| RS?2RS™'R28-1, RS?R2SR~15-1
R9.24 9 | {8,24} 96 24 | 4 | [R? S],RS°R™1S!

R9.25 9 | {8,24} 96 24 | 4 | [R2,8],[R,S%),R2S5¢

R9.26* 9 |{12,12}| 96 4 | 4 | R3S873 (RS™1)3

R9.27* 9 |{12,12}| 96 4 | 4 | R?S?R7'S-' R6S-S

R9.28* 9 |{12,12}| 96 6 | 6 | [R2S],[R,S?, R*S8

R9.29 9 |{14,21}| 84 21 | 7 | [R2%S],S3R™*

R9.30 9 |{19,38}| 76 38119 | [R,S],S8R1!

R9.31* 9 |{20,20}| 80 20 | 20 | [R,S],R'0S~10

R9.32* 9 |{36,36}| 72 36 | 36 | [R,S],R°S~®

R10.1 10 | {3,9} 648 1 | 1] R3S%[RS2R,S?]

R10.2 10 | {3,12} | 432 1 | 1| R3(S?2R71)3 512

R10.3 10 | {3,15} | 360 3 | 1| R3[R,S%],(RS™3)3

R10.4 10 | {3,18} | 324 3 | 1| R3(S?R71)3,[R, S

R10.5 10 | {3,24} | 288 6 | 1 | R3[R,S

R10.6 10 | {4,5} 720 1| 1| RYS%(RS™1)

R10.7 10 | {4,6} 432 1 | 1| RYSS (RS™'RS™2)?

R10.8 10 | {4,6} 432 1 | 1| RYSS[RSIR,S?

R10.9 10 | {4,7} | 336 1| 1| RY(RS™1)3,87

R10.10 | 10 | {4,12} | 216 3| 1 | RY(RS™)3[R,SY

R10.11 10 | {4,22} | 176 |11 | 2 | (RS™!)2 R* S%2

R10.12 10 | {4,40} | 160 |40 | 2 | (RS™Y)% R* RSYR™1§!
R10.13*| 10 {6,6} 216 1 | 1| R6SS[RSTIR,S]

R10.14*| 10 | {6,6} 216 1 | 1| RS RS'R2S-1RS2
R10.15 10 {6,6} 216 2 | 1| (RS?)2 R S®  RSIR?2S'RS'R 26871
R10.16 | 10 | {6,12} | 144 6 | 1 | [R,S?%,R"

R10.17 | 10 | {6,12} | 144 6 | 3 | (RS™')? RSS2

R10.18 | 10 | {6,12} | 144 4 | 3 | [R%S],(RS™?%)2 512

R10.19 | 10 | {6,30} | 120 |30 | 3 | [R%S],(RS™2)2, RS®R~152
R10.20 | 10 | {9,18} | 108 9 | 3| [R,S%,[R3S],SR™2SR™5
R10.21 | 10 |{12,24}| 96 24 | 6 | [R2,8],R2S~*

R10.22 10 |{21,42}| &4 42 | 21 | [R,S],S*°R-11

R10.23*| 10 |{22,22}| 88 22 | 22 | [R,S],R10S—12

R10.24* | 10 |{40,40}| 80 40 | 40 | [R,S],R%S— 1!

R11.1 11 {4,6} 480 1| 1| R*S% RS 'RS2RS'RS'R25!
R11.2 11 | {4,24} | 192 |12 | 1 | R* RS2RS'R2S~! RSR-15-2
R11.3 11 | {4,24} | 192 |12 | 2 | (RS™YH)? R* S

R11.4 11 | {4,44} | 176 | 44 | 2 | (RS™YH% R* RS*'R-1S-!
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Map Genus | Type |Automs|my |mp| Additional relators

R11.5* 11 {6,6} 240 1| 1| RSSS(R?2S™?)? RS3RS~'R-3S5!
R11.6 11 | {6,8} 192 2 | 2| (R3S 1)2 RS, (RS™3)2

R11.7 11 {6,8} 192 2 | 1| RS RS'RSIR!SR™'S!
R11.8 11 | {6,33} | 132 |33 | 3 | [R%S],(RS™2)2 S 11R2
R11.9 11 | {8,16} | 128 8 | 4 | (RS7Y)2, R3, RS"TR351
R11.10 11 | {8,16} | 128 8 | 4 | [R%S],(RS™3)?, RS°R™15~2
R11.11 | 11 |{23,46}| 92 46 | 23 | [R,S],SYR-13

R11.12%| 11 |{24,24}| 96 24 | 24 | [R,S],R'25-12

R11.13*| 11 |{24,24}| 96 24 | 24 | [R?S],[R,S?%,R55°

R11.14*% | 11 |{44,44}| 88 44 | 44 | [R,S],R'1s— 11

R12.1 12 | {4,15} | 240 5 | 1| RY(RS™%)?2,815

R12.2 12 | {4,26} | 208 | 13| 2 | (RS™1)% R* S26

R12.3 12 | {4,48} | 192 |48 | 2 | (RS™YH)2, R*Y RS®BR-15!
R12.4 12 | {6,14} | 168 7 13| (RS7Y)? RS SM

R12.5 12 | {8,10} | 160 5| 4 | (RS™1)? RS S0

R12.6 12 |{10,30}| 120 |30 | 5 | [R%S] [R,S3,R*S—6

R12.7 12 [{14,28}| 112 |28 | 7 | [R?S],[R,S?,R558

R12.8* | 12 |{15,15}| 120 5| 5 | R?S?2R-'S-! S°R-°

R12.9 12 [{25,50}| 100 | 50 | 25| [R,S],S'2R~13

R12.10*| 12 |{26,26}| 104 | 26 | 26 | [R,S], R'25~14

R12.11*%| 12 |{48,48}| 96 48 | 48 | [R,S], R11S—13

R13.1 13 | {3,10} 720 1 | 1| R3S (RS2RS™3)?

R13.2 13 | {3,12} | 576 1 | 1| R3RS3RS™2R-!SR-15-2 §'2
R13.3 13 | {4,12} | 288 2 | 1 | RY[RS,SR],(RS™%)2

R13.4 13 | {4,16} | 256 4 | 1| RYRS2RS'R28-1 g16
R13.5 13 | {4,16} | 256 4 | 1| RY(RS™3)2, (RS™H* RS°R™1S2R25!
R13.6 13 | {4,28} | 224 |14 | 2 | RY (RS 1) 828

R13.7 13 | {4,52} | 208 |52| 2 | R* (RS 1)2, RS®R151!
R13.8 13 | {5,10} | 240 2 | 1| R°(R%S7?)

R13.9 13 | {6,6} 288 2 | 1| (RS™?)2% R S5 [R2SR™!, SR]
R13.10 13 | {6,12} | 192 4 | 1 | (RS™2)% RS [RS,SR]

R13.11 13 | {6,12} | 192 4 | 2| (R®S™YH)% RS, [R,S3]

R13.12 | 13 | {6,15} | 180 5 | 3 | [R%S],(RS™%)?2,8%

R13.13 | 13 | {6,39} | 156 |39 | 3 | [R%S],(RS™?)% S1BR™2
R13.14 13 | {9,18} | 144 6 | 3 | [R3S],[RS,SR],SR™2SR~®
R13.15%| 13 |{12,12}| 144 6 | 6 | (RS2, RSSR™551!

R13.16 | 13 |[{12,12}| 144 4 | 6 | [R%S],[R,S3, RS

R13.17 | 13 |[{16,16}| 128 8 | 8 | [R%S], RS

R13.18*| 13 |{16,16}| 128 8 | 8 | [RS,SR]|,[RS'R,S],RSTIRS™®
R13.19*%| 13 |{16,16}| 128 8 | 8 | [R%S],[R,S?,R858

R13.20 | 13 |[{27,54}| 108 | 54 | 27 | [R,S],S12R~15

R13.21*%| 13 |{28,28}| 112 |28 | 28 | [R,S],R'S~14

R13.22*%| 13 |{52,52}| 104 52 | 52 | [R,S], R135713
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Map Genus | Type |Automs|my |mp| Additional relators

R14.1 14 | {3,7} | 2184 | 1 | 1 | R3 S" (RS™?)°

R14.2 14 {3,7} | 2184 | 1 | 1 | R3S" (S?R™!S2R™1)3
R14.3 14 | {3,7} | 2184 | 1 | 1 | R3S7 (S?2R~ 1)

R14.4 14 | {4,30} | 240 |15 | 2 | R* (RS™1)2,8%0

R14.5 14 | {4,56} | 224 |56 | 2 | R*(RS™Y)2,RS*R™'S!
R14.6 14 | {6,16} | 192 8 | 3 | (RS™H? RS ST

R14.7 14 | {6,42} | 168 |42 | 3 | [R%S],(RS~%)?2% RSVBR-1S!
R14.8 14 | {8,20} | 160 |10 | 4 | (RS™1)% R8 RS°R-3S5-!
R14.9 14 |{10,35}| 140 |35 | 5 | [R? S],S""R2

R14.10 | 14 |{29,58}| 116 |58 | 29 | [R,S],SMR15

R14.11*| 14 |{30,30}| 120 | 30 | 30 | [R,S], R14S—16

R14.12*%| 14 |{56,56}| 112 56 | 56 | [R,S], R3S~

R15.1 15 | {3,9} | 1008 | 1 | 1 | R3 S% (RS2RS™%)?

R15.2 15 | {3,14} | 588 1 | 1| R3(S?R71)3, 81

R15.3 15 | {3,20} | 480 4 | 1| R3IR,S®%,(RS72RS—3)?
R15.4 15 {4,6} 672 1 | 1| RYSS (S2R™1)3

R15.5 15 | {4,18} | 288 6 | 1 | R*(RS2)25'8

R15.6 15 | {4,32} | 256 |16 | 1 | R* RS2RS'R 281 RSMR 152
R15.7 15 | {4,32} | 256 |16 | 2 | R* (RS™1)2,832

R15.8 15 | {4,60} | 240 |60 | 2 | R* (RS 12, RS®R-'S1
R15.9 15 | {6,10} | 240 2 | 2 | (R2S7Y)2, RS, R2S*R™15!
R15.10 15 | {7,14} | 196 711 [R,S?,R"

R15.11 15 | {8,12} | 192 4 | 2 | R?S?R'SR™'S7'[R,S3]
R15.12 | 15 | {8,12} | 192 4 | 2| (RS7?)?2, (R3S, R2S™R™'SR™15!
R15.13 15 | {8,12} | 192 6 | 4 | (RS2 R8 S'2

R15.14 15 | {8,12} | 192 3 | 4 | [R%S],(RS73)2,512

R15.15 15 | {8,40} | 160 |40 | 4 | [R%S],(RS™3)2% RSTR™1573
R15.16 15 | {8,40} | 160 | 40 | 4 | [R% S],(RS™3)2,RS°R™1571
R15.17 | 15 |{14,35}| 140 |35 | 7 | [R? S],S°R™2

R15.18%| 15 |{18,18}| 144 6 | 6 | R?S?R™'S™! RS9

R15.19 15 [{22,33}| 132 |33 |11 | [R%S],[R,S3,S3R™8

R15.20 | 15 |{31,62}| 124 |62 |31 | [R,S],S"R-'7

R15.21*%| 15 |{32,32}| 128 |32 | 32| [R,S],R'6S—16

R15.22*% | 15 |{32,32}| 128 |32 | 32| [R2 S],[R,S?,R65710
R15.23*| 15 |{60,60}| 120 | 60 | 60 | [R,S], R15S~15
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Table 2: Irreflexible (chiral) rotary maps of genus 2 to 15

Map |Genus| Type |Automs|my |mp | Additional relators
Cr7.1 7 {6,9} 54 3| 1] (RS?? R S?RS'R3
C7.2 7 {7,7} 56 1| 1| R,S?2R7ISR73
C8.1 8 {6,6} 84 2 | 1| (RS™?)? RS S5 R*°S?RS~TR—35~1
C10.1 10 {3,8} 432 1 | 1] R358S?2R'S3R'SR-'S—3RSS3R-!
C10.2 | 10 | {4,8} 144 1 |1 | RYS8 RS}(R'S)2R1571
C10.3*| 10 | {8,8} 72 1 | 1| RSR'SR3§5!
C11.1 11 {4,8} 160 2 | 1| RY(RS™3)% S8 RS?R'SR™252R~25!
C11.2 11 {4,8} 160 2 | 1| R*Y(RS™3)?2 S8 RS"IRS?R™25 2R 2581
C11.3 | 11 | {4,12} | 120 31| RY(RS™3)? RS?RS™2R725~!
Cl1.4*| 11 {8,8} 80 2 | 2 | RST'!RS2R2571
C11.5*%| 11 | {8,8} 80 2 | 2 | [RS™2,SR],R383R~1S~1 RS
C11.6*| 11 [{12,12}| 60 3| 3| R*S™'RS?
C12.1 | 12 | {5,10} | 110 1 | 1| R°[RS 2% SR]
C12.2 | 12 | {5,10} | 110 1| 1| RS S*R1S2R™2
C14.1 14 {6,6} 156 2 | 1| (RS™2)% RS 8% (R?2S™1)2RS™1R™35~1
C15.1 15 | {3,12} | 336 2 | 1| R3 (RS2
RS3R7'S?2R™ISR™'S3R-1SR-152
Table 3: Non-orientable regular maps of genus 3 to 30
Map | Genus| Type | Automs|my |mp | Additional relators
N4.1 4 {4,6} 48 2 | 1| R,TS'RS-'R2, 5S¢
N4.2 4 {4,6} 48 2 | 1 | R*(RS™?)2,85 S?2RS~IR2T
N5.1 5 | {4,5} ] 120 1 | 1| RY,S5T(S'R)*R™3
N5.2 5 {4,6} 72 1 | 1| RYSST(S'R)3R3 TS 2RS3R™1
N5.3%| 5 | {55} 60 1 | 1| R5S5(RS™1Y)3 82RS™IR2T
N5.4%| 5 | {6,6} 36 313 | (RS™YH2,R6 86 S3R3T
N6.1 6 [{3,10}| 120 2 | 1| RNTS'RS?R™1S73R™!
N6.2 6 [{3,10}| 120 2 | 1| RSS'RS2RS?R'T
N6.3 6 | {4,5}| 160 1 | 1| RYS® (RS™YH) S?R2SR™1S2R72T
N7.1 7 | {4,6} | 120 1 | 1| RY(RS™1)3,8% S?R2SR-1S—2R~%T
N7.2 7 | {4,9} 72 3|1 | RLTS'RS1R2S°
N8.1 8 | {3,7} | 504 1 | 1| R3S",S"YRS?*R™I'T
NO9.1 9 {3,8} | 336 1 | 1| R3S3 TS YRS %)3R!
N9.2 9 {3,8} | 336 1 | 1| R3S® (RS )4 TS 3RS3RS™R™!
N9.3 9 |{6,10}| 60 5 3 | (RS™YH)2, RS, S—SR73T
N10.1| 10 | {4,6} | 192 1| 1| RYLSY (RSHYL TS IRS?R™1S—3R™!
N10.2| 10 |[{4,12}| 96 4 | 1| R*Y(RS™?2TS*R'S~2R?
N10.3| 10 |[{4,12}| 96 4 | 1| RY,TS'RS'R2 812
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Map |Genus| Type |Automs|my |mp | Additional relators

N10.4 | 10 | {5,6} 120 2 | 1| R (RS TSR 'SR ?S—?R~*

N10.5 | 10 | {5,6} 120 2 | 1| R (RS™%)?2, 8 'R2S"'RS™'R2T

N10.6 10 {5,6} 120 1| 1| R°SSI[RS,SR],S"IR2S™3R2T

N11.1 | 11 | {4,6} 216 1 | 1| RYLSST(STIR)3R™3

N11.2%| 11 {6,6} 108 1 | 1| R%S8%S2RS"'R2T

N12.1 12 {4,6} 240 1 | 1] R*S%S?2R?2SR-'S—2R2T

N12.2 | 12 | {4,6} 240 1 | 1| RYSS S3R2S—3R2T

N12.3*| 12 {6,6} 120 1 | 1| R$S85 TS 'R2S-'R3 TS 2RS3R!

N13.1 | 13 | {4,15} | 120 5 | 1| RYTS'RS'R™2 8"

N13.2 | 13 | {6,14} 84 71 3| (RSTYHY2 RS, TR3S7

N14.1 | 14 | {3,10} | 360 1 | 1| R3S S2RS3R-IS—4R-IT

N14.2 | 14 | {5,10} | 120 2 | 1| R,TS3RS'R?

N14.3 | 14 | {5,10} | 120 2 | 1| R°S?RS™'R2T

N15.1 15 3,7y | 1092 | 1 | 1 | R3S, S Y (RS~ 2SR-IT

N16.1 16 {3,9} 504 1 | 1| R3SYTS Y (RS %)3R!

N16.2 | 16 | {4,6} 336 1 | 1| RYSST(SIR)AR3,(S2R™1)3

N16.3 | 16 | {4,18} | 144 6 | 1 | R*%(RS™2)2 S"RIS—2R2T

N16.4 | 16 | {4,18} | 144 6 | 1 | RYTS'RS™1R2 518

N16.5 | 16 | {6,10} | 120 2 | 2 | (R?S71)2, RS R2S*R™1S71,
S~Y RS2 R™'T

N16.6 | 16 | {6,10} | 120 2 | 2| (R?’S7Y)2, RS R2S‘R™1S71,
TS?R™1SR™'S72R~?

N16.7 | 16 | {8,12} | 96 4 | 2| (RS2 S?2RS™'R?T

N16.8 | 16 | {8,12} | 96 4 | 2| (RS™?2 S 'RS?R7°T

N17.1 17 | {3,8} 720 1 | 1| R3S% TS IRS*RS?R-SR-1S-3R~!

N17.2 17 | {4,10} | 200 1 | 1| RY[RS,SR],S* TS~Y(RS—3)2R~2

N17.3 17 | {6,18} | 108 9 | 3| (RS™H2 RS, TR3S®

N17.4*| 17 |{10,10}| 100 5| 5 | (RS™1H)2 R0 S0 TR S-S

N19.1 | 19 | {4,21} | 168 7| 1| RLTS'RSIR2 5%

N20.1 | 20 | {4,10} | 240 2 | 1 | RLT(ST'R)3R™3,(RS™)?

N20.2 | 20 | {4,10} | 240 2 | 1 | RY(RS™2,(RS™'RS72)2,
ST'RS3R™'S72R72T

N20.3 20 | {6,12} 144 3 | 1| RS S?2RS™IR2T,(RS—3)2

N20.4*| 20 |{10,10}| 120 2 | 2| (RSYH3,82RS'R2T

N20.5% | 20 |{10,10}| 120 2 | 2| (RSYH3,TS'RS?R™3

N21.1 21 [ {6,22} | 132 [11] 3 | (RS™1)2 RS TR3S!

N22.1 | 22 | {4,24} | 192 8 | 1 | RY(RS™?)2TS"YR1S2R™2

N22.2 22 | {4,24} | 192 8 | 1 | RY,TS'RS™'R2 5%

N22.3 | 22 {6,6} 240 1 | 1| RSSS TS IR2S-IR™3

N22.4 22 {6,8} 192 1 | 1| RS S?RS™'R2T,S8

N23.1 | 23 | {3,8} | 1008 | 1 | 1 | R3 S8 T(S3R)>S™*R-!

N23.2 23 {4,8} 336 1 | 1| RLT(S'R)ZPR™3,8% S 2RS3R™1S™*R™IT

N23.3 | 23 {4,8} 336 1 | 1| RYS,,T(S'R)*R3,(S?2R~1)3
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Map |Genus| Type |Automs|my Additional relators

N25.2 25 | {6,26} | 156 | 13 (RS—1)2 RS, TR3S'
N25.3 | 25 |{10,14}| 140 7 (RS™1)2, R0 TR5S7

mg
N25.1 | 25 | {4,27} | 216 9 | 1| RLTS'RSIR2 S%
3
5
1

N26.1 26 | {3,10} | 720 1 R3,810 (RS2)4,

TS 'RS?RS™2R-1SR™!S—3R™1
N26.2 | 26 | {4,10} | 320 2 | 1 | RY(RS™H4, (RS)%, 519
S?R2SR™1S72R72T

N26.3 | 26 | {4,10} | 320 2 | 1| RY(RS™YHL (RS2, 810
TSR™1S3R2S-2R~2

N28.1 | 28 | {4,30}| 240 |10 | 1 | R* (RS %% SBR'S2R™*T
N28.2 28 | {4,30} | 240 10| 1 | RY,TS'RS'R2 5%

N29.1 29 | {3,12} | 648 1 | 1| R3S RS*RS2R'S’2R-15-2,
S—Y(RS™2)*R-IT

N29.2 | 29 | {6,6} 324 1 | 1| RSS6 RST'R2SR™1SR™2571,
RS3RS™'R™'SR™'S~1
ST2RSTIRS:R73T

N29.3 | 29 | {6,12} | 216 3| 1| RS RS2RS'R2S871,

TS 'RS?R™'S—3R™!

RS, TST'R?>S—'R™3,(RS™3)?

RS, [RS,SR],(RS™3)2, TSR"1SRS™2R™3
(RS‘1)2,R6, S—ISR—ST

N29.4 | 29 | {6,12} | 216 | 3
N29.5 | 29 | {6,12} | 216 | 3
N29.6 | 29 | {6,30} | 180 | 15

N30.1 | 30 | {4,6} | 672 | 1
N30.2 | 30 | {4,6} | 672 | 1

R* S®,S~IRSR-'S?R~2S2R~T
R* S6, TS 'RS'RS-'RS™1R™2,

RS?R2S?RS'R2S72R~2571!

N30.3 | 30 | {5,8} 320 2 | 1| RS, (RS2 RS?(R™1S)2R™1572,

S?R2SR-1ST2R72T

N30.4 | 30 | {5,8} 320 2 | 1| R5%(RS3)?2 RS*(R'S8)2R"'S2,

SR™1S?R~2S—2R2T

N30.5%| 30 | {6,6} 336 1 | 1] RS (RSH4TSRISR2S~1R™3,
TS 'RS?R~'S—3R~1

— = = =

N30.6 | 30 | {6,10} | 240 2 | 2 | (R?2S7Y)2,R5 SIRS—2RST2R™IT

N30.7 | 30 | {6,10} | 240 2 | 2 | (R:S™H R6 TS?R™1SR™1572R~2

N30.8 | 30 | {6,10} | 240 2 | 2| (RES™H2 RS, TST'RS?R!S3R™!

N30.9 | 30 | {6,10} | 240 2 | 2| (R2S71)2, (R5—4)2,
S—2RS2R-1§~2R-2T

N30.10| 30 | {6,10} | 240 2 | 1| RC[RS,SR],(RS~1)* S~2RS2R~3T

N30.11| 30 | {6,10} | 240 2 | 1 | RSI[RS,SR],(RS Y, TS?RS~2R3

Note: Further information about the maps in these tables and their automorphism groups
(including small degree faithful permutation representations of the groups) is available

from the authors on request.
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4. Concluding remarks

Several families of maps are identifiable in tables, including the following reflexible

orientable maps for each genus n > 2:

(a) Maps of type {4n,4n} with one vertex, 2n edges and one face, and automorphism

group Ds, of order 4n;

(b) Maps of type {2n+1,4n+2} with one vertex, 2n+1 edges and two faces, and auto-
morphism group Dg,is of order 8n+4 (duals of those in [7; Table 8]);

(c) Maps of type {2n+2,2n+2} with two vertices, 2n+2 edges and two faces, and
automorphism group Dania X Cy of order 8n+8 (see [7; Table 8));

(d) Maps of type {4,4n} with two vertices, 4n edges and 2n faces, and automorphism
group of order 16n (duals of the Threlfall maps [7; Section 8.7]);

(e) Maps of type {4,2n+2} with four vertices, 4n+4 edges and 2n+2 faces, and auto-
morphism group of order 16n+16.

Further computations of the sort described above could be carried out to extend the
tables, but a large increase in computing time is required to achieve a small increase in the
genus range, and so this approach is limited by resources. Nevertheless the approach can
also be fruitful in searching for examples of larger genus but of specified type, or to answer

questions concerning the action of specific groups on maps or surfaces of low genus.

Also, as shown in [6] (using a semi-direct product construction to produce infinite
families of map automorphism groups), regular maps exist on non-orientable surfaces of
over 77.5% of all possible genera. In particular, as noted in [6] every positive integer
g < 100 other than 2, 3, 18, 24, 27, 39, 48, 54, 59, 60, 63, 71, 75, 87, 95 and 99 is known
to be the genus of some non-orientable regular map. Of the exceptions, non-orientable
surfaces of genus 2 or 3 are definitely known not to admit regular maps (see [7]), and the
results of our computations confirm unpublished work of Antonio Breda and Steve Wilson
showing that also there are no non-orientable regular maps of genus 18, 24 or 27. What of

the remaining genera, in this range and beyond? This question is still very much open.
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