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We describe an example of a structurally stable heteroclinic network for which nearby orbits exhibit

irregular but sustained switching between the various sub-cycles in the network. The mechanism for

switching is the presence of spiralling due to complex eigenvalues in the flow linearised about one of

the equilibria common to all cycles in the network. We construct and use return maps to investigate

the asymptotic stability of the network, and show that switching is ubiquitous near the network.

Some of the unstable manifolds involved in the network are two-dimensional; we develop a technique

to account for all trajectories on those manifolds. A simple numerical example illustrates the rich

dynamics that can result from the interplay between the various cycles in the network.

1 Introduction

Heteroclinic cycles and networks are invariant sets that can occur in a struc-

turally stable way in systems with symmetry, and are known to provide a
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robust mechanism for intermittent behaviour in these systems. For the pur-

poses of this paper, we adopt the following definitions of heteroclinic cycles

and heteroclinic networks. In the literature, there are more complicated defi-

nitions [6], but the simpler definitions presented here suffice for our purposes.

For a finite-dimensional system of ordinary differential equations (ODEs), we

define:

Definition. A heteroclinic cycle C is a finite collection of equilibria

{ξ1, . . . , ξn} of the ODEs, together with a set of heteroclinic connections

{γ1(t), . . . , γn(t)}, where γj(t) is a solution of the ODEs such that γj(t) → ξj

as t → −∞ and γj(t) → ξj+1 as t → ∞, and where ξn+1 ≡ ξ1.

Definition. Let C1, C2, . . . be a collection of two or more heteroclinic cy-

cles. We say that N =
⋃

i Ci forms a heteroclinic network if for each pair

of equilibria in the network, there is a sequence of heteroclinic connections

joining the equilibria. That is, for any ξj, ξk ∈ N , we can find a sequence of

heteroclinic connections {γp1
(t), . . . , γpl

(t)} ∈ N and a sequence of equilibria

{ξm1
, . . . , ξml+1

} ∈ N such that ξm1
≡ ξj, ξml+1

≡ ξk and γpi
is a heteroclinic

connection between ξmi
and ξmi+1

.

Under this definition, a heteroclinic network is a connected collection of

heteroclinic cycles, possibly infinite in number. We allow for an infinite number

of cycles to co-exist in a network, as can occur, for instance, when one of the

equilibria has a two-dimensional unstable manifold and there is a continuum

of heteroclinic connections between that equilibrium and another. However,

we restrict to the case where the set of all equilibria in the network is finite.

In general, heteroclinic orbits can connect invariant sets other than equilibria,

such as periodic orbits or chaotic saddles; we do not consider this possibility

here.

Structurally stable heteroclinic cycles in symmetric systems have been stud-

ied extensively in recent years, with a canonical example arising in the context

of rotating Rayleigh–Bénard convection [14] being analyzed in [19]. A good

deal is now known about conditions for existence and stability of heteroclinic

cycles (e.g., [9,22,24,26]), and some results are also known about bifurcations

of heteroclinic cycles and networks (e.g., [10,16,17,31,35]) and the effect on the

dynamics of small symmetry breaking (e.g., [15,20,25,27,34]) or the addition

of noise (e.g., [3, 12,36]). Some experimental observations of near-heteroclinic

cycles have been reported (e.g., see [28] for a recent example); experimental
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noise and small symmetry-breaking effects prevent exact heteroclinic cycles

from occurring, but near-heteroclinic structures are seen in certain regimes.

The dynamics near networks of heteroclinic cycles has been studied in, for

instance, [1,5,13,17,21,30]. There are some natural questions to ask about the

dynamics near heteroclinic networks. For example, is it the case that one cy-

cle in the network is dominant, in that most trajectories near the network are

attracted to that cycle, resulting in the network structure not being observed?

Can more than one cycle be observed? Are there trajectories that switch be-

tween the cycles in the network in a sustained way, visiting all parts of the

network eventually? Partial answers to these questions have been established.

Krupa and Melbourne [23] find conditions under which one cycle dominates

in certain cases. However, their analysis does not cover the example of interest

in this paper.

Kirk and Silber [21] construct an example where more than one cycle is

observable, specifically showing that open sets of trajectories near the network

may be attracted to each of the two primary cycles in their network. Despite

both cycles being observable, there is no sustained switching in this example:

an orbit may switch from one cycle to the other initially but may not switch

back again. The effect of small noise on the network in [21] is studied in [3],

where it is shown that noise can either induce switching of trajectories between

cycles in the network or enhance the attractivity of certain cycles.

Aguiar et al. [1] describe an example, motivated by conjectures of Field [18],

where trajectories switch between excursions about different cycles in a het-

eroclinic network. In this example some of the connections in the network

result from transversal intersections between stable and unstable manifolds of

equilibria, with the consequence that the network probably does not attract

open sets of initial conditions. Because of the reinjection mechanisms built into

the network, trajectories will make repeated passes near the transversal inter-

sections and there are trajectories that follow arbitrarily complicated paths

around the network, but these trajectories will not approach the network.

Another example of this type is found in [2].

Postlethwaite and Dawes [30] examined an example of a heteroclinic network

in which trajectories can exhibit periodic or aperiodic patterns of excursions

past the various cycles in the network. The mechanism inducing switching

between cycles in this network is a transverse instability of each cycle in one
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direction. Almost all trajectories near a cycle eventually leave that cycle for

another cycle, but that cycle in turn is unstable in a transverse direction and

trajectories eventually leave that cycle too, ultimately returning to a neigh-

bourhood of the original cycle. This mechanism operates when the network

as a whole is essentially asymptotically stable, so trajectories get closer to the

network as they cycle around the network.

Ashwin et al. [12] describe irregular switching near a heteroclinic network

connecting periodic orbits and chaotic saddles confined to two invariant sub-

spaces. In this case, the mechanism determining the switching is said to be

nonlinear, since it appears to operate in a part of phase space well away from

the invariant subspaces containing the periodic orbits and chaotic saddles.

In this example, structurally stable connections again arise from transversal

intersections of manifolds.

In this paper, we present another example in which orbits near a hetero-

clinic network switch repeatedly between excursions about the different cycles

in the network. The mechanism for switching is the presence of a pair of com-

plex eigenvalues in the linearisation of the flow about one of the equilibrium

solutions in the network. Unlike the examples in Aguiar et al. [1, 2], where

complex eigenvalues also occur, the heteroclinic connections in our network

are structurally stable because of the symmetries of the problem and are non-

transversal, with the consequence that, so long as symmetries are preserved,

the network can attract open sets of initial conditions. As discussed further

below, our example can exhibit an interesting form of switching, where the

network structure is evident in the long term dynamics even though the net-

work is not attracting. There are similarities between this and the switching

observed in [1, 2], as discussed below.

The network we study is in R
4 with Z

3
2 symmetry, and is shown schemati-

cally in Figure 1. It consists of a set of six equilibria denoted A, B, X, Y , P

and Q, their conjugate copies under action of the symmetries, and the set of

heteroclinic connections joining the equilibria. Some of the heteroclinic con-

nections occur in two-dimensional families, as indicated in Figure 1. There are

many different heteroclinic cycles evident in Figure 1, e.g., A → B → X → A

and A → B → P → X → A. The network is the union of all these cycles, and

is described in more detail in section 2.

Our analysis of this example proceeds in a standard way via construction
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A

Y

X

P
B

Figure 1. Schematic diagram showing part of the heteroclinic network studied. For clarity, the

equilibrium Q is not shown; this equilibrium plays a similar role to equilibrium P except that the

one-dimensional heteroclinic connections from Q connect to −X and Y instead of X and Y . The

remaining (conjugate) parts of the network are obtained under the action of the Z
3
2 symmetry

group. The thin curves represent single heteroclinic connections while the bold curves indicate that

a two-dimensional family of connections exists between the relevant equilibria. The double

arrowhead on the connection from B to X indicates that expansion near B in the direction of this

connection is stronger than the expansion in the direction of the connection from B to Y .

of return maps that approximate the dynamics in a neighbourhood of the

heteroclinic network. A feature that complicates the construction is the exis-

tence of two-dimensional unstable manifolds of some of the equilibria in our

network and hence of continua of heteroclinic connections between some pairs

of equilibria. A novel aspect of our work is the way in which we allow for

this complication; we have developed a relatively straightforward way to keep

track of trajectories near two-dimensional unstable manifolds even when differ-

ent orbits within a manifold connect different pairs of equilibria. The method

is related to the technique used in [33] to analyze a homoclinic bifurcation

in a problem with a two-dimensional unstable manifold, and it extends pre-

vious work on other problems with two-dimensional unstable manifolds such

as [4, 5, 8, 9, 20].

Using these techniques, we are able to find a simple condition for asymptotic

stability (resp., instability) of the network. The condition is as expected: the

product of the ratio of contracting to expanding eigenvalues seen by a tra-

jectory as it traverses the network must be greater than one (resp., less than

one), regardless of the itinerary of the trajectory though the network. There is

also an intermediate case, where whether there is net contraction or expansion
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depends on the itinerary of the orbit past the various equilibria in the network.

We go on to show that switching is ubiquitous in the network, whether or not

the network is asymptotically stable. If the network is asymptotically stable,

then we show that while orbits generically continue to switch as they approach

the network, visits to certain equilibria become increasingly rare.

We find that a particularly interesting form of switching can occur in our

network. If one of the cycles within the network attracts trajectories (i.e., a

trajectory ends up closer to the network after making one passage near that

cycle) while other cycles repel trajectories, then the net effect can be that a

typical trajectory approaches an attractor (possibly chaotic) that lies near the

network, with the trajectory repeatedly (but not uniformly) passing close to

all parts of the network even though the network is not itself attracting. Under

this scenario the network structure will be observed in the long term dynamics

even though the network is not attracting. We report numerical observations

of this form of switching, and defer a detailed investigation to a future paper.

The rest of this paper is organised as follows. §2 contains a description

of our heteroclinic network and details of construction of the maps used to

approximate the dynamics near the network. In §3 we find a condition for

asymptotic stability of the network, and derive results about switching near

the network. §4 gives results from numerical simulations of a system of four

ordinary differential equations, illustrating the various switching phenomena

associated with our example. Conclusions are contained in §5.

2 The heteroclinic network

We consider a system of ordinary differential equations, ẋ = f(x), where

x = (x1, x2, x3, y3) ∈ R
4 and f : R

4 → R
4 is a C1 vector-valued function. We

assume this system is Z
3
2-equivariant with the following equivariance proper-

ties:

κi(f(x)) = f(κi(x)), i = 1, 2, 3, (1)
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where

κ1 : (x1, x2, x3, y3) → (−x1, x2, x3, y3),

κ2 : (x1, x2, x3, y3) → (x1,−x2, x3, y3),

κ3 : (x1, x2, x3, y3) → (x1, x2,−x3,−y3).

These symmetries ensure the existence of dynamically invariant subspaces in

which robust saddle–sink connections can occur. We make the following as-

sumptions about the dynamics in these subspaces (see Figure 2).

• A1: There exist symmetry-related pairs of equilibria ±A and ±B on the x1

and x2 coordinate axes, respectively. Within the invariant plane x3 = y3 = 0,

A is a saddle and B is a sink and there is a heteroclinic connection from A

to B. See Figure 2(a).

• A2: There exist symmetry-related pairs of equilibria ±X, ±Y , ±P and ±Q

in the invariant plane x1 = x2 = 0. Within this subspace, ±X and ±Y are

sinks, while ±P and ±Q are saddles. The eight equilibria together with the

heteroclinic connections between them make up an invariant curve C, which

is topologically a circle. We hereafter refer to C as a circle, and we assume

that C can be parametrised by the angle θ3, the polar angle in the (x3, y3)-

plane. Note that the intersections of the stable manifolds of ±P and ±Q with

the invariant plane form the boundaries between the basins of attraction of

±X and ±Y in the invariant plane. Only a small part of each intersection

is shown in Figure 2(b), to avoid giving a misleading impression about the

dynamics near the origin of the (x3, y3)-plane, but each intersection curve

in fact extends to the origin of the subspace.

• A3: Within the invariant subspace x1 = 0, there exist two-dimensional

manifolds of saddle–sink connections from B to ±X and ±Y (Figure 2(c)).

There are also one-dimensional (saddle–saddle or saddle–sink) heteroclinic

connections from B to ±P and ±Q and from ±P and ±Q to ±X and ±Y ,

as shown in Figure 2(c). The unstable manifold of B is two-dimensional,

and the stable manifolds of ±X and ±Y are each three-dimensional within

the subspace.

• A4: Within the invariant subspace x2 = 0, there exists a two-dimensional

manifold of saddle–sink connections from ±X, ±Y , ±P and ±Q to A.

Within this manifold, A is a stable focus. A similar manifold connects the
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A

B

x1

x2

(a)

X

Y

x3

y 3

Q

P

−Q
−Y−P

−X

C

(b)

Y

B

y 3

x2

P
X

x3

(c)

Y

A

y 3

x1

P
X

x3

(d)

Figure 2. Dynamics within the subspaces invariant under the symmetries κ1, κ2, κ3 and their

combinations. For clarity, only part of the relevant subspaces are shown in panels (a), (c) and (d),

with the dynamics in the omitted parts being obtained by applying the symmetries. (a) The

invariant plane x3 = y3 = 0, showing the heteroclinic connection from A to B. (b) The invariant

plane x1 = x2 = 0, showing the invariant circle C and the equilibria ±X, ±Y , ±P and ±Q that lie

on C. (c) The subspace x1 = 0 showing part of the two-dimensional unstable manifold of B and

part of the circle C in the (x3, y3) plane. Most trajectories leaving B go to either ±X or ±Y , but

some isolated trajectories go to ±P or ±Q. For convenience, the equilibria ±X and ±Y are chosen

to lie on the coordinate axes, with the eigenvectors of the corresponding linearised flow at B aligned

with the axes, but they are not constrained by symmetry to be there. (d) The subspace x2 = 0

showing spiralling of the unstable manifolds of X, Y and P into A. The unstable manifold of Q (not

shown) behaves similarly. In each subspace, the flow is strongly contracting in the radial direction.

equilibria on C to −A. Apart from the heteroclinic connections from ±P

and ±Q to ±X and ±Y , the unstable manifolds of ±P and ±Q are con-

tained in the stable manifolds of A and −A. There are no equilibria other

than the origin and those mentioned above lying in the subspace x2 = 0.

See Figure 2(d).
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• A5: Equilibrium B has real eigenvalues corresponding to dynamics in its

unstable manifold, and these eigenvalues are unequal.

Assumptions A1–A5 ensure the existence of the heteroclinic network shown

in Figure 1. The symmetries κ1 and κ2 ensure that x1 and x2 cannot change

sign along a trajectory, so we consider x1 ≥ 0 and x2 ≥ 0 only. The complex

eigenvalues at A enable both signs of x3 and y3 to occur along trajectories. To

simplify our analysis, we make the further assumptions:

• A6: At A and B, the directions of strongest contraction lie along the coor-

dinate axes x1 and x2 respectively. At each of ±X, ±Y , ±P and ±Q, the

direction of strongest contraction lies in the (x3, y3) plane; this direction is

automatically transverse to the connections from ±P or ±Q to ±X or ±Y .

• A7: The two expanding eigenvectors at B lie in the x3 and y3 directions.

Without loss of generality we assume that the eigenvalue in the x3 direction

is larger than that in the y3 direction. We also assume that the linearisation

around A, where there are complex eigenvalues, is in Jordan form.

• A8: The equilibria ±X and ±Y are, respectively, on the x3 and y3 coordi-

nate axes.

Note that we can always choose coordinates so that at least one of A7

and A8 is satisfied, but we assume both are satisfied in order to simplify the

calculations. This has no effect on our results.

Thus the overall network is A → B → C → A, where, within C, trajectories

can visit any of ±X, ±Y , ±P and ±Q, although only in certain orders as

indicated in Figures 1 and 2. All cycles in the network contain either three or

four equilibria.

Definition. For a trajectory φ(t) close to the network, we define the

itinerary of φ(t) to be the sequence {ξj} of equilibria visited. That is, {ξj}

is the itinerary of the trajectory φ(t) if there exists an increasing sequence of

times {tj} such that the distance from φ(tj) to the equilibrium ξj is less than

some small constant. For a trajectory that stays close to a single heteroclinic

cycle, the itinerary will be a periodic sequence, with the (minimal) length of

the repeating segment of the sequence being equal to the number of equilibria

in the cycle.
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In this paper we use the following definition for switching, defined for a

particular trajectory close to a network. Note that Aguiar et al. [1] define

switching as a property of a network, not individual trajectories.

Definition. We say a trajectory switches if, as t → ∞, the itinerary is not

eventually a periodic sequence with minimal period three or four, that is, the

trajectory does not eventually remain near a single cycle of the network. In

this definition, we distinguish between conjugate equilibria, that is, X and −X

and so on.

2.1 Coordinates, cross-sections, and local maps

In this section, we define the coordinates, cross-sections, and local maps re-

quired for modelling the dynamics near our heteroclinic network.

Near A and B, we define local coordinates that place the equilibrium at the

origin. Assumption A7 guarantees that the coordinate axes are aligned with

the eigenvectors of the relevant linearised system. We use polar coordinates

when it is more convenient: (x3, y3) becomes (r3, θ3), where x3 = r3 cos θ3 and

y3 = r3 sin θ3. We write xi or yi if the local coordinate is the same as the

corresponding global coordinate. At A and B we use u1 and u2 for the radial

coordinate relative to the equilibrium points. At the invariant circle C, we use

a θ3-dependent coordinate transformation to define a radial coordinate u3.

Near A, the linearised flow is given by:

u̇1 = −rAu1, ẋ2 = eAx2, ẋ3 = −cAx3 − ωy3, ẏ3 = ωx3 − cAy3, (2)

where rA, eA, cA and ω are positive constants. In polar coordinates, the ẋ3

and ẏ3 equations give ṙ3 = −cAr3 and θ̇3 = ω.

Cross-sections near A are defined as:

Hin
A ≡ {(u1, x2, r3, θ3)

∣

∣ |u1| < h, 0 ≤ x2 < h, r3 = h, 0 ≤ θ3 < 2π},

Hout
A ≡ {(u1, x2, r3, θ3)

∣

∣ |u1| < h, x2 = h, 0 ≤ r3 < h, 0 ≤ θ3 < 2π}.
(3)

Here 0 < h ≪ 1 is a parameter small enough that the cross-sections lie within

the region of approximate linear flow near A (and similarly near B and C, as

required below).

The flow near A induces a map φA : Hin
A → Hout

A , which is obtained to
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lowest order by integrating equations (2):

φA(u1, x2, h, θ3) =

(

u1

(x2

h

)

rA
eA , h, h

(x2

h

)δA

, θ3 −
ω

eA
log
(x2

h

)

)

(4)

where δA = cA

eA
.

Near B, the linearised flow is:

ẋ1 = −cBx1, u̇2 = −rBu2, ẋ3 = eBxx3, ẏ3 = eByy3, (5)

where rB , eBx, eBy , cB are positive constants. From A7, we have eBx > eBy .

Cross-sections near B are defined as:

Hin
B ≡ {(x1, u2, r3, θ3)

∣

∣ x1 = h, |u2| < h, 0 ≤ r3 < h, 0 ≤ θ3 < 2π},

Hout
B ≡ {(x1, u2, r3, θ3)

∣

∣ 0 ≤ x1 < h, |u2| < h, r3 = h, 0 ≤ θ3 < 2π}.
(6)

The flow induces a map φB : Hin
B → Hout

B , which is obtained to lowest order

by integrating equations (5). The map cannot be written down explicitly, but

is computed as follows. First, the ẋ3 and ẏ3 equations are solved:

x3(t) = r3(0) cos θ3(0) eeBxt, y3(t) = r3(0) sin θ3(0) eeByt,

where r3(0) and θ3(0) are the initial values of the radial coordinates (i.e., on

Hin
B). The trajectory crosses Hout

B when r3(t) = h, so the transit time TB is

found by solving the equation

(

h

r3(0)

)2

= cos2 θ3(0) e2eBxTB + sin2 θ3(0) e2eByTB (7)

for TB in terms of r3(0) and θ3(0). This yields the local map φB : Hin
B → Hout

B :

φB(h, u2, r3, θ3) =
(

he−cBTB , u2e
−rBTB , h, tan−1

(

tan(θ3)e
(eBy−eBx)TB

))

. (8)

For later convenience, we define δBx ≡ δmin
B = cB

eBx
and δBy ≡ δmax

B = cB

eBy
.

The treatment of the dynamics near the invariant circle C is more compli-

cated. We assumed in A2 that C can be parameterised by the angle θ3. The

rate of relaxation onto C is controlled by the θ3-dependent eigenvalue −rC(θ3).

The assumption of strong contraction in the radial (r3) direction (A6) means
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that the dynamics on C of θ3 can be described by a one-dimensional nonlinear

ODE of the form θ̇3 = g(θ3). The presence of ±X and ±Y on the coordinate

axes will require g(0) = g(π/2) = g(π) = g(3π/2) = 0. The presence of ±P

and ±Q will require further zeroes of g. This results in the flow near C being

given by:

ẋ1 = eC(θ3)x1, ẋ2 = −cC(θ3)x2, u̇3 = −rC(θ3)u3, θ̇3 = g(θ3), (9)

where rC , eC and cC are positive functions of θ3.

Cross-sections near C are defined as:

Hin
C ≡ {(x1, x2, u3, θ3)

∣

∣ 0 ≤ x1 < h, x2 = h, |u3| < h, 0 ≤ θ3 < 2π},

Hout
C ≡ {(x1, x2, u3, θ3)

∣

∣ x1 = h, 0 ≤ x2 < h, |u3| < h, 0 ≤ θ3 < 2π}.
(10)

There is a continuum of heteroclinic connections from B to the various equi-

librium points in C, and defining the cross-sections in this way allows us to

keep track of all these connections.

The flow induces a map φC : Hin
C → Hout

C . As in the case of the flow past B,

we cannot write down the map explicitly, but it is computed as follows. First,

the θ̇3 equation is solved using an initial condition θ3(0), yielding θ3(t). Then

the ẋ1 and ẋ2 equations are solved:

x1(t) = x1(0) exp

(
∫ t

0
eC(θ3(t

′)) dt′
)

, x2(t) = h exp

(

−

∫ t

0
cC(θ3(t

′)) dt′
)

.

The trajectory crosses Hout
C when x1(t) = h, so the transit time TC can be

found in principle by solving

∫ TC

0
eC(θ3(t

′)) dt′ = − log

(

x1(0)

h

)

(11)

for TC in terms of the initial values x1(0) and θ3(0) on Hin
C . Then the local

map φC : Hin
C → Hout

C is given by

φC(x1, h, u3, θ3) =

(

h, h exp

(

−

∫ TC

0
cC(θ3(t

′)) dt′
)

, u3(TC), θ3(TC)

)

, (12)

where u3(TC) = u3 exp
(

−
∫ TC

0 rC(θ3(t
′)) dt′

)

. For later convenience, we define
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δCX , δCY , δCP and δCQ, to be the ratio cC(θ3)
eC(θ3)

evaluated at the points X, Y ,

P and Q, respectively.

Neither of the local maps φB and φC can be written down explicitly. In

the case of φB , the obstruction is only that we cannot write down an explicit

solution of (7) for the transit time TB. In the case of φC , the nonlinear evolution

of θ3 within C cannot be written down explicitly. However, in both cases,

we will be able to give bounds on some properties of the trajectories, and

this turns out to be sufficient for the purposes of determining stability and

switching properties of the network.

2.2 Global maps

We construct global maps Ψij to approximate the dynamics near the hetero-

clinic connections between A, B and C. In each case, we linearise the dynamics

about the unstable manifold leaving the invariant set, taking into account the

fact that the unstable manifold of A is one-dimensional, but the unstable man-

ifolds of B and C are two-dimensional. We make use of the equivariance of the

vector field in our map construction.

The simplest of the global maps is ΨAB : Hout
A → Hin

B . The heteroclinic

connection from A to B intersects Hout
A at (u1, x2, x3, y3) = (0, h, 0, 0), and

intersects Hin
B at (x1, u2, x3, y3) = (h, ǫB , 0, 0), for a small constant ǫB . Gener-

ically, ǫB 6= 0 and we assume that this is the case in the following. Near the

heteroclinic connection the map expressed in cartesian coordinates is at low-

est order an affine linear transformation. Converting to polar coordinates, this

yields, at leading order:

ΨAB(u1, h, r3, θ3) = (h, ǫB ,DB(θ3)r3, θ̄B(θ3)), (13)

where DB(θ3) is an order-one function of θ3 that indicates how the small

variable r3 is scaled in the transition from A to B, and θ̄B(θ3) is an order-one

function of θ3. The invariance of this map under the symmetry κ3 ensures that

there is no constant term in the r3 component. The overall effect of this map is

to multiply r3 by an order-one amount DB , and to rigidly rotate the angle θ3.

The unstable manifold of B is two-dimensional; it intersects Hout
B at

(x1, u2, r3, θ3) = (0, 0, h, θ3), for 0 ≤ θ3 < 2π, and it intersects Hin
C at
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(x1, x2, u3, θ3) = (0, h, ǫC (θ3), θ̄C(θ3)), where ǫC is a small function of θ3 and

θ̄C is an order-one function of θ3. For small x1 and u2, we have at leading

order:

ΨBC(x1, u2, h, θ3) =
(

DC(θ3)x1, h, ǫC(θ3), θ̄C(θ3)
)

, (14)

where DC(θ3) is an order-one function of θ3. Here ǫC(θ3) plays a similar role

to the constant ǫB in (13), except that it takes on a different constant value

for each heteroclinic connection and so is a function of θ3. As with ǫB, ǫC(θ3)

is generically non-zero and we assume that ǫC(θ3) 6= 0 for any θ3.

The effect of (14) is to multiply the small variable x1 by an order-one function

of θ3, and to map the outgoing angle θ3 to an incoming angle θ̄C . Unlike in

the case of ΨAB, the effect of θ̄C need not be a rotation.

For the global map ΨCA : Hout
C → Hin

A , we also use (r3, θ3) rather

than (x3, y3). The unstable manifold of C is two-dimensional; it intersects

Hout
C at (x1, x2, u3, θ3) = (h, 0, 0, θ3), where 0 ≤ θ3 < 2π, and it intersects Hin

A

at (u1, x2, r3, θ3) = (ǫA(θ3), 0, h, θ̄A(θ3)), where ǫA is a small function of θ3,

and θ̄A is an order-one function of θ3. For small x2 and u3, we have:

ΨCA(h, x2, u3, θ3) =
(

ǫA(θ3),DA(θ3)x2, h, θ̄A(θ3)
)

, (15)

where DA(θ3) is an order-one function of θ3. The effect of this map is to

multiply the small variable x2 by an order-one function of θ3, and to map the

outgoing angle θ3 to an incoming angle θ̄A. As in the case of ΨBC , the effect

of θ̄A need not be a rotation.

3 Analysis of the maps

By composing the local and global maps in an appropriate order, we construct

return maps that approximate the dynamics near the cycles in our network.

We are interested in finding conditions under which the network as a whole is

attracting, and in describing the switching properties of trajectories as they

travel around the network. We are particularly interested in trajectories that

repeatedly visit both X (or −X) and Y (or −Y ).

In our analysis, as in [20], we make use of the observation that at each cross-
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section, the four variables play distinct roles. Two variables are unimportant:

the one that is equal to h, and the one in the radial direction. Of the other two

variables, one is small and measures the distance from an invariant subspace,

and the other is the order-one angle θ3. At each cross-section, the roles change,

but there are always small and angle variables.

3.1 Stability results

To show that the network as a whole is attracting, we must find conditions

under which the small variable decreases each time around the network. In

order to do this, we bound this variable over all possible values of the angle

variable. This means that we need to take into account the details of which

part of C is visited by the trajectory. We are unable to compute the stability

result by direct computation of a return map, since the local maps φB and

φC are only known implicitly, but the lengthy computation below achieves the

same result.

We start on Hin
A at (u1, x2, h, θ3), and consider the effects of maps φA, ΨAB ,

φB , ΨBC , φC and ΨCA in turn. We assume that x2 ≪ 1. After φA and ΨAB ,

we arrive on Hin
B at:

(

h, ǫB , hDB

(

θ3 −
ω

eA
log
(x2

h

)

)

(x2

h

)δA

, θ̄B

(

θ3 −
ω

eA
log
(x2

h

)

))

,

where we have discarded all higher-order corrections. For convenience, we label

the values of r3 and θ3 on Hin
B as r

(Bin)
3 and θ

(Bin)
3 , with a similar convention

on other cross-sections. We define Dmax
B and Dmin

B to be the maximum and

minimum values of DB taken over all values of θ3. Then we can bound the

small variable r
(Bin)
3 by

hDmin
B

(x2

h

)δA

≤ r
(Bin)
3 ≤ hDmax

B

(x2

h

)δA

. (16)

Next, we consider the effect of maps φB and ΨBC . Recall from (A7) that

eBx > eBy. From (7) we can bound TB :

−
1

eBx
log

(

r
(Bin)
3

h

)

≤ TB ≤ −
1

eBy
log

(

r
(Bin)
3

h

)

.
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As a result, the small variable x
(Bout)
1 on Hout

B is bounded by

h

(

r
(Bin)
3

h

)δBy

≤ x
(Bout)
1 ≤ h

(

r
(Bin)
3

h

)δBx

.

Note that δBx < δBy. After ΨBC , trajectories enter Hin
C at:

(

DC

(

θ
(Bout)
3

)

x
(Bout)
1 , h, ǫC(θ3), θ̄C

(

θ
(Bout)
3

))

,

where we have discarded all higher-order corrections. We define Dmax
C and

Dmin
C to be the maximum and minimum values of DC taken over all values of

θ3. Then we can bound x
(Cin)
1 by

hDmin
C

(

r
(Bin)
3

h

)δBy

≤ x
(Cin)
1 ≤ hDmax

C

(

r
(Bin)
3

h

)δBx

. (17)

Finally, we consider the effects of maps φC and ΨCA. The first of these is

the most complicated as trajectories can enter the neighbourhood of C close

to any of the equilibrium points ±X, ±Y , ±P or ±Q (or in between), and can

similarly exit the neighbourhood of C close to any of the equilibrium points

±X, ±Y , ±P or ±Q (or in between). We take all possibilities into account

and derive a bound on the exit value of the small variable x2.

To simplify the discussion, we consider in detail only the case of trajectories

arriving at C between X and P ; the other cases can easily be deduced from

this one. Within C, X is stable, with a stable eigenvalue −λX , and P is

unstable, with an unstable eigenvalue λP , with λX , λP > 0. The corresponding

eigenvectors are within the (x3, y3) plane, and are tangent to C at X and P . To

aid the analysis, we consider cross-sections orthogonal to C, at θ3 = θX
3 +h and

θ3 = θP
3 −h, where θX

3 and θP
3 are the θ3 coordinates of X and P respectively,

and h is as before (see Figure 3). Note that we have defined our coordinates so

that θX
3 = 0, but for clarity of the following discussion we leave this constant

in symbolic form.

There are three main possibilities, indicated in Figure 3: (a) the trajectory

crosses Hin
C near X and must therefore cross Hout

C near X as well; (b) the tra-

jectory crosses Hin
C near P and also crosses Hout

C near P ; and (c) the trajectory

crosses Hin
C near P and leaves the neighbourhood of P , heading towards X,
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X Y

C

P

(a) (b)(c) Hin
C

Hout
CθX

3 θX
3 + h θP

3 − h θP
3

Figure 3. Schematic showing three main possibilities of how trajectories pass through the region

near C. Trajectories are shown as dashed lines, Poincaré sections as solid bold lines. Equilibria are

indicated by dots. The labels (a), (b) and (c) identify trajectories representative of three cases

discussed in the text.

and so crosses Hout
C near X. There are the additional possibilities that the

trajectory crosses Hin
C or Hout

C in between X and P ; we discuss these cases

below. Throughout this discussion, we disregard the radial coordinate r3.

Case (a) is straightforward: the flow near X is given by the linearisation

of (9) around X:

ẋ1 = eC(θX
3 )x1, ẋ2 = −cC(θX

3 )x2, θ̇3 = −λX(θ3 − θX
3 ), (18)

and so the linearised map near X takes an incoming point (x
(Cin)
1 , h, θ

(Cin)
3 ) to

(x1, x
(Cout)
2 , θ

(Cout)
3 ) =



h, h

(

x
(Cin)
1

h

)δCX

, θX
3 + (θ

(Cin)
3 − θX

3 )

(

x
(Cin)
1

h

)

λX

eC(θX
3

)



 ,

where δCX is the ratio of contracting to expanding eigenvalues evaluated at X.

Similarly, case (b) is treated by linearising (9) around P , and results in exit

values

(x1, x
(Cout)
2 , θ

(Cout)
3 ) =



h, h

(

x
(Cin)
1

h

)δCP

, θP
3 + (θ

(Cin)
3 − θP

3 )

(

x
(Cin)
1

h

)

−λP

eC (θP
3

)



 ,

where δCP = cC(θP
3 )

eC(θP
3 )

is the ratio of contracting to expanding eigenvalues eval-

uated at P . The condition that the trajectory crosses Hout
C before it crosses
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θ3 = θP
3 − h amounts to:

∣

∣

∣
θ
(Cin)
3 − θP

3

∣

∣

∣

(

x
(Cin)
1

h

)

−λP

eC(θP
3

)

< h,

that is, the trajectory must enter C close enough to P that the small variable x1

grows to size h before the angular separation θ3 − θP
3 grows to size h.

Finally, in case (c), there are three stages: linearised dynamics near P , a

jump from P to X, and linearised dynamics near X. The time for the first

stage is found by setting θ3(t) = θP
3 − h, and then the (x1, x2) coordinates on

this section are:






x

(Cin)
1

∣

∣

∣

∣

∣

θ
(Cin)
3 − θP

3

h

∣

∣

∣

∣

∣

− eC (θP
3 )

λP

, h

∣

∣

∣

∣

∣

θ
(Cin)
3 − θP

3

h

∣

∣

∣

∣

∣

cC(θP
3 )

λP






.

Then there is a jump from θ3 = θP
3 − h to θ3 = θX

3 + h, during which x1

and x2 change by a factor of DX,1 and DX,2 respectively. The values of DX,1

and DX,2 depend on h. Lastly, there is the linearised dynamics near X, which

results in an exit value of x2 given by:

x
(Cout)
2 = hDX,2

(

DX,1x
(Cin)
1

h

)δCX
∣

∣

∣

∣

∣

θ
(Cin)
3 − θP

3

h

∣

∣

∣

∣

∣

eC(θP
3 )

λP
(δCP−δCX)

. (19)

This case only occurs if

∣

∣

∣

∣

∣

θ
(Cin)
3 − θP

3

h

∣

∣

∣

∣

∣

eC(θP
3 )

λP

>
x

(Cin)
1

h
(20)

(otherwise we would be in case (b)). This condition allows us to bound the exit

values of x2. Note first that
∣

∣

∣

θ
(Cin)

3 −θP
3

h

∣

∣

∣

eC (θP
3 )

λP
< 1. Then if δCP > δCX , from (19)

we have that x
(Cout)
2 is bounded above by a constant times

(

x
(Cin)
1

)δCX

. Ad-

ditionally, using (20) in (19), we have that x
(Cout)
2 is bounded below by a

constant times
(

x
(Cin)
1

)δCP

. Similar considerations in the case that δCP < δCX
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give additional constraints which altogether result in:

hDmin
X

(

x
(Cin)
1

h

)max(δCP ,δCX)

≤ x
(Cout)
2 ≤ hDmax

X

(

x
(Cin)
1

h

)min(δCP ,δCX)

,

where Dmin
X and Dmax

X are constants that depend on DX,1 and DX,2 and some

exponents.

The same analysis can be used in the cases where trajectories enter or leave

the neighbourhood of C in between the neighbourhoods of P and X, with

only minor alterations of the values of the constants Dmin
X and Dmax

X . Then all

possibilities (a), (b) and (c) can be assembled, as well as including trajectories

that visit the equilibria Y and Q as well, and the map ΨCA can be applied.

All this results in a bound on the value of x
(Ain)
2 at Hin

A of the form:

hDmin
A

(

x
(Cin)
1

h

)δmax
C

≤ x
(Ain)
2 ≤ hDmax

A

(

x
(Cin)
1

h

)δmin
C

, (21)

where we interpret δmax
C as max (δCX , δCY , δCP , δCQ), and similarly δmin

C , and

the constants Dmin
A and Dmax

A are the smallest and largest of all the constants

in the local and global parts of the maps.

Recall that the trajectory started on Hin
A with particular values of x2 and

θ3. In computing these bounds, the value of θ3 has been lost, but inequalities

(16), (17) and (21) provide the smallest and largest possible values of x2 once

the trajectory returns to Hin
A :

hDmin
ABC

(x2

h

)δmax

≤ x
(Ain)
2 ≤ hDmax

ABC

(x2

h

)δmin

. (22)

Here δmax = δAδmax
B δmax

C , δmin = δAδmin
B δmin

C , and all the constants have been

amalgamated into Dmin
ABC and Dmax

ABC .

We have thus established a condition for asymptotic stability or instability of

the network. If δmin > 1, then a trajectory starting close enough to the network

will return closer to the network (with a smaller value of x2) regardless of which

itinerary it takes and regardless of the values of Dmin
ABC and Dmax

ABC , and so the

network is asymptotically stable. If δmax < 1, then a trajectory starting close

to the network will return further away from the network (with a larger value
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of x2) regardless of which itinerary it takes, and so the network is unstable.

The values of the constants can be scaled away in both these cases.

These conditions for asymptotically stability and instability are as expected:

the product of the ratio of the contracting to expanding eigenvalues should

be greater or less than one regardless of the itinerary. The more interesting

and complicated case is when δmin < 1 < δmax, in which case it appears

that whether there is net contraction or expansion depends on the itinerary.

We present some numerical results relevant to this case in section 4. These

results suggest that the network may be essentially asymptotically stable or

unstable, depending on which of the routes through the network is responsible

for δmax > 1 and which is responsible for δmin < 1.

3.2 Switching near the network

In this section, we show that close enough to the network, there are trajectories

that, over the course of two circuits around the network, visit any combination

of the equilibrium points within C in any order. This occurs whether or not

the network is asymptotically stable. We also show that when the network is

asymptotically stable, most trajectories repeatedly visit both X and −X as

they approach the network. On the assumption that the complex eigenvalues

at A mix trajectories effectively, we estimate how often trajectories visit ±Y

and show that, when the network is asymptotically stable, visits to ±Y become

rare as trajectories approach the network. Finally, we show that interesting

switching dynamics might be possible in the case δmin < 1 < δmax, when some

parts of the network are attracting and other parts are repelling.

Figure 4 shows schematically how trajectories visit different parts of C,

according to where they cross Hin
B . The majority of trajectories go to X or

−X, and there are cusp-shaped regions that visit P then X, P only, etc., on

their way to A.

Consider a line segment of initial conditions on Hin
B , with a fixed value of θ3

and a range of values of r3: 0 < ra
3 ≤ r3 ≤ rb

3 < h (see Figure 5). We choose

θ3 such that the family of trajectories first travels around the network via the

point X. We will show that the spread of r3 values translates into a spread

of θ3 values once the line segment has been mapped around the network. This

arises in particular from the complex eigenvalues at A. We can choose the
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X−X

Y
P → X

P

P → Y

Q

Q → Y

Q → −X

x3

y3

r3 = h

(a)

X
−X

Y

P → X

P

P → Y

Q

Q → Y Q → −X

r3 = h

r3 = 10−1h

r3 = 10−2h

θ3 = 0 θ3 = π
2 θ3 = π

(b)

Figure 4. Schematic diagram showing a slice (with constant u2) of the Poincaré section H
in
B

, using

(a) Cartesian and (b) logarithmic polar coordinates. Only part of the slice in (a) is shown in (b).

Each slice is divided into regions according to the equilibrium in C visited by the trajectories in

that region as they pass from B to A.

values of ra
3 and rb

3 such that after one cycle around the network, the line

segment covers θ3 ∈ [0, 2π]. This means that there are trajectories with initial

conditions in the initial segment that visit each of the different parts of C on

the second time around the network.
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θ3 = 0 θ3 = 2πθ3 = π

r3 = ra
3

r3 = rb
3

Figure 5. Schematic diagram showing a line segment (solid grey line) on H
in
B

(with

0 < ra

3 ≤ r3 ≤ rb

3 < h, shown in logarithmic polar coordinates) and its image (dashed grey line),

after one cycle around the network. The length of the line segment is chosen such that its image

covers the full range of values of θ3. Note that in any particular example, the image could be

considerably more complicated than a straight line.

In order to show this, we repeat part of the calculation of section 3.1 but

starting on Hin
B instead of Hin

A . For any given initial value of r3 on Hin
B , using

inequalities (17) and (21), the trajectory crosses Hin
A with a value of x

(Ain)
2 that

satisfies:

hDmin
CA

(r3

h

)δmax
B δmax

C

≤ x
(Ain)
2 (r3) ≤ hDmax

CA

(r3

h

)δmin
B δmin

C

, (23)

where Dmin
CA = Dmin

A

(

Dmin
C

)δmax
C and Dmax

CA = Dmax
A (Dmax

C )δ
min
C . On Hin

A , the

trajectory has a value of θ
(Ain)
3 close to that with which the unstable manifold

of X crosses Hin
A , since we chose our initial line segment such that trajectories

visited X. This is essentially a constant, but the complex eigenvalues mean

that θ
(Aout)
3 depends logarithmically on x

(Ain)
2 . We want to choose ra

3 and rb
3

such that even allowing for the range of values of x
(Ain)
2 in (23), the local

map (4) guarantees that the range of values of θ
(Aout)
3 covers at least [0, 2π].

This requires that

ω

eA
log





min
(

x
(Ain)
2 (rb

3)
)

max
(

x
(Ain)
2 (ra

3)
)



 > 2π,

where the minimum and maximum in this expression are taken over all possible
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values of θ3 on Hin
B . This last expression can be rewritten as

log

(

(rb
3/h)δ

max

(ra
3/h)δ

min

)

>
2πcA

ω
+ δA log

(

Dmax
CA

Dmin
CA

)

.

Values of ra
3 and rb

3 for which this is satisfied can clearly be found, regardless of

the values of the global constants or the values of δmin and δmax, provided that

ω 6= 0. Disregarding the global map constants (Dmax
CA etc.), the inequality is

satisfied if we choose rb
3 > ra

3 exp (2πcA/ωδmax). By choosing ra
3 small enough

(close enough to the network), the length of the initial line segment rb
3 − ra

3

can be made as small as we wish.

With this choice of ra
3 and rb

3, the line segment of initial conditions maps

to at least a full circle on Hout
A and consequently, using the global map (13),

also on Hin
B , since that map rigidly rotates the angle. Therefore, on their next

circuit around the network, trajectories from within this family could visit any

of ±X, ±Y , ±P or ±Q.

The same argument holds with minor changes regardless of the location

of the initial line segment, so we conclude that close to the network, there

are trajectories that visit any equilibrium point in C followed by any other

equilibrium point in C on two consecutive circuits of the network. Since there

is freedom in choosing the exact location of the line segment, this argument

implies the same conclusion can be drawn for open sets of initial conditions.

Thus we have shown that arbitrarily close to the network, there are open sets

of orbits that switch from any route around the network to any other route.

The argument above does not require the network to be asymptotically

stable, and only refers to two consecutive circuits of the network, and so does

not demonstrate that typical trajectories will continue to switch for ever as

they evolve. In the remainder of this section we consider long term switching,

first in the case where the network is attracting (δmin > 1) and then in the

case where δmin < 1 < δmax.

The argument above implies that of trajectories starting in a typical ball of

initial conditions close to the network and first visiting X, fewer than half will

go on to visit X on their second circuit of the network. In the case δmin > 1,

all trajectories starting in a typical ball approach the network, so their values

of x
(Ain)
2 get smaller and smaller, and hence the values of θ

(Aout)
3 for these
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trajectories get more and more spread out. Therefore, the argument that the

chance of visiting X on the next cycle around the network is less than half

continues to hold; in the limit, we expect that the set of trajectories that visit

only X and never visit −X has measure zero. Thus, typical trajectories should

visit both ±X roughly equally, and there is always a chance they could visit

±Y , ±P or ±Q as well.

We can estimate the probabilities of visiting different parts of the network

by computing the proportion of trajectories starting on Hin
B that will visit

X or Y on their next time around the network. Consider a circle of initial

conditions on Hin
B with r3 = a (a < h) and 0 ≤ θ3 < 2π. Of those in the first

quadrant, some will visit X, some will visit P and the rest will visit Y (see

Figure 4). The boundaries between the different possibilities are of the form

x3 = Kyα
3 , where α = eBx/eBy > 1, and K is a constant that depends on

which boundary is being considered. To simplify the discussion, we omit the

details of those trajectories that visit P , and consider only a single boundary

that separates trajectories that go via X and those that go via Y .

The intersection of the boundary with the circle r3 = a can be found by

solving

a2 = x2
3 + y2

3 = y2
3

(

1 + K2y2α−2
3

)

for y3 as a function of a, α and K. For small a and for α > 1, the solution is

approximately

y3 = a

(

1 −
1

2
K2a2α−2

)

, x3 = Kaα.

The proportion of trajectories starting on the circle r3 = a in Hin
B that visit Y

is approximately equal to 2x3/2πa = Kaα−1/π for small x3. The same pro-

portion visit −Y , and the remainder are split equally between X and −X.

In the case that the network is attracting (δmin > 1), the value of r3 on Hin
B

decreases each time around the network, so a → 0. Trajectories spend increas-

ingly long periods of time near A, where the eigenvalues are complex, so one

would expect that the angle θ3 becomes essentially a random variable. In this

case, the chance of visiting Y or −Y goes to zero, and the chances of visiting

X or −X will both tend to 1
2 .
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In the case δmax < 1, where the network is unstable, trajectories leave the

neighbourhood of the network and no estimates are possible.

The intermediate case (δmin < 1 < δmax) offers the interesting possibility

that trajectories might maintain an average distance from the network, either

in a periodic or chaotic fashion. In the latter case, one might expect that an

average, weighted using the probabilities above, of the contraction around one

part of the network and the expansion around the other part might lead to

conditions for the existence of a nearby invariant set. Making a weighted aver-

age in this way only makes sense if trajectories switch irregularly between ±X

and ±Y , so an existence condition could include a requirement for switching.

In the case of a periodic orbit, the weighting would depend on the itinerary of

the orbit. This weighted average would also depend on a, which we interpret

as the average distance from the network. We give numerical examples of this

phenomenon below, and defer a detailed analysis of this case to a later paper.

4 Numerical example

In this section we present some numerical results based on the following equa-

tions:

ẋ1 = x1(1 − x2
1 − Ex2

2),

ẋ2 = x2(1 − x2
2 − Fx2

3 − Gy2
3),

ẋ3 = x3(1 − Ex2
1 + Hx2

2 − x2
3 − Dy2

3) − ωy3x
2
1,

ẏ3 = y3(1 − Ex2
1 − Dx2

3 − y2
3) + ωx3x

2
1,

(24)

where D, E, F , G and H are parameters that we vary in our numerics. The

parameter H controls the relative values of the two expanding eigenvalues at

the point B. Throughout we assume that H > 0, and that D,E,F,G, (F +

G)/(D + 1) ∈ (1, 3), so that assumptions A1–A8 from section 2 are satisfied.

The values of all parameters and eigenvalue ratios are given in Table 1.

To simplify the presentation, we always choose the parameter D so that

δCP and δCQ are intermediate between δCX and δCY . With this constraint,

the additional combinations of eigenvalue ratios are δmax
C = max (δCX , δCY ),

δmin
C = min (δCX , δCY ). Recall that

δmax
B = δBy, δmin

B = δBx, δmax = δAδmax
B δmax

C , δmin = δAδmin
B δmin

C .
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Equilibrium point Eigenvalues Eigenvalue ratios

A: (1, 0, 0, 0) rA = 2, eA = 1, cA = E − 1 δA = E − 1

B: (0, 1, 0, 0) rB = 2, cB = E − 1, δBx = E−1
1+H

eBx = 1 + H, eBy = 1 δBy = E − 1

X: (0, 0, 1, 0) rC(θX
3 ) = 2, λX = D − 1, δCX = F − 1

eC(θX
3 ) = 1, cC(θX

3 ) = F − 1

Y : (0, 0, 0, 1) rC(θY
3 ) = 2, λY = D − 1, δCY = G − 1

eC(θY
3 ) = 1, cC(θY

3 ) = G − 1

P : (0, 0, 1√
D+1

, 1√
D+1

) rC(θP
3 ) = 2, λP = 2D−1

D+1 , δCP = F+G
D+1 − 1

eC(θP
3 ) = 1, cC(θP

3 ) = F+G
D+1 − 1

Q: (0, 0,− 1√
D+1

, 1√
D+1

) rC(θQ
3 ) = 2, λQ = 2D−1

D+1 , δCQ = F+G
D+1 − 1

eC(θQ
3 ) = 1, cC(θQ

3 ) = F+G
D+1 − 1

Table 1. Eigenvalues associated with equilibria of equations (24), and values of eigenvalue ratios. The

actual eigenvalues at A (for example) are −rA (radial), −cA ± iω (contracting) and eA (expanding). The

eigenvalues −λX , λP , −λY and λQ all have corresponding eigenvectors tangent to the invariant circle C.

Parameter I II III

F 1.63125 1.63125 1.61875

G 1.671386719 1.549316406 1.671386719

δBx = δmin
B 1.25 1.25 1.25

δBy = δmax
B 1.28 1.28 1.28

δCX 0.63125 0.63125 0.61875

δCY 0.671386719 0.549316406 0.671386719

δCP = δCQ 0.63496867 0.57453782 0.62878055

δX 1.01 1.01 0.99

δY 1.10 0.90 1.10

δmax 1.10 1.0342400 1.10

δmin 1.01 0.87890620 0.99

Table 2. Values of the parameters and the eigenvalue ratios for the three examples. The values in common

are ω = 1, H = 0.024, D = 1.02 and E = 2.28. The parameters F and G are set using F = 1 + δX (1 +

H)/(E − 1)2 and G = 1 + δY /(E − 1)2.
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We make the further definitions δX = δAδBxδCX and δY = δAδByδCY : these

are the eigenvalue ratios relevant to trajectories that leave B along the x3

(resp., y3) direction and visit ±X (resp., ±Y ).

To illustrate typical dynamics near the network, we present three examples.

In these examples, we choose values of δ close to 1 so that trajectories do not

approach or leave the network too quickly. The first example has δmin > 1, and

the other two have δmin < 1 < δmax, with different choices as to whether it is

δX or δY that is less than 1. The specific choices of parameters and eigenvalue

ratios for the different examples are given in Table 2.

• Example I: δmin = δX = 1.01 and δmax = δY = 1.10. In this example,

trajectories approach the network, predominantly switching between X and

−X.

• Example II: δmin < δY = 0.90 and δmax > δX = 1.01. In this case trajectories

behave much as in Example I, even though the network is not asymptotically

stable, since almost all trajectories visit ±X most of the time and so are

most heavily influenced by the value of δX .

• Example III: δmin = δX = 0.99 and δmax = δY = 1.10. Here trajectories

leave a neighbourhood of the network and end up displaying periodic or

chaotic switching.

Care needs to be taken with numerical integration of systems with hete-

roclinic cycles and networks, because of the potential for rounding errors to

cause qualitatively incorrect results. We first integrated equations (24) numer-

ically using the Bulirsch–Stoer adaptive integrator [32], with a tolerance for

the relative error set to 10−12 for each step. We also rewrote equations (24)

using logarithmic variables (log x1, log x2, log r3, θ3) instead of (x1, x2, x3, y3),

and integrated the converted equations with a tolerance of 10−10, rising to

10−8 for trajectories very close to the network. This enabled us to examine

whether the numerical methods handle the very large dynamic range of the

variables without being unduly affected by rounding errors. The two meth-

ods of computing solutions agree to within the specified tolerance when we

compute periodic trajectories (in calculations II and III), and they agree to

within the specified tolerance for times up to about 3000 when we compute

trajectories very close to the network. Beyond this time, trajectories computed

by the two methods diverge, but the qualitative behaviour of the trajectories
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Figure 6. Example I: Phase portrait showing the (x3, y3) projection of a single trajectory. The

trajectory leaves B (at the origin in this projection), goes to C (approximately the circle

x2
3 + y2

3 = 1) in a more-or-less straight line, travels around C towards ±X or ±Y , then spirals in

to A (also at the origin) before returning to B.

is the same. We have confirmed that the results are not sensitive to the exact

value of the the relative error tolerance that we chose. The results shown in

the figures below are all computed using logarithmic variables.

Poincaré sections were computed using algorithms from [29]. The nodes

on the network are all simple equilibria lying within coordinate planes, so the

numerical issues associated with cycling chaos (chaotic dynamics within nodes

on the network), as discussed for example in [7, 11] do not arise here.

4.1 Example I: Trajectories approach the stable network

In this example, δmin = δX = 1.01 and δmax = δY = 1.10 are both greater than

one, and the network is asymptotically stable. The phase portrait and time

series shown in Figures 6 and 7 correspond to a trajectory started from the

initial condition x1(0) = 0.01 = h, x2(0) = 1 and x3(0) = y3(0) = 10−5, and

illustrate the occurrence of repeated switching in the transient dynamics. As

expected from section 3.2, a typical trajectory lying near the network makes
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Figure 7. Example I: Time series for the trajectory shown in Figure 6. The x1 and x2 plots show

that the trajectory is approaching the network. The x3 plot shows the repeated switching

between X and −X, and the y3 plot shows that visits to ±Y become increasingly rare as the

trajectory gets closer to the network.

repeated switches between X and −X and visits ±Y occasionally, but the

visits to ±Y become increasingly rare as the trajectory gets closer to the

network.

Figure 8 shows where the trajectory intersects the Poincaré section Hin
B ,

defined here as x1 = h = 0.01, x2 ≈ 1 and r3 < h. After leaving B, the

trajectory visits ±X or ±Y : the symbols indicate which of the four possibilities

occurs immediately after the intersection marked. The boundaries separating

regions of Hin
B from which trajectories leave for ±X and ±Y can be clearly

seen, and are consistent with the results sketched in Figure 5. As the trajectory

approaches the network, travelling from top to bottom in Figure 8, visits to ±Y

are not seen for r3 < 10−20 or so, although they are in principle possible for

arbitrarily small r3. Visits to X and −X do not occur in a periodic fashion.
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Figure 8. Example I: Projection of a Poincaré section for the trajectory shown in Figure 6. Black

asterixes (blue plusses) indicate that the trajectory visits X (−X) immediately after leaving the

Poincaré section; red crosses (cyan boxes) indicate that the trajectory next visits Y (−Y ). The

single point in a box at the top is the first point in the trajectory, and the ten boxed points at the

bottom are the final points. This figure illustrates how the trajectory approaches the network; the

trajectory initially visits ±X and ±Y , but as it approaches the network, visits to ±Y become rare

while switching between X and −X is persistent. The boundaries of the cuspoidal regions are

indicative of the boundaries between trajectories that have different routes on their next circuit of

the network (c.f., Figure 4). They have been chosen to match the available data for larger r3.

4.2 Example II: Trajectories approach the unstable network

In this example, δmin < δY = 0.90 and δmax > δX = 1.01, and the network

is asymptotically unstable. However, trajectories that start close enough to

the network can still approach the network. For instance, the initial condition

x1(0) = 0.01 = h, x2(0) = 1, x3(0) = y3(0) = 10−40 yields the trajectory

shown in Figure 9 (below the horizontal line). This trajectory never visits ±Y

but does switch repeatedly between X and −X while getting closer to the

network. In contrast, the initial condition x1(0) = 0.01 = h, x2(0) = 1, x3(0) =

y3(0) = 10−20 yields the periodic orbit close to the network shown above the
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Figure 9. Example II: Poincaré section. The trajectory with initial condition x1(0) = 0.01 = h,

x2(0) = 1, x3(0) = y3(0) = 10−40 (below the horizontal line) approaches the network, starting at

the single boxed point just below the line, and ending at the ten boxed points at the bottom of the

figure. The trajectory with initial condition x1(0) = 0.01 = h, x2(0) = 1, x3(0) = y3(0) = 10−20

approaches a stable periodic orbit represented by the two boxed points above the line. Symbols are

as in Figure 8.

horizontal line in Figure 9. There are other stable periodic orbits further away

from the network.

This behaviour is consistent with the discussion in section 3. Since δX > 1,

a trajectory that starts close enough to the network will mostly only visit ±X

(almost never ±Y ) and so can approach the network even if δY < 1. On the

other hand, the discussion in section 3 predicts that there are trajectories

arbitrarily close to the network that visit ±Y sufficiently often to be repelled

from the network, and so the network is unstable. We have found examples of

stable periodic orbits that are quite close to the network; most likely there are

unstable periodic orbits as well, but we have not explored this possibility. We

conjecture that the measure of initial conditions that do not eventually go to
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Figure 10. Example III: Poincaré section, showing five trajectories separated by horizontal lines.

With x1(0) = 0.01 = h, x2(0) = 1, x3(0) = y3(0) = 10−200, the trajectory starts at the bottom of

the figure and moves away from the network, but finds a chaotic attractor with r3 < 10−67 (below

the lowest line). This trajectory chaotically switches between ±Y and ±X. Above this, there are

four examples of stable periodic orbits. The inset enlarges the boxed region near θ3 = π/2,

r3 = 10−70. Symbols and colours are as in Figure 8.

the network tends to zero as these get closer to the network, so the network

will be essentially asymptotically stable. The reason for this is that the cusps

delimiting trajectories that go to ±Y (and all their preimages) are thin.

4.3 Example III: Trajectories leave the unstable network

The final example has δmin = δX = 0.99 and δmax = δY = 1.10, and shows

that although the network is unstable, there are nearby periodic and chaotic

orbits. The Poincaré section in Figure 10 shows five trajectories. Each initially

has x1(0) = 0.01 = h and x2(0) = 1, and the x3 and y3 initial conditions vary

between trajectories: from bottom to top in the figure, the initial conditions
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are x3(0) = y3(0) = 10−200, 10−50, 10−40, 10−30 and 10−20, with the resulting

trajectories being separated by horizontal lines in the figure. Trajectories start-

ing with the four largest initial conditions find stable periodic orbits; there are

most likely additional orbits that we have not found. In contrast, trajectories

starting very close to the network move away and find a chaotic attractor at

around r3 ≈ 10−70. Within this attractor, the trajectory mostly visits ±X

and moves gradually away from the network, since δX < 1. As it does so,

the chance of visiting ±Y increases; when this happens (with δY > 1), the

trajectory jumps closer to the network. The same chaotic attractor was found

with several initial conditions in the range 10−200 ≤ x3(0) = y3(0) ≤ 10−60.

This example of sustained chaotic switching between ±X and ±Y illustrates

the ideas discussed in section 3.2.

5 Conclusions

In this paper we have illustrated a simple mechanism that produces switching

between different structurally stable heteroclinic cycles in a heteroclinic net-

work, namely the presence of complex eigenvalues in the linearisation about

one of the equilibria common to all cycles in the network. This is done in

the context of an example in R
4 with Z

3
2 symmetry. Switching arising from

the presence of complex eigenvalues has been seen in other examples [1, 2]

but in those cases the cycles are structurally stable because of transversal in-

tersections of some manifolds rather than purely because of the presence of

symmetry.

By the construction and analysis of maps that model the dynamics near

cycles in our network, we have found a simple condition under which the

heteroclinic network is asymptotically stable. The construction of the maps

used standard techniques that were modified to allow us to keep track of the

continuum of heteroclinic cycles present in our network. A crucial step in the

analysis of the network was recognition that the network could efficiently be

treated as a collection of connections between equilibria (A and B) and an

invariant circle (C) rather than a collection of cycles each of which connected

a set of equilibria. Earlier attempts to treat the heteroclinic connections going

to each of the equilibria on C (i.e., to ±X, ±Y ,±P and ±Q) separately proved

to be intractable and were ultimately unfruitful.
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We found that the network is asymptotically stable if δmin > 1. The quantity

δmin was defined in section 3.1 and is the product of the ratios of the (real

part of the) contracting and expanding eigenvalues at selected equilibria in

the network, namely at A, B, and at the equilibrium on C at which the

ratio of contracting to expanding eigenvalues is minimised. At B there are

two expanding eigenvalues, and δmin is defined using the larger of these two

eigenvalues. Effectively, δmin is the minimum ratio of contracting to expanding

eigenvalues that could be encountered by a trajectory on one circuit through

the network, starting and finishing at one of the common equilibria A or B.

Another important quantity for network stability is δmax. As defined in

section 3.1, δmax is effectively the maximum ratio of contracting to expanding

eigenvalues that could be encountered by a trajectory on one circuit through

the network. We showed that if δmax < 1, then a trajectory started close to

the network (but not on the stable manifold of any of the equilibria) will be

further away from the network after one circuit of the network, regardless of

its itinerary, and thus the network is unstable.

These results on network stability are a natural generalisation of established

stability results for heteroclinic cycles, where it has been shown that asymp-

totic stability of a cycle is often determined (in part, at least) by the ratio of

contracting to expanding eigenvalues along the cycle.

We have shown that switching is ubiquitous near our network. In particu-

lar, we showed that close enough to the network, there are trajectories that,

over the course of two cycles around the network, visit any combination of

the equilibrium points within C in any order. (A similar result holds for the

examples of [1, 2].) This occurs regardless of whether or not the network is

asymptotically stable. In the case that the network is asymptotically stable,

we showed that most trajectories repeatedly visit both X and −X as they

approach the network, while, on the assumption that the complex eigenval-

ues at A mix trajectories effectively, visits to ±Y become rare. Additive noise

could clearly have an important effect on the switching behaviour; we have

not explored this issue.

Our results about repeated switching in the network and our categorization

of network stability in terms of δmin and δmax has allowed us to identify an

interesting case, intermediate between asymptotic stability and complete in-

stability of the network. Specifically, if δmin < 1 < δmax then whether or not
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an individual trajectory approaches the network or diverges from it depends

on the detailed itinerary of that trajectory. We found two main cases. First, if

the ratio of contracting to expanding eigenvalues encountered by a trajectory

making a circuit near the dominant cycle in the network (i.e., a cycle involving

a visit to either X or −X) is greater than one (δX > 1, using the notation

of section 4), then we conjecture that almost all trajectories will eventually

converge to the network, even though the network is asymptotically unstable.

If on the other hand, the dominant cycle has the appropriate ratio of eigenval-

ues less than one (δX < 1) with one of the other cycles having a ratio greater

than one (δY > 1, in the notation of section 4) then there might be a deli-

cate balance between the repelling properties of the dominant cycle and the

attracting properties of the other cycle; most trajectories would be repelled

from the unstable network but may be attracted to a chaotic or periodic at-

tractor some small distance away from the network. In this case, the network

structure may still be observed in the long term dynamics of the system even

though the network is unstable.

An example of this phenomenon was shown in section 4 where results from

numerical integration of a particular system of differential equations were pre-

sented. We have not attempted to quantify the balance that occurs in the

example of a chaotic attractor in section 4, but defer this to a later paper. We

note that heteroclinic networks with delicate stability properties have been

studied before (e.g., in [21]); the point of difference here is that the switching

mechanism operating in our network ensures that most trajectories will visit

most parts of a neighbourhood of the network. The transition from δmin > 1

to δmin < 1 is an example of a resonance of the heteroclinic network, and it is

clear from this example that the network structure will make analysis of the

resonance quite involved. We defer this analysis to a future paper.
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