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Why are Inverse Problems worth considering?

Principle: from incomplete/partial or corrupted/noisy data, get information
about the model,
e.g., ultrasound reflections to understand what is inside the human body

Applications: imaging, parameter estimation, etc...
e.g., half-life of a radioactive nuclei

Inverse (scattering) problems are everywhere:
@ geophysics, e.g., deposit prospecting, like gas, oil

@ medical imaging, e.g., ultrasound, MRI, photoacoustic
@ non-destructive testing, e.g., crack or defect in material

@ quality control in primary industry
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PHYSICS TODAY

Physics Today > Volume 70, Issue 10 > 10.1063/PT.3.3740
01 October 2017 > page 94

QUICK STUDY

Apple seismology

Kasper van Wijk and Sam Hitchman

Kasper van Wijk is an associate
professor and Sam Hitchman is a
PhD candidate in the department of
physics at the University of Auckland
in New Zealand. Both are affiliated
with the Dodd-Walls Centre for
Photonic and Quantum Technologies.

Just as an earthquake’s seismic waves reveal properties of Earth's interior, elastic surface waves
on an apple can tell us about what's going on inside the fruit.

n apple, like Earth, has a core at its center and a thin
skin on the outside. In between is the apple’s flesh,
equivalent to Earth’s mantle. Of course, a more careful
comparison would uncover important differences be-
tween those spheroidal objects. For example, seismic
waves reveal that Earth’s core is made of a liquid outer
core and a solid inner core, whereas the apple core contains

derstanding of the depths of our planet that cannot be sampled
via drilling.

A similar pattern in the right panel of figure 1 represents
elastic waves on the surface of a Braeburn apple. The apple-
quakes we measured were generated via thermoelastic expan-
sion of the apple after a short pulse of laser light heated a small
spoton the surface. We used a laser Doppler vibrometer to record
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From our “seismic analysis” of waves in an apple, we can es-
timate average elastic properties. Young's modulus, for exam-
ple, is closely related to the firmness index, a commonly used
parameter in the apple industry to quantify apple firmness.

From van Wijk and Hitchman, Apple Seismology, Physics Today 70(10), 2017
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Detection of disease in vine tree

Collaboration with:

@ Dr. Andrew Austin
Senior Lecturer at Department of
Electrical, Computer and Software
Engineering, University of Auckland

@ Dr. Mark Eltom
Foundator of Vine Life Limited

@ Dr. Ray Simpkin
Lead Scientist at EMROD Limited
from Callaghan Innovation

From Boero et al., Microwave Tomography for the Inspection of Wood Materials:
Imaging System and Experimental Results, IEEE Transaction on Microwave Theory

and Techniques 66(7), 2018
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Mathematical formulation

of the inverse problem



Mathematical Formulation of the Inverse Problem
Principle

survey ship

source of
shock waves
(air gun) )wd rophones
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Mathematical Formulation of the Inverse Problem
Principle

Ambient medium Incident wave v’
wave propagation speed sent in the medium
co known generated by source f

Unknown inclusion
wave propagation speed
c(x) > ¢y non constant

model parameter: m = ¢

Total field u°* := u' + u® recorded on boundary I
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Mathematical Formulation of the Inverse Problem
Principle

Aim: Find m such that would “give”" us the observations u°b*

In practice, make a guess for m and solve the wave equation.
How close to u° are the predictions u on '?

Inverse scattering problem:
Find m such that

w“ upred _ uobs onT"”

or more precisely
Hupred _ UObS”LZ(F) -0
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Mathematical Formulation of the Inverse Problem
Principle

Inverse scattering problem:

Find m such that

Terminology:

6P — 4| 2ry = O

Predictions
from simulations

Observations
from experiment

source f

medium m

wavefield u

problem

given
known (guess)
unknown

forward

given
unknown
known (acquired)

inverse

Question 1: What is the forward problem (PDE)?
Question 2: How to get the best guess for m?
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Mathematical Formulation of the Inverse Problem
Forward problem

Model: wave propagation phenomenon, e.g., Helmholtz equation

Given ng sources f; inside a bounded region Q.

For each source fy, the scattered field u, satisfies the Helmholtz equation
V- (mVu) —w?u = £ in Q,

8U(3 iw

o Um

up on 09Q.

@ m(x) is the squared medium velocity
@ w is the time frequency
e QCcR? d<3

in short

Hm)u, = f,, inQ, £=1,...,n
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Mathematical Formulation of the Inverse Problem

Forward problem vs inverse problem

Forward problem: Compute the wavefield (prediction) uy,
knowing the medium properties m and the source f;:
H(m)u, = f;, inQ, (=1,...,n

Inverse problem: Given the data u2"* and the source f,

find the medium properties m, such that:
Jug® — PH(m) |2y =0,  £=1,...,n,
where P projector from Q to '

Difficulty: An inverse problem is usually ill-posed!

Definition

A problem is well-posed if a solution exists, is unique and stable
w.r.t. the data.
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Mathematical Formulation of the Inverse Problem
Ill-posedness

Why ill-posed?
@ localised observations (in space and possibly in time)

@ noise, rounding errors

@ inaccurate model (PDE)

Therefore, we cannot guarantee
@ existence

@ uniqueness

@ stability
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Solving the Inverse Problem

using Optimisation



Solving the inverse problem using optimisation
Inverse Helmholtz problem

Using optimisation [1], find m(x) s.t.

m = argmin J(m), with J(m) = % Z
=1

2
|P H(m)~f, —up*
N—— L2(r)

Ug

@ m(x) unknown squared medium velocity
but known outside 2

@ ng number of sources/shots

@ u2b measurements at receivers location

@ P projector from Q to I’

[1] E. Haber, U. Ascher and D. Oldenburg, Inverse Problems (2000)
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Solving the inverse problem using optimisation

Minimisation

From now, inverse scattering problem < minimisation problem
M = argmin J(m),
m

where J is a convex (quadratic) functional

Therefore, the minimisation is equivalent to
VnJ(m)=0

Strategy:
@ derive the gradient

@ use Newton’s method
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Solving the inverse problem using optimisation

Newton's method

iterative method to find when V.7 =0

slope: Hessian of J
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Solving the inverse problem using optimisation

Numerical results

Example:

»

9 sources (orange dots), receivers on boundary
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Solving the inverse problem using optimisation
Numerical results

Newton’s method
iterative process to update m

Hessian (or approximation) B )

tolerance e

Algorithm:
1. initialize m
2. while [VI(m)|l2 > ¢
3. solve Bp=—-VJ(m)
4 (direction of the variation)
5. update m:=m+dp
6 (with line search or step size)
7. end

[1] E. Haber, U. Ascher and D. Oldenburg, Inverse Problems (2000)
[2] M. Grote, MG, U. Nahum, Inverse Problems (2017)
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Solving the inverse problem using optimisation
Numerical results

— Regularisation

Marie GRAFF (UoA) Imaging 1 NZMRI 12/01/21 22/22



	Introduction: Imaging
	Mathematical Formulation of the Inverse Problem
	Solving the inverse problem using optimisation

