A census of cubic vertex-transitive graphs

Gabriel Verret (Primorska), P. Potočnik and P. Spiga

Queenstown, February 16th, 2012 (SODO)
Vertex-transitive graphs

All graphs considered will be finite and simple (undirected, loopless, no multiple edges).
All graphs considered will be finite and simple (undirected, loopless, no multiple edges).

A graph Γ is called vertex-transitive if $\text{Aut}(\Gamma)$ acts transitively on $V(\Gamma)$ (and G-vertex-transitive if $G \leq \text{Aut}(\Gamma)$ acts transitively on $V(\Gamma)$).
All graphs considered will be finite and simple (undirected, loopless, no multiple edges).

A graph Γ is called vertex-transitive if $\text{Aut}(\Gamma)$ acts transitively on $V(\Gamma)$ (and G-vertex-transitive if $G \leq \text{Aut}(\Gamma)$ acts transitively on $V(\Gamma)$).

WLOG, we may assume connectedness.
Cubic vertex-transitive graphs

Vertex-transitive graphs are regular. The first non-trivial case is that of cubic graphs (3-regular).
Cubic vertex-transitive graphs

Vertex-transitive graphs are regular. The first non-trivial case is that of cubic graphs (3-regular).

Many questions considered first for cubic graphs: semiregular elements, Hamiltonicity, etc... (often still hard in this case!)
Cubic vertex-transitive graphs

Vertex-transitive graphs are regular. The first non-trivial case is that of cubic graphs (3-regular).

Many questions considered first for cubic graphs: semiregular elements, Hamiltonicity, etc... (often still hard in this case!)

A census tests our understanding and is also useful to generated examples, conjectures, etc...
Vertex-transitive graphs are regular. The first non-trivial case is that of cubic graphs (3-regular).

Many questions considered first for cubic graphs: semiregular elements, Hamiltonicity, etc... (often still hard in this case!)

A census tests our understanding and is also useful to generated examples, conjectures, etc...

Using ad hoc methods, McKay and Royle (1996) obtained a list which is complete up to 94 vertices.
Cubic vertex-transitive graphs

Vertex-transitive graphs are regular. The first non-trivial case is that of cubic graphs (3-regular).

Many questions considered first for cubic graphs: semiregular elements, Hamiltonicity, etc... (often still hard in this case!)

A census tests our understanding and is also useful to generated examples, conjectures, etc...

Using ad hoc methods, McKay and Royle (1996) obtained a list which is complete up to 94 vertices.

Using some new theoretical results and a few tricks, we constructed all cubic vertex-transitive graphs of order at most 1280.
Three natural cases

Let Γ be a cubic G-vertex-transitive graph and let m be the number of orbits of $G_{\Gamma(\nu)}$ (the permutation group induced by the action of a vertex-stabiliser G_{ν} in its action on the neighbourhood $\Gamma(\nu)$).
Three natural cases

Let Γ be a cubic G-vertex-transitive graph and let m be the number of orbits of $G^\Gamma(v)$ (the permutation group induced by the action of a vertex-stabiliser G_v in its action on the neighbourhood $\Gamma(v)$).

By vertex-transitivity, m is equal to the number of orbits of G in its action on the arcs of Γ (an arc is an ordered pair of adjacent vertices).
Let Γ be a cubic G-vertex-transitive graph and let m be the number of orbits of $G_{\Gamma(v)}$ (the permutation group induced by the action of a vertex-stabiliser G_v in its action on the neighbourhood $\Gamma(v)$).

By vertex-transitivity, m is equal to the number of orbits of G in its action on the arcs of Γ (an arc is an ordered pair of adjacent vertices).

Since Γ is cubic, $m \in \{1, 2, 3\}$.
Three natural cases

Let Γ be a cubic G-vertex-transitive graph and let m be the number of orbits of $G_{\Gamma(v)}$ (the permutation group induced by the action of a vertex-stabiliser G_v in its action on the neighbourhood $\Gamma(v)$).

By vertex-transitivity, m is equal to the number of orbits of G in its action on the arcs of Γ (an arc is an ordered pair of adjacent vertices).

Since Γ is cubic, $m \in \{1, 2, 3\}$.

We deal with each of these separately.
m = 1 (the arc-transitive case)

This is the easiest case because of the following result.
$m = 1$ (the arc-transitive case)

This is the easiest case because of the following result.

Theorem (Tutte)

*If Γ is a cubic G-arc-transitive graph, then $|G_v| \leq 48$.***
This is the easiest case because of the following result.

Theorem (Tutte)

If Γ is a cubic G-arc-transitive graph, then $|G_v| \leq 48$.

$|G|$ grows at most linearly with $|V(\Gamma)|$ and the amalgams are known (the structure of G_v and $G_{\{uv\}}$).
\(m = 1 \) (the arc-transitive case)

This is the easiest case because of the following result.

Theorem (Tutte)

If \(\Gamma \) is a cubic \(G \)-arc-transitive graph, then \(|G_v| \leq 48 \).

\(|G| \) grows at most linearly with \(|V(\Gamma)| \) and the amalgams are known (the structure of \(G_v \) and \(G_{\{uv\}} \)).

To find all the graphs up to a certain order, it suffices to:

- Construct the amalgams (finitely generated amalgamated products of finite groups). There are 7 of these.
- Find all the normal subgroups up to a certain index (by using the `LowIndexNormalSubgroups` algorithm in Magma for example).

The census of cubic arc-transitive graphs is now complete up to 10000 vertices (Conder).
\(m = 1 \) (the arc-transitive case)

This is the easiest case because of the following result.

Theorem (Tutte)

If \(\Gamma \) is a cubic \(G \)-arc-transitive graph, then \(|G_v| \leq 48\).

\(|G|\) grows at most linearly with \(|V(\Gamma)|\) and the amalgams are known (the structure of \(G_v \) and \(G_{\{uv\}} \)).

To find all the graphs up to a certain order, it suffices to:

- Construct the amalgams (finitely generated amalgamated products of finite groups). There are 7 of these.
$m = 1$ (the arc-transitive case)

This is the easiest case because of the following result.

Theorem (Tutte)

*If Γ is a cubic G-arc-transitive graph, then $|G_v| \leq 48$.***

$|G|$ grows at most linearly with $|V(\Gamma)|$ and the amalgams are known (the structure of G_v and $G_{\{uv\}}$).

To find all the graphs up to a certain order, it suffices to:

- Construct the amalgams (finitely generated amalgamated products of finite groups). There are 7 of these.
- Find all the normal subgroups up to a certain index (by using the LowIndexNormalSubgroups algorithm in Magma for example).
$m = 1$ (the arc-transitive case)

This is the easiest case because of the following result.

Theorem (Tutte)

If Γ is a cubic G-arc-transitive graph, then $|G_v| \leq 48$.

$|G|$ grows at most linearly with $|V(\Gamma)|$ and the amalgams are known (the structure of G_v and $G_{\{uv\}}$).

To find all the graphs up to a certain order, it suffices to:

- Construct the amalgams (finitely generated amalgamated products of finite groups). There are 7 of these.
- Find all the normal subgroups up to a certain index (by using the `LowIndexNormalSubgroups` algorithm in Magma for example).

The census of cubic arc-transitive graphs is now complete up to 10000 vertices (Conder).
If $m = 3$, then $G_v = 1$ and G acts regularly on the vertex-set.
If $m = 3$, then $G_v = 1$ and G acts regularly on the vertex-set.

In particular, $|G| \leq 1280$ and $\Gamma \cong \text{Cay}(G, S)$ is a Cayley graph for G.
If $m = 3$, then $G_v = 1$ and G acts regularly on the vertex-set.

In particular, $|G| \leq 1280$ and $\Gamma \cong \text{Cay}(G, S)$ is a Cayley graph for G.

Naive method: consider all groups G of order at most 1280 and, for each G, all possible 3-connection sets.
If $m = 3$, then $G_v = 1$ and G acts regularly on the vertex-set.

In particular, $|G| \leq 1280$ and $\Gamma \cong \text{Cay}(G, S)$ is a Cayley graph for G.

Naive method : consider all groups G of order at most 1280 and, for each G, all possible 3-connection sets.

Computationally infeasible.
A few tricks

Lemma

G / G' is isomorphic to one of \mathbb{Z}^3_2, $\mathbb{Z}_2 \times \mathbb{Z}_r$, or \mathbb{Z}_r.

Reduces drastically the number of groups we need to consider.

Example: 1090235 non-isomorphic groups of order 768, but only 4810 satisfy this Lemma.

Lemma

Let G be a group and let $\phi \in \text{Aut}(G)$. Then $\text{Cay}(G, S) \cong \text{Cay}(G, S^\phi)$.

Only need to consider connection sets up to conjugacy in $\text{Aut}(G)$.

These simple tricks are enough to make the $m=3$ case computationally feasible, except when G has order 512 or 1024 (too many groups).
A few tricks

Lemma

G/G' is isomorphic to one of \mathbb{Z}_2^3, $\mathbb{Z}_2 \times \mathbb{Z}_r$, or \mathbb{Z}_r.

Reduces drastically the number of groups we need to consider.

Example: 1090235 non-isomorphic groups of order 768, but only 4810 satisfy this Lemma.
A few tricks

Lemma
G/G' is isomorphic to one of \mathbb{Z}_2^3, $\mathbb{Z}_2 \times \mathbb{Z}_r$, or \mathbb{Z}_r.

Reduces drastically the number of groups we need to consider.
Example: 1090235 non-isomorphic groups of order 768, but only 4810 satisfy this Lemma.

Lemma
Let G be a group and let $\phi \in \text{Aut}(G)$. Then
$\text{Cay}(G, S) \cong \text{Cay}(G, S^\phi)$.
A few tricks

Lemma
G/G' is isomorphic to one of \mathbb{Z}_2^3, $\mathbb{Z}_2 \times \mathbb{Z}_r$, or \mathbb{Z}_r.
Reduces drastically the number of groups we need to consider.
Example: 1090235 non-isomorphic groups of order 768, but only 4810 satisfy this Lemma.

Lemma
Let G be a group and let $\phi \in \text{Aut}(G)$. Then
$\text{Cay}(G, S) \cong \text{Cay}(G, S^\phi)$.
Only need to consider connection sets up to conjugacy in $\text{Aut}(G)$.
A few tricks

Lemma
G/G' is isomorphic to one of \mathbb{Z}_2^3, $\mathbb{Z}_2 \times \mathbb{Z}_r$, or \mathbb{Z}_r.

Reduces drastically the number of groups we need to consider.
Example: 1090235 non-isomorphic groups of order 768, but only 4810 satisfy this Lemma.

Lemma
Let G be a group and let $\phi \in \text{Aut}(G)$. Then
$\text{Cay}(G, S) \cong \text{Cay}(G, S^\phi)$.

Only need to consider connection sets up to conjugacy in $\text{Aut}(G)$.

These simple tricks are enough to make the $m = 3$ case computationally feasible, except when G has order 512 or 1024 (too many groups).
2-groups

For n a power of 2, let R_n be the class of groups which have order n and admit a generating set consisting of 3 involutions or of 2 elements, one of which is an involution.
2-groups

For n a power of 2, let R_n be the class of groups which have order n and admit a generating set consisting of 3 involutions or of 2 elements, one of which is an involution.

Lemma

Let $G \in R_{2^{i+1}}$ and let C be a central subgroup of G of order 2. Then $G/C \in R_{2^i}$.
For n a power of 2, let R_n be the class of groups which have order n and admit a generating set consisting of 3 involutions or of 2 elements, one of which is an involution.

Lemma

Let $G \in R_{2^{i+1}}$ and let C be a central subgroup of G of order 2. Then $G/C \in R_{2^i}$.

Using this Lemma, we can construct R_i by induction on i.

(Repeated central extensions.)
For a power of 2, let \(R_n \) be the class of groups which have order \(n \) and admit a generating set consisting of \(3 \) involutions or of \(2 \) elements, one of which is an involution.

Lemma

Let \(G \in R_{2^{i+1}} \) and let \(C \) be a central subgroup of \(G \) of order 2. Then \(G/C \in R_{2^i} \).

Using this Lemma, we can construct \(R_i \) by induction on \(i \).

(Repeated central extensions.)

Once we have constructed \(R_{512} \) and \(R_{1024} \), we apply to the groups in these classes the same procedure which we used for other orders.
The most difficult case. The main problem in this case is that a vertex-stabiliser can be arbitrarily large. (In fact, very large with respect to $|V(\Gamma)|$).
The most difficult case. The main problem in this case is that a
vertex-stabiliser can be arbitrarily large. (In fact, very large with
respect to $|V(\Gamma)|$).

Note that G_v fixes a unique neighbour of v. This induces a perfect
matching in Γ.

The most difficult case. The main problem in this case is that a vertex-stabiliser can be arbitrarily large. (In fact, very large with respect to $|V(\Gamma)|$).

Note that G_v fixes a unique neighbour of v. This induces a perfect matching in Γ.

We define an auxiliary graph, which is 4-valent, G-arc-transitive and has half the order. We also get a G-arc-transitive cycle decomposition of this new graph.
The most difficult case. The main problem in this case is that a vertex-stabiliser can be arbitrarily large. (In fact, very large with respect to \(|V(\Gamma)|\)).

Note that \(G_v\) fixes a unique neighbour of \(v\). This induces a perfect matching in \(\Gamma\).

We define an auxiliary graph, which is 4-valent, \(G\)-arc-transitive and has half the order. We also get a \(G\)-arc-transitive cycle decomposition of this new graph.

This construction is reversible, hence it suffices to find all 4-valent arc-transitive graphs and their arc-transitive cycle decompositions.
$m = 2$

The most difficult case. The main problem in this case is that a vertex-stabiliser can be arbitrarily large. (In fact, very large with respect to $|\mathcal{V}(\Gamma)|$).

Note that G_v fixes a unique neighbour of v. This induces a perfect matching in Γ.

We define an auxiliary graph, which is 4-valent, G-arc-transitive and has half the order. We also get a G-arc-transitive cycle decomposition of this new graph.

This construction is reversible, hence it suffices to find all 4-valent arc-transitive graphs and their arc-transitive cycle decompositions.

By a paper of Miklavec, Potočnik and Wilson, arc-transitive cycle decompositions of 4-valent graphs are well-understood, so it suffices to find all 4-valent arc-transitive graphs of order at most 640.
Because \(\Gamma \) admits an arc-transitive cycle-decomposition, we have \(G_{\Gamma(v)} \cong \mathbb{Z}_4, \mathbb{Z}_2^2 \) or \(D_4 \).
4-valent arc-transitive graphs

Because Γ admits an arc-transitive cycle-decomposition, we have $G_{\Gamma(v)} \cong \mathbb{Z}_4$, \mathbb{Z}_2^2 or D_4.

If $G_{\Gamma(v)} \cong \mathbb{Z}_4$ or \mathbb{Z}_2^2, then $|G_v| = 4$ and we can use the amalgam method.
4-valent arc-transitive graphs

Because Γ admits an arc-transitive cycle-decomposition, we have $G_{\Gamma(v)} \cong \mathbb{Z}_4$, \mathbb{Z}_2^2 or D_4.

If $G_{\Gamma(v)} \cong \mathbb{Z}_4$ or \mathbb{Z}_2^2, then $|G_v| = 4$ and we can use the amalgam method.

(In the case $G_{\Gamma(v)} \cong \mathbb{Z}_2^2$, these correspond to maps and were provided by Conder.)
4-valent arc-transitive graphs

Because Γ admits an arc-transitive cycle-decomposition, we have $G_{\Gamma(v)} \cong \mathbb{Z}_4, \mathbb{Z}_2^2$ or D_4.

If $G_{\Gamma(v)} \cong \mathbb{Z}_4$ or \mathbb{Z}_2^2, then $|G_v| = 4$ and we can use the amalgam method.

(In the case $G_{\Gamma(v)} \cong \mathbb{Z}_2^2$, these correspond to maps and were provided by Conder.)

Otherwise, $G_{\Gamma(v)} \cong D_4$ (and $|G_v|$ can be arbitrarily large).
Because Γ admits an arc-transitive cycle-decomposition, we have $G_{\Gamma}^{(v)} \cong \mathbb{Z}_4, \mathbb{Z}_2^2$ or D_4.

If $G_{\Gamma}^{(v)} \cong \mathbb{Z}_4$ or \mathbb{Z}_2^2, then $|G_v| = 4$ and we can use the amalgam method.

(In the case $G_{\Gamma}^{(v)} \cong \mathbb{Z}_2^2$, these correspond to maps and were provided by Conder.)

Otherwise, $G_{\Gamma}^{(v)} \cong D_4$ (and $|G_v|$ can be arbitrarily large).

We characterised the graphs for which $|G_v|$ is “very large” with respect to the order of the graph.
4-valent arc-transitive graphs

Theorem (PSV)

Let \((\Gamma, G)\) be locally-\(D_4\). Then one of the following holds:

- \(\Gamma \cong C(r, s)\),
- \((\Gamma, G)\) is one of 18 exceptions,
- \(|V\Gamma| \geq 2|G_v| \log_2(|G_v|/2)\). Moreover, the graphs for which equality occurs are determined.
Theorem (PSV)

Let \((\Gamma, G)\) be locally-\(D_4\). Then one of the following holds:

- \(\Gamma \cong C(r, s)\),
- \((\Gamma, G)\) is one of 18 exceptions,
- \(|V\Gamma| \geq 2|G_v| \log_2(|G_v|/2)\). Moreover, the graphs for which equality occurs are determined.

The proof uses the abelian normal quotient method and the CFSG.
4-valent arc-transitive graphs

Theorem (PSV)

Let (Γ, G) be locally-D_4. Then one of the following holds:

- $\Gamma \cong C(r, s)$,
- (Γ, G) is one of 18 exceptions,
- $|V\Gamma| \geq 2|G_v| \log_2(|G_v|/2)$. Moreover, the graphs for which equality occurs are determined.

The proof uses the abelian normal quotient method and the CFSG.

Corollary

If $|V\Gamma| \leq 640$, then $|G_v| \leq 32$ or Γ is “understood”.

The D_4 amalgams were determined by Djoković. This allows us to use the amalgam method (construct the amalgams and find all normal subgroups up to a certain index).
4-valent arc-transitive graphs

Theorem (PSV)

Let \((\Gamma, G)\) be locally-\(\mathbb{D}_4\). Then one of the following holds:

- \(\Gamma \cong C(r, s)\),
- \((\Gamma, G)\) is one of 18 exceptions,
- \(|V\Gamma| \geq 2|G_v| \log_2(|G_v|/2)\). Moreover, the graphs for which equality occurs are determined.

The proof uses the abelian normal quotient method and the CFSG.

Corollary

If \(|V\Gamma| \leq 640\), then \(|G_v| \leq 32\) or \(\Gamma\) is “understood”.

The \(\mathbb{D}_4\) amalgams were determined by Djoković.
4-valent arc-transitive graphs

Theorem (PSV)

Let (Γ, G) be locally-D_4. Then one of the following holds:

- $\Gamma \cong C(r, s)$,
- (Γ, G) is one of 18 exceptions,
- $|\Gamma| \geq 2|G_v| \log_2(|G_v|/2)$. Moreover, the graphs for which equality occurs are determined.

The proof uses the abelian normal quotient method and the CFSG.

Corollary

If $|\Gamma| \leq 640$, then $|G_v| \leq 32$ or Γ is “understood”.

The D_4 amalgams were determined by Djoković.

This allows us to use the amalgam method (construct the amalgams and find all normal subgroups up to a certain index).
To avoid memory issues when running LowIndexNormalSubgroups, we sometimes need to do some theoretical analysis and “split” the amalgam into cases by adding certain relations.
Census complete!

To avoid memory issues when running LowIndexNormalSubgroups, we sometimes need to do some theoretical analysis and “split” the amalgam into cases by adding certain relations.

We obtain all the locally-imprimitive 4-valent arc-transitive graphs of order at most 640.
Census complete!

To avoid memory issues when running `LowIndexNormalSubgroups`, we sometimes need to do some theoretical analysis and “split” the amalgam into cases by adding certain relations.

We obtain all the locally-imprimitive 4-valent arc-transitive graphs of order at most 640.

We recover the cubic graphs and we are done!
Census complete!

To avoid memory issues when running LowIndexNormalSubgroups, we sometimes need to do some theoretical analysis and “split” the amalgam into cases by adding certain relations.

We obtain all the locally-imprimitive 4-valent arc-transitive graphs of order at most 640.

We recover the cubic graphs and we are done!

There are 111360 non-isomorphic connected vertex-transitive cubic graphs.
Census complete!

To avoid memory issues when running LowIndexNormalSubgroups, we sometimes need to do some theoretical analysis and “split” the amalgam into cases by adding certain relations.

We obtain all the locally-imprimitive 4-valent arc-transitive graphs of order at most 640.

We recover the cubic graphs and we are done!

There are 111360 non-isomorphic connected vertex-transitive cubic graphs.

Side note: by combining our data with the census of small 2-arc-transitive 4-valent graphs (Potočnik), we get all 4-valent arc-transitive graphs of order at most 640.
Number of graphs of order up to n

In gray is the graph of the function $n \mapsto \frac{n^2}{15}$. In an upcoming paper, we prove that $\log(f(n)) \in \Theta((\log n)^2)$.
In gray is the graph of the function $n \mapsto n^2/15$. In an upcoming paper, we prove that $\log(f(n)) \in \Theta((\log n)^2)$.

\textbf{Number of graphs of order up to n}
Graphs of order at most 1280 by type

<table>
<thead>
<tr>
<th></th>
<th>$m = 1$</th>
<th>$m = 2$</th>
<th>$m = 3$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cayley</td>
<td>386</td>
<td>11853</td>
<td>97687</td>
<td>109926</td>
</tr>
<tr>
<td>Non-Cayley</td>
<td>96</td>
<td>1338</td>
<td>0</td>
<td>1434</td>
</tr>
<tr>
<td>Total</td>
<td>482</td>
<td>13191</td>
<td>97687</td>
<td>111360</td>
</tr>
</tbody>
</table>
Graphs of order at most 1280 by type

<table>
<thead>
<tr>
<th></th>
<th>$m = 1$</th>
<th>$m = 2$</th>
<th>$m = 3$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cayley</td>
<td>386</td>
<td>11853</td>
<td>97687</td>
<td>109926</td>
</tr>
<tr>
<td>Non-Cayley</td>
<td>96</td>
<td>1338</td>
<td>0</td>
<td>1434</td>
</tr>
<tr>
<td>Total</td>
<td>482</td>
<td>13191</td>
<td>97687</td>
<td>111360</td>
</tr>
</tbody>
</table>

Most graphs are Cayley and most of those are GRRs.
Graphs of order at most 1280 by type

<table>
<thead>
<tr>
<th></th>
<th>$m = 1$</th>
<th>$m = 2$</th>
<th>$m = 3$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cayley</td>
<td>386</td>
<td>11853</td>
<td>97687</td>
<td>109926</td>
</tr>
<tr>
<td>Non-Cayley</td>
<td>96</td>
<td>1338</td>
<td>0</td>
<td>1434</td>
</tr>
<tr>
<td>Total</td>
<td>482</td>
<td>13191</td>
<td>97687</td>
<td>111360</td>
</tr>
</tbody>
</table>

Most graphs are Cayley and most of those are GRRs.

This seems to be part of a trend.
It is conjectured that almost all vertex-transitive graphs are Cayley (McKay and Praeger). It seems reasonable to conjecture that this is also true for any given valency $k \geq 3$.

Proportion of graphs of different types
Proportion of graphs of different types

It is conjectured that almost all vertex-transitive graphs are Cayley (McKay and Praeger). It seems reasonable to conjecture that this is also true for any given valency $k \geq 3$.
It is conjectured that almost all vertex-transitive graphs are Cayley (McKay and Praeger). It seems reasonable to conjecture that this is also true for any given valency $k \geq 3$.
Open problems

We tested the graphs for various problems and conjectures (Hamiltonicity, degree/diameter, cages...)

Problem
Asymptotic enumeration of k-valent vertex-transitive graphs (arc-transitive graphs, Cayley graphs, GRRs).

Question
Are almost all k-valent vertex-transitive graphs Cayley? GRRs?

Challenge
Census of 4-valent vertex-transitive graphs of order up to 200? 300?

Magma files containing the graphs can be found online at: http://www.matapp.unimib.it/~spiga/
Open problems

We tested the graphs for various problems and conjectures (Hamiltonicity, degree/diameter, cages...)

Problem

Asymptotic enumeration of k-valent vertex-transitive graphs (arc-transitive graphs, Cayley graphs, GRRs).
Open problems

We tested the graphs for various problems and conjectures (Hamiltonicity, degree/diameter, cages...)

Problem
Asymptotic enumeration of k-valent vertex-transitive graphs (arc-transitive graphs, Cayley graphs, GRRs).

Question
Are almost all k-valent vertex-transitive graphs Cayley? GRRs?

Magma files containing the graphs can be found online at: http://www.matapp.unimib.it/~spiga/
Open problems

We tested the graphs for various problems and conjectures (Hamiltonicity, degree/diameter, cages...)

Problem
Asymptotic enumeration of k-valent vertex-transitive graphs (arc-transitive graphs, Cayley graphs, GRRs).

Question
Are almost all k-valent vertex-transitive graphs Cayley? GRRs?

Challenge
Census of 4-valent vertex-transitive graphs of order up to 200? 300?

Magma files containing the graphs can be found online at: http://www.matapp.unimib.it/~spiga/
Open problems

We tested the graphs for various problems and conjectures (Hamiltonicity, degree/diameter, cages...)

Problem
Asymptotic enumeration of k-valent vertex-transitive graphs (arc-transitive graphs, Cayley graphs, GRRs).

Question
Are almost all k-valent vertex-transitive graphs Cayley? GRRs?

Challenge
Census of 4-valent vertex-transitive graphs of order up to 200? 300?

Magma files containing the graphs can be found online at: http://www.matapp.unimib.it/~spiga/