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1 Introduction

A Riemann surface is called pseudo-real if it admits anticonformal auto-
morphisms but no anticonformal involution. Pseudo-real Riemann surfaces
appear in a natural way in the study of the moduli space MK

g of Riemann
surfaces considered as Klein surfaces. The moduli space Mg of Riemann sur-
faces of genus g is a two-fold branched covering of MK

g , and the preimage of
the branched locus consists of the Riemann surfaces admitting anticonformal
automorphisms — which are either real Riemann surfaces (admitting anti-
conformal involutions) or pseudo-real Riemann surfaces. We study the latter
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surfaces in this work. Pseudo-real Riemann surfaces are Riemann surfaces
that are equivalent to their conjugate but do not have any anticonformal in-
volution. Note that pseudo-real Riemann surfaces have non-trivial conformal
automorphisms, hence the locus of pseudo-real Riemann surfaces in Mg is
contained in the singular set of the orbifold Mg = Tg/Modg.
In Section 3 we study general properties of the automorphism groups of these
surfaces and the related uniformizing NEC groups. In particular, we prove
that there are pseudo-real Riemann surfaces of every genus g ≥ 2. In Section
4 we study pseudo-real surfaces of genus 2 and 3.
In recent years a vast literature has been published about real Riemann
surfaces — that is, Riemann surfaces admitting anticonformal involutions —
but very little is known about pseudo-real surfaces. A study of hyperelliptic
pseudo-real Riemann surfaces was made in [S] and [BC], and pseudo-real
surfaces with cyclic automorphism group were investigated in [E]. In Section
5 we study pseudo-real cyclic p-gonal Riemann surfaces, generalizing the
results obtained in [BC] for hyperelliptic surfaces.
In Section 6 we consider the maximal order of the automorphism group of
a pseudo-real Riemann surface (relative to its genus), and we establish a
connection between pseudo-real surfaces with maximal automorphism group,
and chiral 3-valent regular maps. Finally in Section 7 we show there exist
pseudo-real surfaces with automorphism group of maximal order for infinitely
many genera, by proving the existence of concrete infinite families of chiral
regular maps of type {3, k} for k ≥ 7.

2 Preliminaries on Fuchsian and NEC groups

A non-Euclidean crystallographic group (or NEC group) is a discrete group
of isometries of the hyperbolic plane D. We shall assume that an NEC group
has a compact orbit space. If Γ is such a group then its algebraic structure
is determined by its signature

(h;±; [m1, . . . , mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk
)}).

The orbit space D/Γ is a surface, possibly with boundary. The number h
is called the genus of Γ and equals the topological genus of D/Γ, while k is
the number of its boundary components, and the sign is + or − according
to whether or not the surface is orientable. The integers mi ≥ 2 are called
the proper periods, and represent the branched indices over interior points
of D/Γ in the natural projection π : D → D/Γ. The bracketed expressions
(ni1, . . . , nisi

), some or all of which may be empty (with si = 0), are called
the period cycles and represent the branchings over the ith hole in the surface,
and the numbers nij ≥ 2 are the link periods.
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Associated with each signature [BEGG] there exists a canonical presentation
for the group Γ, and a formula for the hyperbolic area of its fundamental
domain. If the signature has sign + then Γ has the following generators:

x1, . . . , xr (elliptic elements),
c10, . . . , c1s1, . . . , ck0, . . . , cksk

(reflections),
e1, . . . , ek (boundary transformations),
a1, b1, . . . , ag, bg (hyperbolic elements);

and these generators satisfy the defining relations
xmi

i = 1 (for 1 ≤ i ≤ r),
c2
ij−1 = c2

ij = (cij−1cij)
nij = 1, cisi

= e−1
i ci0ei (for 1 ≤ i ≤ k, 0 ≤ j ≤ si),

x1 . . . xre1 . . . eka1b1a
−1
1 b−1

1 . . . ahbha
−1
h b−1

h = 1.
If the sign is − then we just replace the hyperbolic generators ai, bi by glide
reflections d1, . . . , dh, and the last relation by x1 . . . xre1 . . . ekd

2
1 . . . d2

h = 1.
The hyperbolic area of an arbitrary fundamental region of an NEC group Γ
with signature is given by

µ(Γ) = 2π
(
εh − 2 + k +

∑r

i=1

(
1 − 1

mi

)
+ 1

2

∑k

i=1

∑si

j=1

(
1 − 1

nij

))
,

where ε = 2 if the sign is +, and ε = 1 if the sign is −. Furthermore, any
discrete group Λ of isometries of D containing Λ as a subgroup of finite index
is also an NEC group, and the hyperbolic area of a fundamental region for
Λ is given by the Riemann-Hurwitz formula:

[Λ : Γ] = µ(Γ)/µ(Λ).

For any NEC group Λ, let Λ+ denote the subgroup of orientation-preserving
elements of Λ, called the canonical Fuchsian subgroup of Λ. If Λ+ 6= Λ then
Λ+ has index 2 in Λ and we say that Λ is a proper NEC group.
Let X be a compact Riemann surface of genus g > 1. Then there is a Fuchsian
surface group Γ (that is, an NEC group with signature (g; +; [−]; {−}))) such
that X = D/Γ, and the automorphism group Aut(X) of X is isomorphic to
∆/Γ, where ∆ is an NEC group containing Γ. We denote by Aut+(X) the
group ∆+/Γ of all orientation-preserving automorphisms of X .

3 Pseudo-real Riemann surfaces

Definition 1 An anticonformal involution is an orientation-reversing auto-
morphism of order 2. A Riemann surface is called pseudo-real if it admits
anticonformal automorphisms but has no anticonformal involution.
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Proposition 2 Let X be a pseudo-real Riemann surface, and let G be the
group of conformal and anticonformal automorphisms of X. Then 4 divides
the order of G.

Proof. Let g be any anticonformal automorphism of X. If g has order 2am
where m is odd, then gm is an anticonformal automorphism of order 2a, and
then a > 1 because X is pseudo-real. Thus G has an element gm of order
divisible by 4. �

Theorem 3 Suppose the pseudo-real surface X is conformally equivalent to
D/Γ, where Γ is a surface Fuchsian group, and Γ is normalized by an NEC
group ∆ such that ∆/Γ ∼= G = Aut(X). Then the signature of ∆ has the
form (p;−; [m1, ..., mr]), and if ∆+ is the canonical Fuchsian subgroup of ∆,
then the signature of ∆+ is

(p − 1; +; [m1, m1, m2, m2, ..., mr, mr]).

Proof. Since G has anticonformal automorphisms, the signature of ∆ is
the signature of a proper NEC group — that is, a group with anticonformal
transformations. Thus the signature of ∆ has the form

(p;−; [m1, ..., mr]) or (p;±; [m1, ..., mr]; {(ni1, ..., niki
)i=1,...,l}).

Note that in the second case, ∆ contains reflections. Now let us consider the
monodromy epimorphism

θ : ∆ → ∆/Γ ∼= G,

which sends anticonformal transformations to anticonformal automorphisms.
If ∆ contains reflections, that is, if ∆ has signature

(p;±; [m1, ..., mr]; {(ni1, ..., niki
)i=1,...,l})

where l > 0, then the image by θ of a reflection is an anticonformal involution
in G, hence the signature of ∆ must be of the form (p;−; [m1, ..., mr]), with
no boundary components. The signature of ∆+ can now be obtained from
the signature of ∆ using the Riemann-Hurwitz formula and [BEGG]. �

Theorem 4 For every integer g ≥ 2, there exist pseudo-real surfaces of
genus g.

Proof. Let ∆ be an NEC group with signature (δ;−; [2, g+ε... , 2]), where δ =
ε = 1 if g is even, or δ = 2 and ε = −1 if g is odd. Let xi (for 1 ≤ i ≤ g + ε)
and dj (for 1 ≤ j ≤ δ) be a canonical system of generators of ∆. We may
define an epimorphism θ : ∆ → Z4 = 〈a : a4 = 1〉 by setting
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θ(xi) = a2 for 1 ≤ i ≤ g + ε, and θ(dj) = a for 1 ≤ j ≤ δ.

Then X = D/ ker θ is a Riemann surface such that ∆/ ker θ ∼= Z4 is a group
of automorphisms of X. Choosing ∆ to be maximal (see [BCF]) ensures that
the group ∆/ ker θ will be the full automorphism group of X, and this will
contain anticonformal automorphisms but only one involution, namely a2,
and that involution is conformal. Hence X is pseudo-real. �

4 Pseudo-real surfaces of genus 2 and 3

Theorem 5 Let X be a pseudo-real Riemann surface of genus 2. Then
Aut(X) is isomorphic to Z4, and if Aut(X) ∼= ∆/Γ where X = D/Γ, then ∆
has signature (1;−; [2, 2, 2]).

Proof. If G = ∆/Γ then G+ = ∆+/Γ is the conformal automorphism group
of a Riemann surface of genus 2. By Theorem 3 and [Br, Table 4], we know
that the only possibilities for G+ and the signature s(∆+) of ∆+ are the
following (where nr denotes n, r..., n):

G+ ∼= Z2 and s(∆+) = (0; +; [26]),
or G+ ∼= Z2 and s(∆+) = (1; +; [22]),
or G+ ∼= Z4 and s(∆+) = (0; +; [22, 42]).

The second and third of these three cases are ruled out by the analysis
undertaken in [BC], so we are left with only the first case. Then, since ∆
must contain ∆+ as a subgroup of index two, the signature of ∆ must be
(1;−; [2, 2, 2]), and since G+ ∼= Z2, also G ∼= Z4. �

We can easily construct such a pseudo-real Riemann surface X of genus 2,
for example as in the proof of Theorem 4 (with δ = ε = 1 and g = 2).

Theorem 6 Let X be a pseudo-real Riemann surface of genus 3, with auto-
morphism group G ∼= ∆/Γ, where X = D/Γ. Then there are three possible
cases, all of which are realisable:
(a) G ∼= Z4, and ∆ has signature (2;−; [2, 2]), or
(b) G ∼= D4, and ∆ has signature (1;−; [2, 2, 2]), or
(c) G ∼= Z4 ⊕ Z2, and ∆ has signature (1;−; [2, 2, 2]).

Proof. The index 2 subgroup G+ ∼= ∆+/Γ of G ∼= ∆/Γ is the automorphism
group of a Riemann surface of genus 3. By Theorem 3 and [Br, Table 4], and
using the results of [BC] and [BCC], we find the only possibilities for G+ and
the signature of ∆+ are the following (where 2r denotes 2, r..., 2):
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G+ ∼= Z2 and s(∆+) = (0; +; [28]),
or G+ ∼= Z2 and s(∆+) = (1; +; [24]),
or G+ ∼= Z2 ⊕ Z2 and s(∆+) = (0; +; [26]).

In the first case G must be Z4 and ∆ must have signature (1;−; [24]), but
then there is no epimorphism θ : ∆ → Z4 with an appropriate kernel Γ, so
this case is ruled out. From the other two cases, we deduce that the only
possibilities for G, G+ and ∆ are the following:

G ∼= Z4, G+ ∼= Z2 and s(∆) = (2;−; [2, 2]),
or G ∼= D4, G+ ∼= Z2 ⊕ Z2 and s(∆) = (1;−; [2, 2, 2]),
or G ∼= Z4 ⊕ Z2, G+ ∼= Z2 ⊕ Z2 and s(∆) = (1;−; [2, 2, 2]).

In each case it is easy to establish an epimorphism θ : ∆ → G where ∆ is a
maximal NEC group with the corresponding signature, so that G = ∆/ ker θ
is the automorphism group of a pseudo-real Riemann surface of genus 3. �

5 Pseudo-real cyclic p-gonal Riemann surfaces

Definition 7 A cyclic p-gonal Riemann surface is a Riemann surface X
that admits an automorphism h of order p such that the quotient surface
X/〈h〉 has genus 0.

Theorem 8 Let X be a pseudo-real cyclic p-gonal Riemann surface of genus
g ≥ (p− 1)2, where p is prime. Let G be the automorphism group of X, and
let H = 〈h〉 ∼= Zp be the subgroup of G generated by an automorphism h of
p-gonality. Let ∆ and Γ be NEC groups such that X ' D/Γ and Γ C ∆
with ∆/Γ ∼= G. Then g is even, and one of the following two cases holds:

(a) G ∼= Zn ⊕ H, where 4 divides n and the first factor Zn is generated
by an anticonformal automorphism, and the NEC group ∆ has

signature (1;−; [p,
2(g+p−1)

n(p−1)... , p, n
2
]); or

(b) G ∼= Zpn, where 4 divides n, and G is generated by an anticonformal

automorphism, and ∆ has signature (1;−; [p,
2g

n(p−1)... , p, n
2
p]).

Proof. Let Λ be the Fuchsian group of genus 0 such that Γ < Λ < ∆, with
X/H ' D/Λ and Λ/Γ ∼= H. The signatures of Λ and ∆ have the form

(0; +; [p, q..., p]) and (g′;−; [m1, ..., mr])
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respectively. Let n = [∆ : Λ]. By [A], we know that if the genus of X satisfies

g ≥ (p− 1)2, then there is a unique p-gonal covering X → Ĉ = X/H. Hence
Λ C ∆, and so

[m1, ..., mr] = [ps1, ...., pst, mt+1, ..., mr] and q = n
s1

+ ... + n
st

.

Applying the Riemann-Hurwitz formula, we find

−2 + q(1 − 1
p
) = n(g′ − 2 +

t∑
i=1

(1 − 1
sip

) +
r∑

i=t+1

(1 − 1
mi

)). (*)

Since the genus of Λ is 0, the genus of ∆ must be 1, and hence the formula
(*) is equivalent to

2 − n + n
t∑

i=1

(1 − 1
si

) + n
r∑

i=t+1

(1 − 1
mi

) = 0.

From this formula it is easy to deduce that the only possible signatures for
∆ are the following:

(1;−; [p,
2(g+p−1)

n(p−1)... , p, n
2
]) and (1;−; [p,

2g

n(p−1)... , p, n
2
p]).

Now suppose ∆ has one of the above signatures, and define l = 2(g+p−1)
n(p−1)

for the first signature and l = 2g

n(p−1)
for the second. We will consider the

epimorphism θ : ∆ → ∆/Λ. Let d, x1, ..., xl, xl+1 be the generators of a
canonical presentation of ∆. From the form of the signature of Λ, we see
that θ(x1) = ... = θ(xl) = 1, and that θ(xl+1) = b is an element of order n

2
.

Also the two elements a = θ(d) and b = θ(xl+1) generate the image ∆/Λ.
Next, from the relation

d2x1...xlxl+1 = 1

we find that a2b−1 = 1, and so ∆/Λ is cyclic of order n. Since the subgroup
H generated by the p-gonal automorphism is unique, it is central in G and
hence ∆/Γ is a central extension of a cyclic group of order n. But then since
G/Z(G) is cyclic, G is abelian (by an easy theorem from group theory). Thus
G is isomorphic to either Zn ⊕ H or Zpn, and the rest follows. �
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6 The maximal order of the automorphism

group of a pseudo-real Riemann surface

Theorem 9 If X is a pseudo-real Riemann surface of genus g with auto-
morphism group G, then |G| ≤ 12(g − 1). Moreover, if |G| = 12(g − 1) and
G ∼= ∆/Γ where X ' D/Γ, then the signature of ∆ is (1;−; [2, 3]).

Proof. By Theorem 3, the NEC group ∆ has signature (p;−; [m1, ..., mr]),
and then from the Riemann-Hurwitz formula, we find

2g − 2 = |G| (p − 2 +
r∑

i=1

(1 − 1
mi

)).

The minimum positive value of the bracketed expression on the right-hand
side is 1

6
, which is attained when p = 1, r = 2, m1 = 2 and m2 = 3, and in

that case |G| = 12(g − 1). �

We are interested in the construction of pseudo-real Riemann surfaces with
automorphism group of maximal order. In order to find such a pseudo-real
surface of genus g with maximal symmetry, we need to find:

(a) a maximal NEC group ∆ with signature (1;−; [2, 3]),
(b) a finite group G of order 12(g − 1), and
(c) an epimorphism θ : ∆ → G such that ker θ is a Fuchsian surface

group of genus g.

Here we remark that the monodromy epimorphism θ is determined by the
image of the canonical generators. If we have a group G of order 12(g − 1)
and a monodromy epimorphism θ : ∆ → G, then the group ∆ is maximal
(see [S] and [BEGG]) unless there is another NEC group ∆′ with signature
(0; +; [2], {(2, 3)}) containing ∆ and an epimorphism θ′ : ∆′ → G′, where G′

is an index two extension of G and θ′|∆ = θ.

Proposition 10 Let ∆ be an NEC group with signature (1;−; [2, 3]), let
d, x1 and x2 be the generators of a canonical presentation for ∆, and let
θ : ∆ → G be an epimorphism such that θ(d1) = a and θ(x1) = b. Then θ
can be extended to an epimorphism θ′ : ∆′ → G′, where ∆′ is an NEC group
containing ∆ as a subgroup of index 2 and G′ is a group containing G as
a subgroup of index 2, if and only if G admits an automorphism of order 2
such that α(a) = a−1 and α(b) = b−1.

Proof. If G admits such an automorphism α, then we can construct the
semidirect product G′ = G oα Z2, which is generated by G = 〈a, b〉 and
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an involution c, conjugation by which induces the automorphism α on G.
Also we can let ∆′ be an NEC group with signature (0; +; [2], {(2, 3)}) and
having canonical generators x′

1 c′1, c′2, c′3, and then define an epimorphism
θ′ : ∆′ → G′ = G oα Z2 by setting

θ′(x′

1) = ac, θ′(c′1) = c, θ′(c′2) = cb, and θ′(c′3) = a2c.

Conversely, if such an extension θ′ : ∆′ → G′ of θ exists, then by [S] and
[BEGG], ∆′ must have signature (0; +; [2], {(2, 3)}) with canonical generators
x′

1 c′1, c′2, c′3, and without loss of generality the embedding of ∆ in ∆′ is given
by

d1 7→ x′

1c
′

1, x1 7→ c′1c
′

2, x2 7→ c′2c
′

3;

hence if c is the involution θ′(c′1), then

cac = θ′(c′1d1c
′

1) = θ′(c′1x
′

1) = θ(d1)
−1 = a−1

and
cbc = θ′(c′1x1c

′

1) = θ′(c′2c
′

1) = θ(x1)
−1 = b−1,

so conjugation by c gives the required automorphism. �

The last proposition and a theorem to follow provide a link with the theory
of 3-valent regular maps.

Definition 11 An orientably-regular map M is a 2-cell embedding of a con-
nected graph into an orientable surface, such that the group Aut+(M) of all
orientation-preserving automorphisms of the surface that preserve the embed-
ding has a single orbit on the arcs (directed edges) of the graph. The map is
called reflexible if there exist orientation-reversing automorphisms that pre-
serve the embedding, and otherwise it is said to be chiral.

More details may be found in [CD], where all orientably-regular maps of
genus 2 to 15 were determined. If M is an orientably-regular map of type
{m, n} (with vertices of valence m and faces of size n), then Aut+(M) is
generated by two elements R and S satisfying Rm = Sn = (RS)2 = 1, and
M is reflexible if and only if there is an automorphism τ of G = 〈R, S〉
such that τ(R) = R−1 and τ(S) = S−1 (or equivalently, an automorphism
inverting any one of the pairs (R, S), (R, RS) or (S, RS)).

Theorem 12 For each chiral regular map M of type {3, n}, where n is odd,
if M has automorphism group G, then there exists a pseudo-real Riemann
surface X with automorphism group of maximal order and isomorphic to
G × Z4.
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Proof. Let ∆ be the (2, 3, n) triangle group, with signature (0; [2, 3, n]) and
canonical presentation

〈 x1, x2, x3 : x1x2x3 = 1, x2
1 = x3

2 = xn
3 = 1 〉.

Also let θ : ∆ → G be the epimorphism that corresponds to a chiral regular
map of type {3, n}, taking (say) x1, x2 and x3 to the automorphisms RS, R
and S of M , so that ker θ is a surface group, and let b be an element of G
such that b2 = θ(x3), which is known to exist because n is odd.
Now let Λ be an NEC group with signature (1;−; [2, 3]) and canonical pre-
sentation

〈 d, y1, y2 : y1y2d
2 = 1, y2

1 = y3
2 = 1 〉,

and define an epimorphism ω : Λ → G × Z4 = G × 〈a : a4 = 1〉 by setting

ω(d) = (b, a), ω(y1) = (θ(x1), a
2) and ω(y2) = (θ(x2), 1).

Then Γ = ker ω is a surface group, and since the image of the subgroup
〈x1, x2, dx1d, dx2d〉 of index 2 in Λ is the subgroup G × 〈a2〉 of index 2 in
G × 〈a〉, the surface X = D/Γ (with automorphism group Λ/Γ ∼= G × 〈a〉)
is orientable; see [BEGG, Theorem 2.1.3 (2)]. Moreover, every element of
G × 〈a〉 lying outside the orientation-preserving subgroup G × 〈a2〉 is of the
form (u, a±1) for some u ∈ G, and it follow that every anticonformal au-
tomorphism of X = D/Γ has order divisible by 4. Hence the surface X is
pseudo-real. �

In the following section, we prove that for every integer k ≥ 7, there exist
chiral regular maps of type {3, k} on orientable surfaces of infinitely many
genera. Using Theorem 12, we therefore obtain the following theorem:

Theorem 13 There exist pseudo-real surfaces with automorphism group of
maximal order, for infinitely many genera. In particular there are infinitely
many pseudo-real Riemann surfaces with maximal automorphism group.

7 Chiral 3-valent regular maps

In the previous Section we proved that from every chiral regular map of
type {3, n} for n odd, we can construct a pseudo-real Riemann surface with
maximal symmetry. In this Section we shall find explicit families of chiral
3-valent regular maps that produce such pseudo-real Riemann surfaces.
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Theorem 14 For every prime p congruent to 1, 2 or 4 mod 7, there exists
a normal subgroup Kp of index 168p3 in the ordinary triangle group ∆ =
∆(2, 3, 7) such that ∆/Kp is isomorphic to an extension by PSL(2, 7) of the
3-generator abelian group Zp×Zp×Zp of order p3 and exponent p. Moreover,
the subgroup Kp is not normal in the extended triangle group ∆∗(2, 3, 7), so
∆/Kp has no automorphism that inverts the images of the two generators x
and y of ∆ = ∆(2, 3, 7) .

Note: here ∆ has signature (0; +; [2, 3, 7]; {−}), while the extended triangle
group ∆∗ has signature (1; +; [−]; {(2, 3, 7)}), with (∆∗)+ ∼= ∆.

Corollary 15 There exist chiral regular maps of type {3, 7} on orientable
surfaces of infinitely many genera.

Proof of Theorem. Most of this follows from observations made by Leech
in [L] and pursued by Cohen in [Ch], and explained also in [Cn2, Cn3]. First,
the extended triangle group ∆∗ = ∆∗(2, 3, 7) has a normal subgroup N of
index 336, generated by a0 = [y, x]4 and its conjugates, such that ∆∗/N is
isomorphic to PGL(2, 7). By observations made by Leech [L], this normal
subgroup N has a nice presentation in terms of six generators and a single
relation (in which each of the generators appears twice, with exponents ±1).
Now for each prime p as given in the statement of the theorem, let Np denote
the normal subgroup of ∆∗ generated by the derived subgroup N ′ = [N, N ]
of N and the set Np of all pth powers of elements of N . Then Np = N ′Np

has index p6 in N , and is normal in ∆∗, with quotient N/Np elementary
abelian of order p6. Moreover, by observations made by Cohen [Ch] about
the action of PSL(2, 7) on N/Np induced by conjugation of N by elements of
∆ = ∆(2, 3, 7), there exist intermediate subgroups L1 and L2 of N containing
Np, such that each Li is normal in ∆, and N = L1L2 with L1 ∩L2 = Np, and
with N/Li elementary abelian of order p3 for i ∈ {1, 2}. On the other hand,
L1 and L2 are not normal in the extended triangle group ∆∗ = ∆∗(2, 3, 7);
indeed every element of ∆∗\∆ conjugates L1 to L2 and vice versa. Hence we
can take Kp = L1 or L2, to give the required result. �

Theorem 16 For every integer k ≥ 7, all but finitely many of the alternating
groups An can be generated by two elements x and y such that x, y and xy
have orders 2, 3 and k respectively, and that there exists no automorphism
of 〈x, y〉 = An taking x and y to x−1 and y−1 respectively.

Corollary 17 For each integer k ≥ 7, there exist chiral regular maps of type
{3, k} on orientable surfaces of infinitely many genera.

11



Proof of Theorem. In all cases our argument relies heavily on a construc-
tion used by the second author in [Cn1] to prove that (for every k ≥ 7) all
but finitely many An are homomorphic images of the extended triangle group

∆∗(2, 3, k) = 〈 x, y, t | x2 = y3 = (xy)k = t2 = (xt)2 = (yt)2 = 1 〉,

a group with signature (1; +; [−]; {(2, 3, k)}). We refer the reader to [Cn1]
for important details. In that construction, permutation representations
of ∆∗(2, 3, k) are depicted by Schreier coset diagrams, and specially cho-
sen examples of such diagrams are linked together to form representations
of arbitrarily large degree n, in a way that makes the resulting permuta-
tions generate An or Sn. We will amend that construction by adding one
more small diagram that depicts a permutation representation of the ordi-
nary triangle group ∆ = (∆∗)+, but not depict one of the extended triangle
group ∆∗(2, 3, k) itself. Note that ∆ = ∆(2, 3, k) is the index 2 subgroup of
∆∗(2, 3, k) generated by x and y.

We do this first for the case k = 7, and then explain in less detail how the
theorem can be proved for larger k using the same method.

b a................................................................................
...........................................................................................

...............
...............
........

...............
...............

........
...............................................................................................•

Figure 1: Additional coset diagram R(7, 0) with 7 vertices

When k = 7, consider the permutation representation of ∆(2, 3, 7) on 7 points
given by the diagram R(7, 0) in Figure 1.Like the diagrams S(7, 0), T (7, 0),
U(7, 0) and V (7, 0) in [Cn1], this has a (1)-handle [a, b]1, consisting of two
points a and b such that x fixes both a and b, and y takes a to b. Note that the
point a is fixed by the commutator xyxy−1, while b lies in a 2-cycle of xyxy−1,
and the other four points lie in a 4-cycle. Similarly, if [a′, b′]1 is a (1)-handle
of the diagram S(7, 0), then a′ is fixed by xyxy−1, while b′ lies in a 13-cycle of
xyxy−1, consisting of the 13 points of the cycle of xyt in the representation of
∆(2, 3, 7) that it depicts. Indeed it follows from the relations for the extended
triangle group ∆∗(2, 3, 7) that (xyt)2 = xytxyt = xyxtyt = xyxy−1, and
hence the cycle structure of xyxy−1 can be derived easily from that of xyt
on the points of the diagram S(7, 0).
Next suppose that a single copy of the diagram R(7, 0) is linked together with
a single copy of the diagram S(7, 0), by adding the transpositions (a, a′) and
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(b, b′) to the permutation induced by x (while not altering the permutation
induced by y). Then the resulting diagram is easily seen to be a coset diagram
for the ordinary triangle group ∆(2, 3, 7), by the same argument as in [Cn1].
Also in the corresponding permutation representation, the two points a and
a′ are still both fixed by xyxy−1, while the cycles containing b and b′ and the
other four points of the diagram R(7, 0) are joined together to form a new
cycle of xyxy−1, of length 19. (This is easily verified, either by writing out
the permutations, or by chasing points around the combined diagrams.)
The construction in [Cn1] explains how a transitive permutation representa-
tion of ∆∗(2, 3, 7) on n = 42f + 71g + 36 points (when f > g ≥ 0) can be
formed by linking together f copies of diagram S(7, 0) and then adjoining g
copies of T (7, 0) and a single copy of U(7, 0), by composition of (1)-handles.
In the resulting representation, the element xyt has cycle structure

1f+1−g2f+g516g8111113f+1−g15g20g24126f−142g,

so the commutator xyxy−1 has cycle structure

13f+132g4251111133f−1−g102g12215g212g.

The unique 11-cycle here comes from the single copy of U(7, 0), and this
can be used (with the help of Jordan’s theorem from [W]) to prove that the
permutations induced by x, y and t generate Sn, while those induced by x
and y generate An.
Now suppose that a single copy of the diagram R(7, 0) is linked to one of the
copies of S(7, 0) still having a free (1)-handle in this representation. Then
we have a new transitive permutation representation of ∆(2, 3, 7) on n + 7
points, in which xyxy−1 has cycle structure

13f+232g4251111133f−2−g102g12215g191212g.

Again the unique 11-cycle here comes from the single copy of U(7, 0), and
can be used to prove that the permutations induced by x and y generate
An+7. An important difference this time, however, is that because the point
fixed by y in the single copy of R(7, 0) is the only point fixed by y that lies
close to a fixed point of xyxy−1 or xy−1xy in the resulting coset diagram
(on n + 7 points), this diagram has no axis of reflectional symmetry. Thus
we have a homomorphism from ∆(2, 3, 7) to An+7 that does not extend to a
representation of the extended triangle group ∆∗(2, 3, 7), as claimed.
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Figure 2: Additional coset diagram R(7, d) with 7 + 6d vertices

When k = 7 + 6d for some positive integer d, we can apply the same con-
struction using S(7, d), T (7, d) and U(7, d) from [Cn1], and add a single copy
of the new coset diagram R(7, d) for ∆(2, 3, 7+ 6d) on 7+ 6d points given in
Figure 2.
In the permutation representation of ∆(2, 3, 7 + 6d) depicted by R(7, d), the
commutator xyxy−1 fixes the point a, and has two 2-cycles, two 4-cycles,
and 2(d − 1) 3-cycles. Linking a single copy of R(7, d) to a copy of S(7, d)
by their free (1)-handles gives rise to a new permutation representation of
∆(2, 3, 7+6d) in which one of the 2-cycles and one of the 4-cycles from R(7, d)
are combined together with two of the cycles from S(7, d), to form a 7-cycle
and a 10-cycle when d = 1, or a 6-cycle and an 8-cycle when d ≥ 2.
Thus again we can form transitive permutation representations of ∆(2, 3, 7+
6d) of arbitrarily large degree, and use the unique 11-cycle from the single
copy of U(7, d) to prove that the resulting permutations generate an alter-
nating group, and the single copy of R(7, d) to eliminate the possibility of a
reflectional symmetry.

The proof for other cases (with k in different congruence classes mod 6) is
analogous to the above, using the additional diagrams given in Figures 3 to
7 below.
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Figure 3: Additional coset diagram R(8, d) with 8 + 6d vertices

For the case k = 8 + 6d, joining a single copy of diagram R(8, d) replaces
cycles of xyxy−1 by one cycle of length 15 if d = 0, or cycles of length 7 and
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9 if d = 1, or cycles of length 6 and 8 if d ≥ 2, leaving a unique 11-cycle from
the single copy of diagram U(8, d) for application of Jordan’s theorem.
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Figure 4: Additional coset diagram R(9, d) with 9 + 6d vertices

For the case k = 9 + 6d, diagrams are composed using (2)-handles [α, β]2,
consisting of fixed points α and β such that y2 takes α to β. Joining a single
copy of diagram R(9, d) replaces cycles of xyxy−1 by cycles of length 12 and
14 if d = 0, or cycles of length 3, 5, 9 and 10 if d = 1, or cycles of length 3, 5,
6 and 7 if d ≥ 2, leaving a unique 13-cycle from the single copy of diagram
U(9, d) for application of Jordan’s theorem.
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Figure 5: Additional coset diagram R(10, d) with 10 + 6d vertices

For the case k = 10 + 6d, joining a single copy of diagram R(10, d) replaces
cycles of xyxy−1 by cycles of length 6, 7, 7 and 10 if d = 0, or cycles of length
5, 5, 6 and 7 if d = 1, or cycles of length 4, 5, 6 and 6 if d ≥ 2, leaving a
unique 13-cycle from the single copy of diagram U(10, d) for application of
Jordan’s theorem.
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Figure 6: Additional coset diagram R(11, d) with 11 + 6d vertices

For the case k = 11 + 6d, joining a single copy of diagram R(11, d) replaces
cycles of xyxy−1 by cycles of length 9 and 19 if d = 0, or cycles of length 6,
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8 and 9 if d ≥ 1, leaving a unique 11-cycle from adjoining the single copy of
diagram U(11, d) for application of Jordan’s theorem.
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Figure 7: Additional coset diagram R(12, d) with 12 + 6d vertices

For the case k = 12 + 6d, joining a single copy of diagram R(12, d) replaces
cycles of xyxy−1 by cycles of length 9 and 10 if d = 0, or cycles of length 5,
7 and 9 if d = 1, or cycles of length 4, 6 and 9 if d ≥ 2, leaving a unique
13-cycle from adjoining the single copy of diagram U(12, d) for application
of Jordan’s theorem. �
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