An introduction to Tits buildings

Jeroen Schillewaert

Department of Mathematics University of Auckland New Zealand

Table of contents

19th century revolution in geometry and symmetry

Figure: Klein's Erlanger Programm: study geometries by means of their symmetries (1872), later generalised by Elie Cartan.

Figure: Sophus Lie

Sophus Lie's theory of continuous symmetry

- Lie group: group which is also a differentiable manifold with continuous inversion and multiplication operations.
- They form natural models for continuous symmetry, e.g. rotational symmetries in 3 dimensions are described by SO(3).
- Lie algebra: linear object that can be canonically attached to a Lie group and contains a lot of information about it.
- Semisimple Lie algebras over an algebraically closed field of characteristic zero are completely classified by their root system (Killing-Cartan), which are in turn classified by Dynkin diagrams.

From Lie groups to algebraic groups

Figure: Claude Chevalley

Theorem

Let k be an algebraically closed field of characteristic zero. Then every almost simple linear algebraic group is isogenous to exactly one of the following

Figure: A_n isogenous to SL_{n+1} , B_n to SO(2n + 1), C_n to Sp_{2n} and D_n to SO(2n).

Buildings: A geometric theory of algebraic groups

Figure: Jacques Tits (Abel prize 2008, Wolf Prize 1993) gave a converse to Klein's Erlanger programm: study groups by means of their geometries

Coxeter groups as abstraction of Weyl groups

- $W = \langle S | (s_i s_j)^{m(s_i,s_j)} = 1 \rangle$ where $m(s_i, s_i) = 1$ (so all of the generators are involutions), $m(s_i, s_j) = m(s_j, s_i)$ and $2 \le m(s_i, s_j) \le \infty$ for $i \ne j$. We always assume *S* is finite.
- *Coxeter Diagram*: Draw one node for each generator s_i and then join s_i to s_j (labeled) if and only if m(s_i, s_j) ≥ 3. These are intimately linked with the Dynkin diagram.

• •• is
$$W = \langle s, t | s^2 = t^2 = (st)^3 = 1 \rangle$$
.

• • • is
$$W = \langle s, t, u \mid s^2 = t^2 = u^2 = (st)^3 = (tu)^4 = (su)^2 = 1 \rangle$$
.

•
$$\stackrel{\checkmark}{\leftarrow}$$
 is $W = \langle s, t, u \mid s^2 = t^2 = u^2 = (st)^3 = (tu)^3 = (su)^3 = 1 \rangle$.

0

The Coxeter complex of a Coxeter system (W, S)

- $W_J := \langle J \rangle$ ($J \subseteq S$) is a standard subgroup.
- Σ(W, S): poset of standard cosets in W, ordered by reverse inclusion. Thus B ≤ A in Σ if and only if A ⊆ B as subsets of W, and we call B a *face* of A.
- $\Sigma(W, S)$ is called the *Coxeter complex* associated to (W, S).

Example: $W = \langle s, t | s^2 = t^2 = (st)^3 = 1 \rangle$. The standard subgroups are 1, $\{1, s\}, \{1, t\}$ and W and for example the faces of $\{t\}$ are $\{1, t\}$ and $\{t, ts\} = t\{1, s\}$.

The Tits representation of a Coxeter group

Definition

Let *V* be a real vector space with basis $\{(e_i)_{i=1}^n\}$. Define a symmetric bilinear form on *V* by $B(e_i, e_j) = -\cos(\pi/m_{ij})$. The *geometric* representation of *W* on *V* is defined by $s(v) = v - 2B(v, e_s)e_s$.

- No information is lost (i.e. representation is faithful Tits).
- *B* positive definite if and only if *W* is finite. We say *W* is *spherical*.
- If B is positive semi-definite of corank 1 we say W is Euclidean.
- Coxeter groups are linear over a field of characteristic zero and by our finite generation assumption thus virtually torsion-free (Selberg 1960) and residually finite (Malcev 1940).

Two classic examples of Coxeter complexes

Another spherical example coming from the cube

- EFE = FEF, VEVE = EVEV, VF = FV
- Spherical Coxeter complex

Another Euclidean Coxeter complex

- *W*: group of isometries of the plane generated by the (affine) reflections with respect to the sides of an equilateral triangle.
- Example of a Euclidean reflection group.
- $W := \langle s, t, u; s^2 = t^2 = u^2 = (st)^3 = (tu)^3 = (su)^3 = 1 \rangle$
- Coxeter complex: plane tiled by equilateral triangles.

Buildings and groups

A *building* is a simplicial complex Δ that can be expressed as the union of sub complexes Σ (called *apartments*) satisfying the following axioms

- (B0) Each apartment Σ is a Coxeter complex.
- (B1) For any two simplices A, B ∈ Δ, there is an apartment Σ containing them.
- (B2) If Σ and Σ' are two apartments containing *A* and *B*, then there is an isomorphism $\Sigma \to \Sigma'$ fixing *A* and *B* pointwise.

A building Δ associated to a vector space V

- *V*: $n \ge 2$ -dim vector space over an arbitrary field *k*.
- $\mathbb{P}(V)$: non-zero subspaces of V.
- Δ = Δ(V): flag complex of P(V); thus the simplices are chains
 V₁ < V₂ < ··· < V_k of nonzero proper subspaces of V. The maximal simplices (*chambers*) are the chains V₁ < ··· < V_{n-1} such that dim V_i = i.

Strongly transitive actions on buildings

Assume Δ is a simplicial building of type (W, S) with a type preserving action of *G* on it. Suppose A is a *G*-invariant system of apartments. We say the *G*-action is *strongly transitive* (with respect to A) if *G* acts transitively on the set of pairs (Σ, C) consisting of an apartment $\Sigma \in A$ and a chamber $C \in \Sigma$.

Assume the *G*-action is strongly transitive, and choose an arbitrary pair (Σ, C) as in the definition, we will refer to Σ as the *fundamental apartment* and to *C* as the *fundamental chamber*.

The action of special subgroups B, N and T

- Σ: that of standard basis, C: edge joining [e₁] to [e₁, e₂].
- $B := \{g \in G \mid gC = C\}$: upper triangular matrices
- $N := \{g \in G \mid g\Sigma = \Sigma\}$: monomial matrices
- $T := \{g \in G \mid g \text{ fixes } \Sigma \text{ pointwise } \}$: diagonal matrices
- $W = N/T = \langle s, t | s^2 = t^2 = (st)^3 = 1 \rangle$ where s = (12), t = (23).

Abstracting: Groups with BN-pair

A group G has a BN pair of subgroups B and N if the following hold:

- $G = \langle B, N \rangle$
- $T := B \cap N \leq N$
- W := N/T with set of generators S
- For $s \in S$ and $w \in W$ one has $sBw \subset BswB \cup BwB$
- For $s \in S$ one has $sBs^{-1} \not\leq B$

W is called the Weyl group and (G, B, N, S) a Tits system.

Side note: Bruhat decomposition: $G = \coprod_{w \in W} BwB$.

From groups with BN-pair to buildings and back

Theorem

Given a BN-pair in G, the generating set S is uniquely determined, and (W, S) is a Coxeter system. There is a thick building $\Delta = \Delta(G, B)$ that admits a strongly transitive G-action such that B is the stabiliser of a fundamental chamber and N stabilises a fundamental apartment and is transitive on its chambers.

Theorem

Suppose a group G acts strongly transitively on a thick building Δ with fundamental apartment Σ and fundamental chamber C. Let B be the stabiliser of C, and let N be a subgroup of G that stabilises Σ and is transitive on the chambers of Σ . Then (B, N) is a BN-pair in G and Δ is canonically isomorphic to $\Delta(G, B)$.

The classification of spherical buildings

Theorem (Tits '74)

Thick, irreducible, spherical buildings of rank at least \geq 3 are either

- Classical buildings (associated to classical groups), or
- Algebraic buildings (associated to algebraic groups), or
- Mixed buildings (associated to mixed groups).

Restriction to rank at least three is needed, as there are free constructions in rank two. Moreover, classifying finite buildings of type A_2 is equivalent to classifying finite projective planes, a well-known problem which is out of reach.

Classification of Euclidean buildings

- Euclidean building of dimension at least three is a Bruhat-Tits building (Tits '86).
- Building at infinity of Bruhat-Tits building is Moufang.
- Tits-Weiss: Classification of Moufang polygons.
- Artin-Zorn: Every finite alternative division ring is a field.

Bruhat-Tits buildings

- Introduced to study reductive algebraic groups over valued fields with not necessarily discrete valuation.
- Important subclass when valuation is discrete (seen via geometric realization): simplicial Euclidean buildings (only ones known before Bruhat-Tits '72)
- Let L be a locally compact, non-discrete topological field. Then L is R, C, or a finite extension of either Q_p or K = F_p((t)).

Theorem (Martin, JS, Steinke, Struyve)

The Bruhat-Tits building is metrically complete if and only if the associated (skew) field is spherically complete, up to certain cases involving infinite-dimensionality and residue characteristic two.

Discrete valuation (p-adic valuation)

A discrete valuation on \mathbb{K} (Q) is a surjective homomorphism $\nu: \mathbb{K}^* \to \mathbb{Z}$ satisfying

 $\nu(\mathbf{x} + \mathbf{y}) \geq \min(\nu(\mathbf{x}), \nu(\mathbf{y}))$

 $x \in \mathbb{Q}^*$ written uniquely as $x = p^n u$, *p*-adic valuation: $\nu(x) = n$.

- A := {x ∈ K | ν(x) ≥ 0} is a discrete valuation ring.
 fractions a/b with b not divisible by p.
- \mathbb{K} is the field of fractions of *A*.
- Uniformiser: π such that $\nu(\pi) = 1$. for $\mathbb{Q} : \pi = p$
- Residue field: $k = A \setminus \pi A$, for $\mathbb{Q} : k = \mathbb{F}_p$

The *p*-adic numbers \mathbb{Q}_p .

- from discrete valuation ν define the *p*-adic absolute value $|x| := p^{-\nu(x)}$ for $x \in \mathbb{K}$.
- Setting d(x, y) := |x y| yields an ultrametric on \mathbb{K} , i.e. $d(x, z) \le \max(d(x, y), d(y, z))$
- form completion k̂ by formally adjoining limits of Cauchy sequences (similar to how you get ℝ from Q).
- The completion of Q with respect to the p-adic valuation is Qp.
- Can also be defined purely algebraically using inverse limits.

Discrete valuations yield a second BN pair for $SL_n(\mathbb{K})$

- first observed by Matsumoto and Iwahori then vastly generalised by Bruhat and Tits.
- *B*: inverse image in $SL_n(A)$ of upper triangular matrices in $SL_n(k)$.
- *N*: monomial subgroup of $SL_n(\mathbb{K})$.
- T = B ∩ N is diagonal subgroup of SL_n(A), conjugation action of N on T permutes the diagonal entries.
- 1 \rightarrow $T(\mathbb{K})/T(A) \rightarrow$ $W := N(\mathbb{K})/T(A) \rightarrow N(\mathbb{K})/T(\mathbb{K}) \rightarrow$ 1.
- $W \cong (\mathbb{K}^*/A^*)^{n-1} \rtimes S_n$.

The Bruhat-Tits tree (=BT building of dimension 1)

• lattice: $L = Ae_1 \oplus Ae_2$.

- Call two A-lattices *equivalent* in \mathbb{K}^2 if $L = \lambda L'$ for some $\lambda \in \mathbb{K}^*$.
- Type of $[[f_1, f_2]]$ as $v(\det(f_1, f_2)) \mod 2$.
- Distinct lattice classes Λ, Λ' are *incident* if they have representatives that satisfy πL < L' < L.
- This relationship is symmetric since $\pi L' < \pi L < L'$.
- Graph: Vertices as lattice classes, edges via incidence. This is a tree, called the Bruhat-Tits tree.

Relating the Bruhat-Tits tree to the second BN pair

- C: edge given by $[e_1, e_2]$ and $[e_1, \pi e_2]$
- - e_1, e_2 replaced by an arbitrary basis of \mathbb{K}^2 .

The Bruhat-Tits tree was crucial to the construction of Ramanujan graphs by Lubotzky-Philips-Sarnak and Bruhat-Tits buildings are used to construct high-dimensional expanders.

An application of the Bruhat-Tits tree

Theorem (Ihara (Serre))

Every discrete torsion-free subgroup Γ of $SL(2,\mathbb{Q}_p)$ is free.

- A group acting freely on a tree (no inversions, trivial point stabilisers) is a free group (Bass-Serre)
- Note that the action of SL(2, Q_p) on the Bruhat-Tits tree is type-preserving so there are no edge inversions.

Assume thus $H \leq \Gamma$ fixes a vertex of the Bruhat-Tits tree

- *H* is bounded and hence relatively compact, hence compact
- *H* is compact and discrete, hence finite, thus trivial.

Euclidean Buildings are examples of CAT(0)-spaces

- Given x, y, z in X, the triangle inequality implies there is a *comparison* triangle in the Euclidean plane ℝ² (unique up to an isometry of ℝ²).
- A metric space is CAT(0) if for any x, y ∈ X there is a geodesic [x, y] such that: For all p ∈ [x, y] and all z ∈ X one has d_X(z, p) ≤ d_{ℝ²}(z̄, p̄).
- Examples include: Euclidean spaces, Hilbert spaces, Riemannian symmetric spaces of non-positive curvature, Euclidean buildings.
- Let X be a locally compact CAT(0) space of geometric dimension n. If any two points are contained in a common n-flat, then X is the metric realisation of a Euclidean building (Kleiner).

Group actions on CAT(0) spaces

Elie Cartan: If G is a compact group of isometries of a complete simply connected Riemannian manifold M of nonpositive curvature, then G fixes a point of M.

Theorem (Bruhat-Tits fixed point theorem)

Let G be a group of isometries of a complete CAT(0) space X. If G stabilises a nonempty bounded subset of X, then G fixes a point of X.

Application: Every compact subgroup of SL(n, R) is conjugate to a subgroup of $SO_n(\mathbb{R})$ using symmetric space and can obtain a *p*-adic analogue from the Bruhat-Tits building.

Serre' proof of Bruhat-Tits fixed point theorem

Let X be a metric space, A a non-empty bounded subset.

- $r(x, A) := \sup_{a \in A} d(x, a)$
- Circumradius of A; $r(A) := \inf_{x \in X} r(x, A)$.
- If r(A) = r(x, A) for some $x \in X$, then x is a *circumcenter* of A.

Theorem (Serre)

If X is a complete CAT(0) space, then every non-empty bounded subset A admits one and only one circumcenter.

BN pair for an algebraic group

- *G*(*k*): *k*-rational points of a (connected) reductive linear algebraic group *G*, *T*: maximal *k*-split torus, *N*: normaliser in *G* of *G*.
- Grothendieck: Any smooth connected affine group G over a field k contains a k-torus T such that T_k is maximal in G_k.
- *B*: Borel subgroup *B* in *G*, i.e. *B* is minimal such that *G*/*B* is a projective variety.
- Borel-Tits: (*B*(*k*), *N*(*k*)) is a *BN*-pair for *G*(*k*) relying on the crucial result by Grothendieck.
- Tits: uniform proof of the simplicity (modulo center) of the groups of rational points of irreducible isotropic simple groups (over sufficiently large fields).

Spherical buildings from algebraic groups

Let $\Delta = \Delta(G)$ be the simplicial complex whose simplexes correspond to proper *k*-parabolic subgroups of *G* as follows:

- The vertices of △ correspond to maximal (proper) k-parabolic subgroups of G and chambers to minimal parabolic subgroups.
- Vertices Q₁, · · · , Q_m form the vertices of a simplex σ iff ∩^m_{i=1}Q_i is a k-parabolic subgroup, which corresponds to the simplex σ.
- For any maximal *k*-split torus *T* of *G*, there are only finitely many *k*-parabolic subgroups containing *T*, and their corresponding simplices in Δ form a Coxeter complex (an apartment) whose Coxeter group is W = N(T)/T.
- *G*(*k*) acts on the set of *k*-parabolic subgroups by conjugation and hence acts on the building Δ(*G*) by simplicial automorphisms.

Mirror structure of a Coxeter system

- (W, S) any Coxeter system (with S finite!),
- X: connected Hausdorff topological space.

Mirror structure on X over S: Collection $(X_s)_{s \in S}$ all X_s closed and non-empty, call X_s the *s*-mirror of *X*

Basic construction of a geometric realisation

For each $x \in X$, define $S(x) \subset S$ by $S(x) = \{s \in S \mid x \in X_s\}$. Define \sim on $W \times X$ by $(w, x) \sim (w', x')$ if and only if x = x' and $w^{-1}w' \in W_{s(x)}$. Then define $\mathcal{U}(W, X) = W \times X / \sim$ equipped with the quotient topology.

- (1) Cayley graphs: obtained from the "star"
- (2) Coxeter complexes: obtained from the "triangle"
- (3) $\mathcal{U}(W, X)$ is connected, Haussdorff and with X as the fundamental domain for the natural action of W, i.e. $\mathcal{U}(W, X)/W = X$.

The nerve and the mirror structure

The *nerve* L(W, S) of (W, S) is the simplicial complex with a simplex σ_T for each $T \subset S$ such that $T \neq \emptyset$ and W_T is finite.

The *chamber* K is the cone on the barycentric subdivision L' of the nerve L = L(W, S). For each $s \in S$, define $K_s \subset K$ to be the closed star in L' of the vertex s.

Figure: Example for $W = \langle s, t, u | s^2 = t^2 = u^2 = 1, (st)^3 = (tu)^3 = (us)^3 = 1 \rangle$

A geometric realisation of a building: the Davis complex

- connected, Hausdorff, locally finite.
- W-action on Σ is properly discontinuous with quotient K, and all point stabilisers are conjugates of finite special subgroups of W.
- Contractible so in particular simply connected.
- CAT(0) using the Cartan-Hadamard theorem and the Gromov link condition (see next slide).
- If a group G acts properly discontinuously and co-compactly by isometries on a CAT(0) space then the word problem and conjugacy problem are both solvable for G.

The Davis complex is a CAT(0) space

- Cartan-Hadamard theorem: Let X be a complete, connected geodesic metric space. If X is locally CAT(0) then the universal cover of X is CAT(0).
- Gromov link condition: If X is a piecewise Euclidean polyhedral complex then X is locally CAT(0) if and only if for every vertex v of X, the link of v in X is CAT(1).

