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Animal behaviour arises through a complex mixture of biomechanical, neuronal, sensory and
control constraints. By focusing on a simple, stereotyped movement, the prey capture strike
of a weakly electric fish, we show that the trajectory of a strike is one which minimizes effort.
Specifically, we model the fish as a rigid ellipsoid moving through a fluid with no viscosity,
governed by Kirchhoff’s equations. This formulation allows us to exploit methods of discrete
mechanics and optimal control to compute idealized fish trajectories that minimize a cost
function. We compare these with the measured prey capture strikes of weakly electric fish
from a previous study. The fish has certain movement limitations that are not incorporated in
the mathematical model, such as not being able to move sideways. Nonetheless, we show
quantitatively that the computed least-cost trajectories are remarkably similar to the
measured trajectories. Since, in this simplified model, the basic geometry of the idealized fish
determines the favourable modes of movement, this suggests a high degree of influence
between body shape and movement capability. Simplified minimal models and optimization
methods can give significant insight into how body morphology and movement capability are
closely attuned in fish locomotion.
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1. INTRODUCTION

Understanding the dynamics of behaviour is challen-
ging because movement integrates multiple simul-
taneous processes and constraints, such as the
mechanical and physical features of the animal and its
habitat. The interplay of these aspects of the problem is
complex and recommends quantitative methods for
their understanding. Under the assumption that
specific behavioural epochs can be understood as a
solution of a constrained optimization problem (Kern &
Koumoutsakos 2006; Srinivasan & Ruina 2006; Tam &
Hosoi 2007), the impact of an array of neuromechanical
constraints that shape the behaviour can be investi-
gated. For example, a movement may be hypothesized
to minimize the required force or time. The actual
performance of the system is then compared against a
model that generates optimal behaviour. If the real and
optimal behaviours are similar, this is consistent with
pplementary material is available at http://dx.doi.org/
008.0286 or via http://journals.royalsociety.org.
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the biological system being configured to be optimal in
the hypothesized respect. For this approach to be
successful, the behaviour should be simple, stereotyped
and well characterized. The prey capture behaviour of
the weakly electric black ghost knifefish (Apteronotus
albifrons) is one such example.

Black ghost knifefish continually emit a rapidly
oscillating (approx. 1 kHz) weak electric field (approx.
1 mV cmK1 near the body). Perturbations of this field
are sensed by over 10 000 sensory receptors scattered
over the entire body surface. These perturbations are
created whenever something that differs from the
electrical properties of the surrounding water enters
the field. This unique mode of sensing, termed active
electrosense, allows weakly electric fish to hunt at
night, in the muddy rivers of the Amazon where vision
is rendered useless. Active electrosense in these animals
has become a leading system for investigations into
how vertebrates process sensory information (reviews:
Bullock & Heiligenberg 1986; Turner et al. 1999), and,
more recently, how sensory processing relates to
mechanics (Cowan & Fortune 2007; Snyder et al.
2007). Figure 1 illustrates the fish body plan.
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(a) (b)

Figure 1.Body plan of fish and ellipsoidal model. The figure shows the outline of the ellipsoid model and a transparent body plan of
the black ghost knifefish Apteronotus albifrons. Fish lengths varied from 12 to 15 cm. The length of the ellipsoid (2l1) is scaled
such that the volumes of the fish and the ellipsoid match. Note that the ellipsoid is narrower than the fish at the front of the body,
and wider than the fish at the rear of the body, with the consequent changes in the shading of the ellipsoid as it is covered by the
surface of the fish body. (a) The unbent fish and fitted volume-matched ellipsoid. (b) How the ellipsoid is oriented if the fish body
is bent. The tip of the ellipsoid coincides with the location of the fish nose, and is oriented to coincide with the unbent rostral third
of the fish.
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Prior work has shown that the volume in which prey
are detected (approx. 3 cm out in all directions from the
body surface) is similar in size and shape to the volume
which the animal needs to come to a halt to capture the
prey (Snyder et al. 2007). A rapid and precise strike
must therefore be initiated almost immediately upon
detection—otherwise, the prey will rapidly pass out of
the sensory volume. Given this, and under the
assumption that energy cost is proportional to muscle
work, we expect that strikes will be strongly con-
strained by mechanical factors and that optimization of
an appropriately chosen mechanical utility function
may be predictive of the behaviour.

The kinematics of the weakly electric fish’s prey strike
has been systematically examined empirically using an
approach that gives the full three-dimensional position
of the body over time (MacIver et al. 2001). The results
show the behaviour to be highly stereotyped. The fish
generally swims forward at approximately 10 cm sK1, in
the dark, using its electrosensory system to detect prey
in all directions around the body up to approximately
3 cm away. Only a small fraction of the prey are detected
ahead of the body. In the majority of cases, the fish
rapidly reverses its body (in z100 ms) to bring its
mouth to the detected prey.

In our highly abstracted approach, we do not model
the way the fish generates propulsion. Propulsion in
aquatic animals generally occurs through flapping of fins
or body undulation. These movements impart momen-
tum to the fluid, and are generally associated with the
development of characteristic vortices in the wake of the
swimmer. This has been observed in both experiments
and numerical simulations. A few examples include
vortices shed at the trailing edges of anguilliform
swimming (i.e. eels; Tytell & Lauder 2004), vortex rings
shed by jellyfish (Dabiri et al. 2005a,b) and knifefish
(Shirgaonkar et al. in press), and vortex structures
generated by the pectoral fins of sunfish (Drucker &
Lauder 1999). Weakly electric fish swim using a unique
adaptation, an elongated ribbon-like anal fin along the
ventral midline of the body. Rather than bend their
body for propulsion asmany fishes do, these fish generate
travellingwaves along their ribbonfin, oftenkeeping their
body straight (Blake 1983; Lighthill & Blake 1990).
By changing the direction, frequency, amplitude and
number of waves on the fin, they can precisely control
J. R. Soc. Interface
the magnitude and direction of thrust (Shirgaonkar et al.
in press). During exploration of novel objects or in
confined spaces, bodybends canoccur to facilitate sensing
or for turning, and this bending is decoupled from
propulsion (Assad et al. 1999). The prey strikes we are
modelling are high-speed transient movements. During
these high-speedmovements, just as in steady swimming,
the body is kept straight—or if it was bent prior to
prey detection, it is rapidly straightened (MacIver et al.
2001), presumably to maximize the surge force arising
from the streamwise jet generated by the ribbon fin
(Shirgaonkar et al. in press).

Given these considerations, as well as significant
mathematical advantages, we model the fish body as a
rigid ellipsoid with no fins—which is clearly unable to
generate the types of forces described earlier, which are
required for locomotion. In our model, the fish is
propelled by forces and torques which act at the centre
of mass of the body, but we do not describe how these
forces originate. Our model does not consider the
complicated fluid mechanics underlying the propulsion
methods discussed above, but assumes only that the
fish has some mechanism of generating thrust, and that
the generation of this thrust has some cost to the fish.

As with most fishes, the motion capabilities of the
knifefish are limited. More precisely, if a rigid body
can actively move in all six degrees of freedom (surge,
heave and sway translational motions, and yaw, pitch
and roll rotational motions—see figure 2), it is said
to be ‘fully actuated’, while if it cannot it is ‘under-
actuated’. As we will provide evidence for below, the
knifefish can move forward, backward, heave upward,
roll and pitch—but cannot yaw, sway or heave down-
ward. Thus, it is underactuated.

In this paper, we test the hypothesis that the
trajectory of the fish body, as approximated by an
appropriately sized rigid ellipsoid, minimizes mechan-
ical effort. Importantly, we allow our idealized fish to be
fully actuated. If the fully actuated idealized body
follows the same trajectory as the underactuated real
fish, this would be indirect evidence that the fish, even
though underactuated, is sufficiently actuated to per-
form optimal movements. Another way to express the
point is that the fish has all the movement capability it
needs for effective low-cost movement. To provide more
direct evidence for this claim, we also underactuate the
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Figure 2. Velocity vector representation. We show the representation for translational and rotational velocities simultaneously,
with labels related to the rotational velocity representation shown in parentheses. (a) Representing the directions of the linear (v)
and rotational (u) velocity vectors as points on the surface of a sphere. The six shaded circles are regions close to a coordinate
axis. If a vector intersects the sphere in one of the circles, it can be associated with a simple movement in the direction of or about
that axis. A linear velocity vector v corresponds to a translation in the direction of that vector. A rotational velocity vector u
corresponds to a rotation of the body about that axis. We show an example vector, denoted by v (u). (b) The spherical angles Q
and F (defined in §2.1.1) as rectangular coordinates. The shaded regions correspond to those in (a) and are labelled according to
the type of translational (or, in parentheses, rotational) movement that is associated with the velocity vectors within those
regions. The indicated point v (u) illustrates how a vector is mapped from the sphere shown in (a).
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idealized fish in some of the same ways that the real fish
is underactuated, and examine whether there is any
change in the generated optimal trajectories. If the
optimal trajectories are essentially unchanged, then we
can conclude that those additional degrees of freedom are
not needed by the fish to achieve optimal movements.

This paper is organized as follows. In §2 we describe
our simplified mechanical model of the fish and our
optimization procedure. In §3 we apply our optimization
methods to test three hypotheses. We find that our
optimal trajectories match the measured trajectories
with excellent agreement, suggesting that the fish indeed
moves so as to minimize effort. This is discussed in §3.1.
Further in §3.2 we find that optimal trajectories for a fish
model that was underactuated in the same way as the
real fish have little difference from the fully actuated
case. The fish therefore has all the movement abilities it
needs for low-cost movements. Finally in §3.3 we show
that we can use the minimum-effort criterion to detect a
switch from prey search behaviour to the goal-directed
behaviour of a prey strike in a post hoc analysis. This is
simply because, prior to prey detection, the fish is not
attempting to reach a specific point in space (the one
occupied by the prey) withminimal effort; we can use the
onset of an optimal trajectory to that point as a method
for detecting a behavioural mode switch. Section 4
concludes the paper with a discussion of the results, the
limitations of our mechanical model and some sugges-
tions of how wemight further investigate the motion and
sensing capabilities of the weakly electric fish using tools
of mechanics and optimal control.
2. METHODS

In a previously published study (MacIver et al. 2001),
adult weakly electric fish (A. albifrons) were videotaped
in a light-tight enclosure under infrared illumination.
Individual water fleas (Daphnia magna, 2–3 mm in
length) were introduced near the water surface and
drifted downward; prey capture behaviour was
J. R. Soc. Interface
recorded using a pair of video cameras oriented along
orthogonal axes. Relative to the fish’s velocity (approx.
10 cm sK1), the prey were relatively stationary (prey
velocity less than 2 cm sK1). Prey capture events (from
shortly before detection to capture) were subsequently
digitized, and three-dimensional motion trajectories of
the fish surface and prey were obtained using a model-
based tracking system with a spatial resolution of
0.5 mm and a temporal resolution of 1/60 s (MacIver &
Nelson 2000). The time of prey detection (tD) was
defined by the onset of an abrupt longitudinal
deceleration as the fish reversed swimming direction
to capture the prey. These reversals are characteristic
of most prey capture encounters. Initial prey sensing
tends to be uniformly distributed along the entire
length of the body, so a reversal of swimming
direction is typically required to intercept the prey.
A total of 116 prey capture manoeuvres (hereafter,
‘trials’) were recorded.

In our optimization procedure, we use an idealized
model of the fish in which we model the body as a solid
rigid ellipsoid. In order to compare mechanically
optimal trajectories with the video-captured fish
trajectories described above, we fit a trajectory of an
ellipsoid to the video-captured data. Four fish of
slightly different sizes were used in the prey capture
study (MacIver et al. 2001). For each prey capture trial,
the corresponding model ellipsoid has the same width
(2l2) and height (2l3) as the fish, but the length (2l1) of
the ellipsoid is chosen such that the volumes of the
fish and ellipsoid are equal. This results in an ellipsoid
with approximately 67 per cent of the length of the fish.
We assume the fish is neutrally buoyant, so the density
of the ellipsoid is equal to that of the surrounding fluid.
Equal volumes of the fish and ellipsoid then also result
in equal masses. For the four fish that were used in the
prey capture study, the model ellipsoids have semi-axes
lengths l1 ranging from 4.06 to 5.05 cm, l2 from 0.39 to
0.46 cm and l3 from 0.85 to 1.08 cm.
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The data from the digitized motion capture events
give the coordinates of the fish nose in a laboratory-
fixed frame, and three angles that describe the
orientation of the fish body, as functions of time. We
create an approximation to the fish’s trajectory by
fitting the ellipsoid model to the trajectory of the fish.
For each time step of the recorded behaviour, we
position the ellipsoid so that the front of the ellipsoid
and the fish nose coincide, and orient the ellipsoid so
that the rostral part of the fish and the ellipsoid are
aligned, as shown in figure 1. Throughout the paper, we
refer to this rigid ellipsoid-fitted trajectory as the
‘motion-capture fitted (MCF) trajectory.’

In comparisons between mechanically optimal and
MCF trajectories, each of the two ellipsoids is
represented by a surface mesh of 256 nodes. We
evaluate the distance between corresponding nodes to
obtain a measure of how similar the two trajectories
are. Details of this error measure calculation can be
found in §2.4.

We next describe how the optimal trajectories are
computed, beginning with a description of how we model
the hydrodynamics of the submerged ellipsoidal approxi-
mation to the fish. We then describe the optimization
procedure, the objective function that is to be minimized
and the constraints on the optimization.
2.1. Equations of motion

The fish is modelled as a neutrally buoyant solid rigid
ellipsoid immersed in an infinitely large volume of
incompressible, inviscid fluid that is at rest at infinity.
For Reynolds numbers typical of the fish motions
(103–104) (Blake 1983; Shirgaonkar et al. in press), the
inviscid assumption is reasonable. In some trials, owing
to the small behavioural tank the original study was
conducted in, the fish is bent prior to prey detection. As
discussed in §1, this bending is not part of the fish’s
propulsion mechanism. We discuss the bending of the
fish and how we exclude such trials from our compari-
son in §2.3.

It is well known (Lamb 1932) that the motion of such
an ellipsoid through an ideal fluid can be described
using the Kirchhoff equations

M _v ZMv!uCF; ð2:1Þ
J _uZ Ju!uCMv!vCT ; ð2:2Þ

where v and u are three-vectors describing the velocity
of the centre of mass of the ellipsoid and the angular
velocity of the body, respectively. The matrices M and
J are the effective mass and moment of inertia
(discussed further below), and F and T are applied
forces and torques.

Recall that we do not discuss the origin of the applied
forces and torques, but only assume that they are
generated by the fish, and producing forces in different
directions costs the fish the same amount of effort. We
can write FðtÞZðF1ðtÞ;F2ðtÞ;F3ðtÞÞ and TðtÞZðT1ðtÞ;
T2ðtÞ;T3ðtÞÞ where F1 is the surge force, F2 is the
sway force and F3 is the heave force, and T1 is the roll
torque, T2 is the pitch torque and T3 is the yaw torque.
In this formulation, the forces and torques act at
the centre of mass of the body. Moreover, we allow the
J. R. Soc. Interface
body to be fully actuated, i.e. F(t) and T(t) can be any
three-vectors.

Since we assume the fluid is inviscid, this model
does not include the effects of drag. We discuss reasons
why this is not expected to significantly affect our
results in §4.

All quantities in equations (2.1) and (2.2) are given
in a frame of reference which rotates with the body. We
refer to this frame as the ‘body frame’, and to a fixed
inertial frame of reference as the ‘laboratory frame’. We
choose the body frame so the x -axis is aligned with the
long axis of the fish, as shown in figure 1. The matrices
M and J are given by

M Z

m1 0 0

0 m2 0

0 0 m3

0
B@

1
CA; J Z

j1 0 0

0 j2 0

0 0 j3

0
B@

1
CA; ð2:3Þ

where M is the sum of the added mass matrix (due to
the volume of fluid accelerated by translations of the
ellipsoid) and the body mass matrix, and J is the sum of
the added moment of inertia matrix (due to the volume
of fluid accelerated by rotations of the ellipsoid) and the
body moment of inertia matrix. Formulae to calculate
mi and ji can be found in Holmes et al. (1998). Recall
that we use four model ellipsoids of slightly different
sizes in our calculations. For one of our four ellipsoid
models, we find (m1, m2, m3)Z(6.04, 17.31, 8.39) g,
( j1, j2, j3)Z(1.57, 27.78, 54.11) g cm2 and the mass of
the ellipsoid,mZ5.84 g. The other three ellipsoids have
similar values. The fluid motion enters the model only
through the added mass and inertia effects.

The position and orientation of the body with
respect to the laboratory frame are given by a three-
vector b, which gives the position of the centre of mass
of the body, and a rotation matrix R, which we write in
terms of three Euler angles f, q and j (R is given in
terms of these angles in appendix A). We choose the
Euler angles so that f is a rotation about the x -axis
(roll), q is a rotation about the y-axis (pitch) and j is a
rotation about the z -axis (yaw). Note that the Euler
angles themselves do not give useful information for
visualizing the orientation of the fish, since if more than
one of the Euler angles is non-zero the fish has undergone
a combination of rotations. Rotations of the fish are
better understood by examining the form of the angular
velocity vector u. We discuss this further along with our
method of representing the rotations of the fish in §2.1.1.
The choice of the Euler angles we make has singularities
at qZG908, and so we restrict q2(K908Ce, 908Ke) for
some 0!e/1808. (Typically we choose ez68. No
restrictions are required on the other angles.)

The body-frame velocity v and angular velocity u are
related to the state variables in _b and R by

v ZRK1 _b; _RZRû; ð2:4Þ

where if uZ(u1, u2, u3), then û is the matrix

ûZ

0 Ku3 u2

u3 0 Ku1

Ku2 u1 0

0
B@

1
CA: ð2:5Þ
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Equations (2.1)–(2.4) with prescribed forces and
torques F(t) and T(t), together with initial conditions
b(tI)Zb0, R(tI)ZR0, v(tI)Zv0 and u(tI)Zu0, fully
describe the motion of the body through the fluid for
tOtI. In the following, we refer to the trajectory in
terms of the state variables as a vector qðtÞZðbðtÞ;
fðtÞ; qðtÞ;jðtÞÞ.
2.1.1. Velocity classifications. In the discussion of the
motion of three-dimensional rigid objects, it is often
convenient to refer to velocities in simple terms such as
‘heave’, ‘pitch’, ‘roll’, etc. Generic velocity vectors v
and u cannot, however, be classified as such—the
instantaneous linear or rotational velocity of the body
will be a complicated combination of several of these
motions. In §3, however, we find it useful to classify the
velocity vectors into such categories whenever possible,
as described below.

Since the velocities v and u are given in the body-
fixed frame of reference shown in figure 1, if the vectors
are close to one of the coordinate axes, they can be
associated with what we term ‘simple’ translations or
rotations. That is, translational velocity vectors close
to one of the coordinate axes are associated with the
simple translations ‘surge’ in the x -direction, ‘sway’ in
the y-direction and ‘heave’ in the z -direction. Similarly,
rotational velocity vectors close to one of the coordinate
axes are approximately rotations about one of the
primary body axes: ‘roll’ about the x -axis; ‘pitch’
about the y-axis; and ‘yaw’ about the z -axis. These
simple rotations correspond to varying just one of the
Euler angles.

By plotting the velocity vectors using spherical
coordinates (R, Q, F) instead of Cartesian coordinates,
we construct a two-dimensional representation for each
of the linear and angular velocity vectors. Each vector v
can be written vZRðcos Q cos F; sin Q cos F; sin FÞ
where K1308%Q!2308 is the azimuthal angle and
K908%F%908 is the polar angle measured from the
xy-plane. (Q and F can be thought of as longitude and
latitude, respectively, for a projection of the vectors
onto a sphere.) The regions of the two-dimensional
(Q, F)-space corresponding to the simple translations
and rotations are highlighted in figure 2. We use
this representation of the velocity vectors throughout
this paper.
2.2. Optimization procedure

For a given trajectory q(t), with t2[tI,tF], describing
the motion of the ellipsoid through the fluid, and
associated forces and torques F(t) and T(t), we can
associate a cost C

C Z

ðtF
tI

KðqðtÞ; _qðtÞ;FðtÞ;TðtÞÞdt; ð2:6Þ

for some function K, given below. The computation of
the mechanically optimal trajectories is a constrained
optimization problem: minimize the cost function C,
subject to constraints on the trajectory q(t). The
constraints consist of the equations of motion
(equations (2.1) and (2.2)) as well as boundary
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conditions, and, if desired, further constraints on the
applied forces and torques. The boundary conditions
and further constraints are discussed in §2.2.1. Note
that the duration (tFKtI) of the trajectory is fixed.

The objective function we choose to be minimized
can be thought of as a proxy for the metabolic cost of
muscle activation for the fish to complete the tra-
jectory. Our approach, which models the fluid as
inviscid, does not lend itself to the use of an energy-
based cost function. We choose an objective function
similar to that used by Kanso & Marsden (2005),

KðqðtÞ; _qðtÞ;FðtÞ;TðtÞÞZ
X3
iZ1

FiðtÞ2 CðaiTiðtÞÞ2:

ð2:7Þ
The scaling factors ai are included so that the terms in
the sum have the same dimension, and are equal to the
reciprocals of the radii of gyration of the ellipsoid. For
our model ellipsoids, ai range from 0.26 to 1.93 cmK1.

In order to implement the optimization, the tra-
jectory q(t) has to be discretized. We achieve this by
approximating q(t) by a piecewise linear function on an
evenly spaced time grid ft IZt0; t1;.; tNK1Z tFg.
That is,

qðtÞZ qn C
tK tn

tnC1K tn
ðqnC1KqnÞ

for t 2 ½tn; tnC1�; n Z 0;.;NK2: ð2:8Þ

The equations of motion (which form constraints on the
optimization) must also be discretized. The discretiza-
tion of both the trajectory and the equations of motion
is discussed further in appendix A.

The optimization is performed using the package
SNOPT (Gill et al. 2002), an implementation of sequen-
tial quadratic programming (SQP). The optimization
routine finds a local minimum, subject to any number of
constraints, of the objective function, given an ‘initial
guess’ trajectory qinit(t). We discuss the sensitivity of
the routine to choosing different qinit(t) in §2.2.2.
2.2.1. Constraints.The optimization of the cost function
C is performed by varying the state variables q(t) and
the applied forces and torquesF(t) andT(t). Throughout
the paper, the equations of motion are constraints
on the optimization procedure, but, for each of the
three hypotheses described in the introduction, we use a
different set of additional constraints, as follows.

For the first hypothesis, that the fish trajectories are
close to mechanically optimal, we set the start time of
the trajectory to be the time of prey detection (defined
in §2), so tIZtD, and the final time of the trajectory to
be that of prey capture. (Recall that the duration of the
trajectory is fixed to match that of the motion capture
data.) Boundary conditions are chosen so the trajectory
can be compared with the motion capture data (the
MCF trajectory). Here, we fix the initial (that is, at
tZtI) position, orientation and both linear and angular
velocities of the trajectory to match that of the motion
capture data. That is, q(tI) and _qðt IÞ are given. In this
study, we also fix q(tF) (the final position and
orientation of the ellipsoid) to that of the MCF
trajectory, but _qðtFÞ is free to vary.
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For the second hypothesis, concerning the redundant
and essential motor capacities, we produce two
additional sets of trajectories that we term ‘redundantly
underactuated’ (RUA) and ‘essentially underactuated’
(EUA). The initial and final times of these trajectories
and the boundary conditions on the position and
velocity of the ellipsoid at these times are the same as
for the first hypothesis, given earlier. However, we
impose additional constraints on the allowed forces and
torques for both the RUA and EUA trajectories. These
are described in detail in §3.2.

For our third hypothesis, to determine whether a
change in behaviour can be detected using optimal
control results, we produce optimal trajectories for
which the initial time tI is not equal to the time of
detection tD. The final time of the trajectory remains
equal to the time of prey capture. In this study, we
additionally fix the velocity of the ellipsoid at tZtF to
be that of the MCF trajectory. That is, q(tI), _qðt IÞ, q(tF)
and _qðtFÞ are given.
2.2.2. Validation. The results of the optimization code
described above give only approximate solutions to the
Kirchhoff equations, owing to the discretization of both
the equations and the trajectory. Ideally, we would run
the optimization code with a very large N (the number
of discretized time intervals), but this is not possible
due to finite computing power. Here we describe how we
choose an appropriate N.

For 10 randomly chosen trials (out of the 116 motion
capture trials), we produced optimal trajectories for
N2{5,10,20,40,80} using the MCF trajectory as the
initial guess qinit(t). The results from one of these trials
can be seen in figure 3. Note that the CPU time required
to produce the optimal trajectories increases exponen-
tially with N since both the number of constraints and
the number of variables increase with N.

The optimal trajectory clearly converges as N is
increased. We determine the N values for which the
optimal solutions are sufficiently discretized by
comparing the solutions with two different discretiza-
tions of the Kirchhoff equations. As N increases, we
expect that the discrepancies between the solutions for
different discretizations will decrease to zero.
J. R. Soc. Interface
We set a discrepancy level using the following two
comparisons. First, using the functions F(t) and T(t)
from the optimal trajectory, we obtained a correspond-
ing q(t) by forward integrating equations (2.1)–(2.4)
using a built-in Runge–Kutta (4,5) solver in MATLAB

(The Mathworks, Natick, MA, USA). This output was
compared with the q(t) provided by the optimization
code. Second, we implemented a different discretization
of Kirchhoff’s equations (from that used as constraints
for the optimization): we solved equations (2.1) and
(2.2) for F(t) and T(t) using (the discretized) v(t) and
u(t) from the optimal trajectory. This was compared
with F(t) and T(t) provided by the optimization code.

For N ranging between 5 and 80, we found that, on
average (for the 10 trials chosen above), the discrepancy
measure we used decreased by an order of magnitude
each time N was doubled. We set an allowed tolerance
level for this discrepancy measure, and found that, for
most trials, NZ40 produced optimal solutions that
passed this discrepancy check. Seven trials (out of 116)
were excluded from the rest of our calculations because
they did not meet our tolerance level on these checks.

For the same 10 trials used in our convergence tests
described above, we also investigated the robustness of
the optimization results to different initial guess
trajectories qinit(t). This can indicate whether the
code is finding a local or global optimum. In addition
to the MCF trajectory, we used three other types of
initial guess trajectories, as follows: a straight line
between the boundary conditions for each of the state
variables ðbðtÞ;fðtÞ; qðtÞ;jðtÞÞ; a quadratic polynomial
consistent with the boundary conditions; and a
trajectory created by adding random noise (ranging
up to 10%) to the MCF trajectory and then smoothing
using a low-pass digital Butterworth filter. For each of
the different qinit(t) used, we found that the code
produced an optimal solution that was almost identical
to the optimal solution produced using the MCF
trajectory as the initial guess: the maximum error was
1.76!10K5 cm in position and 0.00178 in orientation.
The optimization scheme (SNOPT, see §2.5) only finds
locally optimal solutions, but the results of this
validation check provide convincing evidence that
the solution obtained is the global minimum to the
objective function. In the following results, we use
the MCF trajectory as the initial guess qinit(t).
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Figure 4.Histogram of body bend at prey detection. Histogram
of body bend values at the time of prey detection. All trials to
the right of the vertical line are classified as ‘bent’. Histograms
of maximum bend and average bend values over the length of
the trials were similarly examined.

Figure 5. Nodal error. The nodal error compares locations of
corresponding nodes on the surface meshes of two rigid
ellipsoid models (shown here at one instance in time). Defined
in equation (2.9), E(tj) is the average distance per node at
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2.3. Body bend

In a number of the trials, the body of the fish does not
remain rigid. As discussed in §1, the bending of the fish
is mainly due to the small size of the behavioural tank
and is not a propulsion mechanism. However, the
rigidity assumption of our model is less valid in these
trials; we measure the amount of bend in the body of the
fish as follows, and exclude the most bent trials from
our analysis.

The fish is capable of two types of body bends: lateral
bend with respect to the midcoronal plane (assumed to
go through the spine) and dorsoventral bendwith respect
to the midsagittal plane. The following calculation
accounts for both types of bends. We identify six nodes
on the surface of the ellipsoid. With its centre of mass at
the origin, these six nodes are located at ðGl 1; 0; 0Þ;
ð0;Gl 2; 0Þ; ð0; 0;Gl 3Þ (recall that l i are the radii of the
ellipsoid). We find the corresponding locations on the
unbent fish body when the ellipsoid and fish are aligned.
Our bendmeasure is given by the distance between these
six points on the fish and the ellipsoid, averaged over the
number of nodes, nZ6 (note that this is similar to the
error calculation given below in §2.4).

This bend measure was used to identify those trials
that exhibit the most bend. Histograms of average bend
(throughout the trial), maximum bend (throughout the
trial) and initial bend were created. Each distribution
had a well-defined ‘tail’ containing approximately 35
per cent of the trials. Any trial which fell into the tail of
at least one of these histograms was classified as ‘bent’.
Figure 4 shows the data for the initial bend, and the cut-
off point for determining the bent trials. In total 40
trials (out of 109) were classified as bent. The MCF
trajectories of the remaining 69 trials were used to
obtain the below results.

Figure 1b shows the body plan of the fish while bent.
This amount of bend is approximately equal to the
maximumamount of bendwe allow in the ‘unbent’ trials.
2.4. Error calculation

In §4 that follows, we compare optimal trajectories,
produced using the optimization scheme described
earlier, with the MCF trajectory described in §2. The
comparison between the two trajectories is calculated
as given below.

We compute a ‘nodal error’ between two ellipsoids
based on the nodes that make up the surface mesh of the
ellipsoid. Each node is a point on the surface of the
ellipsoid. The one-time nodal error at time tj is defined by

EðtjÞZ
1

n

Xn
iZ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiðtjÞK~xiðtjÞÞ2CðyiðtjÞK~yiðtjÞÞ2CðziðtjÞK~ziðtjÞÞ2

q
;

ð2:9Þ

where n is the number of nodes (we use nZ256); ðxiðtjÞ;
yiðtjÞ; ziðtjÞÞ are the coordinates of the ith node of the
MCF ellipsoid at time tj; and ð~xiðtjÞ; ~yiðtjÞ; ~ziðtjÞÞ are the
coordinates of the ith node of the optimal ellipsoid at
time tj. Figure 5 shows this graphically. For each trial,
the nodal error, �E, is given by the average of E(tj) over
the duration of the trajectory
J. R. Soc. Interface
�E Z
1

M

XjFK1

jZj IC1

EðtjÞ; ð2:10Þ

where jI is the ‘initial frame’ (that is, tj IZ tI) and jF is the
final frame ðtjFZ tFÞ, andMZ jFK jIK1 is the number
of video frames of the motion capture data between tI
and tF. Note that M is proportional to the duration of a
trajectory because for all trials the video frames are of
equal length, namely 16.7 ms. Across all trials M ranges
from 22 to 66, with an average value of MZ39. Using
equation (2.10), we are able to compare errors between
trials of different durations.

time tj.
2.5. Computing

The computations of the optimal trajectories were
performed on a 54 CPU (2 GHz G5, 1 GB RAM) cluster
of Xserves (Apple Computer Inc., Cupertino, CA, USA)
running OS X. An open source distributed computing
engine (Grid Engine, Sun Microsystems, Santa Clara,
CA, USA) was used to manage the computation across
the nodes. Code was written in MATLAB (The Math-
works, Natick, MA, USA) and compiled to portable
executables for execution on the cluster.

For computation of the optimal trajectories, we used
an implementation of SQP called SNOPT (Gill et al.
2002). This routine finds a local optimum that may be
the global optimum. We also implemented the built-in
MATLAB optimization routine fmincon on 12 randomly
chosen trials. For these trials, we obtained results
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Figure 6. Trajectory snapshots. (a–f ) Snapshots of optimal ellipsoid and actual fish trajectories (obtained from video-captured
data) for one representative trial. Snapshots are viewed approximately side-on to the tank. Here time increases from top to
bottom. The MCF trajectory is given by the solid curves and the optimal trajectory is given by the dotted curves. Note that the
x, y and z coordinates are in the laboratory frame and hence the origin is at an arbitrary position. Both the ellipsoid model and the
fish roll about the body x -axis as they translate through the fluid, a typical prey capture manoeuvre. A video of this trajectory
can be seen in the electronic supplementary material video file S1.
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almost identical to those produced by SNOPT. The
maximum error between the solutions generated by
SNOPT and fmincon was 0.08 cm in position and 2.558 in
orientation. The forces and torques produced by both
optimization routines differed by less than 3 per cent.We
found that SNOPT generated the optimal solution at least
twice as quickly as fmincon, therefore we used SNOPT.

3. RESULTS

We present results related to the three hypotheses
outlined in the introduction. Firstly, we examine the
extent to which the actual fish trajectories are mechani-
cally optimal. Secondly, we investigate the extent to
which yaw and sway are used in the optimal trajectories.
Thirdly, we use optimal control results to detect a change
in the fish’s behaviour close to the time of prey detection.

The results for all the three hypotheses use optimal
trajectories generated using the simplified model and
optimization procedure described in §2.
3.1. Prey capture trajectories are mechanically
optimal

For 69 prey capture trials, we compute mechanically
optimal trajectories using the methods described in §2,
to compare with the corresponding MCF trajectories.
The initial time, tI, of the trajectories, at which the
J. R. Soc. Interface
position and velocity of the ellipsoid are matched to the
MCF ellipsoid, was equal to the prey detection time, tD
(as determined by the method described in §2). The end
time tF of the trajectory is the time of prey capture, and
the position and orientation of the ellipsoid at this point
are constrained to be equal to that of the MCF
trajectory. In this section, we allow the velocity of the
optimal trajectories at tF to be free to vary.

Figure 6 shows, for one typical trial, snapshots of the
outline of the actual fish trajectory, and the mechani-
cally optimal solution. This figure also shows the
trajectory q(t) in terms of the state variables b(t),
f(t), q(t) and j(t). For this example the trajectories are
clearly very similar. Videos of four of the 69 trajectories,
showing the fish trajectory alongside the optimal
ellipsoid trajectory, can be viewed in the electronic
supplementary material. The remaining trajectories
can be viewed at http://www.neuromech.northwestern.
edu/publications/Post08a/Post08aMovies.zip.

The similarity between the MCF and mechanically
optimal trajectories is also observed in the translational
and rotational velocities (v(t), u(t)). In figure 7, we use
the velocity representation described in §2.1.1 to show
the velocities for both the MCF and mechanically
optimal trajectories. Points are plotted at 16.7 ms
intervals throughout the trajectories, for all 69 trials.
Most of the points in figure 7b,c lie in the backward

http://www.neuromech.northwestern.edu/publications/Post08a/Post08aMovies.zip
http://www.neuromech.northwestern.edu/publications/Post08a/Post08aMovies.zip
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surge region, which indicates that the optimal tra-
jectories exhibit the same rapid-reversal manoeuvre that
is typically observed in the fish’s prey capture behaviour
(MacIver et al. 2001). A concentration of points near the
top of the forward surge region can also be seen. This
corresponds to an upward heave during forward
translation. It is important to note the lack of points in
both the sway regions and the heave down region. This is
consistent with our understanding that the fish does not
possess the means to produce force or torque in these
directions. A clustering of points is clearly visible in the
roll regions in both figure 7e and figure 7f. There are very
few points in the regions for yaw, a body rotation that
the fish is not capable of performing. We examine the
yaw and sway abilities in more detail in §3.2.

We calculate the nodal error, �E (as described in
§2.4), between the MCF ellipsoid and mechanically
optimal trajectories over all 69 trials. The mean nodal
error is 1.31 cm with a standard deviation of 0.58 cm.
We note that the mean nodal error for the 40 bent trials
is not significantly different: 1.38 cm with a standard
deviation of 0.50 cm.

We compare the mean nodal error for the mechani-
cally optimal results to two length scales of the fish
motion. These length scales are the length of the
ellipsoids, and the total (integrated) distance travelled
J. R. Soc. Interface
by the centre of mass of the fish during the trajectory
(from the time of prey detection to capture). The average
length of the model ellipsoids is 9 cm (which is only
approx. 67% of the actual fish body length), and the
average distance travelled by the fish is approximately
8 cm. The mean nodal error (1.31 cm) is much smaller
than both of these. We note further that the range of
distances travelled is large (3.5–16.8 cm), and there is no
significant correlation between the distance travelled and
the nodal error across the trials. Since the error is small
compared with typical length scales of the motion, we
assert that the trajectories are similar, and so the MCF
trajectories are therefore close to being mechanically
optimal. Since the MCF trajectories are a close
approximation of the actual motion of the fish, the fish
trajectories are also close to being mechanically optimal.
3.2. Distinguishing essential and redundant
motor capacities using optimal trajectories

As previously noted in §3.1, the prey capture trajectory
motions do not contain much sway or yaw motion.
This can be seen in the MCF trajectories shown in
figure 7. The dominant motions seen are surge and
roll. The mechanically optimal results also show
similar patterns.



Table 1. The mean (s.d. in parentheses) nodal errors and mean
costs for the comparison of optimal control trajectories to the
MCF ellipsoid. (Here we consider only the 26 trials for which
we have underactuated results that pass validation. All nodal
errors are given in cm and all costs are given in units of force
squared (i.e. (g cm sK2)2). The percentage increase in cost is
compared with the mean cost of the fully actuated results.)

nodal error mean cost
percentage
increase (%)

fully actuated 1.00 (0.29) 1.46!105

redundantly
underactuated

1.35 (0.34) 3.21!105 120

essentially under-
actuated

1.82 (0.46) 8.49!105 480
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As discussed in §2.2.1, the structure of our
optimization code makes it easy to add additional
restrictions to the form of the applied forces and
torques F(t) and T(t). In order to evaluate to what
extent the optimal control results discussed previously
make use of yaw torque and sway force, we produce
optimal trajectories in which the applied force F and
applied torque T are restricted. That is, we remove the
ability of the ellipsoid to yaw and sway, so FðtÞZ
ðF1ðtÞ; 0;F3ðtÞÞ and TðtÞZðT1ðtÞ;T2ðtÞ; 0Þ. We refer
to these trajectories as the redundantly underactuated
(RUA) trajectories. As a comparison, we also compute
optimal trajectories that have the surge and roll
capabilities removed. We refer to these trajectories
as the essentially underactuated (EUA) trajectories.
In all the optimal trajectories, the final velocities are
again allowed to be free to vary.

We compute RUA and EUA trajectories for 26 of the
trials, and compute the nodal errors for each trajectory.
We also compute the difference in the cost for these
trajectories, relative to the fully actuated trajectories.
The results are summarized in table 1. It can be seen in
the table that the nodal error between the mechanically
optimal and MCF trajectories increases much less when
yaw and slip are removed than when the surge and roll
are removed. Figure 8 shows the trajectories for the
MCF ellipsoid and the fully actuated and under-
actuated optimal ellipsoids, for one representative trial.

Ideally we would produce underactuated optimal
trajectories for all 69 trials (not just 26). However,
almost all of the 26 trials required NR80 in order to
produce optimal trajectories (both for EUA and RUA)
that satisfy our tolerance level for the validation
described in §2.2.2. As explained in §2.2.2, when N is
increased, the CPU time necessary to produce the
optimal trajectories increases significantly. In general,
computing the EUA trajectories required more com-
puting power than the RUA trajectories. We believe
that this is due to our choice of initial guess trajectory,
qinit(t). In all our results, we use the MCF trajectory as
the initial guess for the optimization. As shown in
figure 7, most of the MCF trajectories contain a large
amount of surge and roll motion. Since the EUA
optimal trajectory by definition does not include any
surge or roll, it will therefore be quite different from the
MCF trajectory. This probably makes the MCF
J. R. Soc. Interface
trajectory a bad initial guess for finding the optimum.
In fact, the 26 trials that produced valid EUA
trajectories exhibited significantly less surge and roll
than the other 43 trials.
3.3. Using optimization to detect behavioural
mode switches

In §§3.1 and 3.2, all optimal trajectories started at the
time of prey detection (tZtD, as determined in MacIver
et al. (2001)). In this section we investigate how the
optimal trajectories vary when the initial time is some
other point in the fish trajectory.

The video capture data include a portion of fish
trajectory before the prey is detected. During this time,
the fish is searching for prey, typically moving forward
at approximately 10 cm sK1 while the body is pitched
with the head down (MacIver et al. 2001). For each of
the 69 trials, we produce mechanically optimal tra-
jectories with initial times varying over the entire time
of the motion capture trajectory. That is, suppose the
MCF trajectory has duration tF, with m video frames
captured at times tZf0; ts; 2ts;.; ðmK1ÞtsZ tFg
(where tsZ16.7 ms is the inter-video frame spacing).
For each trial, we produce (mK1) optimal trajectories
for each possible initial time tI chosen from
f0; ts;.; ðmK2Þtsg. Owing to the long CPU time
required, for longer trials we generate optimal tra-
jectories only for tI equal to the 10 frames before and
after detection, and then every fifth frame away from
this point. This captures the important changes near tD,
but ignores unnecessary information far away from tD.

The initial position and velocity of the optimal
trajectory is matched to the position and velocity of the
MCF ellipsoid at tZtI. The endpoint of the trajectory is
fixed to be the end time of the motion capture
trajectory (tZtF, as before). The final position and
velocity of the optimal trajectory are set equal to that of
the MCF trajectory at tZtF.

For each trial, we shift time so that the detection
point tD is at tZ0, i.e. t/tKtD. We then compute the
time-averaged nodal error, �E, between the mechanically
optimal ellipsoid and the MCF ellipsoid, for each
trajectory (that is, for each initial time tI). We plot �E
against tI to examine how the error depends on the start
time of the optimal trajectory.

Across all the trials, we see two distinct types of
features in these plots. We classify these by eye as
‘bump’ and ‘no-bump’, and show a representative trial
for each case in figure 9. A trial is classified as no-bump
if its nodal error curve is approximately monotonically
decreasing near (G10 video frames) tD. On the other
hand, a bump trial has a local minimum and maximum
in its nodal error curve near tD.

We give a possible reason for the no-bump/bump
effect in §4. Our optimal trajectories are a better model
in the no-bump cases, and we now describe how we use
the optimal trajectories to detect a change in the
behaviour of the fish before and after prey detection.

In the no-bump trials, we see a sharp change in the
gradient of the nodal error as a function of optimal
trajectory start time, close to the detection point tD. This
can clearly be seen in figure 9a. Figure 10a shows data
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averagedoverall theno-bumptrials, and the samechange
in gradient can still be seen. We attribute the sharp
change in the gradient to a change in the fish’s behaviour.

Recall that we match the initial position, orientation
and velocity of the optimal trajectory to the MCF
trajectory. Consider an optimal trajectory with initial
time tI pre-detection. We do not expect the optimal and
MCF trajectories to be similar, since before prey
detection the fish has no reason to move in an optimal
fashion towards the prey. However, since the optimal
J. R. Soc. Interface
and MCF trajectories have initial and final positions
and velocities which are equal, it is expected that the
nodal error would decrease as the trajectory duration
decreases (the nodal error is clearly zero when the
motion-capture trajectory contains fewer than five
frames as all the coordinates are completely constrained
by the initial and final conditions).

However, post-detection, when we expect the fish to
follow an optimal trajectory from its current position to
where the (relatively stationary) prey is sensed to be
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located, we would not expect such a rapid decrease in
nodal error as trajectory duration decreases. This is
because any post-detection portion of the MCF
trajectory is already close to mechanically optimal,
according to the results already presented.
4. DISCUSSION

There have been a number of prior studies of animal
locomotion using optimization techniques. Two dis-
tinct methods are found in the literature. The first is
parameter optimization, which is different from the
method we have used. This can be seen in Tam & Hosoi
(2007) (who study a three-link swimmer in low-
Reynolds number flow) and Kern & Koumoutsakos
(2006) (studying anguilliform swimming). In these
studies, there are a number of parameters that can be
varied, which may affect body shape, stroke pattern,
etc. For a specific set of parameters, the resulting
trajectory is computed from the equations of motion,
and this results in an output efficiency. The parameters
can then be varied to optimize the efficiency. A study by
Lauga & Hosoi (2006) on the locomotion of gastropods
uses similar ideas; the parameters over which the
optimization is performed affect the rheology of the
mucus produced by the gastropod. The second method,
which is the one we have used, is based on optimal
control. It is similar to that used by Srinivasan & Ruina
(2006), who study a simplified model of a two-legged
walker, and Kanso & Marsden (2005), who study a two-
dimensional three-linked swimmer, and our own prior
work on the knifefish (MacIver et al. 2004).

Our current approach uses the Kirchhoff equations for
a solid rigid ellipsoid moving through an inviscid fluid.
This approach is suitable for transient movements in
which acceleration dominates drag. It will be particularly
useful for application to underwater vehicle designs or to
fish which keep their body relatively rigid and rely on fin
movements decoupled from body movements for propul-
sion; however, itmay also be useful to apply the approach
for species of fish where these conditions do not hold. To
do so, ideally onewould firstmeasure the body position of
the fish from initiation of the transient movement to its
termination. Then, a body-fitted ellipsoid would be fitted
to the measured trajectories, corresponding to our MCF
trajectories.Theboundary conditionswouldbe extracted
from the initial and final positions and velocity of the fish.
If such data were not available, one could instead use an
approach whereby knowledge of typical fish behaviour
could be used. For example, typical search velocities and
orientations could form the initial conditions. In the case
of a behaviour such as prey capture, any points in space
which are in the prey reactive volume or sensory volume
(Asaeda et al. 2002; Snyder et al. 2007) of the fish could be
used as the final position condition. Typical capture
velocity would be used as the final velocity condition.
Orientations for the end of the transient motion would
also need to be approximated. Using these boundary
conditions, an optimal solution can be obtained using the
equations ofmotion above and anoptimization algorithm
such as SQP. Finally, the optimal solution would be
compared with the measured trajectory through the use
of the error metrics presented earlier.
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While this approach cannot be expected to elucidate
the hydrodynamics of propulsion, it can be expected to
provide insight into why the fish is able to move more
effectively in some directions rather than others. In
general, as discussed further below, it should predict
motion capabilities consistent with the least-effort
directions of movement. Failure of this prediction can
be informative of other constraints not included in this
highly idealized approach.

Sections 4.1–4.3 focus on each of our three hypo-
theses individually. We then discuss how the approach
we have developed here may contribute to our under-
standing of the complementary nature of fish body plan
and actuation capabilities. We finish with a discussion
of related future work that we intend to pursue.
4.1. The optimality of prey capture trajectories

In §3.1 we generated optimal trajectories that minimize
the cost function C, under the assumption that the fish
is a rigid ellipsoid moving in an inviscid fluid. We show
that these trajectories are similar to actual fish prey
capture trajectories. It is clear that our simplified model
of the fish motion suffers from a number of drawbacks.
We begin this section by a discussion of these.

The most obvious simplification we make is the
modelling of the fish body as (i) rigid and (ii) ellipsoidal.
Concerning the rigidity assumption, the unique way in
which this fish propels itself—by undulating a ventral
ribbon fin while keeping the trunk semi-rigid—makes
this a reasonable approach for this species. The tendency
of the fish to swim with a rigid trunk has been noted in
the literature for some time (Lissmann 1958, 1961; Blake
1983). One suggested reason is that the trunk carries the
electrical emission system of the fish; thus, when the tail
bends, there is a large modulation of the sensory
receptors on the trunk surface (Bastian 1995; Chen
et al. 2005). Decoupling propulsion from sensory
acquisition enables the independent control of the
trunk, which is populated with sensory receptors, as a
sensory organ, as seen in scanning behaviours where the
fish will arch their trunk around a novel object while
moving forward and backward (Assad et al. 1999).
During prey capture strikes, the body bends that are
present prior to prey detection are probably due to the
use of a relatively small tank (three body lengths in the
longest direction) for the prior behavioural study,
necessitating frequent turns: during the strike itself,
however, any body bend that was present was observed
to rapidly decrease (MacIver et al. 2001).

Concerning the approximation of the body plan with
an ellipsoid, the selection of appropriate dimensions for
the ellipsoid is not unique. We chose to match the fish’s
width, depth and volume, while sacrificing matching
the length. This choice affects the values for the added
masses used in the equations of motion, which in turn
affects the optimal trajectories. We suspect that
choosing an ellipsoid of slightly different dimensions
would not significantly alter the trajectories. However,
the added masses themselves may not be equal to those
for the actual fish body, which would be very difficult
to calculate.
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The simplified equations of motion do not include
the effect of drag, since the fluid is assumed to be
inviscid. However, since the drag forces would act in
the same direction as those created by the addition of
the added masses in the equations of motion, we believe
that this would not significantly affect the trajectories.
In addition, in a recent study (Shirgaonkar et al.
in press) it has been shown that, during prey strikes, the
acceleration reaction forces are significantly larger
(15 mN) than those due to drag (1 mN). Hence it is
reasonable to neglect the effects of drag in this model.
However, one effect which might be significant is that
without drag, the cost to our ellipsoid for accelerating is
the same as that for decelerating. Since the fish may
rely on passive drag during deceleration, while having
to activate muscles for acceleration, this may not be a
good approximation.

Our optimization approach allows us to vary the
constraints on the ellipsoid trajectory. This invites the
question—which parts of the trajectory should be fixed
and which should be allowed to vary?We have fixed the
initial position and velocity of the ellipsoid to that of
the MCF trajectory, as this is a natural way to compare
the trajectories. However, the correct constraints to use
at the end of the trajectory are less obvious. We have
considered two cases where the final velocity of the
ellipsoid trajectory was either fixed to the final velocity
of the fish trajectory or allowed to be free to vary. In
both cases, the position and orientation of the body
were fixed. It might be possible (and even desirable) to
fix only the position of the head of the body (i.e. so it
can capture the prey) and allow the orientation to vary.
In fact, we intend to continue this line of research in the
future, although initial investigations have indicated
that this may be computationally much more difficult
than the currently presented approach.

We also note that the optimal ellipsoid ‘knows’ the
endpoint of the trajectory throughout, but the fish will
be continually collecting sensory data and possibly
adjusting its trajectory. This would be particularly
noticeable in trials in which the prey moves a significant
amount after its detection. In these cases, an optimal
control approach that incorporates feedback (e.g.
Todorov & Jordan 2002) is likely to give better results.
In the majority of trials considered here, the prey move
a negligible amount (less than 1 cm).

Across the trials, we see that a large proportion of
the nodal error is caused by a lengthwise translational
shift between the optimal ellipsoid and the MCF
trajectory (see videos in the electronic supplementary
material). This can be attributed to an observed ‘lag’
between the two trajectories. Examining individual
trajectories in detail led us to believe that the lag is
caused by ‘loitering’ of the fish in MCF trajectories near
the end of the trial. That is, the fish will slow down
before capturing the prey to an extent not seen in the
optimal trajectories. We suspect this is an additional
constraint on the fish motion not captured by our
modelling approach—the fish cannot capture the
prey while travelling at too high a speed. (The actual
engulfment of prey occurs through negative buccal
pressure induced by hyoid depression. The negative
pressure causes a small volume of water to be drawn
J. R. Soc. Interface
into the mouth along with the prey. Movement relative
to the prey may make this a more error-prone process.)
4.2. Distinguishing essential and redundant
motor capacities using optimal trajectories

In §3.2 we use optimal trajectories to distinguish
between those forces and torques which are essential
to fish motion and those which can be thought of as
redundant. We show that yaw torque and sway force
are redundant, but that surge force and roll torque are
essential to the fish’s prey capture motions. We can see
this from table 1; the EUA trajectories have signi-
ficantly larger nodal errors than either the fully
actuated or the RUA trajectories.

We also examine the cost of both sets of trajectories
in table 1. It is clear that the cost of the EUA
trajectories is significantly higher than either the fully
actuated or the RUA trajectories. We note that
although RUA cost is twice that of the fully actuated
trajectories, the trajectories can still be quite similar, as
shown by the similarity of the nodal errors; this is
because the ‘cost landscape’ of the trajectory space may
be very complicated. The nature of the optimization
problem (that we are minimizing the cost while
satisfying constraints) means that, as constraints are
added, the cost will always increase.

Computational analyses of the hydrodynamics of the
ribbon fin (Shirgaonkar et al. in press), actuated with a
travelling sinusoid, allows us to estimate forces. We find
that this fin, the fish’s primary propulsor, can generate
positive and negative surges, as well as positive heave.
Roll appears to be accomplished by holding the pectoral
fins into the flow as steering surfaces, producing an
upward jet on one side of the body and a downward jet
on the other side of the body to generate a moment
around the body axis (M. A.MacIver 2001, unpublished
observations). Pitch also appears to be accomplished in
this fashion, but the left and right pectoral fins are held
at similar angles of attack so that movement in a
direction parallel to the body axis creates a force
pushing the head up or down, causing a pitch moment
around the centre of mass of the fish which lies just
posterior to the fins. In summary, the fish can generate
1.5 of 3 linear forces, surge and positive heave, and 2 of 3
rotational forces, roll and pitch.

Given these observations, we would therefore expect
that, since the mechanically optimal trajectories are
close to actual fish trajectories, they would not require
sway or yaw thrust, since the fish cannot create these
forces. This is consistent with the results we find.

We also point out that as in §4.1 we are constraining
both the position and orientation of the ellipsoid at the
end of the trajectory to match that of the fish. Clearly,
since the fish is itself underactuated, it will only
reach positions consistent with its motor capacities,
which should also be positions that a similarly under-
actuated ellipsoid may reach. However, there may be
less costly trajectories the fish could take if we did not
constrain the terminal position and orientation of
the ellipsoid to be the same as the fish, and these less
costly trajectories may require more degrees of
freedom than the fish has. In the future, we will be
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investigating the extent to which our minimal actua-
tion results hold when the only constraint on the final
position of the ellipsoid is the position of the head,
with the final orientation left free.
4.3. Using optimization to detect behavioural
mode switches

In §3.3 we investigate how the nodal error between the
MCF and optimal trajectories changes as the initial
time of the trajectory is varied. We find two types of
behaviour which we term bump and no-bump.

We explain the reason for the bump and no-bump
behaviours as described below. A typical behaviour in
the prey capture trajectories is the ‘rapid-reversal’
manoeuvre; the fish moves forward until shortly after
prey detection, when it changes direction and moves
backwards until the prey is captured. We note a
distinct difference in this motion between the MCF
trajectories that produce ‘bumps’ and those which
produce ‘no-bumps’, as described in §3.3. In the
no-bump trials, the deceleration of the fish is approxi-
mately constant at the end of the trajectory, until the
prey is captured. However, in the bump trials, both
the magnitude of the deceleration and the velocity
of the fish decrease towards zero for approximately
150 ms near the end of the trial, before prey capture.
One possible explanation for this behaviour is that, in
these trials, the fish did not accurately detect the
location of the prey, or, as mentioned above, that the
fish cannot capture the prey while travelling at high
speeds. We find that this loitering effect is correlated
with those trials that exhibit a bump as described in §3.3.

In the no-bump trials, we find a change in the slope of
the graph of the nodal error �E plotted against the initial
start time tI, which we relate to a change in the
behaviour of the fish. However, this change occurs in an
average of 50 ms after prey detection. There could be a
number of reasons for this delay. We give one possible
hypothesis here.

The detection point was determined in a previous
study (MacIver et al. 2001) to be the time at which the
fish begins decelerating due to the detection of the
prey. The optimal ellipsoid, started from the time of
behavioural reaction, has no uncertainty about where
its trajectory must end. By contrast, the fish has
considerable uncertainty about where its trajectory
must end. For example, from prior work, we know that,
at the time of prey detection, the prey-related signal is
extremely small. The length scale of the signal change
on the body at the time of detection is also roughly
10 times the diameter of the prey (Nelson & MacIver
1999; Snyder et al. 2007). Given these factors, it is
highly unlikely that the fish has a clear estimate of
the prey position at strike initiation. It is therefore
possible that localization uncertainty causes the fish
to initially pursue a trajectory that is not consistent
with the actual location of the prey (and therefore not
consistent with the optimal trajectory). A relevant
time scale that is similar to the 50 ms delay is the total
delay from sensory input to motor output, which has
been estimated to be approximately 120 ms in this
animal (Snyder et al. 2007). This hypothesis could
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be examined in more detail by varying the degree of
sensory uncertainty, such as by making the water
more conductive, which past work has shown decreases
the distance at which prey are sensed (MacIver
et al. 2001).

We have provided evidence that the identification of
the utility function that is being minimized by the
motor system during a behaviour may be useful for
ascertaining when an animal switches into that
behaviour. Such an approach may find application in
neuroethology and other organismal-level research
where whole-animal behaviour needs to be quantified
and segmented. This may work particularly well when
the terminal point of the behaviour is easily ascer-
tained, since this then provides a natural starting point
to work back from.
4.4. The complementarity of body plan and
actuation

One of the intriguing results we found is that, even if
we endow the fish model with all six rigid degrees of
freedom, enabling it to move in ways that the real fish
cannot, the best trajectories are the ones that use only
the limited motion capabilities that the real fish
possesses. A natural question is how this could arise.
One possibility has already been alluded to above: the
boundary conditions are those consistent with move-
ments of an underactuated fish, so in this way we can be
excluding trajectories that would require less effort for a
fish with different actuation capabilities.

However, there is another way in which to think
about the problem. The favourable modes of movement
for our ellipsoidal model are determined by the
anisotropies in the mass and moment of inertia matrices
given in §2.1. For example, the mass matrix indicates
that it is better for the animal to move forward and
backward than to move laterally, since the effective
surge mass for moving forward or backward is one-third
the effective sway mass for moving laterally. In the
moment of inertia matrix, the differences are even
larger: to yaw the body involves over 30 times more
moment than to roll the body. Indeed, turns observed
prior to the initiation of a prey strike are executed
through lateral body bends, not yaw rotations, as
discussed above. One simple prediction, therefore, is
that, to the extent that an animal’s body plan is
anisotropic in its mass or moment of inertia, for high
acceleration transient movements at the animal’s
biomechanical extreme, the body will be configured so
as to minimize those associated masses and inertias
during the movement. In doing so, the animal can
maximize the movement resulting from its limited force
and torque generation capability. Thus, force gener-
ation capabilities should be so as to translate or rotate
the body consistent with such minimization. It seems
likely that, over the course of evolution, the shape of
the body and its actuation capabilities coevolve to
ensure this.

An additional level of integration to be considered is
the animal’s sensory capacity. Since the boundary
conditions of our optimization are set by objects
necessarily within the sensory volume of the fish, sensory
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capabilities are implicitly involved in the trajectories
analysed here. In the case of the weakly electric fish, prey
are detected in all directions from the body. For most
visually guided fish, prey are detected only in a wedge-
shaped sector of space ahead of the body (e.g. Snyder
et al. 2007, figure 8). The body shape, and thus actuation
abilities, must be so as to enable rapidly reaching all
parts of the prey detection sensory volume.

For example, the weakly electric fish’s sensor density
is the highest on the dorsum, where it tends to detect
prey (Snyder et al. 2007). The positive heave observed
in figure 7, which is generated as a proportion of surge
by the travelling waves on the ribbon fin (Shirgaonkar
et al. in press), is the motor complement to this aspect
of the fish’s perceptual abilities. Prey that are detected
behind the head and lateral to the body wall are caught
by combining a rapid reversal with a roll to place the
prey on the midsagittal plane, while positively heaving
(MacIver et al. 2001, figure 10a). All these motions are
highly favoured by the body shape.

In comparison, with the forward-directed and flat-
tened wedge-shaped sensory volume of a visually guided
fish, strikes will often be propelled by one or more rapid
tail beats. This type of swimming is unstable in yaw
(Weihs 2002), and consequently the fish is able to
quickly manoeuvre to lateral positions of the sensory
volume. The fish does not need to visit positions initially
behind the head and lateral to the body wall as prey
would not usually be detected there. Moreover, the very
mechanism that the knifefish uses to visit these
positions—roll—is largely prevented by a combination
of a deep body plan and a dorsal fin (Weihs 2002).

These considerations suggest that, even in cases
where fish movement is poorly modelled by the rigid-
body approximation, it may still be worthwhile to
apply the simple mathematical approach presented
here for insight into how body shape, motor capabilities
and sensory performance are integrated.
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4.5. Future studies

We consider now two extensions of our current model,
which we intend to pursue in future studies. Our
current optimization routine considers the duration of
the trajectory to be fixed. This is clearly not a
realistic constraint on the fish motion—in addition to
moving in a mechanically optimal manner, it is
probable that the fish will try to minimize the time
taken to capture the prey. It would be possible to
consider a joint time/mechanical optimization in the
following manner. The number of discretization
points, N, would be fixed, as before, but the length
of time between each point would be allowed to vary.
The cost function would then be a function of both
the total length (tFKtI) of the trajectory and the
mechanical cost function used here.

In §3.2 we considered constraining the forces
available for the model ellipsoid to be more similar to
those actually found in the fish body by not allowing the
fish to sway or yaw—forces and torques which the fish is
not capable of generating. This procedure could be
extended further to better model the forces produced by
the fish as it moves. As described in §4.2, the fish can
generate 1.5 of 3 linear forces and 2 of 3 rotational
forces. In addition, these forces are unlikely to be
independent of each other, but will be restricted by
some relationships. Informed by hydrodynamic studies
(Shirgaonkar et al. in press), we can include these
constraints on the forces moving the model ellipsoid so
that it better models the fish.
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APPENDIX A. DISCRETE LAGRANGIAN DERIVATION

This appendix describes the discretization procedure of the Kirchhoff equations that we use in our optimization
routine. We use a discrete Lagrangian derivation of the equations of motion, following methods used in Kanso &
Marsden (2005).

Recall that we use the Euler angles f, q and j to describe the orientation of the body frame with respect to the
laboratory frame. Combining the three rotations produces a matrix R, which maps vectors in the body frame to
vectors in the laboratory frame. We write the rotation matrix R in terms of the Euler angles as

RZ

cos q cos j Kcos q sin j sin q

cos f sin jCsin f sin q cos j cos f cos jKsin f sin q sin j Ksin f cos q

sin f sin jKcos f sin q cos j sin f cos jCcos f sin q sin j cos f cos q

0
B@

1
CA; ðA 1Þ

and then the angular velocity u is given by

uZ

_f cos q cos jC _q sin j

K _f cos q sin jC _q cos j

_f sin qC _j

0
BB@

1
CCA: ðA 2Þ

Since the body is neutrally buoyant, the Lagrangian is equal to the total kinetic energy
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2
VTIV ; ðA 3Þ
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where

I Z
M 0

0 J

 !
and V Z

v

u

� �
: ðA 4Þ

Recall that vZRK1 _b, where bTZ(x, y, z) is the position of the centre of mass of the body in the laboratory
coordinate frame.
A.1. Discretization set-up

We discretize the trajectory q(t) by approximating it by a piecewise linear function on an evenly spaced time grid
ftIZt0; t1;.; tNK1Z tFg. That is,

qðtÞZ qn C
tK tn

tnC1K tn
ðqnC1K qnÞ for t 2 ½tn; tnC1�; n Z 0;.;NK2; ðA 5Þ

where

qn Z ðxn; yn; zn;fn; qn;jnÞ; n Z 0;.;N K1: ðA 6Þ

The applied forces and torques are similarly discretized, and we write

fn Z ð fxn ; fyn ; fzn ; tfn
; tqn ; tjn

Þ; n Z 0;.;N K1: ðA 7Þ

We introduce ‘hatted’ variables that are evaluated at the midpoints of the grid, and write derivatives as

q̂n Z
qnC1 Cqn

2
; _̂qn Z

qnC1K qn
h

; n Z 0;.;NK2 ðA 8Þ

and for each component of qn, we similarly write

x̂n Z
xnC1 Cxn

2
; _̂xn Z

xnC1K xn
h

; etc: n Z 0;.;NK2: ðA 9Þ

We write R̂n to mean R evaluated at f̂n;q̂n;ĵn, and _̂bn to be the vector ð _̂xn; _̂yn; _̂znÞT. Note that

vx̂n
vxn

Z
vx̂nK1

vxn
Z

1

2
;

v _̂xn
vxn ZK

1

h
;

v _̂xnK1

vxn
Z

1

h
: ðA 10Þ

The Lagrangian is discretized by writing

LðqðtÞ; _qðtÞÞz
XN
nZ0

Ldðqn; qnC1Þ; ðA 11Þ

where

Ldðqn; qnC1ÞZ hLðq̂n; _̂qnÞ; n Z 0;.;NK2: ðA 12Þ

The discrete Lagrange–d’Alembert principle (see Junge et al. 2005; Kanso & Marsden 2005 for details) gives
the following equations:

vLdðqnK1; qnÞ
vqn

C
vLdðqn; qnC1Þ

vqn
CfCnK1 C fKn Z 0; n Z 1;.;NK2; ðA 13Þ

p0 C
vLdðq0; q1Þ

vq0
C fK0 Z 0; ðA 14Þ

Kp1 C
vLdðqNK1; qN Þ

vqN
C fCNK1 Z 0: ðA 15Þ

Here, p0 and p1 are the initial and final generalized momenta of the body and fKn and fCn are the left and right
discrete forces,

fKn Z fCn Z
h

4
ðfnC1 C fnÞ; n Z 0;.;NK2: ðA 16Þ
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