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The Motivating Problem

Problem

Given polynomials f1, . . . , fm ∈ Q[x1, . . . , xn] (how) can we
I decide if there exists a ∈ Qn such that fi(a) = 0 for all i?
I describe/determine the set of all such rational solutions?

Remarks

I There is no proven algorithm for answering these
questions, already in the case of a single polyomial of
degree 3 in 2 variables.

I Can replace Q with other rings, e.g., C, Fp, Z, Qp, . . .



Equations of degree 2

Example

Pythagorean triples correspond to rational solutions to
x2 + y2 − 1 = 0

Plimpton Tablet 1800BC

I If we have one rational point, then we can parameterize all
others. In particular, there will be infinitely many.



Equations of degree 2

This works for any conic...

y = x2 x2 + y2 = −1 x2 + y2 = 3

... provided you can find a rational point to get things going.



Local obstructions to rational points

Example

The curve C : x2 + y2 − 3 = 0 has no rational points because
there is a local obstruction at the prime p = 3 (i.e., C(Q3) = ∅).

1. Suppose there is a rational solution.
2. Clearing denominators gives an integral solution to

X 2 + Y 2 = 3Z 2

which implies X ,Y ,Z are all divisible by 3.
3. Remove this common factor and repeat...

Theorem (Legendre, Minkowski, Hasse)

A quadric hypersurface has Q-rational points if and only if there
is no local obstruction.



Equations of degree 3

Example (Diophantus, ca 300AD)

There are infinitely many rational points on the curve

C : y2 = x3 − x + 9

(−1,3) ( 19
9 ,

109
27

)

(−200477
106929 ,

−72376055
34965783

)



Equations of degree 3

Example (Fermat, 1637)

There are only finitely many rational points on the curve

C : x3 + y3 = 1



Equations of degree 3

Example (Failure of the Hasse Principle, Selmer 1951)

The curve
C : 3x3 + 4y3 = 5

has no local obstruction, but also no rational points.



Equations of degree 3

Example (Stoll, 2002)

The curve C : y2 = x3 + 7823 has infinitely many rational
points.



Geometry Determines Arithmetic

Over C algebraic curves are classified topologically by their
genus:

Degree 1 or 2 3 ≥ 4
Genus 0 1 ≥ 2
Q-points C(Q) = ∅ or 0 ≤ #C(Q) ≤ ∞ C(Q) is finite

C(Q) ' P1(Q) (Faltings 1984)
Algorithm? Known Conjectured Conjectured

< 1800 ca. 1960 Poonen/Stoll ‘06



Genus 1 Curves With Rational Points

Definition

An elliptic curve is a genus one curve with a rational point.

Every elliptic curve can be defined by an equation of the form

E : y2 = x3 + ax + b with a,b ∈ Q such that 4a3 − 27b2 6= 0.

Theorem (Mordell 1922)

The set E(Q) of rational points on an
elliptic curve forms a finitely
generated abelian group. Hence,

E(Q) ' Zr × T , with T finite.

Q
P

P + Q



Proof of Mordell’s Theorem

Theorem

For any elliptic curve E/Q, the abelian group E(Q) is finitely
generated.

The proof has two steps:
1. Reduce to proving that E(Q)/2E(Q) is finite.

I Uses the theory of heights
I This step is effective: given #E(Q)/2E(Q) there is an

algorithm to determine E(Q) and find generators.
2. Prove that E(Q)/2E(Q) is finite.

I It is an open question whether this step can be made
effective. There is a procedure which is conjectured to
always work.



Height of a point
The height of a point P ∈ E(Q) is (roughly) the number of digits
required to write down its x-coordinate.

If P =

(
p
q
, y
)
, then H(P) = log(max{|p|, |q|}) .

Example (Diophantus’ curve)

n x(nP) H(nP)

1 −1 0
2 19/9 2.94
3 785/196 6.67
4 −200477/106929 12.21

P = (−1,3)

2P

4P

I H : E(Q)→ R behaves like a quadratic form:
1. H(mP) ∼ m2H(P)
2. H(P + Q) + H(P −Q) ∼ 2H(P) + 2H(Q)



Step 1 of the proof

Claim: If E(Q)/2E(Q) is finite, then E(Q) is finitely generated.
Proof:

I Choose coset reps Q1, . . .Qn for E(Q)/2E(Q)

I Let S = {P ∈ E(Q) | H(P) ≤ max(H(Qi)}.
I If S does not generate E(Q), choose R ∈ E(Q)− 〈S〉 of

minimal height.
I Write R −Qi = 2P. Note P 6∈ 〈S〉.
I Use properties of heights to show H(P) < H(R):

4H(P) = H(2P) = H(R −Qi)

≤ H(R −Qi) + H(R + Qi) = 2H(R) + 2H(Qi) < 4H(R)



Step 2: Proof of finiteness of E(Q)/2E(Q)

Consider the special case where the cubic has 3 rational roots:

E : y2 = (x − e1)(x − e2)(x − e3) , ei ∈ Q.

I For any P ∈ E(Q) there are unique square free integers
δ1, δ2 and zi ∈ Q unique up to sign such that

x(P)− e1 = δ1z2
1 y = δ1δ2z1z2z3

x(P)− e2 = δ2z2
2

x(P)− e3 = δ1δ2z2
3

I If the ei are distinct modulo p, then p - δi . So there are only
finitely many possibilities for δ1, δ2.

I The map δ : E(Q)→ Q×/Q×2 ×Q×/Q×2 is a
homomorphism with kernel 2E(Q).



Geometric interpretation

I The equations can be rearranged to give:

Q1(z) = Q2(z) = 0, (x , y) = (f1(z), f2(z))

defining a genus 1 curve Cδ ⊂ P3 and a map πδ : Cδ → E .
I When δ = (1,1), Cδ ' E and πδ is multiplication by 2.
I For varying δ these give a partition:

E(Q) =
∐
δ

πδ(Cδ(Q)) where πδ(Cδ(Q)) =

{
∅
coset of 2E(Q)

I All but finitely many of the Cδ have Cδ(Q) = ∅ due to a
local obstruction.

I Some Cδ(Q) may be empty even though there is no local
obstruction (so the proof is not effective unless we know
how to decide if the genus one curves Cδ have rational
points).



Rational Points on genus one curves, a summary

Suppose C/Q is a genus one curve.

Problem 1:

Decide if C(Q) is nonempty.

I Difficult because local obstructions do not suffice.
I One must define new obstructions and study these

(Descent, Brauer-Manin)

Problem 2:

If C(Q) is nonempty, the points form a finitely generated abelian
group. Determine the structure and find generators.

I Can be reduced to Problem 1 for a finite collection of
auxiliary curves.


