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1 Introduction

A Riemann surface is called pseudo-real if it admits anticonformal auto-
morphisms but no anticonformal involution. Pseudo-real Riemann surfaces
appear in a natural way in the study of the moduli space ./\/lf of Riemann
surfaces considered as Klein surfaces. The moduli space M, of Riemann sur-
faces of genus ¢ is a two-fold branched covering of /\/lff , and the preimage of
the branched locus consists of the Riemann surfaces admitting anticonformal
automorphisms — which are either real Riemann surfaces (admitting anti-
conformal involutions) or pseudo-real Riemann surfaces. We study the latter
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surfaces in this work. Pseudo-real Riemann surfaces are Riemann surfaces
that are equivalent to their conjugate but do not have any anticonformal in-
volution. Note that pseudo-real Riemann surfaces have non-trivial conformal
automorphisms, hence the locus of pseudo-real Riemann surfaces in M, is
contained in the singular set of the orbifold M, = T,/Mod,.

In Section 3 we study general properties of the automorphism groups of these
surfaces and the related uniformizing NEC groups. In particular, we prove
that there are pseudo-real Riemann surfaces of every genus g > 2. In Section
4 we study pseudo-real surfaces of genus 2 and 3.

In recent years a vast literature has been published about real Riemann
surfaces — that is, Riemann surfaces admitting anticonformal involutions —
but very little is known about pseudo-real surfaces. A study of hyperelliptic
pseudo-real Riemann surfaces was made in [S] and [BC], and pseudo-real
surfaces with cyclic automorphism group were investigated in [E]. In Section
5 we study pseudo-real cyclic p-gonal Riemann surfaces, generalizing the
results obtained in [BC] for hyperelliptic surfaces.

In Section 6 we consider the maximal order of the automorphism group of
a pseudo-real Riemann surface (relative to its genus), and we establish a
connection between pseudo-real surfaces with maximal automorphism group,
and chiral 3-valent regular maps. Finally in Section 7 we show there exist
pseudo-real surfaces with automorphism group of maximal order for infinitely
many genera, by proving the existence of concrete infinite families of chiral
regular maps of type {3, k} for k > 7.

2 Preliminaries on Fuchsian and NEC groups

A non-Euclidean crystallographic group (or NEC group) is a discrete group
of isometries of the hyperbolic plane D. We shall assume that an NEC group
has a compact orbit space. If I' is such a group then its algebraic structure
is determined by its signature
(h; £5 [ma, oo yme s {(nan, - sy )y ooy (MEL, - oy Mesy ) 1)

The orbit space D/T" is a surface, possibly with boundary. The number h
is called the genus of " and equals the topological genus of D/T", while k is
the number of its boundary components, and the sign is + or — according
to whether or not the surface is orientable. The integers m; > 2 are called
the proper periods, and represent the branched indices over interior points
of D/I" in the natural projection 7 : D — D/T". The bracketed expressions
(N1, ..., Nis,), some or all of which may be empty (with s; = 0), are called
the period cycles and represent the branchings over the i'" hole in the surface,
and the numbers n;; > 2 are the link periods.



Associated with each signature [BEGG] there exists a canonical presentation
for the group I', and a formula for the hyperbolic area of its fundamental
domain. If the signature has sign + then I' has the following generators:

x1,...,2, (elliptic elements),

C10y -+ Clsys - - 5 Ck0s - - - 5 Chs,,  (reflections),
e1,...,¢, (boundary transformations),
ai, by, ..., a4 b, (hyperbolic elements);

and these generators satisfy the defining relations

s .
=1 (for 1 <i<r),
iy = = (1) =1, ¢, = € eipe; (for 1 <i <k, 0<j <s;),

Ty...%p€7... ekalblaflbfl .. .ahbha}jlbgl =1.
If the sign is — then we just replace the hyperbolic generators a;, b; by glide
reflections dy, . .., dy, and the last relation by z1...z.e1...epds ... d2 = 1.
The hyperbolic area of an arbitrary fundamental region of an NEC group I'
with signature is given by

() =27 <8h—2+k+2;:1 <1—m%> +%Ef=12?:1 (1_7%“))’

where ¢ = 2 if the sign is +, and ¢ = 1 if the sign is —. Furthermore, any
discrete group A of isometries of D containing A as a subgroup of finite index
is also an NEC group, and the hyperbolic area of a fundamental region for
A is given by the Riemann-Hurwitz formula:

A1) = u(D)/p(A).

For any NEC group A, let AT denote the subgroup of orientation-preserving
elements of A, called the canonical Fuchsian subgroup of A. If AT # A then
AT has index 2 in A and we say that A is a proper NEC group.

Let X be a compact Riemann surface of genus g > 1. Then there is a Fuchsian
surface group I' (that is, an NEC group with signature (g; +;[—]; {—1}))) such
that X = D/T", and the automorphism group Aut(X) of X is isomorphic to
A/T; where A is an NEC group containing I'. We denote by Aut™*(X) the
group AT /T of all orientation-preserving automorphisms of X .

3 Pseudo-real Riemann surfaces

Definition 1 An anticonformal involution is an orientation-reversing auto-
morphism of order 2. A Riemann surface is called pseudo-real if it admits
anticonformal automorphisms but has no anticonformal involution.



Proposition 2 Let X be a pseudo-real Riemann surface, and let G be the
group of conformal and anticonformal automorphisms of X. Then 4 divides

the order of G.

Proof. Let g be any anticonformal automorphism of X. If g has order 2*m
where m is odd, then ¢™ is an anticonformal automorphism of order 2%, and
then a > 1 because X is pseudo-real. Thus G has an element g™ of order
divisible by 4. [

Theorem 3 Suppose the pseudo-real surface X is conformally equivalent to
D/T, where ' is a surface Fuchsian group, and I' is normalized by an NEC
group A such that AJ/T = G = Aut(X). Then the signature of A has the
form (p; —;[ma, ...,m,]), and if A" is the canonical Fuchsian subgroup of A,
then the signature of AT is

(p - 17 +7 [m17m17m27m27 "'7m7’7m7"])'

Proof. Since G has anticonformal automorphisms, the signature of A is
the signature of a proper NEC group — that is, a group with anticonformal
transformations. Thus the signature of A has the form

(p; =5 Ima, ...,mp])  or (D= [ma, o me]s { (M, oo, M i1, 0}

Note that in the second case, A contains reflections. Now let us consider the
monodromy epimorphism

0:A— AJT=G,

which sends anticonformal transformations to anticonformal automorphisms.
If A contains reflections, that is, if A has signature

(p; £; [ma, .o mp]; { (s ooy My )im1, 0 })

where [ > 0, then the image by 6 of a reflection is an anticonformal involution
in G, hence the signature of A must be of the form (p; —; [m, ..., m,|), with
no boundary components. The signature of AT can now be obtained from
the signature of A using the Riemann-Hurwitz formula and [BEGG]. O

Theorem 4 For every integer g > 2, there exist pseudo-real surfaces of
genus g.

Proof. Let A be an NEC group with signature (d; —; [2, 915, 2]), where § =
e=1ifgiseven,or § =2 and e = —1if g is odd. Let z; (for 1 <i < g—+¢)
and d; (for 1 < j < ) be a canonical system of generators of A. We may
define an epimorphism 6 : A — Z4 = (a : a* = 1) by setting
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O(x;)=a* for 1<i<g+e, and 0(d;)=a for1<j<é.

Then X = D/ker6 is a Riemann surface such that A/ker 6 = Z, is a group
of automorphisms of X. Choosing A to be maximal (see [BCF]) ensures that
the group A/ker will be the full automorphism group of X, and this will
contain anticonformal automorphisms but only one involution, namely a?,
and that involution is conformal. Hence X is pseudo-real. [J

4 Pseudo-real surfaces of genus 2 and 3

Theorem 5 Let X be a pseudo-real Riemann surface of genus 2. Then
Aut(X) is isomorphic to Zy, and if Aut(X) = A/T where X = D/T", then A
has signature (1;—;[2,2,2]).

Proof. If G = A/T then G = A" /T is the conformal automorphism group
of a Riemann surface of genus 2. By Theorem 3 and [Br, Table 4], we know
that the only possibilities for G and the signature s(A™) of A" are the
following (where n” denotes n,.7.,n):

GT 7, and s(AT)=(0;+;[29]),
or Gt =7, and s(A")=(1;+;[2?)),
or Gt =Z; and s(AT)=(0;+;[22 4?]).

The second and third of these three cases are ruled out by the analysis
undertaken in [BC], so we are left with only the first case. Then, since A

must contain AT as a subgroup of index two, the signature of A must be
(1; —;[2,2,2]), and since G = Zy, also G = Z,. O

We can easily construct such a pseudo-real Riemann surface X of genus 2,
for example as in the proof of Theorem 4 (with 6 =e =1 and g = 2).

Theorem 6 Let X be a pseudo-real Riemann surface of genus 3, with auto-
morphism group G = AJT, where X = D/T". Then there are three possible
cases, all of which are realisable:

(a) G =74, and A has signature (2;—;[2,2]), or

(b) G =Dy, and A has signature (1;—;[2,2,2]), or

(¢c) G=7Z4®Zy, and A has signature (1;—;[2,2,2]).

Proof. The index 2 subgroup G* = AT /T of G = A/T is the automorphism
group of a Riemann surface of genus 3. By Theorem 3 and [Br, Table 4], and
using the results of [BC] and [BCC], we find the only possibilities for G and
the signature of A" are the following (where 2" denotes 2, .., 2):
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Gt and s(A%) = (045 [2%))
or Gt X7, and s(A1) = (1;+;[24),
or GT2Zy,®Zy and s(AT) = (0;+;[2%]).

In the first case G must be Z, and A must have signature (1; —;[2%]), but
then there is no epimorphism 6 : A — 7Z, with an appropriate kernel I', so
this case is ruled out. From the other two cases, we deduce that the only
possibilities for G, G and A are the following;:

G = Ly, Gt 27, and s(A) = (2;—:1[2,2]),
or G =Dy, Gt 2Zy®7Zy and s(A)=(1;—:[2,2,2]),
or GEZy®Zy, G EZy®Zy and s(A)=(1;—;12,2,2]).

In each case it is easy to establish an epimorphism 6 : A — G where A is a
maximal NEC group with the corresponding signature, so that G = A/ ker ¢
is the automorphism group of a pseudo-real Riemann surface of genus 3. [

5 Pseudo-real cyclic p-gonal Riemann surfaces

Definition 7 A cyclic p-gonal Riemann surface is a Riemann surface X

that admits an automorphism h of order p such that the quotient surface
X/(h) has genus 0.

Theorem 8 Let X be a pseudo-real cyclic p-gonal Riemann surface of genus
g > (p—1)2, where p is prime. Let G be the automorphism group of X, and
let H = (h) =2 Z, be the subgroup of G generated by an automorphism h of
p-gonality. Let A and T' be NEC groups such that X ~ D/T and T' < A
with AJT" = G. Then g is even, and one of the following two cases holds:

(a) G =7, ® H, where 4 divides n and the first factor Z,, is generated

by an anticonformal automorphism, and the NEC group A has
2(g+p—1)
signature (1; —; [p, "= | p,5]); or

(b) G =Zy,, where 4 divides n, and G is generated by an anticonformal

29
automorphism, and A has signature (1; —; [p, "%=29, p, £p]).

Proof. Let A be the Fuchsian group of genus 0 such that I' < A < A, with
X/H ~D/A and A/T = H. The signatures of A and A have the form

(0;+;[p, %,p))  and (g5 —;[ma, ..., m,])



respectively. Let n = [A : A]. By [A], we know that if the genus of X satisfies

g > (p—1)2, then there is a unique p-gonal covering X — C = X/H. Hence
A < A, and so

[ma,...omy] = [ps, o, PSt, My, -oomy] and g =3+ ..+ 2

Applying the Riemann-Hurwitz formula, we find

T

“24g(l-) =n(g 2+ X1 - )+ 3 (1-E). *)

t
i=1 i=t+1

Since the genus of A is 0, the genus of A must be 1, and hence the formula
(*) is equivalent to

T

2—n+nZ(1—s%)+n > (l—m%):O.

t
i=1 i=t+1

From this formula it is easy to deduce that the only possible signatures for
A are the following:

2(g+p—1)

29
(L= p, "2V ,p,5]) and (1= [p, @2, p, 5p]).

2(g(+p7)1)
n(p—1
for the first signature and | = % for the second. We will consider the

Now suppose A has one of the above signatures, and define [ =

epimorphism 6 : A — A/A. Let d,xy,...,z;, 241 be the generators of a
canonical presentation of A. From the form of the signature of A, we see
that 0(x1) = ... = 0(x;) = 1, and that 6(x;4,) = b is an element of order 3.
Also the two elements a = 6(d) and b = 6(x;;1) generate the image A/A.
Next, from the relation

d2x1-.-xl.rl+1 =1

we find that a?b~! = 1, and so A/A is cyclic of order n. Since the subgroup
H generated by the p-gonal automorphism is unique, it is central in G and
hence A/T is a central extension of a cyclic group of order n. But then since
G/Z(QG) is cyclic, G is abelian (by an easy theorem from group theory). Thus
G is isomorphic to either Z,, ® H or Z,,, and the rest follows. [



6 The maximal order of the automorphism
group of a pseudo-real Riemann surface

Theorem 9 If X is a pseudo-real Riemann surface of genus g with auto-
morphism group G, then |G| < 12(g — 1). Moreover, if |G| = 12(g — 1) and
G = A/T where X ~D/T, then the signature of A is (1;—;[2,3]).

Proof. By Theorem 3, the NEC group A has signature (p; —; [mq, ..., m;]),
and then from the Riemann-Hurwitz formula, we find

2g—2=|G|<p—2+§<1—m%>>.

The minimum positive value of the bracketed expression on the right-hand
side is %, which is attained when p =1, r = 2, m; = 2 and my = 3, and in

that case |G| =12(¢9 —1). O

We are interested in the construction of pseudo-real Riemann surfaces with
automorphism group of maximal order. In order to find such a pseudo-real
surface of genus g with maximal symmetry, we need to find:

(a) a maximal NEC group A with signature (1;—;[2, 3]),

(b) a finite group G of order 12(¢g — 1), and

(c) an epimorphism 6 : A — G such that ker # is a Fuchsian surface

group of genus g.

Here we remark that the monodromy epimorphism 6 is determined by the
image of the canonical generators. If we have a group G of order 12(g — 1)
and a monodromy epimorphism 6 : A — G, then the group A is maximal
(see [S] and [BEGG]) unless there is another NEC group A’ with signature
(0;+;[2],{(2,3)}) containing A and an epimorphism 6’ : A" — G’, where G’
is an index two extension of G and 6’|, = .

Proposition 10 Let A be an NEC group with signature (1;—;(2,3]), let
d, 1 and xy be the generators of a canonical presentation for A, and let
0 : A — G be an epimorphism such that 0(d,) = a and 6(x,) = b. Then 6
can be extended to an epimorphism 0" : A" — G', where A’ is an NEC' group
containing A as a subgroup of index 2 and G' is a group containing G as
a subgroup of index 2, if and only if G admits an automorphism of order 2
such that a(a) = a=' and a(b) = b1

Proof. If G admits such an automorphism «, then we can construct the
semidirect product G' = G X, Zy, which is generated by G = (a,b) and



an involution ¢, conjugation by which induces the automorphism « on G.
Also we can let A’ be an NEC group with signature (0;+;[2],{(2,3)}) and
having canonical generators x| ¢}, ¢, ¢4, and then define an epimorphism
0 AN — G =G X, Zy by setting

0'(x)) =ac, O'(c)=c, 0(c)=ch, and 0 (c)=a’c.

Conversely, if such an extension 0’ : A" — G’ of § exists, then by [S] and
[BEGG], A’ must have signature (0; +;[2], {(2, 3)}) with canonical generators
¥y ¢}, ¢y, ¢y, and without loss of generality the embedding of A in A’ is given
by

dy = 2idy, o e, Ty Ay

hence if ¢ is the involution &'(c}), then
cac = 0'(cydic)) = 0' () = 0(dy) ' =a?

and
che = 0/ (cjz1c) = 0/ (chcy) = O0(zy) = b1,

so conjugation by ¢ gives the required automorphism. [J

The last proposition and a theorem to follow provide a link with the theory
of 3-valent regular maps.

Definition 11 An orientably-regular map M is a 2-cell embedding of a con-
nected graph into an orientable surface, such that the group Autt (M) of all
orientation-preserving automorphisms of the surface that preserve the embed-
ding has a single orbit on the arcs (directed edges) of the graph. The map is
called reflexible if there exist orientation-reversing automorphisms that pre-
serve the embedding, and otherwise it is said to be chiral.

More details may be found in [CD], where all orientably-regular maps of
genus 2 to 15 were determined. If M is an orientably-regular map of type
{m,n} (with vertices of valence m and faces of size n), then Aut™ (M) is
generated by two elements R and S satisfying R™ = S™ = (RS)? = 1, and
M is reflexible if and only if there is an automorphism 7 of G = (R, S)
such that 7(R) = R~! and 7(S) = S™! (or equivalently, an automorphism
inverting any one of the pairs (R, S), (R, RS) or (S, RS)).

Theorem 12 For each chiral reqular map M of type {3,n}, where n is odd,
if M has automorphism group G, then there exists a pseudo-real Riemann

surface X with automorphism group of maximal order and isomorphic to
G x Z4.



Proof. Let A be the (2,3, n) triangle group, with signature (0;[2, 3, n]) and
canonical presentation

. _ 2 3 _ n __
(x1,29, 23 1 mywox3 =1, 27 =25 = 2§ =1).

Also let # : A — G be the epimorphism that corresponds to a chiral regular
map of type {3,n}, taking (say) x1, 22 and z3 to the automorphisms RS, R
and S of M, so that ker 6 is a surface group, and let b be an element of G
such that b* = 0(x3), which is known to exist because n is odd.

Now let A be an NEC group with signature (1; —;[2,3]) and canonical pre-
sentation

(doyi,yo i yiypd® =1, y7 = y5 = 1),
and define an epimorphism w: A — G x Zy; = G x {(a : a* = 1) by setting

w(d) = (b,a), wy)=(O(z1),a") and w(ys) = (0(z2),1).

Then I' = kerw is a surface group, and since the image of the subgroup
(x1, Ty, dx1d, drod) of index 2 in A is the subgroup G x (a?) of index 2 in
G % (a), the surface X = D/T" (with automorphism group A/I' = G x (a))
is orientable; see [BEGG, Theorem 2.1.3 (2)]. Moreover, every element of
G x (a) lying outside the orientation-preserving subgroup G x (a?) is of the
form (u,a®!) for some u € G, and it follow that every anticonformal au-
tomorphism of X = D/T" has order divisible by 4. Hence the surface X is
pseudo-real. [

In the following section, we prove that for every integer £ > 7, there exist
chiral regular maps of type {3, k} on orientable surfaces of infinitely many
genera. Using Theorem 12, we therefore obtain the following theorem:

Theorem 13 There exist pseudo-real surfaces with automorphism group of
mazximal order, for infinitely many genera. In particular there are infinitely
many pseudo-real Riemann surfaces with maximal automorphism group.

7 Chiral 3-valent regular maps

In the previous Section we proved that from every chiral regular map of
type {3,n} for n odd, we can construct a pseudo-real Riemann surface with
maximal symmetry. In this Section we shall find explicit families of chiral
3-valent regular maps that produce such pseudo-real Riemann surfaces.
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Theorem 14 For every prime p congruent to 1,2 or 4 mod 7, there exists
a normal subgroup K, of index 168p* in the ordinary triangle group A =
A(2,3,7) such that AJ K, is isomorphic to an extension by PSL(2,7) of the
3-generator abelian group Z, X Z, x Z,, of order p* and exponent p. Moreover,
the subgroup K, is not normal in the extended triangle group A*(2,3,7), so
A/K, has no automorphism that inverts the images of the two generators x

and y of A = A(2,3,7) .

Note: here A has signature (0; +;[2,3,7]; {—}), while the extended triangle
group A* has signature (1;+;[—]; {(2,3,7)}), with (A*)T =2 A.

Corollary 15 There exist chiral reqular maps of type {3,7} on orientable
surfaces of infinitely many genera.

Proof of Theorem. Most of this follows from observations made by Leech
in [L] and pursued by Cohen in [Ch], and explained also in [Cn2, Cn3]. First,
the extended triangle group A* = A*(2,3,7) has a normal subgroup N of
index 336, generated by ag = [y, z]* and its conjugates, such that A*/N is
isomorphic to PGL(2,7). By observations made by Leech [L], this normal
subgroup N has a nice presentation in terms of six generators and a single
relation (in which each of the generators appears twice, with exponents +1).
Now for each prime p as given in the statement of the theorem, let N, denote
the normal subgroup of A* generated by the derived subgroup N’ = [N, N]|
of N and the set N? of all pth powers of elements of N. Then N, = N'N?
has index p® in N, and is normal in A*, with quotient N/N, elementary
abelian of order p®. Moreover, by observations made by Cohen [Ch] about
the action of PSL(2,7) on N/N, induced by conjugation of N by elements of
A = A(2,3,7), there exist intermediate subgroups L; and Ly of N containing
N,, such that each L; is normal in A, and N = Ly Ly with L; N Ly = N, and
with N/L; elementary abelian of order p* for i € {1,2}. On the other hand,
L; and Ly are not normal in the extended triangle group A* = A*(2,3,7);
indeed every element of A*\ A conjugates L; to Ly and vice versa. Hence we
can take K, = L; or Lo, to give the required result. [

Theorem 16 For every integer k > 7, all but finitely many of the alternating
groups A, can be generated by two elements x and y such that x,y and zy
have orders 2, 3 and k respectively, and that there exists no automorphism
of {x,y) = A, taking v and y to x=' and y~! respectively.

Corollary 17 For each integer k > 7, there exist chiral regular maps of type
{3,k} on orientable surfaces of infinitely many genera.

11



Proof of Theorem. In all cases our argument relies heavily on a construc-
tion used by the second author in [Cnl] to prove that (for every k > 7) all
but finitely many A,, are homomorphic images of the extended triangle group

A*(2,3,k) = (z,y,t | 2° =y = (zy)" =17 = (x1)* = (yt)* = 1),

a group with signature (1;+;[—];{(2,3,%)}). We refer the reader to [Cnl]
for important details. In that construction, permutation representations
of A*(2,3,k) are depicted by Schreier coset diagrams, and specially cho-
sen examples of such diagrams are linked together to form representations
of arbitrarily large degree n, in a way that makes the resulting permuta-
tions generate A, or S,. We will amend that construction by adding one
more small diagram that depicts a permutation representation of the ordi-
nary triangle group A = (A*)*, but not depict one of the extended triangle
group A*(2,3, k) itself. Note that A = A(2,3,k) is the index 2 subgroup of
A*(2,3, k) generated by x and y.

We do this first for the case £ = 7, and then explain in less detail how the
theorem can be proved for larger £ using the same method.

b a

Figure 1: Additional coset diagram R(7,0) with 7 vertices

When k = 7, consider the permutation representation of A(2,3,7) on 7 points
given by the diagram R(7,0) in Figure 1.Like the diagrams S(7,0), T'(7,0),
U(7,0) and V(7,0) in [Cnl], this has a (1)-handle [a,b];, consisting of two
points a and b such that x fixes both a and b, and y takes a to b. Note that the
point a is fixed by the commutator zyxy !, while b lies in a 2-cycle of zyzy—*,
and the other four points lie in a 4-cycle. Similarly, if [a’,V']; is a (1)-handle
of the diagram S(7,0), then @’ is fixed by zyzy !, while ¥/ lies in a 13-cycle of
xyxy !, consisting of the 13 points of the cycle of zyt in the representation of
A(2,3,7) that it depicts. Indeed it follows from the relations for the extended
triangle group A*(2,3,7) that (xyt)? = aytayt = zyxtyt = zyry ', and
hence the cycle structure of xyzy~—! can be derived easily from that of xyt
on the points of the diagram S(7,0).

Next suppose that a single copy of the diagram R(7,0) is linked together with
a single copy of the diagram S(7,0), by adding the transpositions (a, a’) and

12



(b,0') to the permutation induced by = (while not altering the permutation
induced by y). Then the resulting diagram is easily seen to be a coset diagram
for the ordinary triangle group A(2,3,7), by the same argument as in [Cnl].
Also in the corresponding permutation representation, the two points a and
a’ are still both fixed by zyzy !, while the cycles containing b and 4" and the
other four points of the diagram R(7,0) are joined together to form a new
cycle of zyxy™!, of length 19. (This is easily verified, either by writing out
the permutations, or by chasing points around the combined diagrams.)
The construction in [Cnl] explains how a transitive permutation representa-
tion of A*(2,3,7) on n = 42f + Tlg + 36 points (when f > g > 0) can be
formed by linking together f copies of diagram S(7,0) and then adjoining g
copies of T'(7,0) and a single copy of U(7,0), by composition of (1)-handles.
In the resulting representation, the element xyt has cycle structure

1/+1=92/+951698111113/+179159209241 26 ~1429,
so the commutator xyxy ! has cycle structure
13/+13294251111133/-1-91029122159212%9.

The unique 11-cycle here comes from the single copy of U(7,0), and this
can be used (with the help of Jordan’s theorem from [W]) to prove that the
permutations induced by x,y and ¢ generate S,,, while those induced by =z
and y generate A,,.

Now suppose that a single copy of the diagram R(7,0) is linked to one of the
copies of S(7,0) still having a free (1)-handle in this representation. Then
we have a new transitive permutation representation of A(2,3,7) on n 47
points, in which zyzy~! has cycle structure

13/+23294251111133/-2-9102912215919'2129,

Again the unique 11-cycle here comes from the single copy of U(7,0), and
can be used to prove that the permutations induced by x and y generate
Ay,i7. An important difference this time, however, is that because the point
fixed by y in the single copy of R(7,0) is the only point fixed by y that lies
close to a fixed point of zyxy~! or xy~lzy in the resulting coset diagram
(on n 4 7 points), this diagram has no axis of reflectional symmetry. Thus
we have a homomorphism from A(2,3,7) to A,,7 that does not extend to a
representation of the extended triangle group A*(2,3,7), as claimed.
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Figure 2: Additional coset diagram R(7,d) with 7 4 6d vertices

When k& = 7 + 6d for some positive integer d, we can apply the same con-
struction using S(7,d), T(7,d) and U(7,d) from [Cnl], and add a single copy
of the new coset diagram R(7,d) for A(2,3,7+ 6d) on 7+ 6d points given in
Figure 2.

In the permutation representation of A(2,3,7 + 6d) depicted by R(7,d), the
commutator xyxy ' fixes the point a, and has two 2-cycles, two 4-cycles,
and 2(d — 1) 3-cycles. Linking a single copy of R(7,d) to a copy of S(7,d)
by their free (1)-handles gives rise to a new permutation representation of
A(2,3,7+6d) in which one of the 2-cycles and one of the 4-cycles from R(7, d)
are combined together with two of the cycles from S(7,d), to form a 7-cycle
and a 10-cycle when d = 1, or a 6-cycle and an 8-cycle when d > 2.

Thus again we can form transitive permutation representations of A(2,3,7+
6d) of arbitrarily large degree, and use the unique 11-cycle from the single
copy of U(7,d) to prove that the resulting permutations generate an alter-
nating group, and the single copy of R(7,d) to eliminate the possibility of a
reflectional symmetry.

The proof for other cases (with & in different congruence classes mod 6) is
analogous to the above, using the additional diagrams given in Figures 3 to

7 below.

Figure 3: Additional coset diagram R(8,d) with 8 4+ 6d vertices

For the case k = 8 4 6d, joining a single copy of diagram R(8,d) replaces
cycles of zyxy~! by one cycle of length 15 if d = 0, or cycles of length 7 and
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9if d =1, or cycles of length 6 and 8 if d > 2, leaving a unique 11-cycle from
the single copy of diagram U(8, d) for application of Jordan’s theorem.

Figure 4: Additional coset diagram R(9,d) with 9 4 6d vertices

For the case k = 9 + 6d, diagrams are composed using (2)-handles [«, 5],
consisting of fixed points o and 3 such that y? takes a to 3. Joining a single
copy of diagram R(9, d) replaces cycles of xyzy~! by cycles of length 12 and
14 if d = 0, or cycles of length 3, 5, 9 and 10 if d = 1, or cycles of length 3, 5,
6 and 7 if d > 2, leaving a unique 13-cycle from the single copy of diagram
U(9,d) for application of Jordan’s theorem.

Figure 5: Additional coset diagram R(10,d) with 10 + 6d vertices

For the case k = 10 4 6d, joining a single copy of diagram R(10,d) replaces
cycles of zyzy~! by cycles of length 6, 7, 7 and 10 if d = 0, or cycles of length
5, 5,6 and 7 if d = 1, or cycles of length 4, 5, 6 and 6 if d > 2, leaving a
unique 13-cycle from the single copy of diagram U(10,d) for application of
Jordan’s theorem.

B A

Y VANERVANIYANEN. .

Figure 6: Additional coset diagram R(11,d) with 11 + 6d vertices

For the case k = 11 4 6d, joining a single copy of diagram R(11,d) replaces
cycles of zyzy~! by cycles of length 9 and 19 if d = 0, or cycles of length 6,
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8 and 9 if d > 1, leaving a unique 11-cycle from adjoining the single copy of
diagram U(11, d) for application of Jordan’s theorem.

Figure 7:  Additional coset diagram R(12,d) with 12 + 6d vertices

For the case k = 12 4 6d, joining a single copy of diagram R(12,d) replaces
cycles of zyzy~! by cycles of length 9 and 10 if d = 0, or cycles of length 5,
7and 9 if d = 1, or cycles of length 4, 6 and 9 if d > 2, leaving a unique
13-cycle from adjoining the single copy of diagram U(12,d) for application
of Jordan’s theorem. [J
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