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A codimension-two resonant bifurcation from a heteroclinic cycle

with complex eigenvalues
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Robust heteroclinic cycles between equilibria lose stability either through local
bifurcations of their equilibria or through global bifurcations. This paper
considers a global loss of stability termed a ‘resonant’ bifurcation. This bifurca-
tion is usually associated with the birth or death of a nearby periodic orbit, and
generically occurs in either a supercritical or subcritical manner. For a specific
robust heteroclinic cycle between equilibria with complex eigenvalues we examine
the codimension-two point that separates the supercritical and subcritical. We
investigate the bifurcation structure and show the existence of further bifurcations
of periodic orbits.

1. Introduction

Dynamical systems with symmetry are widely recognized to naturally have
properties that would be very special in the absence of such symmetry. This
change in the notion of generic behaviour for symmetric systems has motivated
a great deal of work, particularly in developing a symmetric setting for bifurcation
theory for ordinary differential equations [1, 2]. At the same time it has been
recognized that properties imparted by symmetry can also arise in other ways, for
example in mathematical ecology or game theory [3]. An important example of
such a property is the existence of flow-invariant subspaces. In the symmetric setting
these subspaces arise due to the equivariance of the dynamics with respect to
some symmetry group �: the symmetries of a solution cannot change as it
evolves in time. In the ecological setting the flow-invariance is a biologically
reasonable restriction: once a population is extinct it is not possible to generate
new individuals.

A heteroclinic cycle is a topological circle of connecting orbits between saddle-type
equilibria. In generic (non-symmetric) systems such cycles are of high codimension.
However, one consequence of the existence of invariant subspaces is that connecting
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orbits can be contained within these subspaces. The connecting orbits then persist

in the presence of perturbations of the vector field, as long as those perturbations

preserve the invariance of the subspaces. Such connecting orbits are termed ‘robust’.

A heteroclinic cycle made up of equilibria and robust connecting orbits is termed

a ‘robust heteroclinic cycle’. In the case that all equilibria lie on the same group orbit,

the cycle is often termed a ‘robust homoclinic cycle’. Robust cycles are natural

objects of study in the setting of symmetric dynamics, mathematical ecology or

game theory and have occurred in a wide variety of models for intermittent dynamics

in physical and biological systems. The review by Krupa [4] discusses many examples

and provides further background.
A prototypical example of a robust heteroclinic cycle in R

3 is that discussed

by Guckenheimer and Holmes [5]. It arises from an analysis of Busse and

Heikes [6] of the Küppers–Lortz instability of thermal convection rolls in a

rotating fluid layer, and was also independently proposed as a model of three

competing species [7].
For the types of cycles we study in this paper, dynamical stability results depend

only on certain genericity assumptions and on eigenvalues of the flow linearized

about the equilibria. Krupa and Melbourne [8] give sufficient conditions for the

asymptotic stability of a class of robust cycles. An important result is that the

so-called ‘radial’ eigenvalues do not play a part in stability conditions. In R
4,

Chossat et al. [9] propose a classification of homoclinic cycles into three types

(denoted A, B and C) which are distinguished by the existence, or lack, of a fixed-

point subspace that contains the cycle, and the action of the symmetry group on this

subspace. A later paper by Krupa and Melbourne [10] extends this classification and

gives improved conditions for asymptotic stability of some cycles. In higher dimen-

sions a complete derivation of conditions for stability is lacking, but some recent

progress has been made [11].
For homoclinic cycles in R

n, n� 4, there are (at least) two different ways for robust

cycles to lose stability: these are termed ‘transverse’ and ‘resonant’ bifurcations.

Transverse bifurcations occur when one of the transverse eigenvalues at an

equilibrium passes through zero; the equilibrium undergoes a local bifurcation.

Chossat et al. [9] prove that for homoclinic cycles in R
4 a transverse bifurcation is

accompanied by the birth of either a periodic orbit or a new heteroclinic cycle.

In higher dimensions, and for more complicated (heteroclinic) cycles, little is

known in general.
At a resonant bifurcation the signs of the eigenvalues are unchanged; the

eigenvalues satisfy an algebraic condition that determines a global change in

the stability properties of the cycle. Resonant bifurcations were first studied in the

non-symmetric case by Chow et al. [12] in the context of a bifurcation from a

homoclinic orbit. They found that the nature of the bifurcation depends crucially

on the global dynamics, specifically, whether or not the stable manifold of the

homoclinic orbit is orientable. There are many studies of higher codimension

bifurcations of homoclinic orbits, for instance the codimension-three study of a

resonant homoclinic bifurcation by Homburg and Krauskopf [13]. In this paper

we study a codimension-two bifurcation from a robust heteroclinic cycle. Our

example seems to be the simplest natural example exhibiting this codimension-two

bifurcation in a non-degenerate way in a vector field truncated at cubic order.
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Except in degenerate cases, the change of stability of a heteroclinic cycle at a

resonant bifurcation is intuitively expected to be accompanied by the birth or

death of a nearby (long period) periodic orbit. This can occur in both a subcritical

and a supercritical manner (see [3]). A notable exception is the standard

Guckenheimer–Holmes case using only the third-order Taylor series truncation of

the vector field. In this case the dynamics at the point of resonance is degenerate: an

equilibrium away from the cycle undergoes a degenerate Hopf bifurcation at the

resonant bifurcation point and the system is Hamiltonian. It is expected that the

addition of 5th-order terms consistent with the symmetries would break this degen-

eracy, and periodic orbits would be seen after the resonant bifurcation. However,

a detailed study of the effect of the different possible 5th-order terms has not yet

been carried out.
In this paper, we consider a robust cycle, X, between symmetry-related

equilibria in R
6 (the cycle is of ‘Type C’ in the classification given by [10]). Our

cycle is similar in structure to the example analysed by Field and Swift [14], but

has an additional pair of complex conjugate eigenvalues at each equilibrium, in

‘radial’ directions. The conditions for asymptotic stability are the same, as the

radial eigenvalues do not affect the asymptotic stability of robust heteroclinic

cycles [8]. The change of stability of the heteroclinic cycle creates an exponentially

flat branch of periodic orbits, and the exact nature of the global flow determines

whether the bifurcation occurs sub- or supercritically. This is also the case for the

homoclinic bifurcation in [12] and the transverse bifurcations of heteroclinic cycles

in [9].
Our analysis assumes that all equilibria are hyperbolic and that the flow in a

neighbourhood of each equilibrium can be linearized. In fact, these assumptions

are generic, since the existence of the invariant subspaces near the equilibria mean

that there exists a smooth (C1) linearization, even if there are resonances between

the eigenvalues (see [15]).
We now describe the main results of this paper.

. The resonant bifurcation of X creates a ‘flat’ branch of periodic orbits.

These periodic orbits undergo a further series of saddle-node bifurcations

due to the twisting of the flow on the stable manifold.

. In a two-parameter bifurcation diagram, the curve of saddle-node bifurca-

tions of periodic orbits has a self-similar structure organized around the

codimension-two point of the resonant bifurcation.

. At the codimension-two point, there exists an infinity of periodic orbits. Near

the codimension-two point there exists a stable periodic orbit arbitrarily close

to a stable homoclinic cycle.

The paper is organized as follows. In section 2 we review briefly the definition

and structure of robust heteroclinic cycles, and describe the system containing the

particular cycle we study. Section 3 describes the construction of Poincaré maps, and

in section 4 we investigate fixed points of these maps—these correspond to periodic

orbits in the original vector field. We also show results of numerical

investigations. In section 5 we analyse the codimension-two point about which the

bifurcations of the periodic orbits are organized, and compare the analytical and

numerical results. Section 6 concludes.
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2. Description of system and symmetries

2.1. Definitions

We first recall the notion of a robust heteroclinic cycle and give some definitions.
For more details see [8] and [10].

Let � � OðnÞ be a finite group acting linearly on R
n, and f : Rn

!R
n a

�-equivariant vector field. We say there is a heteroclinic connection gj between
two equilibria �j and �jþ1 of f if gjðtÞ 2 R

n is a solution of _x ¼ fðxÞ which is backward

asymptotic to �j and forward asymptotic to �jþ1. A heteroclinic cycle is an invariant

set X � R
n consisting of the union of a set of equilibria f�1, . . . , �mg of f and orbits

fg1, . . . , gmg, where gj is a heteroclinic connection between �j and �jþ1; and �mþ1 � �1.
For � � � a subgroup of �, we define the fixed-point subspace

Fix � ¼ fx 2 R
n: �x ¼ x 8� 2 �g:

Definition 2.1: X is a robust heteroclinic cycle if for each j, 1 � j � m there exists
a fixed point subspace, Pj ¼ Fix �j where �j � � and

(i) �j is a saddle and �jþ1 is a sink in Pj

(ii) there is a heteroclinic connection from �j to �jþ1 in Pj

(indices are to be taken mod m).

It is important to classify the eigenvalues of the linearization of f at each

equilibrium into four classes: radial, contracting, expanding and transverse.

Table 1 defines each of these classes according to the subspaces in which the eigen-

spaces lie. P� L denotes the orthogonal complement in P of the subspace L. The

notation P and L is purposefully suggestive of planes and lines, but it is important

to note that dimðLÞ may be greater than one. We set c, r, t < 0 and e>0 and restrict

our attention to the case where Vj(e) is one dimensional; hence the unstable manifold

Wu
ð�jÞ is one dimensional. This prevents the formation of heteroclinic networks [16].

2.2. Example system

In this section we describe the specific heteroclinic cycle studied in the remainder
of this paper. We consider a continuous time �-equivariant dynamical system

Table 1. Classification of eigenvalues of Dfð�jÞ at an equilibrium
point �j on the cycle. P� L denotes the orthogonal complement of

the subspace L within the subspace P.

Eigenvalue class Subspace

Radial (r) Lj � Pj�1 \ Pj

Contracting (c) VjðcÞ ¼ Pj�1 � Lj

Expanding (e) VjðeÞ ¼ Pj � Lj

Transverse (t) VjðtÞ ¼ ðPj�1 þ PjÞ
?
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(defined by a set of ODEs) with phase space R
6. We denote points x 2 R

6 by
x ¼ ðx1, x2, x3, x4, x5, x6Þ. Let

� ¼ Z6 n�6 ð1Þ

where �6 ¼ ðZ2Þ
6 is generated by reflections �1, . . . , �6 in each coordinate

hyperplane:

�1ðxÞ ¼ ð�x1, x2, x3, x4, x5, x6Þ

and similarly for �2, . . . , �6. These reflections guarantee that any coordinate
hyperplane is an invariant subspace. Z6 is generated by a permutation of the
coordinate axes:

�ðx1, x2, x3, x4, x5, x6Þ ¼ ðx6, x1, x2, x3, x4, x5Þ: ð2Þ

Clearly this action of � on R
6 is absolutely irreducible. It is clearly also sufficient

to consider the dynamics restricted to the domain

R
6
þ ¼ fðx1, . . . , x6Þ 2 R

6
jx1, . . . , x6 � 0g:

We consider ODEs of the form

_x ¼ fðx,�, �Þ � �ð�, �ÞxþQðx,�, �Þ, ð3Þ

where f is �-equivariant: gfðx,�, �Þ ¼ fðgx,�, �Þ and � and � are bifurcation
parameters. We set �>0 and letQðx,�, �Þ be a third-order polynomial in x satisfying

QðxÞ � x < 0, ð4Þ

where x � y is the usual inner product on R
n. By the invariant sphere theorem of

Field [17] there is an attracting invariant topological 5-sphere S5
2 R

6
nf0g which

we denote S. It follows that the intersection S \R
6
þ ¼ Sþ is also flow invariant.

Specifically we consider the ODEs

_x1 ¼ x1 1� X2 � c1x
2
2 þ e2x

2
3 � tx24 � c2x

2
5 þ e1x

2
6

� �
,

_x2 ¼ x2 1� X2 þ e1x
2
1 � c1x

2
3 þ e2x

2
4 � tx25 � c2x

2
6

� �
,

_x3 ¼ x3 1� X2 � c2x
2
1 þ e1x

2
2 � c1x

2
4 þ e2x

2
5 � tx26

� �
,

_x4 ¼ x4 1� X2 � tx21 � c2x
2
2 þ e1x

2
3 � c1x

2
5 þ e2x

2
6

� �
,

_x5 ¼ x5 1� X2 þ e2x
2
1 � tx22 � c2x

2
3 þ e1x

2
4 � c1x

2
6

� �
,

_x6 ¼ x6 1� X2 � c1x
2
1 þ e2x

2
2 � tx23 � c2x

2
4 þ e1x

2
5

� �
,

ð5Þ

where X2
¼
P6

j¼1 x
2
j , and ci, ei and t are strictly positive parameters. By rescaling

time and the coordinates xi we set the coefficient of the linear terms (� in (3)) equal
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to unity, and the coefficient of the x3j term in the xj equation equal to �1; it follows
from (4) that it is negative.

Equations (5) are clearly �-equivariant as required. We focus on the equilibrium
�1 which is the equilibrium with three non-zero components in the subspace
fx4 ¼ x5 ¼ x6 ¼ 0g; there are five other symmetry-related equilibria, which we
denote �2, . . . , �6. To show the existence of a heteroclinic connection from �1 to �2
we consider the four-dimensional invariant subspace P1 ¼ fx5 ¼ x6 ¼ 0g ¼
FixðZ

�5
2 � Z

�6
2 Þ in which it must lie. It can be verified that if an equilibrium with

four non-zero components exists, for (5), it must be unstable. For an open region of
parameter space the flow restricted to P1, �2 is the only sink and the connection is
robust. Applying the definitions in table 1 we deduce that dimV1ðcÞ ¼ dimV1ðeÞ
¼ dimV1ðtÞ ¼ 1: the expanding eigenvalue at �1 (�e) is in the x4 direction, the con-
tracting eigenvalue (��c) is in the x6 direction and the transverse eigenvalue (��t) is
in the x5 direction. In contrast, dimL1 ¼ 3 and we label the radial eigenvalues ��r
and ��R 	 i�I. Appendix A contains expressions for these eigenvalues in terms of ci,
ei and t. A finite number of conditions (hence holding in an open region of parameter
space that intersects the region where the robust connections exist) ensure that the
eigenvalues have the correct signs and that the conditions for invariant sphere the-
orem to apply are satisfied. These conditions are not given explicitly, but we have
verified that they hold for the region of parameter space we investigate numerically.

We remark that the eigenspaces satisfy the conditions for a type C cycle given
in Krupa and Melbourne [10], that is, there exist subspaces Qj, Rj, 1 � j � 6 ( j taken
mod 6), such that

Qj ¼ Pj 
 VjðcÞ ¼ Pj 
 Vjþ1ðtÞ, ð6Þ

Rj ¼ Pj 
 VjðtÞ ¼ Pj 
 Vjþ1ðeÞ: ð7Þ

Figure 1 shows a trajectory very close to a heteroclinic cycle from a numerical
integration of (5). Notice the spiralling approach to, and monotonic departure from,
each equilibrium. For the numerics, we introduce new variables Xj ¼ logðxjÞ, and
integrate the transformed equations instead of integrating equations (5) directly.
These new equations are valid in the interior of R6

þ which is invariant, along with
its boundaries. In particular, any periodic orbits that bifurcate from the cycle will all
be contained in the interior of R

6
þ. Our change of variables significantly reduces

numerical error. The numerical integrations of the new equations were performed
using a standard RK4 integrator with a timestep dt ¼ 0:01.

3. Construction of Poincaré maps

We construct Poincaré maps to approximate the flow _x ¼ fðx,�, �Þ near the
heteroclinic cycle. This enables us to study the dynamics of trajectories close to
the heteroclinic cycle, to calculate the stability of the cycle, and to determine the
location and stability of nearby periodic orbits. We define coordinates and Poincaré
sections about the equilibria, and write down local and global maps approximating
the flow in the usual way.
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We chose local Cartesian coordinates about �1: ðxX, xY, xc, xt, xeÞ spanning the
spaces L1 \ S (of dimension 2), V1(c), V1(t) and V1(e) respectively. The linearized
flow about �1 is:

_xX ¼ ��RxX � �IxY,

_xY ¼ �IxX � �RxY,

_xc ¼ ��cxc,

_xt ¼ ��txt,

_xe ¼ �exe:

It is useful to define polar coordinates ðr, �Þ by xX ¼ r cos � and xY ¼ r sin �. In the
following we will often interchange pairs (xX, xY) with ðr, �Þ; this will be obvious from
the context. We define two Poincaré sections near �1:

Hin ¼ ðr, �, xc, xt, xeÞ : r
2 þ x2c ¼ h2, 0 < � � 2p, 0 � xt, xe � h

� �
,

Hout ¼ ðr, �, xc, xt, xeÞ : xe ¼ h, 0 < � � 2p, 0 � r, xt, xc � h
� �

,

where 0 < h � 1 is a constant. When h is small enough we expect that the
heteroclinic connection intersects Hin and Hout transversely. It is then simple to

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 1. A trajectory approaching a heteroclinic cycle from a numerical
simulation of equations (5), projected onto the x1–x2 plane. Parameters are
c1 ¼ 0:65, c2 ¼ 1:0, e1 ¼ 3:8, e2 ¼ 0:5 and t ¼ 1.1.
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write down a local map 	 : Hin
!Hout integrating the linearized flow:

	

r

�

xc

xt

xe

0
BBBBBB@

1
CCCCCCA

¼

r xe=hð Þ
�R=�e

� � ð�I=�eÞ log xe=hð Þ

xc xe=hð Þ
�c=�e

xt xe=hð Þ
�t=�e

h

0
BBBBBB@

1
CCCCCCA
:

The time of flight of the trajectory from Hin to Hout is given in this linear
approximation by

T ¼ �
1

�e
log

xe
h

� �
: ð8Þ

Since �2 ¼ ��1, the Poincaré sections near �2 can be defined by �Hin and �Hout.
The second element of the construction is a global map ’: Hout

!�Hin to approx-
imate the part of the flow near the heteroclinic connection. Firstly we label the point
of intersection of the unstable manifold of �1 (that is, the heteroclinic connection)
with �Hin as

x ¼ ðr?, �?, 0, 0, x?Þ 2 �Hin; r?2 þ x?2 ¼ h2 ð9Þ

and write X? ¼ r? cos �?, Y? ¼ r? sin �?. In the case j�Rj < j�cj, the trajectory decays
onto L2 (the radial subspace for �2) faster than it spirals in towards r ¼ 0. Hence we
can always pick h small enough so that x? � r?. We will assume from now on that
this is the case—the other case is less interesting as there is no twisting of the stable
manifold because it approaches the equilibrium tangent to the one-dimensional
space V2(c).

Secondly, the unstable manifold of �1 lies in the subspace P1 ¼

V1ðeÞ þ L1 ¼ Fix ðh�c, �tiÞ (see table 1) and has isotropy Z
�c
2 � Z

�t
2 . The isotypic

decomposition of R
6 with respect to Z

�c
2 � Z

�t
2 is R

6
¼ P1 
 V1ðcÞ 
 V1ðtÞ.

The coordinates xX, xY and xe span P1, so the global map ’ : Hout
!�Hin, including

only constant and linear terms, takes the form

’

xX

xY

xc

xt

h

0
BBBBBB@

1
CCCCCCA

¼

X?

Y?

0

0

x?

0
BBBBBB@

1
CCCCCCA

þ

a11 a12 0 0 a15

a21 a22 0 0 a25

0 0 a33 0 0

0 0 0 a44 0

a51 a52 0 0 a55

0
BBBBBB@

1
CCCCCCA

xX

xY

xc

xt

h

0
BBBBBB@

1
CCCCCCA
, ð10Þ

where the constants aij depend on the global flow. We take them to be O(1),
and assume certain non-degeneracy conditions that will become clear in due
course. Note that the flow invariance of R

6
þ implies a33, a44 > 0. Composing

the local and global maps together with the symmetry ��1 gives a complete
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return map ��1
� ’ � 	 �  : Hin

!Hin:

 

r

�

xc

xt

xe

0
BBBBBB@

1
CCCCCCA

¼

r? þ Arr xe=hð Þ
�R=�e cos

�I
�e

log xe þ � þ�r

� �

�? þ A�r xe=hð Þ
�R=�e cos

�I
�e

log xe þ � þ��

� �

x? þ Acr xe=hð Þ
�R=�e cos

�I
�e

log xe þ � þ�c

� �
Atxc xe=hð Þ

�c=�e

Aext xe=hð Þ
�t=�e

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

þ h:o:t:,

where A
 and �
 are functions of the aij (and hence of the bifurcation parameters �
and �), and At,Ae > 0. The dynamics close to the heteroclinic connection are given
by initial conditions with r, xc, xt and xe all small. Two components of the return
map can be eliminated by approximations that are consistent with our approach. We
approximate � by �?, since the error in the r and xc components is then of order
r2ðxe=hÞ

2�R=�e which is the same order as the terms omitted by taking only the linear
terms in (10). We also eliminate the r coordinate: it is determined by the xc coordi-
nate and the definition of Hin (recall r2 þ x2c ¼ h2 on Hin). Since x? � r?, we may
assume xc � r and write r  1� x2c=2.

We rescale the remaining coordinates, the constants Ac, Ae, At, �c and x? for
convenience, to obtain the three-dimensional map

 

xc

xt

xe

0
B@

1
CA ¼

x? þ Acx
�R=�e
e cos

�I
�e

log xe þ�c

� �
Atxcx

�c=�e
e

Aextx
�t=�e
e

0
BBB@

1
CCCA

þO

x2�R=�ee

x2cx
2�c=�e
e , xcxtx

ð�cþ�tÞ=�e
e

x2tx
2�t=�e
e , xcxtx

ð�cþ�tÞ=�e
e

0
B@

1
CA, ð11Þ

where 0 < x? < 1, At,Ae > 0, Ac and �c are O(1). We include here the size
of the next order terms; they were omitted for clarity in previous expressions.
The stability of the fixed point ðx?, 0, 0Þ yields the stability of the heteroclinic cycle
in the flow.

For initial conditions very close to the cycle, when xt, xe � x?, we can further
reduce the dimension of the map by setting xc ¼ x?. At leading order we obtain

 
xt

xe

� �
¼

Atx
?x�c=�ee

Aextx
�t=�e
e

 !
ð12Þ

which, as expected, is the map for Type C cycles in R
4 obtained in [14] and [10].

The condition for the cycle to be asymptotically stable is then easily seen to
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be �c þ �t � �e > 0. A resonant bifurcation occurs when this condition is an equality
and asymptotic stability is lost.

4. Periodic orbits

We now look at non-trivial fixed points of (11); these correspond to periodic orbits
lying close to the heteroclinic cycle. Figure 2 shows an example of such a periodic
orbit found in a numerical simulation of (5). Provided the periodic orbits are close
enough to the heteroclinic cycle, the higher order terms in (11) can be safely
neglected: in the first instance we look for fixed points of (11) using only the leading
order terms and taking xc ¼ x? constant: this enables us to determine the stability of
the periodic orbits and the subcritical or supercritical nature of the bifurcation. Later
we include the full set of leading order terms in (11) and follow periodic orbits
further from the global bifurcation. We define bifurcation parameters � and �:
� governs the stability of the heteroclinic cycle (so � ¼ 0 at the resonant bifurcation)
while the second bifurcation parameter �, defined presently, controls whether the
bifurcation is subcritical or supercritical.

We define the eigenvalue ratios � ¼ �c=�e and � ¼ �t=�e and will sometimes
write At ¼ Atð�, �Þ > 0 and Ae ¼ Aeð�, �Þ > 0, to make clear that At and Ae are
continuous functions of � and �. We assume the non-degeneracy conditions

Atð0, �Þ,Aeð0, �Þ 6¼ 0: ð13Þ

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 2. A periodic orbit from a numerical simulation of equations (5), projected
onto the x1–x2 plane. Parameters are c1 ¼ 0:65, c2 ¼ 1:0, e1 ¼ 3:5, e2 ¼ 0:5 and
t ¼ 0.8.
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We define the bifurcation parameter � ¼ 1� � � �; the cycle is stable or unstable
when �<0 or �>0. The lowest order terms in the map give

 

xc

xt

xe

0
B@

1
CA ¼

x?

Atxcx
1����
e

Aextx
�
e

0
B@

1
CA: ð14Þ

The non-trivial fixed point of this map occurs at

�xc ¼ x?, �xe ¼ B1=�, �xt ¼ Atx
?Bð1����Þ=�,

where B ¼ x?AtAe. The coordinates �xe and �xt will be small and positive (that is, the
fixed point corresponds to a periodic orbit in the flow close to the heteroclinic cycle)
if either B<1 and �>0 or B>1 and �<0. It is straightforward to calculate the
eigenvalues of the map (14) at the fixed point. They are independent of B, and lie
inside the unit circle if �>0, so the fixed point corresponds to a stable periodic orbit
for the flow. Conversely, when �<0 one of the eigenvalues is greater than one and
hence the corresponding periodic orbit in the flow is unstable. By the continuous
dependence of B and � on the eigenvalues, if at � ¼ 0 we have B<1, then B<1 for
small enough �>0 and the bifurcation is supercritical. Similarly, if at � ¼ 0 we
have B>1, the bifurcation is subcritical. The case B ¼ 1 is degenerate, and impli-
citly defines the codimension-two point. We define the second bifurcation parameter
� ¼ B� 1.

To make a more detailed analysis we include the other terms in the first
component of the map (11) as this enables us to locate periodic orbits as we move
further from the heteroclinic cycle. Locating fixed points we find

�xt ¼ At �xc �x
½1��ð�, �Þ���=�
e , �x�e ¼ AtAe �xc,

so

�x�e ¼ Bþ A �x�R=�ee cos
�I
�e

log xe þ�c

� �
, ð15Þ

where A ¼ AtAeAc. From (8) the time of flight T, of the trajectory from Hin to Hout,
is given by �xe ¼ e��eT. The period of the corresponding periodic orbit is 6T.
Rewriting equation (15) in terms of T yields

e��e�T ¼ Bþ Ae��RT cos �ITþ�ð Þ: ð16Þ

As �!0 and T!1 we deduce the leading order expression

e��e�T ¼ B ) �!
� logB

�eT
: ð17Þ
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This reproduces the earlier result that if B<1 then periodic orbits close to the

heteroclinic orbit exist in �>0, and if B>1 then they exist in �<0.
For finite T a series of saddle-node bifurcations occurs, generating more periodic

orbits at smaller T. If � 6¼ 0 there is a finite number of wiggles, and for T large

enough the curve becomes monotonic in the ð�,TÞ plane. Exactly at � ¼ 0 there

is an infinite sequence of saddle-node bifurcations and so infinitely many periodic

orbits exist at � ¼ � ¼ 0.

4.1. Numerical continuation of saddle-node bifurcations

For our example ODEs given in section 2.2 we follow the curves of periodic orbits

using continuation in the ODE coefficients e1 and t and the well-known continuation

package AUTO [18]. In the numerical simulations we introduce a rescaled

bifurcation parameter f ¼ �e�. Figure 3 illustrates the cases of subcritical and

supercritical bifurcations. We obviously cannot calculate Bð�, �Þ explicitly for our

example ODEs, since it depends on the global location of the heteroclinic orbit

between the equilibria, but from the preceding analysis we expect that Bð0, �Þ > 1

for figure 3(a) and Bð0, �Þ < 1 for figure 3(b).
The continuation is carried out using the transformed equations described at the

end of section 2.2. This decreases the computation time as well as increasing accu-

racy; the locations of periodic orbits and their bifurcations are unaffected. We are

now able to investigate periodic orbits with very high periods, where coordinates

routinely become as small as e�200.
The dependence of f (¼ �e�) on the two coefficients e1 and t is given explicitly in

the Appendix. We remark that B varies implicitly with both coefficients in a way that

is difficult to calculate analytically. Shown in figure 4 are the resulting curves, plotted

in the ( f, t) plane. Notice the nearly self-similar structure of cusps, converging to

a point on the line f ¼ 0 (where � ¼ 0). The two plots in figure 3 were taken for t just

above and just below this accumulation point.

5. The codimension-two point

At � ¼ � ¼ 0 the resonant heteroclinic bifurcation changes from supercritical to

subcritical. The AUTO calculations indicate the structure of the arrangement of

the saddle-node bifurcations about this codimension-two point. In this section, we

investigate this structure analytically using equation (16). We then compare our

results with the numerical data obtained from AUTO.
We use the parameter f ¼ �e� for convenience, and expand about the

codimension-two point f ¼ � ¼ 0, taking T � 1. In the expansion we assume that

A, �, �R and �I are all order 1, non-zero constants. We rewrite equation (16) as

Tf ¼ � log 1þ �þ Ae��RT cosð�ITþ�Þ
� �

ð18Þ
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Figure 3. Curves of periodic orbits in the (f,T) plane. Stable and unstable orbits are
shown with solid and dashed lines respectively, illustrating the sequence of saddle-
node bifurcations. The heteroclinic cycle is stable in the region f<0. For clarity the
vertical line f ¼ 0 is given. In (a), the largest period orbits are unstable, and exist in
f<0, and the bifurcation is subcritical. In (b), the largest period orbits are stable, and
exist in f>0 and the bifurcation is supercritical. For both plots, coefficients are fixed
at c1 ¼ 0:65, c2 ¼ 1:0, e2 ¼ 0:5 with continuation carried out in e1. For (a) we take
t ¼ 1.227, and for (b) t ¼ 1.03.
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and approximate at leading order in � and e��RT to find

f ¼
1

T
��� Ae��RT cosð�ITþ�Þ
� �

þO
�2

T
,
e�2�RT

T

� �
: ð19Þ
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Figure 4. Curves of saddle-node bifurcations in the (f, t) plane, from AUTO
output, with coefficient values c1 ¼ 0:65, c2 ¼ 1:0 and e2 ¼ 0:5, with continuation
in the remaining two parameters e1 and t. The accumulation point corresponds to
e1 ¼ 3:90 and t ¼ 1.12. The lower two figures are successive close ups on the indi-
cated areas. Notice how the sequence of cusps seems to be repeating on smaller and
smaller scales. The circled numbers are labels for the cusp points, as referred to in
table 2. The periods of the orbits at these points are also shown in table 2. The period
of the longest orbit before it is impossible to distinguish changes of sign of f is
approximately 6T ¼ 200.
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This first approximation (of the position of the periodic orbits near the codimension-
two point) indicates that the relative size of � and e��RT is important in determining
the shape of the curve. If � dominates, then the curve is monotonic, but if e��RT is
of the same order or larger magnitude than �, then the oscillatory term introduces
saddle-node bifurcations.

These saddle-node bifurcations occur when df=dT ¼ 0: differentiating (19) we find

df

dT
¼
�

T2
� RðT Þ cosð�ITþ 
1ðT Þ þ�Þ þO

�2

T2
,
e�2�RT

T2

� �
, ð20Þ

where

RðT Þ ¼ Aj�je��RT
1

T
þO

e��RT

T2

� �
, tanð
1ðT ÞÞ ¼

��I
�R þ ð1=TÞ

ð21Þ

and j�j ¼ ð�2R þ �2I Þ
1=2. So, when df=dT ¼ 0 we find

� ¼ Aj�jTe��RT cosð�ITþ 
1ðT Þ þ�Þ þO �2, e��RT
� �

: ð22Þ

Figure 5 illustrates the relationship (curve C) between � and T along the curve of
saddle-node bifurcations, for large T.

The first case we consider is the region where we expect saddle-node bifurcations,
that is, where �9 e��RT. The second case is the region where there are no such
bifurcations, when � � Te��RT, so �� e��RT.

Τ1 Τ2

T*

C

ν

X*

T

Figure 5. The curve C shows the relationship between � and T along the curve of
saddle-node bifurcations, given by equation (22).
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At � ¼ 0, equation (22) has solutions

cosð�ITþ 
1ðT Þ þ�Þ ¼ O e��RT
� �

� 1: ð23Þ

Suppose (23) is satisfied for some T ¼ T1, sufficiently large, then it will also be
satisfied for T ¼ T2  T1 þ p=�I since to first order 
1(T ) is independent of T. So,
for � ¼ 0 and for large enough T, the saddle-node bifurcations occur at a frequency
of �T ¼ p=�I. These points are indicated in figure 5 (T1 and T2). This approximation
can be extended into the region of small, non-zero �. Rearranging (22) gives

cosð�ITþ 
1ðT Þ þ�Þ ¼ �
�

T2RðT Þ
þO

�2e�RT

T
,
e��RT

T

� �

¼ O
�e�RT

T
,
e��RT

T

� �
, ð24Þ

so the same solutions are valid so long as

�� Te��RT, ð25Þ

which is certainly the case in the region where �9 e��RT.
We now consider the locations of these saddle-node bifurcations in the f–T plane,

and in the f–� plane. Let the bifurcation at T1 occur for some f ¼ f1 and the bifurca-
tion at T2 > T1 for some f ¼ f2. Figure 6(a) shows a sketch of the curve of periodic

T2

T1

f2f1

T

f

f1

f2

f

ν

ν∗

f*

(a) (b)

Figure 6. (a) shows a curve of periodic orbits in the f–T plane. f1 and f2 are the
locations of two saddle-node bifurcations of periodic orbits, and (b) shows how
their location changes as � is varied. The bold line indicates the region where the
saddle-node bifurcations exist.
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orbits in the f–T plane, indicating these two bifurcations. Note that the bifurcations

only exist when f2 > f1.
Let cosð�IT1 þ�Þ ¼ 	, then cosð�IT2 þ�Þ ¼ �	, and from (19) we can write

down equations for f1 and f2 in terms of �:

f1 ¼
��� c1

c2
, f2 ¼

��þ e�pð�R=�IÞc1
c2 þ ðp=�IÞ

, ð26Þ

where c1 ¼ A	e��RT1 � 1 and c2 ¼ T1 � 1.
For �� Te��RT, T is independent of f and � along each curve, and so the curves

f1 and f2 are straight lines in the f–� plane, as shown in figure 6(b). We have, in this

sketch, extended the lines out of the range of � for which the approximations are

valid, but will come back later and correct this. The main point to take away from

this sketch is that when the two curves f1 and f2 cross, the two saddle-node bifurca-

tions disappear and the curve of periodic orbits in the f–T plane becomes monotonic

in the region T1 � T � T2. The point where they cross corresponds to the point X?

in figure 5, that is, where � changes direction for increasing T. The bold line in

figure 6(b) is where f2 > f1, that is, the line of saddle-node bifurcations.
The curves f1 and f2 can extend into f<0, where the bifurcation at f2 collides with

a saddle-node bifurcation with larger period, shown as f3 in figure 7(a). The equation

for the location of f3 is

f3 ¼
��� e�2pð�R=�IÞc1

c2 þ ð2p=�IÞ
ð27Þ

f2f1 f3

T2

T3

T

f
f1

f2

f3

f

ν

(a) (b)

Figure 7. (a) f2 and f3 are two saddle-node bifurcations of periodic orbits for f<0.
(b) is a continuation of figure 6(b) showing in bold the location of saddle-node
bifurcations in the f–� plane.
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and the saddle-node bifurcations at f2 and f3 exist if f2 > f3. Following f3 back into
f>0 and continuing in this manner we find a curve of saddle-node bifurcations of
increasing T which spirals in towards f ¼ � ¼ 0. This is shown schematically in
figure 7(b). This figure has obvious structural similarities with figure 4; recall that
we do not know the direction of � in figure 4, so the orientation of the curves is
different. Compare this also with figure 5, which shows � oscillating towards zero
as T increases along the curve of saddle-node bifurcations.

We now consider the second region, where �� e��RT. This is the outer region of
the sketch in figure 7(b), where the curves fi cross and the saddle-node bifurcations
annihilate each other. We use figure 5 and equation (22) to gain more insight into the
shape of the curves fi in this region: they are no longer well approximated by straight
lines. We label the point where the curves f1 and f2 cross as X? ¼ ð f?, �?Þ
(see figure 6(b)), and let the period of the periodic orbit at this point be 6T ? (also
labelled on figure 5).

The portion of curve C in figure 5 from T1 to T ? corresponds to the curve f1 from
� ¼ 0 to the point X?. Equation (26) still holds outside of the region �� Te��RT, but
now c1 and c2 are not constants, but complicated functions of � obtained by inverting
equation (22). To do this analytically is intractable, but we can get a feel of what
happens qualitatively.

As � decreases from 0, T increases from T1, meaning c2 increases and c1 decreases.
This increases the (modulus of the) gradient of the curve f1 towards X?. Similarly
for f2, we find that the gradient decreases towards X?. At X?, the gradients will be
the same (since T is continuous along the line of saddle-node bifurcations) so X? is
actually a cusp point in the curve of saddle-node bifurcations. This agrees with
the data from the AUTO calculations—figure 4 shows cusp points in the curve of
saddle-node bifurcations.

We can calculate the locations of the cusp points, since they occur when
d�=dT ¼ 0 along the curve of saddle-node bifurcations. Differentiating equation (22)
gives:

d�

dT
¼ Aj�j2Te��RT cos �ITþ�þ 
1ðT Þ þ 
2ðT Þð Þ þO e��RT, �Te��RT

� �
, ð28Þ

where tanð
2ðT ÞÞ ¼ �I=ð��R þ 1=TÞ. So the cusp points occur at

cosð�ITþ�þ 
1ðT Þ þ 
2ðT ÞÞ ¼ O
1

T
, �

� �
� 1,

so again, since both 
1(T ) and 
2(T ) are to first order (that is, for large enough T )
independent of T, the cusp points will occur with frequency

�T ¼
p
�I
:

Let cosð�IT
?
þ�þ 
1ðT

?
ÞÞ ¼ �	0, then at X?, we have (from equation (22)):

�? ¼ A	0j�jT ?e��RT
?

ð29Þ

and as expected (25) no longer holds.
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The leading order approximation for f at this point gives

f ? ¼
�?

T ?
þO

e��RT

T

� �
¼ A	0j�je��RT

?

þO
e��RT

T
,
�2

T

� �
: ð30Þ

We know the next cusp point occurs at T  T ?
þ ðp=�IÞ, with

cosð�ITþ�þ 
1ðT ÞÞ  	0. This increase in T is equivalent to rescaling f in (30):

f!� fe�pð�R=�IÞ:

5.1. Comparison with numerical results

We now compare our analytical findings with data obtained from AUTO calcula-
tions for the example from section 2.2. We have already noted the similarities in the
structure of the arrangement of the saddle-node bifurcations, shown in figures 7(b)
and 4. We use the AUTO data to confirm the re-scalings of f between the cusp points

f!� fe�pð�R=�IÞ

and the difference in the periods of the orbits at the cusp points

�T ¼
�Period

6
¼

p
�I

,

which were obtained from the analytic calculations.
Recall that in our analytic approximations, we assumed the �
 were constant. In

the AUTO calculations, we cannot keep these eigenvalues constant, as the continua-
tion parameters are parameters in the original equations (in this case, e1 and t). So, as
we move towards f ¼ 0, not only are the errors in the calculation decreasing
(as T!1), but also the values of �R and �I are converging to their values at the
codimension-two point.

We show the results from the AUTO calculation in table 2. We give the value of f
and T for the periodic orbit at each of the cusp points, and show the ratios/
differences between these. Due to the variation in �R and �I, the convergence is
seen more easily if we separate the cusps into two sets, f>0 and f<0. We expect
the ratio fn�2=fn to converge to e2pð�R=�IÞ as f!0 and the change in the period
should converge to 12p=�I as f! 0. At the accumulation point (the codimension-
two point),

exp 2p
�R
�I

� �
¼ 3:98

6p
�I

¼ �Period ¼ 22:2:

These values are close to the limits of the values given in table 2.
There was some difficulty in calculating the value of f at the cusp points from the

data provided by AUTO. The continuation parameters (e1 and t) are non-zero at
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f ¼ 0, and the error in f is the same as the error in e1 and t. Hence, as we approach
f ¼ 0, since the error in e1 and t remains constant, the percentage error in f increases.
Also we found that for orbits with period 6T0 170, AUTO loses accuracy, as shown
in figure 8. Unfortunately, we were unable to improve things by adjusting the
discretization and computation constants in AUTO.

The values of f in table 2 correspond to the maxima and minima of f along the
curve of saddle-node bifurcations, from the data shown in figure 8. The values were
calculated by fitting a least squares quadratic to 5 or 7 points around each maxima.
This was repeated for two different data sets (with different step size in AUTO) and
the number of significant figures shown in the table is that to which the two methods
agreed.

6. Conclusions

In this paper we have studied a robust heteroclinic cycle in R
6 which has a pair of

complex conjugate radial eigenvalues at each equilibrium. The robustness arises
because the vector field commutes with an action of Z6 n ðZ2Þ

6.
We first considered the codimension-one resonant bifurcation of the cycle and

showed that it is associated with the birth or death of a nearby (long period) periodic
orbit. This periodic orbit undergoes a further series of saddle-node bifurcations. The
bifurcation can occur subcritically or supercritically. We introduce a second bifurca-
tion parameter to unfold the degeneracy which occurs when the bifurcation is neither
subcritical nor supercritical.

We then found that there is a repeating structure of saddle-node bifurcations
about the codimension-two point, with a well-defined scaling as we approach the
codimension-two point. The analytical findings were compared with numerical
results and good agreement was found.

We expect that similar results may be found for bifurcations of similar heteroclinic
cycles in systems commuting with symmetry groups Zn n ðZ2Þ

n, n� 5, although we
have not yet looked at any specific examples. These groups are important in an

Table 2. Showing the values of f at each of the cusp points labelled
in figure 4.

n fn fn�2

fn

				
				 Period � Period

1 0.057759 66.84
3 0.022879 2.524 89.45 22.61
5 0.006918 3.307 110.0 20.55
7 0.001805 3.83 131.0 21.0
9 0.00048 3.8 153.0 22.0

2 �0.07118 66.91
4 �0.014898 4.778 93.99 27.08
6 �0.003576 4.166 118.1 24.11
8 �0.000907 3.93 141.0 22.9
10 �0.0003 3 163.8 22.8
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Figure 8. The graph shows the curve of saddle-node bifurcations in the f–T plane,
plotted from AUTO output. Parameters are c1 ¼ 0:65, c2 ¼ 1:0, e2 ¼ 0:5, and
continuation is in e1 and t. The lower figure is a close up and extension of the top
portion of the upper figure.
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ecological context; many examples of ODEs describing population models commute
with a group of this form, see [3].

Much of the structure in our problem arises as a result of the complex eigenvalues
at the equilibria in the cycle. We expect that if the complex eigenvalues were not
present, the situation would be simpler. The codimension-two bifurcation in the real
eigenvalue case would have a structure similar to that shown in figure 9. The curve
of saddle-node bifurcations predicted for this case (the dashed line in figure 9(a)) is
monotonic, rather than spiralling through a sequence of cusps. This predicted
bifurcation diagram is very similar to that found in the resonant homoclinic
bifurcation [12] in the non-robust case.

It is expected that such a bifurcation diagram would be found near the
codimension-two point for a resonant bifurcation in the real eigenvalue case. To
the best of the authors knowledge this has not been demonstrated however; both the
Guckenheimer–Holmes cycles and the example of Field and Swift [14] are degenerate
at the codimension-two point when only linear and cubic terms are included.
In either case, we may be able to break the degeneracies by adding appropriate
fifth-order terms to these vector fields.
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Figure 9. (a) shows a conjectured bifurcation diagram of a codimension-two
resonant bifurcation from a heteroclinic cycle with real eigenvalues. (b) and (c)
show the periods and locations of the bifurcating periodic orbits for two sections
across the diagram, as indicated.
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Appendix A: Eigenvalue data

In the appendix we set out explicit expressions for the eigenvalues �
 at the equilibria
for the ODEs on the cycle. First, let

D ¼ 2e1c1 þ c21 þ c2e2 þ 2c2c1 þ c2c
2
1 þ 2e2e1 þ e21 � e2e

2
1:

Then

�R ¼ ðc2c
2
1 � e2e

2
1Þ=D,

�I ¼ ð3c22c
4
1 þ 18c2c

2
1e2e

2
1 þ 3e22e

4
1 þ 8c22c

2
1e2e1 þ 8e31c2e2c1 þ 4e31c2c

2
1

þ 8e21c2c
3
1 þ 8e31c

2
1e2 þ 4c22c

3
1e1 þ 4e41e2c1 þ 8e1c

3
1c2e2 þ 8e21c1c2e

2
2

þ 4e21c
3
1e2 þ 4e1c

4
1c2 þ 4c31c

2
2e2 þ 4e31c1e

2
2 þ 4e22e

3
1c2 þ 4e1c1c

2
2e

2
2Þ

1=2=D,

�t ¼ ð�c2c
2
1 þ e2e

2
1 � e22e1 þ tc2e2 þ c22c1 þ c2e

2
1 � c1e2e1 þ tc2c1

þ te2e1 þ c2c1e1 � c21e2Þ=D,

�c ¼ ð�c2c
2
1 þ e2e

2
1 þ c1e2e1 � c2e

2
2 þ tc2c1 þ te21 þ c21e1 � c2c1e2 � e22e1 þ tc1e1 þ c31Þ=D,

�e ¼ ðc2c
2
1 � e2e

2
1 � te2e1 � c22e2 þ c2c1e1 þ e31 � tc1e1 � c22c1

� c2e2e1 þ c1e
2
1 � tc21Þ=D:

For the heteroclinic cycle to exist as we describe we require �R, �t, �c, �e > 0.
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