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CODES FROM DESARGUESIAN PROJECTIVE PLANES

» A: Incidence matrix of PG(2,q), q = ph, p prime:

» rows=lines of PG(2, q)
» columns=points of PG(2, q)
» with entry

2 = 1 if point j belongs to line /,
Y71 0 otherwise.

» Cq(2,9): row span of A
» Generated over [,
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» Length n = q2+q+1,
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The code C4(2,9q), g = ph has:
» Length n = q2+q+1,

h
» Dimension: (P;')" + 1 (Hamada/Goethals-Delsarte)



CODES FROM DESARGUESIAN PROJECTIVE PLANES

The code C4(2,9q), g = ph has:
» Length n = q2+q+1,
» Dimension: (p?)h + 1 (Hamada/Goethals-Delsarte)
» Distance d=minimum weight =7 .

~ blocking sets.



THE DUAL CODE

DEFINITION
The dual code C™ of C:
Set of vectors v with v.c = 0 for all ¢ € C.
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DEFINITION
The dual code C™ of C:
Set of vectors v with v.c = 0 for all ¢ € C.

For C4(2, q)l :
» Length n = q2+q+ 1,
» Dimension: ¢° + g + 1 — ((p;)h +1)
» Distance d =7.

~ sets without tangents.
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OBSERVATION

» If Gis a generator matrix for C, then vG' =0 forall v e Ct.

» A matrix H such that cH' = 0 for all ¢ € Cis is called a
parity check matrix for C.



THE DUAL CODE

OBSERVATION
1

» If Gis a generator matrix for C, then vG' = 0forallveC’.

» A matrix H such that cH' = 0 for all ¢ € C is is called a
parity check matrix for C.

» Parity check matrix of C=generator matrix of C* and vice
versa.



CODES FROM DESARGUESIAN PROJECTIVE PLANES

CONICS AND HYPEROVALS

KM-ARCS

BLOCKING SETS



CONICS IN A PROJECTIVE PLANE

DEFINITION
A conic in PG(2, q) is a set of points whose coordinates
(X0, Yo, Zo) satisfy a homogeneous quadratic equation.



CONICS IN A PROJECTIVE PLANE

DEFINITION
A conic in PG(2, q) is a set of points whose coordinates
(X0, Yo, Zo) satisfy a homogeneous quadratic equation.

EXAMPLE
The set of points (x, y, z) with y2 = XZ is a conic.

{(1,6, ) : t e K} U {(0,0,1)}



CONICS IN A PROJECTIVE PLANE

THEOREM
In PG(2,K), all non-empty irreducible conics are projectively
equivalent to

{(1,t,%): t e K} U {(0,0,1)}.



CONICS IN A PROJECTIVE PLANE

THEOREM
In PG(2,K), all non-empty irreducible conics are projectively
equivalent to

{(1,t,%): t e K} U {(0,0,1)}.

OBSERVATION

{(1,t,£%) 1 t € Fg} U {(0,0,1)}

has g + 1 points; so every non-degenerate conic in PG(2, q)
has g + 1 points.



CONICS IN A PROJECTIVE PLANE

» Every line meets an irreducible conic in either 0,1 or 2
points.

» Every point lies on a unique tangent line to an irreducible
conic.



OVALS

DEFINITION
An oval is a set of points S no three of which lie on a line and
such that every point lies on a unique tangent line to the oval.



OVALS

DEFINITION
An oval is a set of points S no three of which lie on a line and
such that every point lies on a unique tangent line to the oval.

In PG(2, g): an oval has g + 1 points.



OVALS AND CONICS

Every non-singular conic is an oval; but is every oval in
PG(2, q) a conic?



OVALS AND CONICS

Every non-singular conic is an oval; but is every oval in
PG(2, q) a conic?

MR0054979 (14,1008d) Reviewed Citations
Jarnefelt, G.; Kustaanheimo, Paul From References: 4
An observation on finite geometries. Den 11te Skandinaviske Matematikerkongress, Trondheim, From Reviews: 3
1949, pp. 166-182. Johan Grundt Tanums Forlag, Oslo, 1952.

48.0X

Review PDF | Clipboard Make Link

In a geometry with coordinates from a field with a prime number of elements, p, the axioms of incidence will of course be satisfied.
1t is observed here that the quadratic form x? — ky?> with k a quadratic non-residue may be used to define a metric. Certain axioms
of congruence are satisfied if this metric is used. It is conjectured that in a plane with p? + p + 1 points a set of p + 1 points, no three
on a line, will form a quadric. The reviewer finds this conjecture implausible.

Reviewed by Marshall Hall Jr.



OVALS AND CONICS

THEOREM (SEGRE 1955)
Every set of g + 1 points in PG(2, q), q odd, such that no three
are collinear, is the set of points on a conic.



OVALS AND CONICS

MR0071034 (17,72g) Reviewed Citations
Segre, Beniamino From References: 98
Ovals in a finite projective plane. From Reviews: 21
Canadian J. Math. 7 (1955), 414-416.

48.0X
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In a finite projective plane with »n + 1 points on a line there can be at most n + 2 points with the property that no three are on a line
and if n is odd there can be at most n + 1 with this property. If n is even and we have n + 1 points, no three on a line, then there
exists a further point which can be adjoined to these giving n + 2 points, no three on a line. In a Desarguesian plane a non-
degenerate conic contains n + 1 points, no three on a line. If, when n is odd, we call n + 1 points, no three on a line, an oval, then i
was conjectured by Jarnefelt and Kustaanheimo [Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, Tanum, 1952,
pp. 166-182; MR0054979] that in a Desarguesian plane of odd order r, an oval is necessarily a conic. This conjecture is shown to
be true in this paper. The method of proof is ingenious. We may take three points of the oval to be A;:(1,0,0), A,: (0, 1,0), and
A3:(0,0,1) and if P(a;,ay,a3) is a further point on the oval and x, = 2;x3, x3 = Ayx|, x; = J3x, are the three secants PA,, PA,, PA;, then
immediately 4;4,4; = 1. Since the product of all non-zero elements in the field is -1, it will follow that for the tangents at A;,A,,A;
that x; = kyx3, x3 = kpx1, x| = k3x, we will have k kyk; = —1. From this the inscribed triangle and its circumscribed triangle are
perspective with respect to the center (1,k;k;, —k;). It follows generally that every inscribed triangle and its circumscribed triangle
are perspective. Using this relation on the triangles formed from P,A;,A,, and A3, we find that the coordinates of P satisfy a
quadratic equation which becomes x,x; + x3x; + x;x, = 0 if we take C as (1,1, 1), as we may. [The fact that this conjecture seemed
implausible to the reviewer seems to have been at least a partial incentive to the author to undertake this work. It would be very
gratifying if further expressions of doubt were as fruitful.]

Reviewed by Marshall Hall Jr.



THE MAXIMUM NUMBER OF POINTS ON AN ARC

DEFINITION
A (planar) arc is a set of points in a projective plane, no three of
which are collinear.



SIDE NOTE: ARCS AND MDS CODES

DEFINITION
An arc is a set of points in a projective space in general position
(no n points contained in an n — 2-space).

FOLKLORE THEOREM
Arcs and MDS codes (codes meeting the Singleton bound) are
equivalent objects



SIDE NOTE: ARCS AND MDS CODES

Take coordinates for points of arc as columns of a parity-check
matrix.
EXAMPLE

(1,0,0),(1,1,1),(1,2,4),(1,3,4),(1,4,1),(0,0,1) is an arc of
PG(2,5).

111110
LetH={O 123 40
014 411
is a parity check matrix for a code with



SIDE NOTE: ARCS AND MDS CODES

Take coordinates for points of arc as columns of a parity-check
matrix.

EXAMPLE

(1,0,0),(1,1,1),(1,2,4),(1,3,4),(1,4,1),(0,0,1) is an arc of

PG(2,5).
111110

LetH=|0 1 2 3 4 0
L 1 4 4 1 1]

Then H is a parity check matrix for a code with

» n=6

» k=3

> d=14

» So the Singleton bound givesd =4 < n—k+1 =4: MDS

code
» Reed-Solomon code



SIDE NOTE: ARCS AND MDS CODES

Take coordinates for points of arc as columns of a parity-check
matrix.

EXAMPLE

(1,0,0),(1,1,1),(1,2,4),(1,3,4),(1,4,1),(0,0,1) is an arc of

PG(2,5).
111110

LetH=|0 1 2 3 4 0
L 1 4 4 1 1]

Then H is a parity check matrix for a code with

» n=6

» k=3

> d=14

» So the Singleton bound givesd =4 < n—k+1 =4: MDS

code
» Reed-Solomon code
Why is d = 4?



SIDE NOTE: ARCS AND MDS CODES

STANDARD LEMMA

A matrix H is a parity check matrix for a code with distance d if
and only if all sets of d — 1 columns are linearly independent
and there are d dependent columns.
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most g + 1,
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and there are d dependent columns.
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case it has size at most q + 2.

A linear MDS code of dimension k over F, has length at most
qg+1



SIDE NOTE: ARCS AND MDS CODES

STANDARD LEMMA

A matrix H is a parity check matrix for a code with distance d if
and only if all sets of d — 1 columns are linearly independent
and there are d dependent columns.

OPEN PROBLEM

MDS Conjecture: An arc of PG(k — 1, q), with k < g, has size at
most g + 1, unless gis evenand k =3 or k = g — 1, in which
case it has size at most g + 2.

A linear MDS code of dimension k over F, has length at most
g+ 1unless gisevenand k =3 or k=g —1, in which case it
has length at most g + 2.

» The MDS conjecture is true for g prime (S. Ball 2012).



BACK TO ARCS IN PG(2, q)

An arc in PG(2, q) is a set of points no three of which are
collinear. Let A be an arc in PG(2, q), then

|A| < g+2.



THE MAXIMUM NUMBER OF POINTS ON AN ARC

LEMMA (BOSE (1947) )
Let A be an arc in PG(2, q), g odd, then

Al < g+1.



ARCS AND HYPEROVALS

DEFINITION
An arc in PG(2, q), g even, containing q + 2 points is called a
hyperoval.
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ARCS AND HYPEROVALS

DEFINITION
An arc in PG(2, q), g even, containing q + 2 points is called a
hyperoval.

Every line meets a hyperoval in 0 or 2 points.

EXAMPLE
The set

{(1,6, ) : t € Fpn} U {(0,0,1} U {0,1,0)}

is a hyperoval.

More generally, for even q, every conic has a nucleus in
PG(2, q) and forms a hyperoval. These hyperovals are the
regular hyperovals.



HYPEROVALS

OBSERVATION
Not every hyperoval is a regular hyperoval.



HYPEROVALS

Bt Cherowitos g—[m;groval ‘:Pagc

»turn to Research Section of Bill Cherowitzo's Home Page.

Known Hyperovals in PG(2,2]‘)

Page established October 1,1999  Last Updated June 8, 2004.

Name 0-Polynomial Field | Section !'l’mperlics
() =x> None | Section2 [ Available
ITranslation o) =x2 (=1 None [Section 2
[Segre i) =x° hodd |Section2
(Glynn I f(x) = x3°+4 hodd ||Scction2
(Glynn 11 ) =x°*Y hodd (Scction2
[Payne () = xO4x 2430 hodd |Section3
(Cherowizo | £(x) = x%+ x® 2+ x3° 4| hodd [Section3
[Subiaco sce comments Nonc _[Section 3
[Adelaide see comments heven |Section3
[Penttila-O'K eefe| see comments h=5 |Sectiond
¥= g 2=2mod 2-1)
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that every line contains 0 or at least 2 of them
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» Rows of generator matrix of C{(2, q): lines of PG(2, q)
» Generator matrix=parity check matrix of C{(2, q)L.
» ceCq(2, q)L < c.¢ =0 for all lines of PG(2, q)

» Codeword of C¢(2, q)i corresponds to a set of points such
that every line contains 0 or at least 2 of them

P This is a set without tangents.



THE DUAL CODE OF C4(2,q)

» Rows of generator matrix of C{(2, q): lines of PG(2, q)
» Generator matrix=parity check matrix of C{(2, q)L.
» ceCq(2, q)L < c.¢ =0 for all lines of PG(2, q)

» Codeword of C¢(2, q)i corresponds to a set of points such
that every line contains 0 or at least 2 of them

P This is a set without tangents.

COROLLARY
The minimum weight for C;(2, q)l is at least q + 2.



THE DUAL CODE OF C4(2,q)

» If g is even, a codeword corresponds to a set S of points
that every line intersects S in an even number of points.

» A hyperoval is a set of g + 2 points, no three collinear.
» Hyperovals in PG(2, q) exist iff q is even.

COROLLARY
The minimum weight of C(2, q)L, gevenisq+2.
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» If g is even, a codeword corresponds to a set S of points
that every line intersects S in an even number of points.

» A hyperoval is a set of g + 2 points, no three collinear.
» Hyperovals in PG(2, q) exist iff q is even.

COROLLARY
The minimum weight of C(2, q)L, gevenisq+2.
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» Every codeword of Cf gives rise to a set without tangents,
but not vice versa.



THE DUAL CODE OF C4(2,q)

SETS WITHOUT TANGENTS
» Every codeword of Cf gives rise to a set without tangents,
but not vice versa.
» If g is odd: smallest size of set without tangents not known
» Lower bound (Blokhuis - Seress -Wilbrink 1991)
g + 11/2q + 2 points
» Example of size 2p — 2 for p prime.

» The minimum weight of C; (2,p)L, p prime, is 2p.



THE DUAL CODE OF C4(2,q)

SETS WITHOUT TANGENTS

>

v

Every codeword of Cf gives rise to a set without tangents,
but not vice versa.

If g is odd: smallest size of set without tangents not known
Lower bound (Blokhuis - Seress -Wilbrink 1991)

g + 11/2q + 2 points

Example of size 2p — 2 for p prime.

The minimum weight of C; (2,p)L, p prime, is 2p.
The minimum weight of C4(2, q)L, g odd, non-prime???



CODES FROM DESARGUESIAN PROJECTIVE PLANES

CONICS AND HYPEROVALS

KM-ARCS

BLOCKING SETS



FURTHER CODEWORDS OF C4(2,q), g EVEN

RECALL

The minimum weight of C4(2, q)L, gevenis g+ 2. Every line
meets the support of a codeword in an even number of points,
so the weight of each codeword is even.
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RECALL
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meets the support of a codeword in an even number of points,
so the weight of each codeword is even.

Is there a codeword of weight g + 47



FURTHER CODEWORDS OF C4(2,q), g EVEN

RECALL

The minimum weight of C4(2, q)L, gevenis g+ 2. Every line
meets the support of a codeword in an even number of points,
so the weight of each codeword is even.

Is there a codeword of weight g + 47

LEMMA
The support of a codeword of weight g + 4 is necessarily a set
of size g + 4 such that every line meets in 0,2 or 4 points.

~ KM-arcs.



KM-ARCS

Math. Proc. Camb. Phil. Soc. (1990), 108, 445 ' 445

Frinted in Great Brilopin

On (g + #)-arcs of type (0,2, ) in a desarguesian plane of order g
' By GABOR KORCHMAROS
Department of Mathematics, Universily of Basilicala, 85100 Potenza, lialy

anp FRANCESCO MAZZOCCA

.. Department of Mathematics and its Applicaiions, University of Napoli,
via Mezzocannone 8, 80134 Napoli, Italy

(Received 183 December 1989; revised 2 Mareh 1990)



INTRODUCTION

1. Inlroduction
This paper is concerned with certain point-sets T in a projective plane PG (32, q)
over GF (g} which have only three characters with respect to the lines. We assume
throughout this paper that for any line l of 7

0
iTnl={2 (1-1)
ti+0,2
where [ =g+ (1-2)

It is easily seen that if { =1 then T is a (g+1)-are, i.e. an oval; otherwise T' is a
(g4t t-are of type (0,2,¢). Therefore (g+¢,¢)-arcs of type (0.2,f) appear to
be & generalization of ovals and there are interesting connections between ovals and
(g+1, b)-ares of type (0, 2, £) from various points of view. Our purpose is to investigate



BASIC PROPERTIES

THEOREM
(KORCHMAROS-MAZZOCCA,
GACS-WEINER)

If Ais a KM-arc of type tin
PG(2,q),2 <t < q, then

> giseven;
» tis adivisor of q.



BASIC PROPERTIES

THEOREM
(KORCHMAROS-MAZZOCCA,
GACS-WEINER)

If Ais a KM-arc of type tin
PG(2,q),2 <t < q, then

» qiseven;

» tis adivisor of q.
If t > 2, then

> there are 7 + 1 different

t-secants to .4, and they are
concurrent.

The common point of the t-secants
is called the t-nucleus.




A KM-ARC OF TYPE q/2

EXAMPLE (*)
Let Tr: Fq—>IF2:Xn—>x+x2+x4+---+xq/2



A KM-ARC OF TYPE q/2

EXAMPLE (*)
Let Tr: Fq—>IF2:Xn—>x+x2+x4+---+xq/2

So = {(1,0,x) | Tr(x) = 0}
Sy :{(1,1,}/) |TI'(y) = 1}
Soo = {(0,1,2) | TI'(Z) = 0}

Then, Sy U S; U S, is a KM-arc of type q/2. Its q/2-secants
are Y=0,X+Y=0and X =0. The g/2-nucleus is (0,0, 1).



A KM-ARC OF TYPE q/2

EXAMPLE (*)
Let Tr: Fq—>IF2:Xn—>x+x2+x4+---+xq/2

So ={(1,0,x) | Tr(x) = 0}

Sy :{(1,1,}/) |TI'(y) = 1}
Soo = {(07172) | TI'(Z) = 0}

Then, Sy U S; U S, is a KM-arc of type q/2. Its q/2-secants
are Y=0,X+Y=0and X =0. The g/2-nucleus is (0,0, 1).

THEOREM (DE BOECK-VDV 2015)

A set of g + g/2 points in PG(2, q) such that every line meets in
0,2 or q/2 points is equivalent to example (*).



A KM-ARC OF TYPE q/2

EXAMPLE (*)
Let Tr: Fq—>IF2:Xn—>x+x2+x4+---+xq/2

So ={(1,0,x) | Tr(x) = 0}

Sy :{(1,1,}/) |TI'(y) = 1}
Soo = {(07172) | TI‘(Z) = 0}

Then, Sy U S; U S, is a KM-arc of type q/2. Its q/2-secants
are Y=0,X+Y=0and X =0. The g/2-nucleus is (0,0, 1).

THEOREM (DE BOECK-VDV 2015)

A set of g + g/2 points in PG(2, q) such that every line meets in
0,2 or g/2 points is equivalent to example (*). It is necessarily
a translation KM-arc.



FAMILIES OF KM-ARCS
OVERVIEW: INFINITE FAMILIES OF KM-ARCS OF TYPE 2' IN
PG(2,2") For

(A) h—1i| h(Korchmaros—Mazzocca, Gacs—Weiner)
(B) h— i+ 1| h(Gacs—Weiner; iterative construction)



FAMILIES OF KM-ARCS

OVERVIEW: INFINITE FAMILIES OF KM-ARCS OF TYPE 2' IN
PG(2,2") FOR

(A) h—1i| h(Korchmaros—Mazzocca, Gacs—Weiner)
(B) h— i+ 1| h(Gacs—Weiner; iterative construction)

(¢) i = h-2 (Vandendriessche, De Boeck-VdV 2015)
(D) i = h—- 3 (De Boeck-VdV 2017)
(E) I = h—4forsome h (De Boeck-VdV 2017)

(F) i =1 Hyperovals



A CONJECTURE

THEOREM (GACS-WEINER)

A KM-arc of type t in PG(2, q) determines a Vandermonde set
on each of its f-secants.



A CONJECTURE

THEOREM (GACS-WEINER)

A KM-arc of type t in PG(2, q) determines a Vandermonde set
on each of its f-secants.

DEFINITION
T ={y1,...,¥yn} € Fqis aVandermonde set if Z,ZO y,-k = 0 for all
k=0,....n-2.



A CONJECTURE

THEOREM (GACS-WEINER)
A KM-arc of type t in PG(2, q) determines a Vandermonde set
on each of its t-secants.

DEFINITION
T ={y1,...,¥yn} € Fqis aVandermonde set if Z,Zo y,-k = 0 for all
k=0,....n-2.

CONJECTURE (VANDENDRIESSCHE)
A KM-arc of type t in PG(2, q) together with its nucleus
determines an F»>-linear set on each of its f-secants.



KM-ARCS

If there is a line L such that the subgroup of the pointwise
stabiliser of L stabilising A acts transitively on the points of A
outside L, then A is a translation KM-arc with translation line L.

THEOREM (DE BOECK-VDV 2015)
Translation KM-arcs of type 2' in PG(2, 2" ) and i-clubs of rank h
inPG(1, 2" ) are equivalent objects.



KM-ARCS

If there is a line L such that the subgroup of the pointwise
stabiliser of L stabilising A acts transitively on the points of A
outside L, then A is a translation KM-arc with translation line L.

THEOREM (DE BOECK-VDV 2015)

Translation KM-arcs of type 2" in PG(2,2™) and i-clubs of rank h
inPG(1, 2" ) are equivalent objects.

> Via i-clubs: examples of type 2, withi=h—1,i= h-2,
h—ilh, h—i+1]|h.

» No 2-club in PG(2,32), but there is a KM-arc of type 4 in
PG(2,32) and PG(2,64).



KM-ARCS

DE BOECK-VDV 207?

If there are only points of weight 1 and 2, then the number of
points of weight 2 is contained in
[q—2\/6+1,q+2¢Zy+1]u{2q,2q+1,2q+2,3q,3q+1,q2+1}.
In particular, there are no F4-linear 2-clubs in PG(1, q5).



CODES FROM DESARGUESIAN PROJECTIVE PLANES

CONICS AND HYPEROVALS

KM-ARCS

BLOCKING SETS



HISTORY

» Origins in game theory (J. Von Neumann — O. Morgenstern
1944)

» M. Richardson (1956), J. Di Paola (1966), A.A. Bruen
(1970)



HISTORY

ON FINITE PROJECTIVE GAMES
MOSES RICHARDSON!

1. Preliminaries on simple games. Let N= { 1,2,---, u] be a
finite set of # elements termed players. Let 9T be the class of all sub-
sets .S of N;the elements S of 9 are termed coalitions. If $C9I, let
§+ denote the class of all supersets of elements of 8, and §* the class
of all complements of elements of §; in symbols, §+ = [XE:JT,I XDSfor
some SE§], §*=[XE9n| N-XES]. By a simple game is meant an
ordered pair G=(N, W) where WCN satisfies (1) W=w+, (2)
WNW*=0. The elements of W are termed winning coalitions. The
elements of £=91—"W are termed losing coalitions. The elements of
®=2L£MNE* are termed blocking coalitions. A simple game? is termed

» M. Richardson. On finite projective games. Proc. Amer.
Math. Soc. 7, 458—-465, 1956.



HISTORY

ON FINITE PROJECTIVE GAMES
MOSES RICHARDSON!

1. Preliminaries on simple games. Let N= { 1,2,---, n] be a
finite set of # elements termed players. Let 9T be the class of all sub-
sets .S of N;the elements S of 9 are termed coalitions. If $C9I, let
§+ denote the class of all supersets of elements of 8, and §* the class
of all complements of elements of §; in symbols, §+ = [XE:JT,l XDSfor
some SE§], §*=[XE9n| N-XES]. By a simple game is meant an
ordered pair G=(N, W) where WCN satisfies (1) W=w+, (2)
WNW*=0. The elements of W are termed winning coalitions. The
elements of £=91—"W are termed losing coalitions. The elements of
®=2L£MNE* are termed blocking coalitions. A simple game? is termed

» M. Richardson. On finite projective games. Proc. Amer.
Math. Soc. 7, 458-465, 1956.

P Subsets of a set of players are called coalitions. Winning
coalitions can force a decision. A blocking coalition can
block every decision: it contains at least one player of each
winning coalition.
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BLOCKING SETS: DEFINITION

DEFINITION FOR PROJECTIVE PLANES
A set of points B in a projective plane I1 such that every line of
I contains at least 1 point of B is a blocking set.

MINIMAL BLOCKING SETS
A blocking set B in I is called minimal if no proper subset of B
is a blocking set.
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EXAMPLES IN PG(2, q)

e,
Pg(z,\la.)
[ ) ° o

Aline: g + 1 points

A projective triangle in PG(2, q), g odd: 3(q + 1)/2 well-chosen
points on a triangle

A Baer subplane PG(2,./q), q square: q + /q + 1 points.

TRIVIAL BLOCKING SETS
A blocking set B in PG(2, q) is called trivial if it contains a line.

SMALL BLOCKING SETS
A blocking set B in PG(2, q) is called small if |B| < 3(q + 1)/2.






A (TRIVIAL) LOWER BOUND

THEOREM (R.C. BOSE, R.H. BURTON (1966))
If B is a blocking set in a projective plane of order q, then
|Bl=qg+1and|B| =q+1ifandonly if B is a line.
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BLOCKING SETS: LOWER BOUND

THEOREM (A. BRUEN)

Let B be a non-trivial blocking set in a projective plane I of

orderg. Then |B| = g + /g + 1 and equality holds if and only if
B is a Baer subplane.
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Mg: projective plane of order g, q square
MN': Baer subplane of
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BAER SUBPLANES AND BLOCKING SETS

H/

i

» Plieson g+ 1 lines of Ny

» At most one of these meets ' in a line (so contains /g + 1
points)

» The other at least g points of N’ are connected to P by
distinct lines.

» So the points of M’ block all lines of M
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BLOCKING SETS: CLASSIFICATION RESULTS

RECALL
A blocking set in PG(2, q) is small if its size is less than
3(g+1)/2.

THEOREM (A. BLOKHUIS (1994))
A small minimal blocking set in PG(2, p), p prime, is a line.

THEOREM (T. SZONYI (1997))
A small minimal blocking set in PG(2, pz), p prime, is a line or a
Baer subplane.
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BLOCKING SETS: CLASSIFICATION RESULTS

THEOREM (O. POLVERINO(1998))

A small minimal blocking set in PG(2, p3), p prime, is a line or is
projectively equivalent to
{(x,x",1)|x € Fpp} u{(x,x",0)|x € F 3} or

2 2
{OGx+xP+ X2 )| x e Fo} U {(x,x + x° + xP ,0)|x € Fpe).

REMARKS
» Either ,o3 + p2 + p + 1 points or p3 + p2 + 1 points.

» of Rédei-type: there is a line with |B| — p3 points of the
blocking set B.

» consists of p3 affine points, together with their determined
directions.
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DIRECTIONS DETERMINED BY A POINT SET

P Take a (blue) point set of size q.

» The green points are the directions determined by the blue
point set.

» Each line # L, through a red point is a tangent line to the
blue point set.

» Union of the blue and green point set is a minimal blocking
set.

P If the green set has size < g/2, the blocking set is small.
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DIRECTIONS DETERMINED BY A POINT SET

» Pointset of size g, not at the line at infinity Z = 0 and not
determining the vertical’ direction: {(x,7(x).1)[x € Fg}.
» Directions determined by a function f over a finite field.
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THEOREM (S. BALL - A. BLOKHUIS - A. BROUWER - L.
STORME - T. SZONYI, S. BALL)

Let f be a function fromFq toFg, q = ph , for some prime p, and
let N be the number of directions determined by f.
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FUNCTIONS DETERMINING FEW DIRECTIONS

THEOREM (S. BALL - A. BLOKHUIS - A. BROUWER - L.
STORME - T. SZONYI, S. BALL)

Let f be a function fromFq toFg, q = ph , for some prime p, and
let N be the number of directions determined by f. Let s = p°
be maximal such that any line with a direction determined by f
is incident with a multiple s of points of the graph of f. One of
the following holds:

() s=1and(g+3)/2<=N<qg+1;

(1) Fsis a subfield of Fyand q/s+1<N=<(g-1)/(s-1),
() s=qandN = 1.

Moreover, if s > 2, then f is an Fs-linear map.
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REDEI TYPE BLOCKING SETS

» A small minimal blocking set in PG(2, p), is a line, and
hence of Rédei type.

» A small minimal blocking set in PG(2, p2), isalineora
Baer subplane, and hence of Rédei type.

» A small minimal blocking set in PG(2, p3) is of Rédei type.

A CONJECTURE (A. BLOKHUIS)

All small minimal blocking sets of Rédei-type and the smallest
minimal blocking set equivalent to

{(1,x,Tr(x))|x € Fq} U {(0, x, Tr(x))|x € Fq}.
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THEOREM (P. POLITO, O. POLVERINO (1999))
There exists a small minimal blocking set in PG(2, ph), p prime,
h > 3, that is not of Rédei-type.



BLOCKING SETS: RESULTS

THEOREM (P. POLITO, O. POLVERINO (1999))
There exists a small minimal blocking set in PG(2, ph), p prime,
h > 3, that is not of Rédei-type.

The constructed blocking sets are [ ,-linear point sets.



VIA PROJECTION

(ALTERNATIVE) DEFINITION
[Fo-linear set in PG(n, q’): a subgeometry over I (= PG(n, q))
or the projection of a subgeometry from a suitable subspace.
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PGB3,q)

Scattered linear set of rank 4: blocking set of size
q3 + q2 +qg+1.



VIA PROJECTION: RANK 4 IN PG(Z, q3)

PG(3,q)

Linear set or rank 4: blocking set of size q3 + q2 +1.
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THE LINEARITY CONJECTURE

CONIJECTURE [P. SZIKLATI (‘2008")]
All small minimal blocking sets in PG(2, q), g = ph, p prime, are
Fp-linear sets.

» All blocking sets of Rédei-type are linear sets.

» The linearity conjecture in PG(2,ph), p prime, is wide open
for h > 3.
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THE SIZE OF A LINEAR SET OF RANK K + 1
A linear set L of rank k is the projection of a PG(k, q), which

qk+1_.I .
has 7 points.
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Is there a trivial lower bound?
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THE SMALLEST LINEAR (BLOCKING) SETS

THE SIZE OF A LINEAR SET OF RANK K + 1
A linear set L of rank k is the projection of a PG(k, q), which

k+1_.I

has qq_1 points.
k+1
qg -1
So |L| = EEE

Is there a trivial lower bound?

THEOREM (J. DE BEULE AND G. VDV (2018))
For a linear set L in PG(1, qt) of rank k:

[L] = qk*1 + 1

An Fy-linear set in PG(2, q") of rank t + 1 contains at least
qt + qt'1 + 1 points.



THE SMALLEST LINEAR (BLOCKING) SETS

OBSERVATION
The trace map gives us an example of an F-linear set in

PG(2, qt) of rank t + 1 of Rédei-type containing qt + qt_1 + 1
points.
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THE SMALLEST LINEAR (BLOCKING) SETS

OBSERVATION
The trace map gives us an example of an F-linear set in

PG(2, qt) of rank t + 1 of Rédei-type containing qt + qt_1 + 1
points.

THEOREM (D. JENA AND G. VDV (2020))
P There exist linear sets of rank t in PG(1, qt) of size qt_1 + 1
not arising from the Trace map,
» and there exist non-Rédei-type linear blocking sets of size
g +q9" " +1inPG(2,q"),
» where we can specify the weight of the heaviest point.



A GAP IN THE WEIGHT ENUMERATOR

Incidence vector of a line in a projective plane of order q:
codeword of weight g + 1.

Difference of the incidence vectors of two lines:
codeword of weight 24.

» Is there anything in between?



THE LINK WITH BLOCKING SETS

THEOREM (M. LAVRAUW, L. STORME, G. VDV (2008))

A codeword ¢ € C1(2, q) with weight < 2q defines a small
minimal blocking set in PG(2, q).



THE LINK WITH BLOCKING SETS

THEOREM (M. LAVRAUW, L. STORME, G. VDV (2008))

A codeword ¢ € C1(2, q) with weight < 2q defines a small
minimal blocking set in PG(2, q).

i.e: the set of non-zero positions in the codeword ¢ corresponds
to a set of points in PG(2, q) forming a blocking set.
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COROLLARIES OF THE LINK WITH BLOCKING SETS

REcCALL (R.C. BOSE, R.H. BURTON (1966))

If Bis a blocking set in PG(2, q), then |B| = g + 1 and
|B| = g+ 1iff Bis aline.

COROLLARY
The minimum weight of C1(2,q) is g + 1 and the minimum
weight vectors correspond to the incidence vectors of lines.

(first obtained by E. Assmus and J.D. Key)
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COROLLARIES OF THE LINK WITH BLOCKING SETS

THEOREM (A. BLOKHUIS (1994))
A small minimal blocking set in PG(2, p), p prime, is a line.

COROLLARY

There are no codewords in C1(2, p), p prime, with weight in
Ip+1,2p[.

(first obtained by K. Chouinard and by G. McGuire and H. Ward
for Jp+1,3(p+1)/2[)



THE LINK WITH BLOCKING SETS CONTINUED

Even stronger:

LEMMA (M. LAVRAUW, L. STORME, P. SZIKLAI, G. VDV
(2009))

A codeword ¢ € C1(2, q) with weight < 2q defines a small
minimal blocking set, intersecting every other small minimal
blocking set in 1 mod p points.



RESULTS FOR C¢(2,q), Q A PRIME POWER

Looking at intersections with linear blocking sets:
THEOREM (M. LAVRAUW, L. STORME, P. SZIKLAI, G. VDV
(2009))

A small minimal blocking set, intersecting every other small
minimal blocking set in 1 mod p points, is a line.



RESULTS FOR C¢(2,q), Q A PRIME POWER

Looking at intersections with linear blocking sets:
THEOREM (M. LAVRAUW, L. STORME, P. SZIKLAI, G. VDV
(2009))

A small minimal blocking set, intersecting every other small
minimal blocking set in 1 mod p points, is a line.

COROLLARY
There are no codewords in C1(2, q), with weight in |q + 1,2q[.



RESULTS FOR C¢(2,q), Q A PRIME POWER

THEOREM (FACK, FANCSALI, STORME, VDV, WINNE
(2006)

For g prime: a codeword in C1(2, p) with weight < 2p + % is a
linear combination of at most 2 lines, so has weight p + 1, 2p,
or2p+1.



RESULTS FOR C¢(2,q), Q A PRIME POWER

THEOREM (FACK, FANCSALI, STORME, VDV, WINNE
(2006)

For g prime: a codeword in C1(2, p) with weight < 2p + % is a
linear combination of at most 2 lines, so has weight p + 1, 2p,
or2p+1.

BAGCHI (2012)/DE BOECK—VANDENDRIESSCHE (2014)

There exists a codeword in C4(2, p) of weigth 3p — 3 which is
not a linear combination of 3 lines.



RESULTS FOR C¢(2,q), Q A PRIME POWER

THEOREM (T. SZONYI AND ZS. WEINER (2018))
A codeword c inC4(2,Q), q = ph with weight smaller than

g+/q + 1 is a linear combination of at most | Wt(")] lines, when q
is large and h = 2.



OPEN PROBLEMS

vVvvyyvyy v

v

Prove (or disprove) that every projective plane has prime
power order

Prove (or disprove) that a projective plane of order p prime
is Desarguesian

Find a new hyperoval/classify hyperovals

Construct a KM-arc of type t for all t|q.

Prove (or disprove) the MDS conjecture

Determine the minimum weight of C(2, q)L

Find the smallest size of a set without tangents in PG(2, q),
q odd

Prove (or disprove) that a small minimal blocking set in
PG(2,q) is a linear set



Thank you for your attention!
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