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Asymptotically stable robust heteroclinic cycles can lose stability through resonance or transverse

bifurcations. In a transverse bifurcation, an equilibrium in the cycle undergoes a local bifurcation,

causing a change in stability. A resonance bifurcation is a global phenomenon, determined by an

algebraic condition on the eigenvalues, and is generically accompanied by the birth or death of a long-

period periodic orbit. In this paper we demonstrate a new mechanism causing loss of stability, which

is neither resonant nor transverse in the usual sense. The location of the instability is determined

by an algebraic condition on the eigenvalues, but the instability occurs in a transverse direction.

Furthermore, after the bifurcation, when the cycle is unstable, open sets of trajectories are seen to

initially approach the network for an extended period, before moving away in the unstable direction.

This should serve as a warning to all those doing numerics near heteroclinic cycles who deduce the

cycle is stable merely because trajectories are observed to initially approach the cycle.

1 Introduction

Heteroclinic trajectories between saddle-like invariant sets are of great in-

terest in dynamical systems. They can act as organising centres for many

types of non-trivial behaviour, including intermittency and chaotic dynam-

ics. In generic systems, heteroclinic orbits are of high codimension, but it

is well known that in systems containing invariant subspaces they can ex-

ist for open sets of parameter values, that is, they are of codimension zero,

and are referred to as ‘robust’ [1–3]. Three situations in which such invariant

subspaces can arise are (i) due to equivariance with respect to a symmetry

group [4, 5], (ii) modelling assumptions such as the permanence of death in

Lotka–Volterra-type models of population dynamics [6–8] also seen in mod-
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els of neural decision-making processes [9–12], and (iii) structural restrictions

such as the coupled cell structures investigated recently by Aguiar et al. [13].

It has long been a goal of many researchers in dynamical systems to compute

a general necessary and sufficient condition for the asymptotic stability of het-

eroclinic cycles [4, 5, 14,15]. However, the results have turned out to be much

more subtle than was first thought, and examples have continued to appear

showing that previously given conditions, although sufficient, are not in fact

necessary [5, 16]. Alongside stability computations come studies of the bifur-

cations which occur when stability conditions are broken. Until now, studies

of bifurcations from robust heteroclinic cycles have concentrated on resonant

bifurcations [15,17–19] and transverse bifurcations [20]. Both bifurcations are

from a cycle which is initially asymptotically stable. In a transverse bifurca-

tion, a local bifurcation causes an eigenvalue of one of the equilibria in the cycle

to change sign. This can result in a bifurcating periodic orbit or heteroclinic

cycle, depending on the specific situation. After the bifurcation, the hetero-

clinic cycle is no longer asymptotically stable, but it may still have strong

attractivity properties, as discussed further below. A resonance bifurcation is

a global phenomena, determined by an algebraic condition on the eigenvalues,

and generically accompanied by the birth or death of a long-period periodic

orbit. After a resonance bifurcation, we would normally expect the basin of

attraction of the cycle to have measure zero.

Heteroclinic cycles can have strong attractivity properties even if they are

not asymptotically stable. One commonly observed type of stability is essential

asymptotic stability, introduced first by Melbourne [21]. Here the set of points

in the basin of attraction of the cycle has a measure which increases in some

sense as the cycle is approached. This often occurs if a cycle has a small,

but positive, transverse eigenvalue, for instance, shortly after a transverse

bifurcation.

In this paper, we discuss a mechanism by which a heteroclinic cycle, which is

essentially asymptotically stable, can lose stability. This mechanism is neither

a resonant nor a transverse bifurcation, although it has properties similar to

both. The condition for the instability is given by an algebraic condition on

the eigenvalues, as in a resonance bifurcation. However, the loss of stability

occurs in a transverse direction, and does not appear to be accompanied by

the birth or death of a periodic orbit or other object. This is in contrast to

generic bifurcations, in which stability change is usually accompanied by the
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creation or disappearance of some sort of dynamical structure.

Furthermore, after the loss of stability, the set of points which asymptote

onto the cycle is of measure zero, but open sets of initial conditions arbitrarily

close to the cycle initially approach the heteroclinic cycle before moving away.

This could have the effect of causing misleading numerics in simulations of

trajectories near heteroclinic cycles. Numerical simulations near robust hete-

roclinic cycles can be difficult when coordinates become very small as invariant

subspaces are approached. Thus it is often assumed that in a numerical simu-

lation, a trajectory approaching a heteroclinic cycle will only continue to do so

until the numerical error is larger than the distance of the trajectory from the

subspace. However, trajectories near a cycle which is unstable in the manner

described in this paper will have a similar behaviour — that is, they initially

approach the cycle, but after some time they start to move away. Hence what

may appear to be a numerical artifact near a stable cycle may actually indicate

an unstable heteroclinic cycle.

This paper is arranged as follows. In section 2 we first give some prelim-

inaries and definitions regarding the structure of robust heteroclinic cycles.

We then discuss the type of heteroclinic cycle we are particularly interested

in for the purposes of this paper, and describe the construction of Poincaré

maps, the standard method of analysing the stability of heteroclinic cycles. In

section 3 we analyse the Poincaré maps, and describe the new mechanism for

loss of stability. Our method of analysis involves reducing the two-dimensional

Poincaré maps to the study of a one-dimensional map acting on parameters

within a family of curves. In section 4 we give a numerical example, show-

ing the behaviour of trajectories before and after the loss of stability, and in

section 5 we conclude.

2 Robust heteroclinic cycles

2.1 Definitions and Preliminaries

We consider continuous-time dynamical systems in the form of Γ-equivariant

ODEs:

ẋ = f(x), x ∈ R
n, (1)
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where Γ ⊂ O(n) is a finite Lie group. An equilibrium ξ ∈ R
n of (1) satisfies

f(ξ) = 0. We begin by giving a number of definitions; these are all standard

in the literature, see for example [3, 5].

Definition 2.1 φj(t) is a heteroclinic orbit between two equilibria ξj and ξj+1

of (1) if φj(t) is a solution of (1) which is backward asymptotic to ξj and

forward asymptotic to ξj+1.

Definition 2.2 A heteroclinic cycle is an invariant set X ⊂ R
n consisting of

the union of a set of equilibria {ξ1, ..., ξm} and orbits {φ1, ..., φm}, where φj

is a heteroclinic orbit between ξj and ξj+1; and ξm+1 ≡ ξ1. We require that

m ≥ 2.

We will often take subscripts and similar objects to be modulo m when it

is clear to do so. In order to define robust heteroclinic cycles, recall that for

x ∈ R
n the isotropy subgroup Σx is

Σx = {σ ∈ Γ : σx = x},

and for Σ an isotropy subgroup of Γ, the fixed-point subspace Fix Σ is

Fix Σ = {x ∈ R
n : σx = x ∀σ ∈ Σ}.

Definition 2.3 A heteroclinic cycle X is robust if for each j, 1 ≤ j ≤ m, there

exists a fixed-point subspace, Pj = Fix Σj where Σj ⊂ Γ and

(i) ξj is a hyperbolic saddle and ξj+1 is a hyperbolic sink for the flow restricted

to Pj ,

(ii) there is a heteroclinic connection from ξj to ξj+1 contained in Pj.

Importantly, robust heteroclinic cycles may occur as codimension-zero phe-

nomena in systems with symmetry. That is, they may exist for open sets of

parameter values. We define Lj ≡ Pj−1∩Pj and clearly ξj ∈ Lj . Following [4],

the eigenvalues of the linearisation of f(x) about each equilibrium can be clas-

sified according to the subspaces in which the eigenspaces lie, as shown in

table 1.

Krupa and Melbourne [5] classify cycles in R
4 and higher dimensions into

Types A, B and C. In this paper, we are interested in cycles of Type C:

Definition 2.4 A heteroclinic cycle X is of Type C if for each j, 1 ≤ j ≤ m,
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Table 1. Classification of eigenvalues. P ⊖ L

denotes the orthogonal complement in P of the

subspace L.

Eigenvalue class Subspace

Radial (r) Lj ≡ Pj−1 ∩ Pj

Contracting (c) Vj(c) = Pj−1 ⊖ Lj

Expanding (e) Vj(e) = Pj ⊖ Lj

Transverse (t) Vj(t) = (Pj−1 + Pj)⊥

there exist fixed point subspaces Qj and Rj such that

Qj = Pj ⊕ Vj(c) = Pj ⊕ Vj+1(t),

Rj = Pj ⊕ Vj(t) = Pj ⊕ Vj+1(e).

Geometrically, we can interpret this as saying that the contracting direction

at ξj is the same as the transverse direction at ξj+1, and that the transverse

direction at ξj is the same as the expanding direction at ξj+1.

Conditions for asymptotic stability of heteroclinic cycles can be quite com-

plicated [5, 15], but a necessary condition is that all transverse eigenvalues

have negative real part. A transverse bifurcation occurs when the cycle loses

asymptotic stability as the real part of a transverse eigenvalue passes through

zero [20]. Conditions for resonance bifurcations are more complicated [5, 15]

and often result in the birth or death of a branch of long-period periodic orbits.

We discuss resonance bifurcations from specific cycles in more detail below.

Heteroclinic cycles which are not asymptotically stable can still have strong

attractivity properties. The following definition is from Melbourne [21].

Definition 2.5 An invariant set X is essentially asymptotically stable (e.a.s.)

if there exists a set A such that given any real number a ∈ (0, 1), and any

neighbourhood U of X, there is an open neighbourhood V ⊂ U of X such that:

(i) all trajectories starting in V \ A remain in U and are asymptotic to X,

(ii) µ(V \ A)/µ(V) > a, where µ is Lebesgue measure.

Essential asymptotic stability of heteroclinic cycles often arises when, due

to an unstable transverse eigenvalue, there is a cusp-shaped region of points

abutting the cycle which is not attracted to the cycle.
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2.2 Type C heteroclinic cycles

We now describe in more detail the Type C heteroclinic cycles that we study in

this paper. We consider a system of ordinary differential equations, ẋ = f(x),

where x = (x1, x2, x3, x4) ∈ R
4 and f : R

4 → R
4 is a C1 vector-valued

function. We assume this system is Γ-equivariant, that is

γ(f(x)) = f(γ(x)), ∀γ ∈ Γ,

where the group Γ is given by

Γ = Λ ⋉ Z
4
2.

We take one of two choices for Λ, as described below. The Z
4
2 subgroup is

generated by the following elements:

κ1 : (x1, x2, x3, x4) → (−x1, x2, x3, x4),

κ2 : (x1, x2, x3, x4) → (x1,−x2, x3, x4),

κ3 : (x1, x2, x3, x4) → (x1, x2,−x3, x4),

κ4 : (x1, x2, x3, x4) → (x1, x2, x3,−x4).

These symmetries ensure the existence of dynamically invariant subspaces in

which robust saddle–sink connections can occur. We later consider three cases

for the symmetries and eigenvalue structure of the heteroclinic cycle. In case

1, Λ = Z4, and is generated by the element

ρ1 : (x1, x2, x3, x4) → (x2, x3, x4, x1).

In cases 2 and 3, Λ = Z2, and is generated by the element

ρ2 : (x1, x2, x3, x4) → (x3, x4, x1, x2).

In all cases, we assume that there are four saddle-type equilibria lying on

the coordinate axes, which we label ξ1, . . . ξ4. Within each two-dimensional

subspace Pj = {x ∈ R
4|xj+2 = xj+3 = 0}, we assume there is a heteroclinic

connection connecting ξj with ξj+1.
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Figure 1. Schematic diagrams of the Type C cycles we consider. In (a), all transverse eigenvalues

are negative, corresponding to cases 1 and 2. In (b), ξ1 and ξ3 have negative transverse eigenvalues

and ξ2 and ξ4 have positive transverse eigenvalues, corresponding to case 3.

We assume all equilibria have real eigenvalues. Each equilibrium ξj has one

radial eigenvalue, −rj < 0, one contracting eigenvalue −cj < 0, one expanding

eigenvalue ej > 0 and one transverse eigenvalue −tj. We allow for positive or

negative transverse eigenvalues. In cases 1 and 2, all transverse eigenvalues are

negative. In case 3, ξ1 and ξ3 have negative transverse eigenvalues, but ξ2 and

ξ4 have positive transverse eigenvalues. Schematics of the cycles in each case

are shown in figure 1. In the notation of [5], the cycle in case 1 is of type C−
1 ,

and the cycle in cases 2 and 3 is of type C−
2 .

2.3 Poincaré maps

In this section we describe the construction of the Poincaré maps required for

modelling the dynamics near the heteroclinic cycle, via the composition of local

and global maps in the usual way. We describe the details only for the flow

near ξ1, in case 1, where the equilibria are related by the Z4 symmetry, and

all transverse eigenvalues are negative. The details near the other equilibria

and in the other cases are very similar.

We assume that the flow can be linearised about ξ1, and that the local

linearised flow near ξ1 is

u̇1 = −r1u1, (2a)

ẋ2 = e1x2, (2b)

ẋ3 = −t1x3, (2c)

ẋ4 = −c1x4, (2d)
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where u1 is a local radial coordinate which is zero at ξ1. At ξ1, x2, x3 and

x4 are respectively the expanding, transverse and contracting coordinates. We

define cross sections

H in
1 ≡ {(u1, x2, x3, x4)

∣

∣ |u1| < h, 0 ≤ x2, x3 < h, x4 = h},

Hout
1 ≡ {(u1, x2, x3, x4)

∣

∣ |u1| < h, x2 = h, 0 ≤ x3, x4 < h},

near ξ1, and

H in
2 ≡ {(x1, u2, x3, x4)

∣

∣ |u2| < h, 0 ≤ x3, x4 < h, x1 = h},

near ξ2, so H in
2 = ρ−1

1 H in
1 . The coordinates x1, x3 and x4 near ξ2 are respec-

tively contracting, expanding and transverse, and u2 is a local radial coordinate

which is zero at ξ2.

The local flow near ξ1 induces a map φ1 : H in
1 → Hout

1 , which is given by:

φ1(u1, x2, x3, h) =

(

u1

(x2

h

)

r1

e1 , h, x3

(x2

h

)

t1

e1 , h
(x2

h

)

c1

e1

)

.

We construct a global map Φ12 : Hout
1 → H in

2 to approximate the dynam-

ics near the heteroclinic connection between ξ1 and ξ2. The heteroclinic con-

nection intersects Hout
1 at (u1, x2, x3, x4) = (0, h, 0, 0) and intersects H in

2 at

(x1, u2, x3, x4) = (h, ǫ2, 0, 0) for a small constant ǫ2. Using the invariance of

the coordinate hyperplanes, we can write down the global map to leading order

as:

Φ12(u1, h, x3, x4) = (h, ǫ2, A3x3, A4x4),

where A3 and A4 are order 1 positive constants.

We can use the symmetry ρ1 to construct a return map once around the

entire cycle back to H in
1 . This map is given by (ρ1Φ12φ1)

4. We can thus inves-

tigate the dynamics by considering only the map ψ = ρ1Φ12φ1.

If r1 > e1 then the u1 component is contracting, and hence can be ignored.

We henceforth assume this is the case. In addition, the lowest order terms

in Φ12 are independent of u1, so it is clear that it is only the x3 and x4

components that are important for the dynamics [4, 5]. We can thus consider
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the two-dimensional map:

ψ(x2, x3) = (A3h
−

t1

e1 x3x
t1

e1

2 , A4h
1− c1

e1 x
c1

e1

2 ) (3)

The fixed point at the origin in this map corresponds to the heteroclinic cycle

in the flow, so we can analyse the stability of the cycle in the flow by analysing

the stability of this fixed point in the map. We can rescale the parameters so

that e1 = 1, which is equivalent to rescaling time in the local equations (2).

Except in the case that t1 + c1 = e1, we can also rescale the coordinates so

that A3h
−

t1

e1 = A4h
1−

c1

e1 = 1.

The next section is devoted to the analysis of these maps.

3 Analysis of Poincaré maps

In this section we consider three heteroclinic cycles, as described in section 2.2,

and investigate their stability by analysing the appropriate Poincaré maps. The

three cases we consider are as follows. For the first two cases, all equilibria have

negative transverse eigenvalues. In case 1, Λ = Z4, and in case 2, Λ = Z2. We

discuss resonant bifurcations from these cycles in section 3.1 below. The third

case we consider has Λ = Z2; ξ1 and ξ3 have negative transverse eigenvalues,

but ξ2 and ξ4 have positive transverse eigenvalues. It is in this case that we

find a new mechanism for stability loss.

In each case, the Poincaré map from a section H in
j to H in

j+1 is given by a

rescaled version of (3), of the form

ψj :

(

x

y

)

→

(

yxtj

xcj

)

.

Note that this rescaling can only be done away from points of resonance; for

ψj , the rescaling required that cj +tj 6= 1. In the following, we only give results

that are valid away from resonance. If tj > 0 we say the transverse direction is

stable, and if tj < 0 we say that the transverse direction is unstable. We always

have cj > 0. For each map, we consider the domain to be Σ = [0, 1) × [0, 1).

Note that ψj(1, 1) = (1, 1), for all cj and tj . In the following analysis, in

order to understand how points move under the action of maps such as ψj ,

we frequently consider the image of a curve y = xa (which passes through
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(1, 1)). This allows us to reduce the two-dimensional Poincaré maps to a one-

dimensional map acting on the exponents (a) of these curves.

3.1 Cases 1 and 2: resonance bifurcations

In this section we recall some results of Krupa and Melbourne [5] regarding

the stability of Type C cycles with stable transverse directions. We consider

the dynamics of the maps in more detail than they do, which helps with the

analysis of the new bifurcation in the following section.

In case 1, Λ = Z4. The stability of the cycle can be determined by computing

the stability of the zero solution in the map

ψ1 :

(

x

y

)

→

(

yxt1

xc1

)

. (4)

As shown by Krupa and Melbourne, the cycle is asymptotically stable if and

only if t1 + c1 > 1. Breaking this condition results in a resonant bifurcation.

In case 2, Λ = Z2, the Poincaré maps near alternate equilibria are different,

so we have to consider the composition of the two maps ψ1 and ψ2:

ψ1 :

(

x

y

)

→

(

yxt1

xc1

)

, ψ2 :

(

x

y

)

→

(

yxt2

xc2

)

.

Starting on H in
1 , the map describing the dynamics of one full circuit around

the cycle is:

ψ21 = ψ2 ◦ ψ1 :

(

x

y

)

→

(

xc1+t1t2yt2

xt1c2yc2

)

. (5)

Krupa and Melbourne [5] show that the zero solution of this map is asymp-

totically stable if and only if

c1 + c2 + t1t2 > min(2, 1 + c1c2). (6)

We now make the following further observations of the dynamics of these

maps, which help us to understand the new bifurcation we describe in sec-

tion 3.2.
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y = xa+

(a)

x

y
y = xa+
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Figure 2. Schematic of the dynamics of points near the origin in the (second iterate of the)

map (4), before and after the resonance bifurcation. Successive points are joined with a smooth line

only for clarity, of course, the figure depicts a map, not a flow. In (a) c1 + t1 > 1, in (b) c1 + t1 < 1.

First consider the map ψ1 in (4). The image of a curve y = xa under ψ1 is

y = xh(a) where

h(a) =
c1

a+ t1
. (7)

The map h has fixed points at

a = a± ≡
−t1 ±

√

t21 + 4c1
2

,

where a− < 0 < a+. Thus the curves y = xa± are invariant under the map ψ1.

Since a+ is an attracting fixed point in h, the curve y = xa+ will be attracting

in the map ψ1. The basin of attraction of a+ under h includes the region

[0,∞), and so all points (x, y) ∈ Σ will move towards the curve y = xa+ under

iteration of ψ1.

On the curve y = xa+ , the dynamics of the map is y → yc1/a+ , and it can

easily be computed that if c1 + t1 > 1, then c1/a+ > 1, and so y decreases

along trajectories. If c1 + t1 < 1, then c1/a+ < 1, and so y increases along

trajectories. This transition is shown schematically in figure 2. Note that since

under a single iterate of (4), points cross from one side of the curve y = xa+

to the other, for clarity, figure 2 shows the dynamics under the second iterate

of the map.

We can perform similar computations for the map ψ21 in (5). The curve
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y = xb maps to y = xg(b) under ψ21, where

g(b) =
c2(t1 + b)

c1 + t2(t1 + b)
. (8)

The map g has fixed points at

b = b± ≡
c2 − c1 − t1t2 ±

√

(c2 − c1 − t1t2)2 + 4t1t2c2
2t2

, (9)

where b− < 0 < b+, and it can be shown that b+ is a stable fixed point of g,

with a domain of attraction including [0,∞).

Thus, the map ψ21 (5) has invariant curves y = xb± , and the curve y = xb+

is attracting, in that all points in Σ move towards it, under the action of

ψ21. It can easily be computed that if (6) holds, then the dynamics on the

invariant curve y = xb+ is such that trajectories move towards the origin. If

c1 + c2 + t1t2 < min(2, 1 + c1c2), then trajectories move away from the origin.

By continuity, points on curves close to y = xb+ will also move towards or

away from the origin. The change in dynamics at the transition is a resonant

bifurcation, and schematically is similar to that shown in figure 2.

If we allow the tj to be negative, then b± may not exist in R. In the case where

one or more of the tj are negative, and the b± are real, then the conditions

giving the dynamics along the invariant curves are unchanged. That is, the

conditions for ‘resonance’ bifurcations of the heteroclinic cycles are the same.

We discuss these cases in detail in the following section.

3.2 Case 3: a new mechanism for stability loss

We now consider the case where ξ1 and ξ3 have stable transverse directions,

but ξ2 and ξ4 have unstable transverse directions. We set Λ = Z2. The cycle

is not asymptotically stable, but it can be e.a.s. We include a discussion of

conditions for when the cycle is e.a.s. at the end of this section.

We first make the following definitions:
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Definition 3.1

Σβ ≡ {(x, y) ∈ Σ|y < xβ},

Σ̂β ≡ {(x, y) ∈ Σ|y > xβ},

Lβ ≡ {(x, y) ∈ Σ|y = xβ, (x, y) 6= (0, 0)}.

We again use the two maps

ψ1 :

(

x

y

)

→

(

yxt1

xc1

)

, ψ2 :

(

x

y

)

→

(

yx−t3

xc2

)

,

where we have written t2 = −t3, so that t3 > 0. The domain of ψ1 is Σ, and the

range is Σ̂ c1

t1

. The domain of ψ2 is Σ̂t3 and the range is Σ. For the remainder

of this paper, we assume that

c1 > t1t3. (10)

This ensures that the domain of ψ2 only includes points which are in the range

of ψ1. That is, there are no trajectories being included in the map which did

not originally pass through H in
1 .

We consider the map ψA = ψ2 ◦ ψ1:

ψA :

(

x

y

)

→

(

xc1−t1t3y−t3

xt1c2yc2

)

. (11)

Note that if (10) is not satisfied then for all (x, y) ∈ Σ the x-component of

ψA(x, y) is greater than 1, and hence the origin is completely unstable.

We now state our main result for this section. Given certain conditions on

the eigenvalues, we show that a subset of Σ remains in Σ under iteration of

ψA, and trajectories move towards the origin. Other points in Σ are shown to

leave Σ after a finite number of iterations of ψA.

Theorem 3.2 Let

β+ =
c1 − c2 − t1t3 +

√

(c1 − c2 − t1t3)2 − 4c2t1t3
2t3

.
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(i) If all three of the following conditions on parameters hold:

c1 − c2 − t1t3 > 0, (12)

(c1 − c2 − t1t3)
2 − 4c2t1t3 > 0, (13)

c1 + c2 − t1t3 > min(2, 1 + c1c2), (14)

then

a) for all (x, y) ∈ Σβ+
there exists some N > 0 such that ψN

A (x, y) 6∈ Σ.

b) for all (x, y) ∈ Σ̂β+
, ψN

A (x, y) ∈ Σ for all N > 0, and ψN
A (x, y) → (0, 0)

as N → ∞.

(ii) If (12) and (13) hold but

c1 + c2 − t1t3 < min(2, 1 + c1c2), (15)

then (i)a) still holds but for (x, y) ∈ Σ̂β+
, ψN

A (x, y) 6→ (0, 0) as N → ∞.

(iii) If either of the following hold:

c1 − c2 − t1t3 < 0, (16)

(c1 + c2 − t1t3)
2 − 4c1c2 < 0, (17)

then for all (x, y) ∈ Σ there exists some N > 0 such that ψN
A (x, y) 6∈ Σ.

Proof The image of a curve y = xβ under ψA is y = xg(β), where

g(β) =
c2(t1 + β)

c1 − t3(t1 + β)
, β 6= β1 ≡

c1
t3

− t1 > 0. (18)

The image of the curve y = xβ1 is the line x = 1. Note that, for all parameter

values, if (x, y) ∈ Σβ1
∪ Lβ1

, then ψA(x, y) 6∈ Σ.

We now begin by proving (i). Assume that (12), (13) and (14) all hold. Then

the map g has fixed points at

β± =
c1 − c2 − t1t3 ±

√

(c1 − c2 − t1t3)2 − 4c2t1t3
2t3

,

where β+ > β− > 0 (and β± = b∓). A sketch of g is shown in figure 3, and

it is clear that β− is a stable fixed point of the map g, and β+ is an unstable

fixed point. Note also that if β0 ∈ [0, β+) then gN (β0) → β− as N → ∞, and
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ββ+β−

g(β)

β1

−
c2
t3

Figure 3. Sketch of the map g as given in (18).

if β0 ∈ (β+, β1) then there exists some N > 0 for which gN (β0) > β1. We use

this information to deduce the following properties of ψA.

Firstly, if (x, y) ∈ Σβ+
\ (Σβ1

∪ Lβ1
), then there exists some N for which

ψN−1
A (x, y) ∈ Σβ1

. Hence ψN
A (x, y) 6∈ Σ.

Secondly, for (x, y) ∈ Σ̂β+
, ψN

A (x, y) → Lβ−
as N → ∞. The dynamics on

y = xβ− is the same as the dynamics on the curve y = xb+ , as computed in

section 3.1. That is, since (14) holds, trajectories on y = xβ− move towards

the origin. Hence ψN
A (x, y) → (0, 0) as N → ∞.

We next prove (ii). The dynamics for points starting in Σβ+
are unchanged.

But since (15) holds, trajectories on y = xβ− move away from the origin, and

so for (x, y) ∈ Σ̂β+
, ψN

A (x, y) moves away from the origin as N → ∞.

Finally, we prove (iii). If (17) holds, then there are no fixed points in the

map g. If (16) holds, then β± < 0. In both cases, for all β0 ∈ [0, β1), then there

exists someN > 0 for which gN (β0) > β1. Hence, for all (x, y) ∈ Σ\(Σβ1
∪Lβ1

),

there exists some N for which ψN−1
A (x, y) ∈ Σβ1

, and so ψN
A (x, y) 6∈ Σ.

�

The dynamics on the curve y = xβ+ can be easily computed, and we find

that trajectories move towards the origin along this curve if

2 < c1 + c2 − t1t3 < 1 + c1c2. (19)

The conditions (14) and (19) are the equivalent of resonant bifurcation condi-

tions for this heteroclinic cycle. There will be some differences from the usual

resonant bifurcations, because the original cycle is not asymptotically stable,
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although it may be e.a.s. We still expect that a long-period periodic orbit

will branch from the bifurcation point, although we leave the details of this

computation to a later study.

In figure 4(a), we show curves of the equations

c1 + c2 − t1t3 = 2, (20)

c1 + c2 − t1t3 = 1 + c1c2, (21)

c1 − c2 − t1t3 = 0, (22)

(c1 − c2 − t1t3)
2 = 4c2t1t3, (23)

in c1-c2 space, as these may denote boundaries between different types of be-

haviour. Curves (20) and (21) are boundaries that may correspond to resonant-

type bifurcations. Curves (22) and (23) are boundaries that may correspond to

the new mechanism of stability loss. Which regions of the curves are actually

stability boundaries depends on the exact arrangement of the curves, as can

be seen in figure 4.

Note that the curves (20), (21) and (23) meet at the same point, where

c1c2 = 1, and the curves (21) and (23) are tangent at that point. In figure 4(b),

we show only those parts of the curves which form boundaries between regions

with different dynamics near the heteroclinic cycle.

In figure 5, we show the dynamics in each region indicated by (a)-(d) in

figure 4(b). The new mechanism for stability loss is the transition between

regions (c) and (d). Within the map g, this is a saddle-node bifurcation of the

fixed points β+ and β−. In the map (11), and hence in the flow, the saddle-

node type behaviour is evident in the fact that the invariant curves y = xβ+

and y = xβ− come together, coalesce and disappear.

3.2.1 Transient behaviour. Note that when condition (13) is broken, there

is some interesting transient behaviour. The origin in the map ψA is com-

pletely unstable, that is, all initial conditions eventually move far away from

the origin. However, some trajectories, namely, those which start close to the

y-axis, initially approach the origin, before moving away in the x-direction.

This is shown in figure 5(d). We now give a brief discussion of why the tran-

sient behaviour occurs, considering the behaviours of both the map g and the
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Figure 4. (a) Shows the curves given by equations (20) to (23), in c1-c2 parameter space, with

t1 = 0.3 and t3 = 0.6 (however, the schematic arrangement of the curves is similar for different

values of the tj). The dotted line is (20), the thin dashed line is (22), the bold dashed curve is (21)

and the solid curve is (23). (b) shows a close up of the bottom-right corner of (a), only showing

those curves which form stability boundaries of the heteroclinic cycle. The dynamics in the different

regions are shown schematically in figure 5. In regions (b) and (c), the cycle attracts an open set of

initial conditions, and depending on the shape of the basin of attraction, the cycle may be e.a.s. In

(a) and (d) the cycle is unstable. The + symbols indicate the location in parameter space of the

three integrations shown in figures 6, 7, and 8. Note that although (20) does not appear as a

stability boundary, being either side of this line is what distinguishes region (a) from region (c).

map ψA, just after the condition (13) has been broken.

Under the map g, just after the saddle-node bifurcation in which β+ and

β− disappear, trajectories starting with small enough β (which correspond

to trajectories under ψA starting with small x-coordinate) will take a long

time to pass through the region where the saddle-node bifurcation took place.

During this time, trajectories under ψA move closer to the origin. Eventually,

the trajectory of β under g becomes greater than β1 (given in (18)), and only

then does the trajectory under ψA leaves Σ.

This behaviour occurs arbitrarily close to the fixed point at the origin. We

give an example of a trajectory showing this transient behaviour in the nu-

merical example section below.

3.2.2 Conditions for essential asymptotic stability. For the cycle to be

e.a.s., we must at least be in either region (b) or (c) of figure 4. In region (c),

we require in addition that β+ > 1, so that Σβ+
is cusp-shaped, and we also
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x

y y = xβ−

y = xβ+

(a)

x

y y = xβ−

y = xβ+

(b)

x

y y = xβ−

y = xβ+

(c)

x

y

(d)

Figure 5. Schematic diagrams showing the dynamics of points near the origin in the map (11), in

various regions of parameter space, as indicated in figure 4. In (b) and (c), the cycle attracts an

open set of initial conditions, and may be e.a.s., depending on parameters, as described further in

the text. In (a) and (d) the cycle is unstable. The new mechanism for change of stability is the

transition from (c) to (d).

require that the image of Σβ+
under ψ1 is cusp-shaped. These conditions can

be easily computed, and are as follows. For Σβ+
to be cusp-shaped, we require

c1 − c2 − t1t3 > min(2t3, c2t1 + t3). (24)

For ψ1(Σβ+
) to be cusp-shaped, we require either

c1 − c2 + t1t3 < 2t1, or c1 − c2 + t1t3 > c1t3 + t1. (25)

In region (b), the cycle is e.a.s. if both Σβ−
and ψ1(Σβ−

) are cusp-shaped,

conditions for which are:

2t3 < c1 − c2 − t1t3 < c2t1 + t3, and c1 − c2 + t1t3 > min(2t1, t1 + c1t3).
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If these conditions do not hold, but (24) and (25) do hold, then although

‘essentially all’ trajectories in a neighbourhood of the origin are asymptotic to

the origin, most of these will move away from the origin before approaching

it, as can be seen in figure 5(b), so the cycle is not e.a.s., although could be

termed ‘quasi-essentially asympototically stable’ (see [23] for another example

of this).

We do not mark these regions on figure 4, as they will change as t1 and t3
are varied, but note that for the parameters we choose, the heteroclinic cycle

is e.a.s. for a large part of region (c).

4 Numerical example

In this section we consider a numerical example to demonstrate the new type

of bifurcation described in section 3.2. Recall we have Λ = Z2, and ξ1 and

ξ3 have stable transverse directions, but ξ2 and ξ4 have unstable transverse

directions.

We consider the equations

ẋ1 = x1(1 −X − c2x
2
2 − t1x

2
3 + x2

4), (26a)

ẋ2 = x2(1 −X + x2
1 − c1x

2
3 + t3x

2
4), (26b)

ẋ3 = x3(1 −X − t1x
2
1 + x2

2 − c2x
2
4), (26c)

ẋ4 = x4(1 −X − c1x
2
1 + t3x

2
2 + x2

3), (26d)

where X =
∑4

j=1 x
2
j , and c1, c2, t1, t3 > 0 are parameters, and also the eigen-

values at the equilibria as described in section 2.2. The four equilibria ξj lie

on the coordinate axes, and there exists a heteroclinic cycle between them of

the type described in section 3.2. For numerical integration purposes, we use

the transformation yj = log(xj), and instead integrate the ẏj equations, using

a standard RK4 integrator. This improves numerical accuracy as we are able

to get very close to the invariant planes with xj = 0 without having to worry

about numerical errors caused by very small variables.

We set t1 = 0.6 and t3 = 0.3. In figure 4, we show the stability region

boundaries in c1-c2 space. In figures 6, 7, and 8, we show integrations of equa-

tions (26) for initial conditions near the heteroclinic cycle in three cases. In
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Figure 6. Numerical integration of (26) for a parameter set for which the heteroclinic cycle is

attracting. The trajectory spends longer and longer times near each equilibrium. Parameters are

c1 = 1.7, c2 = 0.7, t1 = 0.6, t3 = 0.3. Initial conditions are y(0) = (−5,−15,−10,−0.1).

figure 6 the trajectory shown approaches the cycle. In figure 7, the cycle is res-

onantly unstable, and solutions move directly away from the cycle, in this case

towards a periodic orbit. In figure 8, the cycle is also unstable. The trajectory

shown displays the transient behaviour described in section 3.2.1. The trajec-

tory initially approaches the network, indicated by the increasing lengths of

time spent near each equilibrium. However, after about t = 1500, these times

start to decrease, and the trajectory moves away from the cycle, in this case

eventually asymptoting onto an equilibrium which is not part of the cycle.

5 Discussion

In this paper we have investigated a new mechanism of stability loss from a

heteroclinic cycle. This mechanism is qualitatively different from previously

studied resonant or transverse bifurcations, and is of particular interest be-

cause when the cycle is unstable, open sets of initial conditions still move

towards the cycle for some time before moving away. Our analysis uses the

standard method of constructing linearised Poincaré maps. This reduces a

four-dimensional system of differential equations to a two-dimensional map.

We study the maps by considering their action on a family of curves, giving
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Figure 7. Numerical integration of (26) for a parameter set for which the heteroclinic cycle has

undergone a resonant bifurcation. The trajectory moves away from the cycle, towards a periodic

orbit. Parameters are c1 = 1.2, c2 = 0.4, t1 = 0.6, t3 = 0.3. Initial conditions are

y(0) = (−5,−15,−10,−0.1).
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Figure 8. Numerical integration of (26) for a parameter set for which the heteroclinic cycle has

undergone the new type bifurcation. The trajectory initially approaches the cycle and spends

increasingly long times near the equilibria. Eventually the trajectory starts to move away and

leaves a neighbourhood of the cycle, asymptoting onto an equilbrium that is not part of the cycle.

Parameters are c1 = 1.7, c2 = 0.8, t1 = 0.6, t3 = 0.3. Initial conditions are

y(0) = (−5,−15,−10,−0.1).
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a further reduction to a one-dimensional map acting on parameters of these

curves. We confirm our analysis with a numerical example.

It appears from the analysis and the numerical example that there are no

dynamical structures which merge with the cycle at the point of stability loss.

This is interesting as it differs from the case of generic bifurcations in which

the generation of new structures is associated with changes in stability. We

have not ruled out the possibility that some unstable dynamical structure

is merging with the cycle in a subcritical bifurcation, but leave a detailed

examination of this to a future study.

One current topic of interest in the dynamical systems community is that

of ‘switching’ between two or more heteroclinic cycles which are part of a

heteroclinic network [23–26]. There are a number of different examples stud-

ied in these papers, each with different mechanisms for switching between the

subcycles. These include transverse instabilities of the subcycles [23], com-

plex eigenvalues at an equilibrium within the network [24], chaotic dynamics

within the nodes of the network [25] and connections formed by transversal

intersections of stable and unstable manifolds [26]. It would be interesting to

investigate the consequences of embedding a cycle of the type described in

this paper into a heteroclinic network, so that it was unstable in the manner

described here. This could result in a system which admits switching between

subcycles, and it would be interesting to investigate the similarities and dif-

ferences between this type of switching and those described above. Work on

this problem is ongoing.
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