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19th century revolution in geometry and symmetry

Figure: Klein’s Erlanger Programm:
study geometries by means of their
symmetries (1872), later generalised
by Elie Cartan. Figure: Sophus Lie
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Sophus Lie’s theory of continuous symmetry

Lie group: group which is also a differentiable manifold with
continuous inversion and multiplication operations.

They form natural models for continuous symmetry, e.g. rotational
symmetries in 3 dimensions are described by SO(3).

Lie algebra: linear object that can be canonically attached to a Lie
group and contains a lot of information about it.

Semisimple Lie algebras over an algebraically closed field of
characteristic zero are completely classified by their root system
(Killing-Cartan), which are in turn classified by Dynkin diagrams.
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From Lie groups to algebraic groups

Figure: Claude Chevalley

Theorem
Let k be an algebraically closed field of
characteristic zero. Then every almost simple
linear algebraic group is isogenous to exactly
one of the following

Figure: An isogenous to SLn+1, Bn to
SO(2n + 1), Cn to Sp2n and Dn to SO(2n).
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Buildings: A geometric theory of algebraic groups

Figure: Jacques Tits (Abel prize 2008, Wolf Prize 1993) gave a converse to
Klein’s Erlanger programm: study groups by means of their geometries
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Coxeter groups as abstraction of Weyl groups

W = 〈S|(sisj)
m(si ,sj ) = 1〉 where m(si , si) = 1 (so all of the

generators are involutions), m(si , sj) = m(sj , si) and
2 ≤ m(si , sj) ≤ ∞ for i 6= j . We always assume S is finite.

Coxeter Diagram: Draw one node for each generator si and then
join si to sj (labeled) if and only if m(si , sj) ≥ 3. These are
intimately linked with the Dynkin diagram.

is W = 〈s, t | s2 = t2 = (st)3 = 1〉.

is W = 〈s, t ,u | s2 = t2 = u2 = (st)3 = (tu)4 = (su)2 = 1〉.

is W = 〈s, t ,u | s2 = t2 = u2 = (st)3 = (tu)3 = (su)3 = 1〉.
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The Coxeter complex of a Coxeter system (W ,S)

WJ := 〈J〉 ( J ⊆ S) is a standard subgroup.

Σ(W ,S): poset of standard cosets in W , ordered by reverse
inclusion. Thus B ≤ A in Σ if and only if A ⊆ B as subsets of W ,
and we call B a face of A.

Σ(W ,S) is called the Coxeter complex associated to (W ,S).

Example: W = 〈s, t | s2 = t2 = (st)3 = 1〉. The standard subgroups
are 1, {1, s}, {1, t} and W and for example the faces of {t} are {1, t}
and {t , ts} = t{1, s}.
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The Tits representation of a Coxeter group

Definition
Let V be a real vector space with basis {(ei)

n
i=1}. Define a symmetric

bilinear form on V by B(ei ,ej) = − cos(π/mij). The geometric
representation of W on V is defined by s(v) = v − 2B(v ,es)es.

No information is lost (i.e. representation is faithful Tits).

B positive definite if and only if W is finite. We say W is spherical.

If B is positive semi-definite of corank 1 we say W is Euclidean.

Coxeter groups are linear over a field of characteristic zero and by
our finite generation assumption thus virtually torsion-free
(Selberg 1960) and residually finite (Malcev 1940).
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Two classic examples of Coxeter complexes

J. Schillewaert (University of Auckland) Buildings 9 / 29



Another spherical example coming from the cube

EFE = FEF , VEVE = EVEV ,VF = FV

Spherical Coxeter complex

Dynkin diagram
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Another Euclidean Coxeter complex

W : group of isometries of the
plane generated by the (affine)
reflections with respect to the
sides of an equilateral triangle.

Example of a Euclidean
reflection group.

W := 〈s, t ,u; s2 = t2 = u2 =

(st)3 = (tu)3 = (su)3 = 1〉

Coxeter complex: plane tiled
by equilateral triangles.
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Buildings and groups

A building is a simplicial complex ∆ that can be expressed as the union
of sub complexes Σ (called apartments) satisfying the following axioms

(B0) Each apartment Σ is a Coxeter complex.

(B1) For any two simplices A,B ∈ ∆, there is an apartment Σ

containing them.

(B2) If Σ and Σ′ are two apartments containing A and B, then there is
an isomorphism Σ→ Σ′ fixing A and B pointwise.
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A building ∆ associated to a vector space V

V : n ≥ 2-dim vector space over an arbitrary field k .
P(V ): non-zero subspaces of V .
∆ = ∆(V ): flag complex of P(V ); thus the simplices are chains
V1 < V2 < · · · < Vk of nonzero proper subspaces of V . The
maximal simplices (chambers) are the chains V1 < · · · < Vn−1

such that dim Vi = i .
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Strongly transitive actions on buildings

Assume ∆ is a simplicial building of type (W ,S) with a type preserving
action of G on it. Suppose A is a G-invariant system of apartments.
We say the G-action is strongly transitive (with respect to A) if G acts
transitively on the set of pairs (Σ,C) consisting of an apartment Σ ∈ A
and a chamber C ∈ Σ.

Assume the G-action is strongly transitive, and choose an arbitrary
pair (Σ,C) as in the definition, we will refer to Σ as the fundamental
apartment and to C as the fundamental chamber.
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The action of special subgroups B,N and T

Σ: that of standard basis, C: edge joining [e1] to [e1,e2].

B := {g ∈ G | gC = C}: upper triangular matrices

N := {g ∈ G | gΣ = Σ}: monomial matrices

T := {g ∈ G | g fixes Σ pointwise }: diagonal matrices

W = N/T = 〈s, t | s2 = t2 = (st)3 = 1〉 where s = (12), t = (23).

[e1,e3][e3]

[e2,e3]

[e2] [e1,e2]

[e1]
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Abstracting: Groups with BN-pair

A group G has a BN pair of subgroups B and N if the following hold:

G = 〈B,N〉

T := B ∩ N ≤ N

W := N/T with set of generators S

For s ∈ S and w ∈W one has sBw ⊂ BswB ∪ BwB

For s ∈ S one has sBs−1 6≤ B

W is called the Weyl group and (G,B,N,S) a Tits system.

Side note: Bruhat decomposition: G =
∐

w∈W BwB.
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From groups with BN-pair to buildings and back

Theorem
Given a BN-pair in G, the generating set S is uniquely determined, and
(W ,S) is a Coxeter system. There is a thick building ∆ = ∆(G,B) that
admits a strongly transitive G-action such that B is the stabiliser of a
fundamental chamber and N stabilises a fundamental apartment and
is transitive on its chambers.

Theorem
Suppose a group G acts strongly transitively on a thick building ∆ with
fundamental apartment Σ and fundamental chamber C. Let B be the
stabiliser of C, and let N be a subgroup of G that stabilises Σ and is
transitive on the chambers of Σ. Then (B,N) is a BN-pair in G and ∆

is canonically isomorphic to ∆(G,B).
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The classification of spherical buildings

Theorem (Tits ’74)
Thick, irreducible, spherical buildings of rank at least ≥ 3 are either

Classical buildings (associated to classical groups), or

Algebraic buildings (associated to algebraic groups), or

Mixed buildings (associated to mixed groups).

Restriction to rank at least three is needed, as there are free
constructions in rank two. Moreover, classifying finite buildings of type
A2 is equivalent to classifying finite projective planes, a well-known
problem which is out of reach.
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Classification of Euclidean buildings

Euclidean building of dimension at least three is a Bruhat-Tits
building (Tits ’86).

Building at infinity of Bruhat-Tits building is Moufang.

Tits-Weiss: Classification of Moufang polygons.

Artin-Zorn: Every finite alternative division ring is a field.
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Bruhat-Tits buildings

Introduced to study reductive algebraic groups over valued fields
with not necessarily discrete valuation.

Important subclass when valuation is discrete (seen via geometric
realization): simplicial Euclidean buildings (only ones known
before Bruhat-Tits ’72)

Let L be a locally compact, non-discrete topological field. Then L
is R, C, or a finite extension of either Qp or K = Fp((t)).

Theorem (Martin,JS,Steinke,Struyve)
The Bruhat-Tits building is metrically complete if and only if the
associated (skew) field is spherically complete, up to certain cases
involving infinite-dimensionality and residue characteristic two.
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Discrete valuation (p-adic valuation)

A discrete valuation on K (Q) is a surjective homomorphism
ν : K? → Z satisfying

ν(x + y) ≥ min(ν(x), ν(y))

x ∈ Q? written uniquely as x = pnu, p-adic valuation: ν(x) = n.

A := {x ∈ K | ν(x) ≥ 0} is a discrete valuation ring.
fractions a/b with b not divisible by p.

K is the field of fractions of A.

Uniformiser: π such that ν(π) = 1. for Q : π = p

Residue field: k = A\πA, for Q : k = Fp
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The p-adic numbers Qp.

from discrete valuation ν define the p-adic absolute value
|x | := p−ν(x) for x ∈ K.

Setting d(x , y) := |x − y | yields an ultrametric on K, i.e.
d(x , z) ≤ max(d(x , y),d(y , z))

form completion K̂ by formally adjoining limits of Cauchy
sequences (similar to how you get R from Q).

The completion of Q with respect to the p-adic valuation is Qp.

Can also be defined purely algebraically using inverse limits.
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Discrete valuations yield a second BN pair for SLn(K)

first observed by Matsumoto and Iwahori then vastly generalised
by Bruhat and Tits.

B: inverse image in SLn(A) of upper triangular matrices in SLn(k).

N: monomial subgroup of SLn(K).

T = B ∩ N is diagonal subgroup of SLn(A), conjugation action of
N on T permutes the diagonal entries.

1→ T (K)/T (A)→W := N(K)/T (A)→ N(K)/T (K)→ 1.

W ∼= (K?/A?)n−1 o Sn.
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The Bruhat-Tits tree (=BT building of dimension 1)

lattice: L = Ae1 ⊕ Ae2.

Call two A-lattices equivalent in K2 if L = λL′ for some λ ∈ K∗.

Type of [[f1, f2]] as v(det(f1, f2)) mod 2.

Distinct lattice classes Λ,Λ′ are incident if they have
representatives that satisfy πL < L′ < L.

This relationship is symmetric since πL′ < πL < L′.

Graph: Vertices as lattice classes, edges via incidence. This is a
tree, called the Bruhat-Tits tree.
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Relating the Bruhat-Tits tree to the second BN pair
C: edge given by [e1,e2] and [e1, πe2]

Stabiliser of [e1,e2] = SL(2,A), stabiliser of [e1, πe2] is

gSL(2,A)g−1 where g =

(
1 0
0 π

)
, their intersection is B.

Fundamental apartment obtained by applying N to C, we get
[[πae1, π

be2]],a,b ∈ Z. Arbitrary apartment gΣ is similar but with
e1,e2 replaced by an arbitrary basis of K2.

Figure: The Bruhat-Tits tree for Q2

The Bruhat-Tits tree was crucial
to the construction of Ramanujan
graphs by Lubotzky-Philips-Sarnak
and Bruhat-Tits buildings are used
to construct high-dimensional ex-
panders.
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An application of the Bruhat-Tits tree

Theorem (Ihara (Serre))
Every discrete torsion-free subgroup Γ of SL(2,Qp) is free.

A group acting freely on a tree (no inversions, trivial point
stabilisers) is a free group (Bass-Serre)

Note that the action of SL(2,Qp) on the Bruhat-Tits tree is
type-preserving so there are no edge inversions.

Assume thus H ≤ Γ fixes a vertex of the Bruhat-Tits tree

H is bounded and hence relatively compact, hence compact

H is compact and discrete, hence finite, thus trivial.

J. Schillewaert (University of Auckland) Buildings 26 / 29



Euclidean Buildings are examples of CAT(0)-spaces

Given x , y , z in X , the triangle inequality implies there is a comparison
triangle in the Euclidean plane R2 (unique up to an isometry of R2).

Given a geodesic [x , y ] and a point p = pt ∈ [x , y ], there is a
corresponding point p̄ = p̄t on the line segment [x̄ , ȳ ] in R2.

A metric space is CAT(0) if for any x , y ∈ X there is a geodesic [x , y ]

such that: For all p ∈ [x , y ] and all z ∈ X one has dX (z,p) ≤ dR2 (z̄, p̄).

Examples include: Euclidean spaces, Hilbert spaces, Riemannian
symmetric spaces of non-positive curvature, Euclidean buildings.

Let X be a locally compact CAT(0) space of geometric dimension n. If
any two points are contained in a common n-flat, then X is the metric
realisation of a Euclidean building (Kleiner).
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Group actions on CAT(0) spaces

Elie Cartan: If G is a compact group of isometries of a complete simply
connected Riemannian manifold M of nonpositive curvature, then G
fixes a point of M.

Theorem (Bruhat-Tits fixed point theorem)
Let G be a group of isometries of a complete CAT(0) space X. If G
stabilises a nonempty bounded subset of X , then G fixes a point of X .

Application: Every compact subgroup of SL(n,R) is conjugate to a
subgroup of SOn(R) using symmetric space and can obtain a p-adic
analogue from the Bruhat-Tits building.
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Serre’ proof of Bruhat-Tits fixed point theorem

Let X be a metric space, A a non-empty bounded subset.

r(x ,A) := supa∈A d(x ,a)

Circumradius of A; r(A) := infx∈X r(x ,A).

If r(A) = r(x ,A) for some x ∈ X , then x is a circumcenter of A.

Theorem (Serre)
If X is a complete CAT(0) space, then every non-empty bounded
subset A admits one and only one circumcenter.
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BN pair for an algebraic group

G(k): k -rational points of a (connected) reductive linear algebraic
group G, T : maximal k -split torus, N: normaliser in G of G.

Grothendieck: Any smooth connected affine group G over a field k
contains a k -torus T such that Tk̄ is maximal in Gk̄ .

B: Borel subgroup B in G, i.e. B is minimal such that G/B is a
projective variety.

Borel-Tits: (B(k),N(k)) is a BN-pair for G(k) relying on the crucial
result by Grothendieck.

Tits: uniform proof of the simplicity (modulo center) of the groups
of rational points of irreducible isotropic simple groups (over
sufficiently large fields).
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Spherical buildings from algebraic groups

Let ∆ = ∆(G) be the simplicial complex whose simplexes correspond
to proper k -parabolic subgroups of G as follows:

The vertices of ∆ correspond to maximal (proper) k -parabolic
subgroups of G and chambers to minimal parabolic subgroups.

Vertices Q1, · · · ,Qm form the vertices of a simplex σ iff ∩m
i=1Qi is a

k -parabolic subgroup, which corresponds to the simplex σ.

For any maximal k -split torus T of G, there are only finitely many
k -parabolic subgroups containing T , and their corresponding
simplices in ∆ form a Coxeter complex (an apartment) whose
Coxeter group is W = N(T )/T .

G(k) acts on the set of k -parabolic subgroups by conjugation and
hence acts on the building ∆(G) by simplicial automorphisms.
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Mirror structure of a Coxeter system

(W ,S) any Coxeter system (with S finite!),
X : connected Hausdorff topological space.

Mirror structure on X over S: Collection (Xs)s∈S all Xs closed and
non-empty, call Xs the s-mirror of X
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Basic construction of a geometric realisation

For each x ∈ X , define S(x) ⊂ S by S(x) = {s ∈ S | x ∈ Xs}.
Define ∼ on W × X by (w , x) ∼ (w ′, x ′) if and only if x = x ′ and
w−1w ′ ∈Ws(x). Then define U(W ,X ) = W × X/ ∼ equipped with the
quotient topology.

(1) Cayley graphs: obtained from the "star"

(2) Coxeter complexes: obtained from the "triangle"

(3) U(W ,X ) is connected, Haussdorff and with X as the fundamental
domain for the natural action of W , i.e. U(W ,X )/W = X .
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The nerve and the mirror structure
The nerve L(W ,S) of (W ,S) is the simplicial complex with a simplex
σT for each T ⊂ S such that T 6= ∅ and WT is finite.

The chamber K is the cone on the barycentric subdivision L′ of the
nerve L = L(W ,S). For each s ∈ S, define Ks ⊂ K to be the closed
star in L′ of the vertex s.

Figure: Example for W = 〈s, t ,u | s2 = t2 = u2 = 1, (st)3 = (tu)3 = (us)3 = 1〉
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A geometric realisation of a building: the Davis
complex

connected, Hausdorff, locally finite.

W -action on Σ is properly discontinuous with quotient K , and all
point stabilisers are conjugates of finite special subgroups of W .

Contractible so in particular simply connected.

CAT(0) using the Cartan-Hadamard theorem and the Gromov link
condition (see next slide).

If a group G acts properly discontinuously and co-compactly by
isometries on a CAT(0) space then the word problem and
conjugacy problem are both solvable for G.
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The Davis complex is a CAT(0) space

Cartan-Hadamard theorem: Let X be a complete, connected
geodesic metric space. If X is locally CAT(0) then the universal
cover of X is CAT(0).

Gromov link condition: If X is a piecewise Euclidean polyhedral
complex then X is locally CAT(0) if and only if for every vertex v of
X , the link of v in X is CAT(1).
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