Pseudo-real Riemann surfaces and chiral regular maps

Emilio Bujalance Dept. Matemáticas Fund., Fac. Ciencias, UNED Senda del rey, 9, 28040 Madrid, SPAIN eb@mat.uned.es Partially supported by MTM2005-01637

Marston Conder Department of Mathematics, University of Auckland Private Bag 92019, Auckland, NEW ZEALAND m.conder@auckland.ac.nz Partially supported by N.Z. Marsden Fund UOA0412

Antonio F. Costa Dept. Matemáticas Fund., Fac. Ciencias, UNED Senda del rey, 9, 28040 Madrid, SPAIN acosta@mat.uned.es Partially supported by MTM2005-01637

September 22, 2006

1 Introduction

A Riemann surface is called *pseudo-real* if it admits anticonformal automorphisms but no anticonformal involution. Pseudo-real Riemann surfaces appear in a natural way in the study of the moduli space \mathcal{M}_g^K of Riemann surfaces considered as Klein surfaces. The moduli space \mathcal{M}_g of Riemann surfaces of genus g is a two-fold branched covering of \mathcal{M}_g^K , and the preimage of the branched locus consists of the Riemann surfaces admitting anticonformal automorphisms — which are either real Riemann surfaces (admitting anticonformal involutions) or pseudo-real Riemann surfaces. We study the latter surfaces in this work. Pseudo-real Riemann surfaces are Riemann surfaces that are equivalent to their conjugate but do not have any anticonformal involution. Note that pseudo-real Riemann surfaces have non-trivial conformal automorphisms, hence the locus of pseudo-real Riemann surfaces in \mathcal{M}_g is contained in the singular set of the orbifold $\mathcal{M}_g = \mathbb{T}_g/\mathrm{Mod}_g$.

In Section 3 we study general properties of the automorphism groups of these surfaces and the related uniformizing NEC groups. In particular, we prove that there are pseudo-real Riemann surfaces of every genus $g \ge 2$. In Section 4 we study pseudo-real surfaces of genus 2 and 3.

In recent years a vast literature has been published about real Riemann surfaces — that is, Riemann surfaces admitting anticonformal involutions — but very little is known about pseudo-real surfaces. A study of hyperelliptic pseudo-real Riemann surfaces was made in [S] and [BC], and pseudo-real surfaces with cyclic automorphism group were investigated in [E]. In Section 5 we study pseudo-real cyclic p-gonal Riemann surfaces, generalizing the results obtained in [BC] for hyperelliptic surfaces.

In Section 6 we consider the maximal order of the automorphism group of a pseudo-real Riemann surface (relative to its genus), and we establish a connection between pseudo-real surfaces with maximal automorphism group, and chiral 3-valent regular maps. Finally in Section 7 we show there exist pseudo-real surfaces with automorphism group of maximal order for infinitely many genera, by proving the existence of concrete infinite families of chiral regular maps of type $\{3, k\}$ for $k \geq 7$.

2 Preliminaries on Fuchsian and NEC groups

A non-Euclidean crystallographic group (or NEC group) is a discrete group of isometries of the hyperbolic plane \mathbb{D} . We shall assume that an NEC group has a compact orbit space. If Γ is such a group then its algebraic structure is determined by its signature

 $(h; \pm; [m_1, \ldots, m_r]; \{(n_{11}, \ldots, n_{1s_1}), \ldots, (n_{k1}, \ldots, n_{ks_k})\}).$

The orbit space \mathbb{D}/Γ is a surface, possibly with boundary. The number h is called the *genus* of Γ and equals the topological genus of \mathbb{D}/Γ , while k is the number of its boundary components, and the sign is + or - according to whether or not the surface is orientable. The integers $m_i \geq 2$ are called the *proper periods*, and represent the branched indices over interior points of \mathbb{D}/Γ in the natural projection $\pi : \mathbb{D} \to \mathbb{D}/\Gamma$. The bracketed expressions $(n_{i1}, \ldots, n_{is_i})$, some or all of which may be empty (with $s_i = 0$), are called the *period cycles* and represent the branchings over the i^{th} hole in the surface, and the numbers $n_{ij} \geq 2$ are the *link periods*.

Associated with each signature [BEGG] there exists a canonical presentation for the group Γ , and a formula for the hyperbolic area of its fundamental domain. If the signature has sign + then Γ has the following generators:

 x_1, \ldots, x_r (elliptic elements), $c_{10}, \ldots, c_{1s_1}, \ldots, c_{k0}, \ldots, c_{ks_k}$ (reflections), e_1, \ldots, e_k (boundary transformations), $a_1, b_1, \ldots, a_g, b_g$ (hyperbolic elements);

and these generators satisfy the defining relations

$$x_i^{m_i} = 1 \quad (\text{for } 1 \le i \le r),$$

$$c_{ij-1}^2 = c_{ij}^2 = (c_{ij-1}c_{ij})^{n_{ij}} = 1, \ c_{is_i} = e_i^{-1}c_{i0}e_i \ (\text{for } 1 \le i \le k, 0 \le j \le s_i), x_1 \dots x_r e_1 \dots e_k a_1 b_1 a_1^{-1} b_1^{-1} \dots a_b b_b a_b^{-1} b_b^{-1} = 1.$$

If the sign is – then we just replace the hyperbolic generators a_i, b_i by glide reflections d_1, \ldots, d_h , and the last relation by $x_1 \ldots x_r e_1 \ldots e_k d_1^2 \ldots d_h^2 = 1$. The hyperbolic area of an arbitrary fundamental region of an NEC group Γ with signature is given by

$$\mu(\Gamma) = 2\pi \left(\varepsilon h - 2 + k + \sum_{i=1}^{r} \left(1 - \frac{1}{m_i}\right) + \frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{s_i} \left(1 - \frac{1}{n_{ij}}\right)\right),$$

where $\varepsilon = 2$ if the sign is +, and $\varepsilon = 1$ if the sign is -. Furthermore, any discrete group Λ of isometries of \mathbb{D} containing Λ as a subgroup of finite index is also an NEC group, and the hyperbolic area of a fundamental region for Λ is given by the Riemann-Hurwitz formula:

$$[\Lambda:\Gamma] = \mu(\Gamma)/\mu(\Lambda).$$

For any NEC group Λ , let Λ^+ denote the subgroup of orientation-preserving elements of Λ , called the *canonical Fuchsian subgroup* of Λ . If $\Lambda^+ \neq \Lambda$ then Λ^+ has index 2 in Λ and we say that Λ is a *proper* NEC group.

Let X be a compact Riemann surface of genus g > 1. Then there is a Fuchsian surface group Γ (that is, an NEC group with signature $(g; +; [-]; \{-\}))$) such that $X = \mathbb{D}/\Gamma$, and the automorphism group $\operatorname{Aut}(X)$ of X is isomorphic to Δ/Γ , where Δ is an NEC group containing Γ . We denote by $\operatorname{Aut}^+(X)$ the group Δ^+/Γ of all orientation-preserving automorphisms of X.

3 Pseudo-real Riemann surfaces

Definition 1 An anticonformal involution is an orientation-reversing automorphism of order 2. A Riemann surface is called pseudo-real if it admits anticonformal automorphisms but has no anticonformal involution. **Proposition 2** Let X be a pseudo-real Riemann surface, and let G be the group of conformal and anticonformal automorphisms of X. Then 4 divides the order of G.

Proof. Let g be any anticonformal automorphism of X. If g has order $2^a m$ where m is odd, then g^m is an anticonformal automorphism of order 2^a , and then a > 1 because X is pseudo-real. Thus G has an element g^m of order divisible by 4. \Box

Theorem 3 Suppose the pseudo-real surface X is conformally equivalent to \mathbb{D}/Γ , where Γ is a surface Fuchsian group, and Γ is normalized by an NEC group Δ such that $\Delta/\Gamma \cong G = \operatorname{Aut}(X)$. Then the signature of Δ has the form $(p; -; [m_1, ..., m_r])$, and if Δ^+ is the canonical Fuchsian subgroup of Δ , then the signature of Δ^+ is

$$(p-1;+;[m_1,m_1,m_2,m_2,...,m_r,m_r]).$$

Proof. Since G has anticonformal automorphisms, the signature of Δ is the signature of a proper NEC group — that is, a group with anticonformal transformations. Thus the signature of Δ has the form

 $(p; -; [m_1, ..., m_r])$ or $(p; \pm; [m_1, ..., m_r]; \{(n_{i1}, ..., n_{ik_i})_{i=1,...,l}\}).$

Note that in the second case, Δ contains reflections. Now let us consider the monodromy epimorphism

$$\theta: \Delta \to \Delta / \Gamma \cong G,$$

which sends anticonformal transformations to anticonformal automorphisms. If Δ contains reflections, that is, if Δ has signature

$$(p; \pm; [m_1, ..., m_r]; \{(n_{i1}, ..., n_{ik_i})_{i=1,...,l}\})$$

where l > 0, then the image by θ of a reflection is an anticonformal involution in G, hence the signature of Δ must be of the form $(p; -; [m_1, ..., m_r])$, with no boundary components. The signature of Δ^+ can now be obtained from the signature of Δ using the Riemann-Hurwitz formula and [BEGG]. \Box

Theorem 4 For every integer $g \ge 2$, there exist pseudo-real surfaces of genus g.

Proof. Let Δ be an NEC group with signature $(\delta; -; [2, \stackrel{g_{+}}{\ldots}, 2])$, where $\delta = \varepsilon = 1$ if g is even, or $\delta = 2$ and $\varepsilon = -1$ if g is odd. Let x_i (for $1 \le i \le g + \varepsilon$) and d_j (for $1 \le j \le \delta$) be a canonical system of generators of Δ . We may define an epimorphism $\theta : \Delta \to \mathbb{Z}_4 = \langle a : a^4 = 1 \rangle$ by setting

 $\theta(x_i) = a^2 \text{ for } 1 \le i \le g + \varepsilon, \text{ and } \theta(d_j) = a \text{ for } 1 \le j \le \delta.$

Then $X = \mathbb{D}/\ker \theta$ is a Riemann surface such that $\Delta/\ker \theta \cong \mathbb{Z}_4$ is a group of automorphisms of X. Choosing Δ to be maximal (see [BCF]) ensures that the group $\Delta/\ker \theta$ will be the full automorphism group of X, and this will contain anticonformal automorphisms but only one involution, namely a^2 , and that involution is conformal. Hence X is pseudo-real. \Box

4 Pseudo-real surfaces of genus 2 and 3

Theorem 5 Let X be a pseudo-real Riemann surface of genus 2. Then Aut(X) is isomorphic to \mathbb{Z}_4 , and if Aut(X) $\cong \Delta/\Gamma$ where $X = \mathbb{D}/\Gamma$, then Δ has signature (1; -; [2, 2, 2]).

Proof. If $G = \Delta/\Gamma$ then $G^+ = \Delta^+/\Gamma$ is the conformal automorphism group of a Riemann surface of genus 2. By Theorem 3 and [Br, Table 4], we know that the only possibilities for G^+ and the signature $s(\Delta^+)$ of Δ^+ are the following (where n^r denotes n, ..., n):

$$G^+ \cong \mathbb{Z}_2$$
 and $s(\Delta^+) = (0; +; [2^6]),$
or $G^+ \cong \mathbb{Z}_2$ and $s(\Delta^+) = (1; +; [2^2]),$
or $G^+ \cong \mathbb{Z}_4$ and $s(\Delta^+) = (0; +; [2^2, 4^2]).$

The second and third of these three cases are ruled out by the analysis undertaken in [BC], so we are left with only the first case. Then, since Δ must contain Δ^+ as a subgroup of index two, the signature of Δ must be (1; -; [2, 2, 2]), and since $G^+ \cong \mathbb{Z}_2$, also $G \cong \mathbb{Z}_4$. \Box

We can easily construct such a pseudo-real Riemann surface X of genus 2, for example as in the proof of Theorem 4 (with $\delta = \varepsilon = 1$ and g = 2).

Theorem 6 Let X be a pseudo-real Riemann surface of genus 3, with automorphism group $G \cong \Delta/\Gamma$, where $X = \mathbb{D}/\Gamma$. Then there are three possible cases, all of which are realisable:

- (a) $G \cong \mathbb{Z}_4$, and Δ has signature (2; -; [2, 2]), or
- (b) $G \cong D_4$, and Δ has signature (1; -; [2, 2, 2]), or
- (c) $G \cong \mathbb{Z}_4 \oplus \mathbb{Z}_2$, and Δ has signature (1; -; [2, 2, 2]).

Proof. The index 2 subgroup $G^+ \cong \Delta^+/\Gamma$ of $G \cong \Delta/\Gamma$ is the automorphism group of a Riemann surface of genus 3. By Theorem 3 and [Br, Table 4], and using the results of [BC] and [BCC], we find the only possibilities for G^+ and the signature of Δ^+ are the following (where 2^r denotes 2, r., 2):

	$G^+ \cong \mathbb{Z}_2$	and	$s(\Delta^+) = (0; +; [2^8]),$
or	$G^+ \cong \mathbb{Z}_2$	and	$s(\Delta^+) = (1; +; [2^4]),$
or	$G^+ \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$	and	$s(\Delta^+) = (0; +; [2^6]).$

In the first case G must be \mathbb{Z}_4 and Δ must have signature $(1; -; [2^4])$, but then there is no epimorphism $\theta : \Delta \to \mathbb{Z}_4$ with an appropriate kernel Γ , so this case is ruled out. From the other two cases, we deduce that the only possibilities for G, G^+ and Δ are the following:

$$\begin{array}{ll} G\cong \mathbb{Z}_4, & G^+\cong \mathbb{Z}_2 & \text{and} \ s(\Delta)=(2;-;[2,2]),\\ \text{or} & G\cong D_4, & G^+\cong \mathbb{Z}_2\oplus \mathbb{Z}_2 & \text{and} \ s(\Delta)=(1;-;[2,2,2]),\\ \text{or} & G\cong \mathbb{Z}_4\oplus \mathbb{Z}_2, & G^+\cong \mathbb{Z}_2\oplus \mathbb{Z}_2 & \text{and} \ s(\Delta)=(1;-;[2,2,2]). \end{array}$$

In each case it is easy to establish an epimorphism $\theta : \Delta \to G$ where Δ is a maximal NEC group with the corresponding signature, so that $G = \Delta / \ker \theta$ is the automorphism group of a pseudo-real Riemann surface of genus 3. \Box

5 Pseudo-real cyclic *p*-gonal Riemann surfaces

Definition 7 A cyclic p-gonal Riemann surface is a Riemann surface X that admits an automorphism h of order p such that the quotient surface $X/\langle h \rangle$ has genus 0.

Theorem 8 Let X be a pseudo-real cyclic p-gonal Riemann surface of genus $g \ge (p-1)^2$, where p is prime. Let G be the automorphism group of X, and let $H = \langle h \rangle \cong \mathbb{Z}_p$ be the subgroup of G generated by an automorphism h of p-gonality. Let Δ and Γ be NEC groups such that $X \simeq \mathbb{D}/\Gamma$ and $\Gamma \triangleleft \Delta$ with $\Delta/\Gamma \cong G$. Then g is even, and one of the following two cases holds:

- (a) $G \cong \mathbb{Z}_n \oplus H$, where 4 divides n and the first factor \mathbb{Z}_n is generated by an anticonformal automorphism, and the NEC group Δ has signature $(1; -; [p, \frac{2(g+p-1)}{n(p-1)}, p, \frac{n}{2}]);$ or
- (b) $G \cong \mathbb{Z}_{pn}$, where 4 divides n, and G is generated by an anticonformal automorphism, and Δ has signature $(1; -; [p, \frac{2g}{n(p-1)}, p, \frac{n}{2}p])$.

Proof. Let Λ be the Fuchsian group of genus 0 such that $\Gamma < \Lambda < \Delta$, with $X/H \simeq \mathbb{D}/\Lambda$ and $\Lambda/\Gamma \cong H$. The signatures of Λ and Δ have the form

$$(0; +; [p, .., p])$$
 and $(g'; -; [m_1, ..., m_r])$

respectively. Let $n = [\Delta : \Lambda]$. By [A], we know that if the genus of X satisfies $g \ge (p-1)^2$, then there is a unique *p*-gonal covering $X \to \widehat{\mathbb{C}} = X/H$. Hence $\Lambda \triangleleft \Delta$, and so

$$[m_1, ..., m_r] = [ps_1, ..., ps_t, m_{t+1}, ..., m_r]$$
 and $q = \frac{n}{s_1} + ... + \frac{n}{s_t}$.

Applying the Riemann-Hurwitz formula, we find

$$-2 + q(1 - \frac{1}{p}) = n(g' - 2 + \sum_{i=1}^{t} (1 - \frac{1}{s_i p}) + \sum_{i=t+1}^{r} (1 - \frac{1}{m_i})).$$
(*)

Since the genus of Λ is 0, the genus of Δ must be 1, and hence the formula (*) is equivalent to

$$2 - n + n \sum_{i=1}^{t} (1 - \frac{1}{s_i}) + n \sum_{i=t+1}^{r} (1 - \frac{1}{m_i}) = 0.$$

From this formula it is easy to deduce that the only possible signatures for Δ are the following:

$$(1; -; [p, \stackrel{\frac{2(g+p-1)}{n(p-1)}}{\dots}, p, \frac{n}{2}])$$
 and $(1; -; [p, \stackrel{\frac{2g}{n(p-1)}}{\dots}, p, \frac{n}{2}p])$.

Now suppose Δ has one of the above signatures, and define $l = \frac{2(g+p-1)}{n(p-1)}$ for the first signature and $l = \frac{2g}{n(p-1)}$ for the second. We will consider the epimorphism $\theta : \Delta \to \Delta/\Lambda$. Let $d, x_1, ..., x_l, x_{l+1}$ be the generators of a canonical presentation of Δ . From the form of the signature of Λ , we see that $\theta(x_1) = ... = \theta(x_l) = 1$, and that $\theta(x_{l+1}) = b$ is an element of order $\frac{n}{2}$. Also the two elements $a = \theta(d)$ and $b = \theta(x_{l+1})$ generate the image Δ/Λ . Next, from the relation

$$d^2x_1...x_lx_{l+1} = 1$$

we find that $a^2b^{-1} = 1$, and so Δ/Λ is cyclic of order n. Since the subgroup H generated by the p-gonal automorphism is unique, it is central in G and hence Δ/Γ is a central extension of a cyclic group of order n. But then since G/Z(G) is cyclic, G is abelian (by an easy theorem from group theory). Thus G is isomorphic to either $\mathbb{Z}_n \oplus H$ or \mathbb{Z}_{pn} , and the rest follows. \Box

6 The maximal order of the automorphism group of a pseudo-real Riemann surface

Theorem 9 If X is a pseudo-real Riemann surface of genus g with automorphism group G, then $|G| \leq 12(g-1)$. Moreover, if |G| = 12(g-1) and $G \cong \Delta/\Gamma$ where $X \simeq \mathbb{D}/\Gamma$, then the signature of Δ is (1; -; [2, 3]).

Proof. By Theorem 3, the NEC group Δ has signature $(p; -; [m_1, ..., m_r])$, and then from the Riemann-Hurwitz formula, we find

$$2g - 2 = |G| \left(p - 2 + \sum_{i=1}^{r} (1 - \frac{1}{m_i}) \right).$$

The minimum positive value of the bracketed expression on the right-hand side is $\frac{1}{6}$, which is attained when p = 1, r = 2, $m_1 = 2$ and $m_2 = 3$, and in that case |G| = 12(g-1). \Box

We are interested in the construction of pseudo-real Riemann surfaces with automorphism group of maximal order. In order to find such a pseudo-real surface of genus q with maximal symmetry, we need to find:

- (a) a maximal NEC group Δ with signature (1; -; [2, 3]),
- (b) a finite group G of order 12(g-1), and
- (c) an epimorphism $\theta : \Delta \to G$ such that ker θ is a Fuchsian surface group of genus g.

Here we remark that the monodromy epimorphism θ is determined by the image of the canonical generators. If we have a group G of order 12(g-1) and a monodromy epimorphism $\theta : \Delta \to G$, then the group Δ is maximal (see [S] and [BEGG]) unless there is another NEC group Δ' with signature $(0; +; [2], \{(2,3)\})$ containing Δ and an epimorphism $\theta' : \Delta' \to G'$, where G' is an index two extension of G and $\theta'|_{\Delta} = \theta$.

Proposition 10 Let Δ be an NEC group with signature (1; -; [2, 3]), let d, x_1 and x_2 be the generators of a canonical presentation for Δ , and let $\theta : \Delta \to G$ be an epimorphism such that $\theta(d_1) = a$ and $\theta(x_1) = b$. Then θ can be extended to an epimorphism $\theta' : \Delta' \to G'$, where Δ' is an NEC group containing Δ as a subgroup of index 2 and G' is a group containing G as a subgroup of index 2, if and only if G admits an automorphism of order 2 such that $\alpha(a) = a^{-1}$ and $\alpha(b) = b^{-1}$.

Proof. If G admits such an automorphism α , then we can construct the semidirect product $G' = G \rtimes_{\alpha} \mathbb{Z}_2$, which is generated by $G = \langle a, b \rangle$ and

an involution c, conjugation by which induces the automorphism α on G. Also we can let Δ' be an NEC group with signature $(0; +; [2], \{(2,3)\})$ and having canonical generators $x'_1 c'_1, c'_2, c'_3$, and then define an epimorphism $\theta' : \Delta' \to G' = G \rtimes_{\alpha} \mathbb{Z}_2$ by setting

$$\theta'(x'_1) = ac, \quad \theta'(c'_1) = c, \quad \theta'(c'_2) = cb, \quad \text{and} \quad \theta'(c'_3) = a^2c.$$

Conversely, if such an extension $\theta' : \Delta' \to G'$ of θ exists, then by [S] and [BEGG], Δ' must have signature $(0; +; [2], \{(2,3)\})$ with canonical generators $x'_1 c'_1, c'_2, c'_3$, and without loss of generality the embedding of Δ in Δ' is given by

$$d_1 \mapsto x_1'c_1', \quad x_1 \mapsto c_1'c_2', \quad x_2 \mapsto c_2'c_3';$$

hence if c is the involution $\theta'(c_1)$, then

$$cac = \theta'(c_1'd_1c_1') = \theta'(c_1'x_1') = \theta(d_1)^{-1} = a^{-1}$$

and

$$cbc = \theta'(c_1'x_1c_1') = \theta'(c_2'c_1') = \theta(x_1)^{-1} = b^{-1},$$

so conjugation by c gives the required automorphism. \Box

The last proposition and a theorem to follow provide a link with the theory of 3-valent regular maps.

Definition 11 An orientably-regular map M is a 2-cell embedding of a connected graph into an orientable surface, such that the group $Aut^+(M)$ of all orientation-preserving automorphisms of the surface that preserve the embedding has a single orbit on the arcs (directed edges) of the graph. The map is called reflexible if there exist orientation-reversing automorphisms that preserve the embedding, and otherwise it is said to be chiral.

More details may be found in [CD], where all orientably-regular maps of genus 2 to 15 were determined. If M is an orientably-regular map of type $\{m, n\}$ (with vertices of valence m and faces of size n), then $\operatorname{Aut}^+(M)$ is generated by two elements R and S satisfying $R^m = S^n = (RS)^2 = 1$, and M is reflexible if and only if there is an automorphism τ of $G = \langle R, S \rangle$ such that $\tau(R) = R^{-1}$ and $\tau(S) = S^{-1}$ (or equivalently, an automorphism inverting any one of the pairs (R, S), (R, RS) or (S, RS)).

Theorem 12 For each chiral regular map M of type $\{3, n\}$, where n is odd, if M has automorphism group G, then there exists a pseudo-real Riemann surface X with automorphism group of maximal order and isomorphic to $G \times \mathbb{Z}_4$. **Proof.** Let Δ be the (2, 3, n) triangle group, with signature (0; [2, 3, n]) and canonical presentation

$$\langle x_1, x_2, x_3 : x_1 x_2 x_3 = 1, x_1^2 = x_2^3 = x_3^n = 1 \rangle$$

Also let $\theta : \Delta \to G$ be the epimorphism that corresponds to a chiral regular map of type $\{3, n\}$, taking (say) x_1, x_2 and x_3 to the automorphisms RS, Rand S of M, so that ker θ is a surface group, and let b be an element of Gsuch that $b^2 = \theta(x_3)$, which is known to exist because n is odd.

Now let Λ be an NEC group with signature (1; -; [2, 3]) and canonical presentation

$$\langle d, y_1, y_2 : y_1 y_2 d^2 = 1, y_1^2 = y_2^3 = 1 \rangle,$$

and define an epimorphism $\omega: \Lambda \to G \times \mathbb{Z}_4 = G \times \langle a: a^4 = 1 \rangle$ by setting

$$\omega(d) = (b, a), \quad \omega(y_1) = (\theta(x_1), a^2) \text{ and } \omega(y_2) = (\theta(x_2), 1).$$

Then $\Gamma = \ker \omega$ is a surface group, and since the image of the subgroup $\langle x_1, x_2, dx_1 d, dx_2 d \rangle$ of index 2 in Λ is the subgroup $G \times \langle a^2 \rangle$ of index 2 in $G \times \langle a \rangle$, the surface $X = \mathbb{D}/\Gamma$ (with automorphism group $\Lambda/\Gamma \cong G \times \langle a \rangle$) is orientable; see [BEGG, Theorem 2.1.3 (2)]. Moreover, every element of $G \times \langle a \rangle$ lying outside the orientation-preserving subgroup $G \times \langle a^2 \rangle$ is of the form $(u, a^{\pm 1})$ for some $u \in G$, and it follow that every anticonformal automorphism of $X = \mathbb{D}/\Gamma$ has order divisible by 4. Hence the surface X is pseudo-real. \Box

In the following section, we prove that for every integer $k \ge 7$, there exist chiral regular maps of type $\{3, k\}$ on orientable surfaces of infinitely many genera. Using Theorem 12, we therefore obtain the following theorem:

Theorem 13 There exist pseudo-real surfaces with automorphism group of maximal order, for infinitely many genera. In particular there are infinitely many pseudo-real Riemann surfaces with maximal automorphism group.

7 Chiral 3-valent regular maps

In the previous Section we proved that from every chiral regular map of type $\{3, n\}$ for n odd, we can construct a pseudo-real Riemann surface with maximal symmetry. In this Section we shall find explicit families of chiral 3-valent regular maps that produce such pseudo-real Riemann surfaces.

Theorem 14 For every prime p congruent to 1, 2 or 4 mod 7, there exists a normal subgroup K_p of index $168p^3$ in the ordinary triangle group $\Delta = \Delta(2,3,7)$ such that Δ/K_p is isomorphic to an extension by PSL(2,7) of the 3-generator abelian group $\mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p$ of order p^3 and exponent p. Moreover, the subgroup K_p is not normal in the extended triangle group $\Delta^*(2,3,7)$, so Δ/K_p has no automorphism that inverts the images of the two generators x and y of $\Delta = \Delta(2,3,7)$.

Note: here Δ has signature $(0; +; [2, 3, 7]; \{-\})$, while the extended triangle group Δ^* has signature $(1; +; [-]; \{(2, 3, 7)\})$, with $(\Delta^*)^+ \cong \Delta$.

Corollary 15 There exist chiral regular maps of type $\{3,7\}$ on orientable surfaces of infinitely many genera.

Proof of Theorem. Most of this follows from observations made by Leech in [L] and pursued by Cohen in [Ch], and explained also in [Cn2, Cn3]. First, the extended triangle group $\Delta^* = \Delta^*(2,3,7)$ has a normal subgroup N of index 336, generated by $a_0 = [y, x]^4$ and its conjugates, such that Δ^*/N is isomorphic to PGL(2,7). By observations made by Leech [L], this normal subgroup N has a nice presentation in terms of six generators and a single relation (in which each of the generators appears twice, with exponents ± 1). Now for each prime p as given in the statement of the theorem, let N_p denote the normal subgroup of Δ^* generated by the derived subgroup N' = [N, N]of N and the set N^p of all pth powers of elements of N. Then $N_p = N'N^p$ has index p^6 in N, and is normal in Δ^* , with quotient N/N_p elementary abelian of order p^6 . Moreover, by observations made by Cohen [Ch] about the action of PSL(2,7) on N/N_p induced by conjugation of N by elements of $\Delta = \Delta(2, 3, 7)$, there exist intermediate subgroups L_1 and L_2 of N containing N_p , such that each L_i is normal in Δ , and $N = L_1 L_2$ with $L_1 \cap L_2 = N_p$, and with N/L_i elementary abelian of order p^3 for $i \in \{1, 2\}$. On the other hand, L_1 and L_2 are not normal in the extended triangle group $\Delta^* = \Delta^*(2,3,7)$; indeed every element of $\Delta^* \setminus \Delta$ conjugates L_1 to L_2 and vice versa. Hence we can take $K_p = L_1$ or L_2 , to give the required result. \Box

Theorem 16 For every integer $k \ge 7$, all but finitely many of the alternating groups A_n can be generated by two elements x and y such that x, y and xyhave orders 2, 3 and k respectively, and that there exists no automorphism of $\langle x, y \rangle = A_n$ taking x and y to x^{-1} and y^{-1} respectively.

Corollary 17 For each integer $k \ge 7$, there exist chiral regular maps of type $\{3, k\}$ on orientable surfaces of infinitely many genera.

Proof of Theorem. In all cases our argument relies heavily on a construction used by the second author in [Cn1] to prove that (for every $k \ge 7$) all but finitely many A_n are homomorphic images of the extended triangle group

$$\Delta^*(2,3,k) = \langle \, x,y,t \mid x^2 = y^3 = (xy)^k = t^2 = (xt)^2 = (yt)^2 = 1 \, \rangle,$$

a group with signature $(1; +; [-]; \{(2, 3, k)\})$. We refer the reader to [Cn1] for important details. In that construction, permutation representations of $\Delta^*(2, 3, k)$ are depicted by Schreier coset diagrams, and specially chosen examples of such diagrams are linked together to form representations of arbitrarily large degree n, in a way that makes the resulting permutations generate A_n or S_n . We will amend that construction by adding one more small diagram that depicts a permutation representation of the ordinary triangle group $\Delta = (\Delta^*)^+$, but not depict one of the extended triangle group $\Delta^*(2,3,k)$ itself. Note that $\Delta = \Delta(2,3,k)$ is the index 2 subgroup of $\Delta^*(2,3,k)$ generated by x and y.

We do this first for the case k = 7, and then explain in less detail how the theorem can be proved for larger k using the same method.

Figure 1: Additional cos t diagram R(7,0) with 7 vertices

When k = 7, consider the permutation representation of $\Delta(2, 3, 7)$ on 7 points given by the diagram R(7, 0) in Figure 1.Like the diagrams S(7, 0), T(7, 0), U(7, 0) and V(7, 0) in [Cn1], this has a (1)-handle $[a, b]_1$, consisting of two points a and b such that x fixes both a and b, and y takes a to b. Note that the point a is fixed by the commutator $xyxy^{-1}$, while b lies in a 2-cycle of $xyxy^{-1}$, and the other four points lie in a 4-cycle. Similarly, if $[a', b']_1$ is a (1)-handle of the diagram S(7, 0), then a' is fixed by $xyxy^{-1}$, while b' lies in a 13-cycle of $xyxy^{-1}$, consisting of the 13 points of the cycle of xyt in the representation of $\Delta(2, 3, 7)$ that it depicts. Indeed it follows from the relations for the extended triangle group $\Delta^*(2, 3, 7)$ that $(xyt)^2 = xytxyt = xyxtyt = xyxy^{-1}$, and hence the cycle structure of $xyxy^{-1}$ can be derived easily from that of xyton the points of the diagram S(7, 0).

Next suppose that a single copy of the diagram R(7, 0) is linked together with a single copy of the diagram S(7, 0), by adding the transpositions (a, a') and (b, b') to the permutation induced by x (while not altering the permutation induced by y). Then the resulting diagram is easily seen to be a coset diagram for the ordinary triangle group $\Delta(2, 3, 7)$, by the same argument as in [Cn1]. Also in the corresponding permutation representation, the two points a and a' are still both fixed by $xyxy^{-1}$, while the cycles containing b and b' and the other four points of the diagram R(7,0) are joined together to form a new cycle of $xyxy^{-1}$, of length 19. (This is easily verified, either by writing out the permutations, or by chasing points around the combined diagrams.) The construction in [Cn1] explains how a transitive permutation representation of $\Delta^*(2,3,7)$ on n = 42f + 71g + 36 points (when $f > g \ge 0$) can be formed by linking together f copies of diagram S(7,0) and then adjoining gcopies of T(7,0) and a single copy of U(7,0), by composition of (1)-handles. In the resulting representation, the element xyt has cycle structure

$$1^{f+1-g}2^{f+g}5^{1}6^{g}8^{1}11^{1}13^{f+1-g}15^{g}20^{g}24^{1}26^{f-1}42^{g}$$

so the commutator $xyxy^{-1}$ has cycle structure

$$1^{3f+1}3^{2g}4^{2}5^{1}11^{1}13^{3f-1-g}10^{2g}12^{2}15^{g}21^{2g}$$

The unique 11-cycle here comes from the single copy of U(7,0), and this can be used (with the help of Jordan's theorem from [W]) to prove that the permutations induced by x, y and t generate S_n , while those induced by x and y generate A_n .

Now suppose that a single copy of the diagram R(7,0) is linked to one of the copies of S(7,0) still having a free (1)-handle in this representation. Then we have a new transitive permutation representation of $\Delta(2,3,7)$ on n+7 points, in which $xyxy^{-1}$ has cycle structure

$$1^{3f+2} 3^{2g} 4^2 5^1 11^1 13^{3f-2-g} 10^{2g} 12^2 15^g 19^1 21^{2g}.$$

Again the unique 11-cycle here comes from the single copy of U(7,0), and can be used to prove that the permutations induced by x and y generate A_{n+7} . An important difference this time, however, is that because the point fixed by y in the single copy of R(7,0) is the only point fixed by y that lies close to a fixed point of $xyxy^{-1}$ or $xy^{-1}xy$ in the resulting coset diagram (on n + 7 points), this diagram has no axis of reflectional symmetry. Thus we have a homomorphism from $\Delta(2,3,7)$ to A_{n+7} that does not extend to a representation of the extended triangle group $\Delta^*(2,3,7)$, as claimed.

Figure 2: Additional cos t diagram R(7, d) with 7 + 6d vertices

When k = 7 + 6d for some positive integer d, we can apply the same construction using S(7, d), T(7, d) and U(7, d) from [Cn1], and add a single copy of the new coset diagram R(7, d) for $\Delta(2, 3, 7 + 6d)$ on 7 + 6d points given in Figure 2.

In the permutation representation of $\Delta(2, 3, 7 + 6d)$ depicted by R(7, d), the commutator $xyxy^{-1}$ fixes the point a, and has two 2-cycles, two 4-cycles, and 2(d-1) 3-cycles. Linking a single copy of R(7, d) to a copy of S(7, d) by their free (1)-handles gives rise to a new permutation representation of $\Delta(2, 3, 7+6d)$ in which one of the 2-cycles and one of the 4-cycles from R(7, d) are combined together with two of the cycles from S(7, d), to form a 7-cycle and a 10-cycle when d = 1, or a 6-cycle and an 8-cycle when $d \ge 2$.

Thus again we can form transitive permutation representations of $\Delta(2, 3, 7 + 6d)$ of arbitrarily large degree, and use the unique 11-cycle from the single copy of U(7, d) to prove that the resulting permutations generate an alternating group, and the single copy of R(7, d) to eliminate the possibility of a reflectional symmetry.

The proof for other cases (with k in different congruence classes mod 6) is analogous to the above, using the additional diagrams given in Figures 3 to 7 below.

Figure 3: Additional cos diagram R(8, d) with 8 + 6d vertices

For the case k = 8 + 6d, joining a single copy of diagram R(8, d) replaces cycles of $xyxy^{-1}$ by one cycle of length 15 if d = 0, or cycles of length 7 and

9 if d = 1, or cycles of length 6 and 8 if $d \ge 2$, leaving a unique 11-cycle from the single copy of diagram U(8, d) for application of Jordan's theorem.

Figure 4: Additional cos t diagram R(9, d) with 9 + 6d vertices

For the case k = 9 + 6d, diagrams are composed using (2)-handles $[\alpha, \beta]_2$, consisting of fixed points α and β such that y^2 takes α to β . Joining a single copy of diagram R(9, d) replaces cycles of $xyxy^{-1}$ by cycles of length 12 and 14 if d = 0, or cycles of length 3, 5, 9 and 10 if d = 1, or cycles of length 3, 5, 6 and 7 if $d \ge 2$, leaving a unique 13-cycle from the single copy of diagram U(9, d) for application of Jordan's theorem.

Figure 5: Additional cos t diagram R(10, d) with 10 + 6d vertices

For the case k = 10 + 6d, joining a single copy of diagram R(10, d) replaces cycles of $xyxy^{-1}$ by cycles of length 6, 7, 7 and 10 if d = 0, or cycles of length 5, 5, 6 and 7 if d = 1, or cycles of length 4, 5, 6 and 6 if $d \ge 2$, leaving a unique 13-cycle from the single copy of diagram U(10, d) for application of Jordan's theorem.

Figure 6: Additional cos diagram R(11, d) with 11 + 6d vertices

For the case k = 11 + 6d, joining a single copy of diagram R(11, d) replaces cycles of $xyxy^{-1}$ by cycles of length 9 and 19 if d = 0, or cycles of length 6,

8 and 9 if $d \ge 1$, leaving a unique 11-cycle from adjoining the single copy of diagram U(11, d) for application of Jordan's theorem.

Figure 7: Additional cos tdiagram R(12, d) with 12 + 6d vertices

For the case k = 12 + 6d, joining a single copy of diagram R(12, d) replaces cycles of $xyxy^{-1}$ by cycles of length 9 and 10 if d = 0, or cycles of length 5, 7 and 9 if d = 1, or cycles of length 4, 6 and 9 if $d \ge 2$, leaving a unique 13-cycle from adjoining the single copy of diagram U(12, d) for application of Jordan's theorem. \Box

References

- [A] R. D. M. Accola, Strongly branched coverings of closed Riemann surfaces. *Proc. Amer. Math. Soc.* **26** (1970) 315–322.
- [BC] E. Bujalance, M. Conder, On cyclic groups of automorphisms of Riemann surfaces. J. London Math. Soc. (2) 59 (1999), no. 2, 573– 584.
- [BCC] E. Bujalance, F. J. Cirre, M. Conder, On extendability of group actions on compact Riemann surfaces. *Trans. Amer. Math. Soc.* 355 (2003), no. 4, 1537–1557.
- [BCF] E. Bujalance, A. F. Costa, A. Fernandez, Uniformization of Klein surfaces by maximal NEC groups. Travaux de la Conférence Internationale d'Analyse Complexe et du 7e Séminaire Roumano-Finlandais (1993). *Rev. Roumaine Math. Pures Appl.* 40 (1995), no. 1, 39–54.
- [BEGG] E. Bujalance, J. J. Etayo, J. J., J. M. Gamboa, G. Gromadzki, Automorphism groups of compact bordered Klein surfaces. A combinatorial approach. Lecture Notes in Mathematics, 1439. Springer-Verlag, Berlin, 1990. xiv+201 pp.
- [Br] S. A. Broughton, Classifying finite group actions on surfaces of low genus. J. Pure Appl. Algebra 69 (1991), no. 3, 233–270.

- [Ch] J.M. Cohen, On Hurwitz extensions by $PSL_2(7)$, Math. Proc. Cambridge Philos. Soc. 86 (1979), 395–400.
- [Cn1] M.D.E. Conder, More on generators for alternating and symmetric groups, *Quart. J. Math. Oxford* (2) **32** (1981), 137–163.
- [Cn2] M.D.E. Conder, The genus of compact Riemann surfaces with maximal automorphism group, J. Algebra 108 (1987), 204–247.
- [Cn3] M.D.E. Conder, Maximal automorphism groups of symmetric Riemann surfaces with small genus, *J. Algebra* **114** (1988), 16–28.
- [CD] M.D.E. Conder, P. Dobcsányi, Determination of all regular maps of small genus, J. Combin. Theory Ser. B 81 (2001), 224–242.
- [E] J. J. Etayo Gordejuela, Nonorientable automorphisms of Riemann surfaces. Arch. Math. (Basel) 45 (1985), no. 4, 374–384.
- [L] J. Leech, Generators for certain normal subgroups of (2, 3, 7), Proc. Cambridge Philos. Soc. **61** (1965), 321–331.
- [S] D. Singerman, Finitely maximal Fuchsian groups. J. London Math. Soc. (2) 6 (1972), 29–38.
- [W] H. Wielandt, *Finite Permutation Groups*, Academic Press (New York), 1964.