
Almost Runge-Kutta Methods

for Stiff and Non-Stiff Problems

Nicolette Rattenbury

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy, The University of Auckland, 2005.

Abstract

Ordinary differential equations arise frequently in the study of the physical world. Un-

fortunately many cannot be solved exactly. This is why the ability to solve these equations

numerically is important.

Traditionally mathematicians have used one of two classes of methods for numerically solving

ordinary differential equations. These are linear multistep methods and Runge–Kutta methods.

General linear methods were introduced as a unifying framework for these traditional methods.

They have both the multi-stage nature of Runge–Kutta methods as well as the multi-value

nature of linear multistep methods. This extremely broad class of methods, besides containing

Runge–Kutta and linear multistep methods as special cases, also contains hybrid methods, cyclic

composite linear multistep methods and pseudo Runge–Kutta methods.

In this thesis we present a class of methods known as Almost Runge–Kutta methods. This

is a special class of general linear methods which retains many of the properties of traditional

Runge–Kutta methods, but with some advantages.

Most of this thesis concentrates on explicit methods for non-stiff differential equations, paying

particular attention to a special fourth order method which, when implemented in the correct

way, behaves like order five. We will also introduce low order diagonally implicit methods for

solving stiff differential equations.

Acknowledgements

During the course of my PhD I have been very fortunate to receive the guidance and support

of many wonderful people.

My supervisor Prof. John Butcher is an inspiration. His enthusiasm is contagious. It is hard

not to be excited about an idea when discussing it with him. Nobody could ask for a more

patient, caring and supportive supervisor and friend.

Dr Robert Chan, my co-supervisor, has also been very supportive. He was always available

when I wished to discuss my work.

My office mate, Dr Allison Heard, has been a wonderful mentor and friend. The many hours

she has spent proof-reading my work has been invaluable. As have the many hours spent poring

over the odd cryptic crossword!

Our weekly numerical analysis meetings have also been a great source of support. They have

given me the chance to present my work informally and receive feedback. Apart from those I

have already mentioned, I would particularly like to thank Dr Will Wright, Dr Shirley Huang,

Angela Tsai and Dr Helmut Podhaisky. They have all become good friends as well as supportive

colleagues.

Finally I would like to thank my husband, Dr Nicholas Rattenbury. There is a great quotation

from the famous Winnie the Pooh that sums up how I feel about him “If you live to be 100,

I want to live to be 100 minus one day, so I never have to live without you”. I am extremely

lucky to have found someone who believes in me as much as he does.

Contents

Abstract iii

Acknowledgements v

Contents vii

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Ordinary differential equations . 2

1.1.1 Existence and uniqueness of solutions . 2

1.1.2 Stiff differential equations . 3

1.2 Delay differential equations . 5

1.3 A brief history of numerical methods . 5

2 General linear methods 9

2.1 Consistency and stability . 11

2.1.1 Stability regions . 12

2.2 Tree theory . 15

2.3 Order . 17

2.3.1 Algebraic analysis of order . 18

Expansion of the exact solution . 19

Elementary weights . 22

Expansion of the numerical solution . 23

viii Contents

2.4 Examples of general linear methods . 23

2.4.1 Runge–Kutta methods . 24

2.4.2 Linear multistep methods . 24

Adams methods . 25

BDF methods . 26

2.4.3 DIMSIMs . 27

2.4.4 IRKS methods . 30

3 Almost Runge–Kutta methods 35

3.1 General form of explicit ARK methods . 36

3.2 Order and related conditions . 38

3.3 Interpolation . 41

3.4 Methods with s = p . 42

3.4.1 RK stability . 42

3.4.2 Third order methods with three stages . 47

Order conditions . 47

Derivation of methods . 48

Some example methods . 50

Interpolation . 50

3.4.3 Fourth order methods with four stages . 53

Order conditions . 53

Derivation of methods . 56

Classification of the methods . 57

Some example methods . 61

Interpolation . 62

3.5 Methods with s = p + 1 . 63

3.5.1 RK-stability . 63

3.5.2 Third order methods with four stages . 64

Order conditions . 65

Derivation of methods . 65

Some example methods . 68

Interpolation . 69

3.5.3 Fourth order method with five stages . 71

Contents ix

Order conditions . 71

Derivation of methods . 72

Some example methods . 75

Interpolation . 76

4 A special ‘fifth’ order method 79

4.1 Introduction . 79

4.2 Obtaining order 5 performance . 83

4.3 Interpolation . 87

4.4 Error estimation . 88

4.5 Optimising these methods . 89

4.5.1 Fifth order error coefficients . 90

4.5.2 Sixth order error coefficients . 91

5 Stiff ARK methods 99

5.1 Introduction . 99

5.2 Order 3 stiff ARK methods . 104

Order conditions . 106

Derivation of methods . 106

Some example methods . 107

5.3 Order 4 stiff ARK methods . 107

Order conditions . 109

Derivation of methods . 109

Some example methods . 110

5.4 Starting the method . 111

6 Numerical Experiments 115

6.1 Non-stiff methods . 115

6.1.1 Fixed stepsize . 115

6.1.2 Fixed variable stepsize . 123

6.1.3 Variable stepsize . 129

6.1.4 DDEs . 131

6.2 Stiff methods . 133

7 Conclusions 135

x Contents

A Test Problems 139

A.1 DETest problems . 139

A.2 Stiff problems . 144

A.2.1 Oregonator . 144

A.2.2 HIRES . 144

A.2.3 Prothero-Robinson problem . 145

A.3 Delay differential equation problems . 145

A.3.1 Equation 1.1.6 . 145

A.3.2 Equation 1.1.10 . 145

A.3.3 Equation 1.1.12 . 146

A.3.4 Equation 1.4.1 . 146

A.3.5 Equation 1.4.6 . 147

A.3.6 Equation 1.4.9 . 147

References 149

Index 155

List of Tables

2.1 Trees up to order 6. 15

2.2 Number of trees of orders 1 to 10. 16

2.3 Order, density and symmetry of the trees up to order 5. 17

2.4 Elementary differentials for trees up to order 5. 20

2.5 Composition of elementary weight functions up to order 5. 21

2.6 Types of DIMSIMs . 28

3.1 Trees up to order 5 omitted due to the simplifying assumptions. 39

4.1 Algebraic analysis of the special 5 stage method. 82

6.1 Comparison of error behaviours for fixed and variable stepsizes for problem A5 using

method ARK45. 124

6.2 Comparison of error behaviours for fixed and variable stepsizes for problem B5 using

method ARK45. 124

6.3 Comparison of error behaviours for fixed and variable stepsizes for problem C5 using

method ARK45. 125

6.4 Comparison of error behaviours for fixed and variable stepsizes for problem D5 using

method ARK45. 125

6.5 Comparison of error behaviours for fixed and variable stepsizes for problem E5 using

method ARK45. 126

6.6 Comparison of error behaviours for fixed and variable stepsizes for problem A5 using

Dormand and Prince. 126

6.7 Comparison of error behaviours for fixed and variable stepsizes for problem B5 using

Dormand and Prince. 127

6.8 Comparison of error behaviours for fixed and variable stepsizes for problem C5 using

Dormand and Prince. 127

xii List of Tables

6.9 Comparison of error behaviours for fixed and variable stepsizes for problem D5 using

Dormand and Prince. 128

6.10 Comparison of error behaviours for fixed and variable stepsizes for problem E5 using

Dormand and Prince. 128

List of Figures

1.1 Implicit Euler and explicit Euler methods applied to differential equation 1.1. 4

2.1 Stability regions for explicit Runge–Kutta and composite Adams–Bashforth methods,

for orders 1 to 4. 14

2.2 The order of a general linear method. 18

4.1 The D1 problem solved using method (4.1) with 100 equal sized steps. An interpo-

lator has been used to estimate the solution 1
3 and 2

3 of the way through each

step. 88

4.2 Optimising our special ‘fifth’ order method. Solving for the free parameters c2 and c3. 93

5.1 Error constant for λ in A-stability interval . 105

5.2 Values of R(∞) . 105

5.3 Error constant for λ in A-stability interval, where λ1 = 0.394338 and λ2 = 1.28058. . 108

5.4 Values of R(∞) in A-stability interval, where λ1 = 0.394338 and λ2 = 1.28058. . . . 108

6.1 Comparison between RK45, RK56, ARK4, ARK451 and ARK452 using constant

stepsize for the class A DETest problems. 118

6.2 Comparison between RK45, RK56, ARK4, ARK451 and ARK452 using constant

stepsize for the class B DETest problems. 119

6.3 Comparison between RK45, RK56, ARK4, ARK451 and ARK452 using constant

stepsize for the class C DETest problems. 120

6.4 Comparison between RK45, RK56, ARK4, ARK451 and ARK452 using constant

stepsize for the class D DETest problems. 121

6.5 Comparison between RK45, RK56, ARK4, ARK451 and ARK452 using constant

stepsize for the class E DETest problems. 122

6.6 Comparison between RK56 and ARK45 using variable stepsize for a selection of the

DETest problems. 130

xiv List of Figures

6.7 Comparison between RK56 and ARK45 using variable stepsize for a selection of DDE

problems. 132

6.8 Comparison between DIARK3, DIARK4, DIRK3 and DIRK4 on a selection of stiff

problems. 134

CHAPTER 1

Introduction

Mathematics is not a careful march down a well-cleared highway, but a journey into

a strange wilderness, where the explorers often get lost. Rigour should be a signal

to the historian that the maps have been made, and the real explorers have gone

elsewhere.

W.S. Anglin

Ordinary differential equations arise frequently in the study of the physical world. Unfor-

tunately many cannot be solved exactly. This is why the ability to obtain accurate numerical

approximate solutions is important.

In this chapter we will give a summary of the types of differential equations we are interested

in, as well as give a brief background to the numerical methods that have traditionally been

used to solve them.

Chapter 2 gives an introduction to general linear methods, which were introduced as a unify-

ing framework for traditional methods. We will also see how much of the theory for traditional

methods can be generalised to encompass general linear methods.

In chapter 3 we introduce Almost Runge–Kutta methods. These are a special class of general

linear methods which were introduced to retain many of the desirable properties of Runge–Kutta

methods, with some of the advantages of linear multi–step methods. This chapter outlines most

of the theory of these methods.

Chapter 4 pays particular attention to a family of special fourth order methods which, when

implemented in the correct way, behave like order five.

2 Introduction

Stiff Almost Runge–Kutta methods are introduced in chapter 5. These methods can be used

to solve ordinary differential equations which exhibit the property known as stiffness.

In chapter 6 we give the results from some numerical experiments, where we compare the

performance of the methods described in this thesis with traditional Runge–Kutta methods in

solving standard test problems.

Finally, chapter 7 gives the conclusions from this study and outlines further work in this

area.

1.1 Ordinary differential equations

Ordinary differential equations can be represented in one of two ways. The first is known as

non-autonomous form. The ordinary differential equation (ODE) is written as

y′(x) = f(x, y(x)).

The variable x is called the independent variable and y(x) is the solution to the differential

equation. It should be noted that y(x) can be a vector-valued function, going from R → R
m,

where m is the dimension of the differential equation.

In the second form, y′(x) does not depend directly on x, except as a parameter of y(x). This

second form is known as autonomous form and can be written as

y′(x) = f(y(x)).

In this thesis, we will mainly consider equations in autonomous form. This does not lead to a

loss of generality, as any non-autonomous system may be written in autonomous form by adding

the equation x′ = 1 to the system.

If we add the initial condition y0 = y(x0) to the system of equations we get the initial value

problem (IVP)

y′(x) = f(y(x)), y0 = y(x0).

1.1.1 Existence and uniqueness of solutions

Before we look at ways to numerically approximate the solution to an initial value problem it is

important to consider whether the solution is unique, or even if indeed a solution exists at all.

There are many criteria for determining these two considerations, but the most commonly used

approach is the Lipschitz condition.

1.1 Ordinary differential equations 3

Definition 1.1 The function f : [a, b] × R
N → R

N is said to satisfy a Lipschitz condition in

its second variable if there exists a constant L, known as a Lipschitz constant, such that for any

x ∈ [a, b] and Y , Z ∈ R
N , ||f(x, Y) − f(x,Z)|| ≤ L||Y − Z||.

This definition is used in the following theorem.

Theorem 1.1 Consider an initial value problem

y′(x) = f(x, y(x)), y(x0) = y0,

where f : [a, b] × R
N → R

N is continuous in its first variable and satisfies a Lipschitz condition

in its second variable. Then there exists a unique solution to this problem.

Proof: A proof of this can be found in many books. See, for example, [6].

1.1.2 Stiff differential equations

There is no agreed formal definition of what stiffness is. Stiff problems can best be recognised

from the behaviour they can display when approximated by standard numerical methods. Al-

though the exact solution is extremely stable, the numerical solution can be extremely unstable.

Explicit methods cannot be used to solve this type of problem as the bounded stability regions

of these methods mean that they have to take excessively small stepsizes, even when the prob-

lem being solved is relatively smooth. That is, the stability requirements rather than accuracy

requirements drive the sizes of the steps taken. This behaviour is usually observed in problems

that have some components that decay much more rapidly than other components.

Due to this behaviour, ordinary differential equations have been divided into stiff and non-

stiff problems. Different types of numerical methods are needed for the different problem types.

This is a relatively new idea. It was not until 1952 that Curtiss and Hirschfelder [27] realised

that different types of methods work better on some classes of problems.

To see the effects of stiffness we will consider the simple initial value problem

y′ = −100(y − cos x), y(0) = 0. (1.1)

As we can see in Figure 1.1, when we apply the implicit Euler method the numerical solution

follows the exact solution fairly closely, taking only 5 steps. However, if we try to solve the same

initial value problem using the explicit Euler method the numerical solution oscillates around

the exact solution, even using as many as 75 steps.

With stiff problems, sometimes the Lipschitz condition can be too pessimistic. Instead we

consider the idea of a one-sided Lipschitz condition.

4 Introduction

0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

x

y

0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

x

y

Figure 1.1: Implicit Euler (left) and explicit Euler (right) methods applied to differential equa-

tion 1.1.

Definition 1.2 The function f satisfies a one-sided Lipschitz condition, with one-sided Lips-

chitz constant l, if for all x ∈ [a, b] and all u, v ∈ R
N ,

〈f(x, u) − f(x, v), u − v〉 ≤ l||u − v||2.

It is possible that a problem will have a very large Lipschitz constant, but a manageable

one-sided Lipschitz constant. This can help us find realistic growth estimates for the effect of

perturbations, as can be seen in the following theorem.

Theorem 1.2 If f satisfies a one-sided Lipschitz condition with constant l, and y and z are

each solutions of

y′(x) = f(x, y(x)),

then for all x ≥ x0,

||y(x) − z(x)|| ≤ exp(l(x − x0)) ||y(x0) − z(x0)||.

Proof: A proof of this can be found in [6].

1.2 Delay differential equations 5

1.2 Delay differential equations

In many cases ordinary differential equations are not the most natural way to model a physical

system. Consider, for example, population growth. This is commonly modelled using the

differential equation

N ′(t) = k

(
1 − N(t)

P

)
N(t), (1.2)

where k and P are positive constants. Although this is a reasonable model, it is perhaps more

realistic that the rate of change of the population at time t is dependent on the population at

some time t − r, r > 0. This changes equation (1.2) to

N ′(t) = k

(
1 − N(t − r)

P

)
N(t).

This type of equation is known as a delay differential equation (DDE). Delay differential equa-

tions depend not only on the solution at time t, but also on the solution at some previous time

or times. The general form of a delay differential equation is

y′(x) = f(y(x), y(x − τ1), ..., y(x − τn)).

The terms τ1, ..., τn are known as the delays or time lags. The complexity of these delays

determines the type of the delay equation. If the delays are constant we have a constant delay

differential equation. In the case where τ1, ..., τn are dependent on x we have a variable delay

differential equation. Finally, if the delays are functions of both x and y the delay differential

equation is called state dependent.

One main difference between delay differential equations and ordinary differential equations

is that delay differential equations require an initial value function, φ(x) such that for x < x0,

we require y(x) = φ(x), rather than just an initial value. It turns out that even if f(y, z),

τ1(x, y), ..., τn(x, y) and φ(x) are C∞, the solution y(x) is seldom better than C0 for x > x0.

These discontinuities propagate throughout the interval of integration. Any numerical solver

needs a strategy for handling these discontinuities.

1.3 A brief history of numerical methods

The first numerical method for solving ordinary differential equations was devised by Euler in

the 1760’s and republished in his collected works in 1913 [31]. The idea behind this method is

very simple. The interval to be integrated over is divided into sub-intervals of size hi, where

i is the step number. The stepsizes can either be the same, giving us constant stepsize, or of

6 Introduction

varying lengths, leading to a variable stepsize implementation. In practice, the stepsizes in a

variable stepsize implementation are chosen during the integration process. In each step we take

we assume that the value of the derivative does not change much over the step. Euler’s method

then states that the approximation to the solution at the end of the step is given by

yn+1 ≈ yn + hnf(xn, yn).

When yn = y(xn), the Taylor series expansion of this Euler approximation is equal to that

for the Taylor series expansion of y(xn+1) up to and including terms in the first power of hn.

The method is therefore said to be of order one. There are two natural ways of extending this

result to improve the accuracy.

The first generalisation of Euler’s method was by Adams and Bashforth [1] in 1883. Their

methods use more information from the past to take a step forward. The Adams–Bashforth

methods are a special case of a class of methods known as linear multistep methods, which take

the form

yn = α1yn−1 + · · · + αkyn−k + h (β0f(yn) + β1f(yn−1) + · · · + βkf(yn−k)) .

In the case of the Adams–Bashforth methods α1 = 1, α2, ..., αk = 0 and β0 = 0. An extension

of this idea was developed by Moulton [52] in which β0 	= 0. This gives the methods an implicit

structure. Changing the stepsize under this formulation is difficult as the integration coefficients

need to be recalculated in each step. In 1962 Nordseick [53] proposed a method which alleviates

this problem. The values passed from step to step are the scaled k +1 derivatives, including the

order zero derivative.

In practice linear multistep methods tend to be implemented as a predictor-corrector pair. An

approximation to yn is predicted using an Adams–Bashforth method and is then corrected using

an Adams–Moulton method. This idea was proposed by Milne [50] in 1949. Two advantages

of implementing the methods in this way are that the implementation is now explicit in nature

and they have a simple type of error estimator known as Milne’s device. The scaled difference

between the two approximations can be used to approximate the error.

Backward differentiation methods were introduced by Curtiss and Hirshfelder [27] in 1952.

For these methods β1 = β2 = · · · = βk = 0. These methods play a special role in the solution

of stiff problems, despite not being A-stable for methods of order 3 or above. The most widely

used adaptive codes for solving stiff differential equations are based on backward differentiation

methods. The first code was written by Gear [36] in 1971, making use of Nordseick represen-

tation. For a Nordsieck method of order p, the data imported into step number n consists of

1.3 A brief history of numerical methods 7

approximations to

y(xn−1), hy′(xn−1),
1
2!

h2y′′(xn−1), · · · ,
1
p!

hpy(p)(xn−1).

The output quantities, therefore, approximate

y(xn), hy′(xn),
1
2!

h2y′′(xn), · · · ,
1
p!

hpy(p)(xn). (1.3)

To change the stepsize from h to rh, the quantites in (1.3) are scaled by powers of the scale

factor r, giving

y(xn), rhy′(xn),
1
2!

(rh)2y′′(xn), · · · ,
1
p!

(rh)py(p)(xn).

This is then used as the input to step number n + 1.

A large proportion of the theory of linear multistep methods was developed by Dahlquist

[28].

The other obvious generalisation of Euler’s method is to use more derivative values per

step. Methods of this type were first devised in 1895 by Runge [61]. Further contributions

were made by Heun [40] and Kutta [48]. Kutta completely characterised the family of fourth

order methods and developed the first fifth order method. These methods are now known as

Runge–Kutta methods and take the form

Yi = yn−1 + h

s∑
j=1

aijf(xn−1 + cjh, Yj), i = 1, ..., s (1.4)

yn = yn−1 + h

s∑
i=1

bif(xn−1 + cih, Yi), (1.5)

where s is the number of internal stages. Many contributions were also made by Nyström who

developed special methods for second order differential equations [54]. It was not until the

1950’s that methods of order six were developed by Hut̆a [43], [44]. Since then many people

have developed methods of higher orders.

Another important development of these methods was the introduction of error estimators,

enabling variable stepsize implementation. The first error estimators were developed by Richard-

son [59] in 1927. These estimators require each step to be repeated using two steps with half

the original stepsize. Although effective, this method of error estimation is expensive. The

standard approach now used is embedded methods, where a Runge–Kutta method of one order

is embedded inside a higher order Runge–Kutta method. The difference between these two

approximations can be used to approximate the error. This idea was originally developed by

Merson [49] in 1957, but considerable work has also been done in this area by Fehlberg [32],

[33], Verner [66] and Dormand and Prince [29].

CHAPTER 2

General linear methods

Mathematics is like checkers in being suitable for the young, not too difficult, amus-

ing, and without peril to the state.

Plato

General linear methods were introduced by Butcher [4] as a unifying framework for traditional

methods. They have both the multi-stage nature of Runge–Kutta methods as well as the multi-

value nature of linear multistep methods.1 This extremely broad class of methods, besides

containing Runge–Kutta and linear multistep methods as special cases, also contains hybrid

methods, cyclic composite linear multistep methods and pseudo Runge–Kutta methods.

For compactness of notation we write Y and F for the vector of Yi and Fi values respectively,

where Yi ≈ y(xn + cih) is the approximation at the i-th internal stage and Fi = f(x, Yi). As

with a Runge-Kutta method, the vector c = [c1, c2, · · · , cs]T , is called the vector of abscissae.

For ease of computation it is usually preferred that the stages approximate the solution within

the current integration interval i.e. 0 ≤ ci ≤ 1, however this isn’t always the case. We also

write y[n−1] for the vector of approximations imported into step n and y[n] for the quantities

computed in this step and exported for use by the following step. The detailed computation is

now based on the formula

Y = h(A ⊗ I)F + (U ⊗ I)y[n−1] (2.1)

for the stages, and

y[n] = h(B ⊗ I)F + (V ⊗ I)y[n−1] (2.2)
1A method is multi-value if it propogates more than one value for each component. In contrast, a method is

multi-stage if it utilizes intermediate values on each step to generate the new values to be propogated.

10 General linear methods

for the output values, where I is the identity matrix of size equal to the differential equation

system to be solved. The Kronecker product of two matrices is given by the following definition.

Definition 2.1 If G is an m × n matrix and H is a p × q matrix, then the Kronecker product

G ⊗ H is the mp × nq block matrix

G ⊗ H =


g11H · · · g1nH

...
. . .

...

gm1H · · · gmnH



=



g11h11 g11h12 · · · g11h1q · · · · · · g1nh11 g1nh12 · · · g1nh1q

g11h21 g11h22 · · · g11h2q · · · · · · g1nh21 g1nh22 · · · g1nh2q

...
...

. . .
...

...
...

. . .
...

g11hp1 g11hp2 · · · g11hpq · · · · · · g1nhp1 g1nhp2 · · · g1nhpq

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

gm1h11 gm1h12 · · · gm1h1q · · · · · · gmnh11 gmnh12 · · · gmnh1q

gm1h21 gm1h22 · · · gm1h2q · · · · · · gmnh21 gmnh22 · · · gmnh2q

...
...

. . .
...

...
...

. . .
...

gm1hp1 gm1hp2 · · · gm1hpq · · · · · · gmnhp1 gmnhp2 · · · gmnhpq



.

With a slight abuse of notation, equations (2.1) and (2.2) are often written in the form



Y1

Y2

...

Ys

y
[n]
1

...

y
[n]
r


=

 A U

B V





hf(Y1)

hf(Y2)
...

hf(Ys)

y
[n−1]
1

...

y
[n−1]
r


, (2.3)

where s is the number of internal stages and r is the number of values passed from step to step.

To begin computation with a general linear method, certain values in addition to the intial

values for the ODE are needed. These are determined by special starting methods, such as those

detailed in section 2.3.

2.1 Consistency and stability 11

2.1 Consistency and stability

As with linear multistep methods, a general linear method needs to be consistent and stable in

order to give meaningful results.

At the very least we would expect our method to be able to solve the trivial initial value

problem y′(x) = 0, y(0) = a, exactly at the beginning and end of each step. Therefore, we

would like to ensure

y[n−1] = uy(xn−1) + O(h),

y[n] = uy(xn) + O(h),

for a vector u, which is called the pre-consistency vector. Applying a general linear method to

the problem y′(x) = 0 gives

Y [n] = Uy[n−1],

y[n] = V y[n−1].

This leads to the following definition.

Definition 2.2 A general linear method is ‘preconsistent’ if there exists a vector u such that

e = Uu,

u = V u,

where e is a vector of all ones.

We would also like a method to be able to solve the simple initial value problem y′(x) = 1,

y(x0) = 0, exactly at the beginning and end of each step. If the quantities being passed from step

to step are linear combinations of the solution y(x) and the scaled derivative y′(x) we require

Y [n] = ey(xn) + chy′(xn) + O(h2)

y[n−1] = uy(xn−1) + vhy′(xn−1) + O(h2)

y[n] = uy(xn) + vhy′(xn) + O(h2),

where the vector v is called the consistency vector. Applying a general linear method to the

problem y′(x) = 1, y(x0) = 0 gives

Y [n] = Aeh + Uy[n−1],

y[n] = Beh + V y[n−1].

12 General linear methods

Using the exact solution y(x) = x−x0 and the equations above leads to the following definition.

Definition 2.3 A general linear method is ‘consistent’ if it is preconsistent with preconsistency

vector u and there exists a vector v such that

u + v = Be + V v.

Stability is also necessary to obtain meaningful results. Stability guarantees that errors

introduced in a step do not grow without bound in subsequent steps. A general linear method

is stable if the solution to the trivial differential equation y′(x) = 0 is bounded. Applying a

general linear method to this differential equation gives

y[n] = V y[n−1] = V ny[0].

This leads to the following definition.

Definition 2.4 A general linear method is ‘stable’ if there exists a constant C such that for all

n = 1, 2, ..., ||V n|| ≤ C.

As with linear multistep methods, it is known that stability and consistency are necessary

and sufficient for convergence of general linear methods. This was shown by Butcher in [4]. A

definition of convergence is given here.

Definition 2.5 A general linear method is ‘convergent’ if for any initial value problem

y′(x) = f(y(x)), y(x0) = y0,

subject to the Lipschitz condition ||f(y)−f(z)|| ≤ L||y−z||, there exists a non-zero vector u ∈ R
r,

and a starting procedure φ : (0,∞) → R
r, such that for all i = 1, 2, ..., r, limh→0 φi(h) = uiy(x0),

and such that for any x̄ > x0, the sequence of vectors y[n], computed using n steps with stepsize

h = (x̄ − x0)/n and using y[0] = φ(h) in each case converges to uy(x̄).

2.1.1 Stability regions

As with Runge–Kutta methods and linear multistep methods, the linear stability of general

linear methods is studied by considering the scalar test problem

y′ = qy.

2.1 Consistency and stability 13

Applying equation (2.3) to this problem gives

Y = AhqY + Uy[n−1] (2.4)

y[n] = BhqY + V y[n−1] . (2.5)

Rearranging equation (2.4) and substituting into equation (2.5) gives

y[n] = M(hq)y[n−1],

where

M(z) = V + zB(I − zA)−1U,

and z = hq. The matrix M is known as the stability matrix of the method.

The stability function of the method is determined by the characteristic polynomial of M ,

as given in the following definition.

Definition 2.6 The ‘stability function’ for a general linear method with stability matrix M(z)

is the polynomial Φ(w, z)

Φ(w, z) = det(wI − M(z)).

The ‘stability region’ is the subset of the complex plane such that if z is in this subset, then

∞
sup
n=1

||M(z)n|| < ∞. (2.6)

The solution to equation (2.6) has a decaying norm, and if z lies in this region, then for this

linear problem, the numerical solution obtained by (2.3) decays as well.

The traditional definitions of A-stability and L-stability can be slightly modified to apply to

general linear methods.

Definition 2.7 A general linear method is ‘A-stable’ if M(z) is power bounded for every z in

the left half complex plane.

Definition 2.8 A general linear method is ‘L-stable’ if it is A-stable and ρ(M(∞)) = 0.

Most other types of stability can also be modified to apply to general linear methods, but this

is not required for this work.

The stability function of a general linear method is more complicated than the stability

function of a Runge–Kutta method or linear multistep method. One possible way of simplifying

14 General linear methods

this function is to make it equivalent to the stability function of one of the traditional methods.

We would like the stability region to take up as much of the left half complex plane as possible,

hence giving good stability properties.

If we compare the stability regions of different methods it becomes apparent that the number

of stages has the greatest effect on the size of the stability region. To make the comparison

between Runge–Kutta methods and linear multistep methods fair we should use the stability

region of s compositions of the linear multistep method, where s is the number of stages of the

Runge–Kutta method. This composition gives a linear multistep method with s stages.

3i

−3i

−1−3

p=1

p=2

p=3

p=4
3i

−3i

−1−3

p=1

p=2

p=3

p=4

Figure 2.1: Stability regions for explicit Runge–Kutta (left) and composite Adams–Bashforth

methods (right), for orders 1 to 4.

The stability regions of explicit Runge–Kutta methods and composite Adams–Bashforth

methods of orders 1 to 4 are shown in Figure 2.1. It is clear from the figure that Runge–Kutta

methods have the more desirable stability properties. This leads to the following definition.

Definition 2.9 If a general linear method has a stability function which takes the special form

Φ(w, z) = det(wI − M(z)) = wr−1(w − R(z)),

where R(z) is the stability region of a Runge–Kutta method, then the method is said to have

Runge–Kutta stability.

2.2 Tree theory 15

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

∅
t10 t11 t12 t13 t14 t15 t16 t17 t18 t19

t20 t21 t22 t23 t24 t25 t26 t27 t28 t29

t30 t31 t32 t33 t34 t35 t36 t37

Table 2.1: Trees up to order 6.

Trees up to order 6. Each vertex is denoted by a dot. The order of a tree is equal to the

number of vertices.

This is equivalent to the stability matrix having only one non-zero eigenvalue, which is R(z).

2.2 Tree theory

For a convenient development of the order of a method, we need to introduce some basic tree

theory. This theory will be used in the next section, and throughout the rest of this thesis.

A tree is a rooted graph which contains no circuits. The symbol τ is used to represent

the tree with only one vertex. All rooted trees can be represented using τ and the operation

[t1, ..., tm]. This operation takes the roots of the trees t1, . . . , tm and joins them to a new root.

This is known as grafting.

We first need to introduce some definitions. The order of a tree is a measure of how big the

tree is.

16 General linear methods

Order 1 2 3 4 5 6 7 8 9 10

Number of trees 1 1 2 4 9 20 48 115 286 719

Cumulative total 1 2 4 8 17 37 85 200 486 1205

Table 2.2: Number of trees of orders 1 to 10.

Definition 2.10 The order of the tree t is defined by

r(t) =

 1, if t = τ

1 + r(t1) + · · · + r(tm), if t = [t1, ..., tm]

In other words, the order of a tree is the number of vertices the tree has. The trees up to

order 6 can be seen in Table 2.1. In Table 2.2 the number of trees of each order up to order ten

are given, along with the number of trees of order less than or equal to that order. We see that

the number of trees increases quickly.

The height of a tree is k− 1, where k is the number of vertices in the longest path beginning

with the root.

The density of a tree is a measure of ‘non-bushyness’. The higher the density the less bushy

the tree is.

Definition 2.11 The density of the tree t = [t1, ..., tm] is defined by

γ(t) =

 1, if t = τ

r(t)γ(t1)γ(t2) · · · γ(tm), if t = [t1, ..., tm]

A simple way of finding the density of a tree is to attach to each vertex a number that is

equal to the number of vertices above it plus one. The density is then equal to the product of

the numbers attached to the vertices.

Example: The tree represented by [[τ3], [τ, [τ]]]

1 1 1 1 2

1

4 4

r(t) = 9

2.3 Order 17

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

r(t) 1 2 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5

γ(t) 1 2 3 6 4 8 12 24 5 10 15 30 20 20 40 60 120

σ(t) 1 1 2 1 6 1 2 1 24 2 2 1 2 6 1 2 1

Table 2.3: Order, density and symmetry of the trees up to order 5.

γ(t) = 9 × 4 × 4 × 2

= 288

A bushy tree is defined to be a tree of height one, which therefore has a density of r(t). A

tall tree is defined to be a tree of height r(t)−1, which therefore has a density of r(t)!. Examples

of bushy trees are t2, t3, t5, t9, and t18. Examples of tall trees are t2, t4, t8 and t17.

The symmetry of a tree is the order of the automorphism group of t. The mapping of a tree

onto itself is a mapping that preserves the root and the tree structure. It is a measure of how

symmetric the tree is.

Definition 2.12 The symmetry of the tree t = [tn1
1 , ..., tnm

m], where t1, .., tm are all distinct is

defined by

σ(t) =

 1, if t = τ

n1!n2! ... nm!σ(t1)n1 ... σ(tm)nm , if t = [tn1
1 , ..., tnm

m]

A high value of σ indicates a highly symmetric tree.

The order, density and symmetry of trees up to order 5 can be found in Table 2.3.

2.3 Order

As many general linear methods are multi-value methods they require a starting procedure to

obtain an initial vector, y[0], from the initial value y0. If we let Y 1, . . . , Y s be the internal stages,

the starting procedure can be defined as

Y = hS11f(Y) + S12y0

y[0] = hS21f(Y) + S22y0.

18 General linear methods

���� ��

�
�
�
�

��
��
��
��

S S

E

M

M ◦ S
S ◦ E

y0 y1

y[0]

O(hp+1)

y[1]

Figure 2.2: The order of a general linear method.

This can be written as the (s + r) × (s + 1) partitioned tableau: S11 S12

S21 S22

 ,

where s is the number of internal stages of the starting procedure and r is the number of initial

approximations required. For preconsistency it is required that S22 = u and S12 = e, where e is

the vector of length s, with each component equal to 1.

If a method is of order p it is generally the case that each of the r components of y[0] will be

of order at least p.

The order of a method can now be defined in relation to a starting method. If the starting

method, S, is applied to a problem, followed by one step of the method M the result is M ◦ S.

The exact solution shifted forward one step is represented by the shift operator E. If it were

possible to take one step forward in time using E then apply the starting method the result

would be S ◦ E. As we can see in Figure 2.2, a method is of order p if the difference between

these two approximations is O(hp+1). In general, the first component of the solution vector is

an approximation to y(xn). This means it is only the first component that is required to be

O(hp+1) to have a method of order p.

2.3.1 Algebraic analysis of order

As with traditional methods, to determine the order of a general linear method we compare the

Taylor series expansions of the exact and numerical solutions.

2.3 Order 19

Expansion of the exact solution

The Taylor series expansion of the exact solution is given by

y(x + h) = y(x) + y′(x) +
h2y′′(x)

2!
+

h3y′′′(x)
3!

+ · · · ,

where y′(x) = f(y(x)).

Using the chain rule to evaluate each term gives

y(x + h) = y(x) + f(y(x)) +
h2f ′(y(x))(f(y(x)))

2!
+

h3

3!
(
f ′′(y(x))(f(y(x)), f(y(x))) + f ′(y(x))(f ′(y(x))(f(y(x))))

)
+ · · ·

Each of these individual terms were named elementary differentials by Butcher [3]. There is a

direct relationship between elementary differentials and trees, leading to the following definition.

Definition 2.13 For any t ∈ T , the elementary differential, F (t), for a function f is defined

by:

F (t)(y(x)) =


y(x), if t = ∅,
f(y(x)), if t = τ

f (m)(F (t1), F (t2), . . . , F (tm))(y(x)), if t = [t1, t2, . . . , tm].

Each elementary differential can easily be found uniquely from its associated rooted tree where

each vertex is associated with the nth derivative of f , where n is the number of children that

vertex has. The elementary differentials for trees up to order 5 are shown in Table 2.4.

The nth derivative of y(x) can be found by taking a linear combination of the elementary

differentials of the trees of order n. This leads to the following theorem.

Theorem 2.1 If y(x) is n times differentiable then

y(n)(x) =
∑

r(t)=n

ε(t)F (t)(y(x)),

where ε(t) is the number of ways of labelling a tree such that if (i, j) is a labelled edge, then

i < j. The value of ε(t) is

ε(t) =
r(t)!

γ(t)σ(t)
.

Proof: A proof of this can be found in [6].

20 General linear methods

t F (t)(y)

t1 f

t2 f ′f

t3 f ′′(f, f)

t4 f ′f ′f

t5 f ′′′(f, f, f)

t6 f ′′(f, f ′f)

t7 f ′f ′′(f, f)

t8 f ′f ′f ′f

t9 f (4)(f, f, f, f)

t10 f ′′′(f, f, f ′f)

t11 f ′′(f, f ′′(f, f))

t12 f ′′(f, f ′f ′f)

t13 f ′′(f ′f, f ′f)

t14 f ′(f ′′′(f, f, f))

t15 f ′f ′′(f, f ′f)

t16 f ′f ′f ′′(f, f)

t17 f ′f ′f ′f ′f

Table 2.4: Elementary differentials for trees up to order 5.

2.3 Order 21

t 0
∅

β
(t

0
)

t 1
α
(t

1
)β

(t
0
)
+

β
(t

1
)

t 2
α
(t

2
)β

(t
0
)
+

α
(t

1
)β

(t
1
)
+

β
(t

2
)

t 3
α
(t

3
)β

(t
0
)
+

α
(t

1
)2

β
(t

1
)+

2α
(t

1
)β

(t
2
)+

β
(t

3
)

t 4
α
(t

4
)β

(t
0
)
+

α
(t

2
)β

(t
1
)
+

α
(t

1
)β

(t
2
)+

β
(t

4
)

t 5
α
(t

5
)β

(t
0
)
+

α
(t

1
)3

β
(t

1
)+

3α
(t

1
)2

β
(t

2
)
+

3α
(t

1
)β

(t
3
)
+

β
(t

5
)

t 6
α
(t

6
)β

(t
0
)
+

α
(t

1
)α

(t
2
)β

(t
1
)+

α
(t

2
)β

(t
2
)
+

α
(t

1
)2

β
(t

2
)+

α
(t

1
)β

(t
3
)
+

α
(t

1
)β

(t
4
)
+

β
(t

6
)

t 7
α
(t

7
)β

(t
0
)
+

α
(t

3
)β

(t
1
)
+

α
(t

1
)2

β
(t

2
)
+

2α
(t

1
)β

(t
4
)+

β
(t

7
)

t 8
α
(t

8
)β

(t
0
)
+

α
(t

4
)β

(t
1
)
+

α
(t

2
)β

(t
2
)+

α
(t

1
)β

(t
4
)+

β
(t

8
)

t 9
α
(t

9
)β

(t
0
)
+

α
(t

1
)4

β
(t

1
)+

4α
(t

1
)3

β
(t

2
)
+

6α
(t

1
)2

β
(t

3
)+

4α
(t

1
)β

(t
5
)
+

β
(t

9
)

t 1
0

α
(t

1
0
)β

(t
0
)+

α
(t

1
)2

α
(t

2
)β

(t
1
)
+

(2
α
(t

1
)α

(t
2
)
+

α
(t

1
)3

)β
(t

2
)+

(α
(t

2
)+

α
(t

1
)2

)β
(t

3
)
+

α
(t

1
)2

β
(t

4
)
+

2α
(t

1
)β

(t
6
)+

α
(t

1
)β

(t
5
)
+

β
(t

1
0
)

t 1
1

α
(t

1
1
)β

(t
0
)+

α
(t

1
)α

(t
3
)β

(t
1
)+

α
(t

3
)β

(t
2
)+

α
(t

1
)3

β
(t

2
)+

α
(t

1
)2

β
(t

3
)
+

2α
(t

1
)2

β
(t

4
)+

α
(t

1
)β

(t
7
)
+

2α
(t

1
)β

(t
6
)+

β
(t

1
1
)

t 1
2

α
(t

1
2
)β

(t
0
)+

α
(t

1
)α

(t
4
)β

(t
1
)+

α
(t

4
)β

(t
2
)+

α
(t

1
)α

(t
2
)β

(t
2
)+

α
(t

2
)β

(t
3
)+

α
(t

1
)2

β
(t

4
)+

α
(t

1
)β

(t
6
)+

α
(t

1
)β

(t
8
)
+

β
(t

1
2
)

t 1
3

α
(t

1
3
)β

(t
0
)+

α
(t

2
)2

β
(t

1
)+

2α
(t

1
)α

(t
2
)β

(t
2
)+

2α
(t

2
)β

(t
4
)+

α
(t

1
)2

β
(t

3
)
+

2α
(t

1
)β

(t
6
)
+

β
(t

1
3
)

t 1
4

α
(t

1
4
)β

(t
0
)+

α
(t

5
)β

(t
1
)
+

α
(t

1
)3

β
(t

2
)+

3α
(t

1
)2

β
(t

4
)
+

3α
(t

1
)β

(t
7
)+

β
(t

1
4
)

t 1
5

α
(t

1
5
)β

(t
0
)+

α
(t

6
)β

(t
1
)
+

α
(t

1
)α

(t
2
)β

(t
2
)+

α
(t

2
)β

(t
4
)
+

α
(t

1
)2

β
(t

4
)+

α
(t

1
)β

(t
7
)
+

α
(t

1
)β

(t
8
)
+

β
(t

1
5
)

t 1
6

α
(t

1
6
)β

(t
0
)+

α
(t

7
)β

(t
1
)
+

α
(t

3
)β

(t
1
)
+

α
(t

1
)2

+
β
(t

4
)+

2α
(t

1
)β

(t
8
)+

β
(t

1
6
)

t 1
7

α
(t

1
7
)β

(t
0
)+

α
(t

8
)β

(t
1
)
+

α
(t

4
)β

(t
2
)
+

α
(t

2
)β

(t
4
)
+

α
(t

1
)β

(t
8
)+

β
(t

1
7
)

Table 2.5: Composition of elementary weight functions up to order 5.

22 General linear methods

Elementary weights

Before we look at the Taylor expansion of the numerical approximation we need several defini-

tions.

An elementary weight function is a mapping from trees to the real numbers. There are two

special elementary weight functions which we are interested in. The first of these is the ith

derivative operator.

Definition 2.14 Let Di be the ith derivative operator. Then for i ∈ N

Di(t) =


i!

γ(t)
, if r(t) = i

0, if r(t) 	= i.

Provided that y(x) is sufficiently smooth in the neighbourhood of x, the ith derivative operator

maps y(x) to hiy
(i)(x). The most common derivative operator we will be using is D1, which we

will simplify to D. From the above definition we obtain

D(t) =

 1, if t = τ

0, if t 	= τ.

The second elementary weight function of special interest is

E(n)(t) =
nr(t)

γ(t)
.

This corresponds to the exact solution of the differential equation, as represented by the Picard

iteration scheme. In the case ε = 1 we get the exact elementary weight function

E(t) =
1

γ(t)
, for all t ∈ T. (2.7)

The reverse exact elementary weight function is also useful. This is given by

E−1(t) =
(−1)r(t)

γ(t)
, for all t ∈ T.

The final definition we need before we can continue is the composition of two elementary

weight functions.

Definition 2.15 The composition rule for elementary weight functions, α and β, is given by

(αβ)(t) = β(∅)α(t) + β(t) +
∑
u<t

β(u)α(t\u), ∀t ∈ T, (2.8)

where u < t denotes any proper subtree u sharing the same root with the tree t, and t\u denotes

the remainder of the tree t after deleting the subtree u from it. We will let α(t\u) be the product

of α of the trees that make up t\u.

2.4 Examples of general linear methods 23

This rule defines the output when the output of one elementary weight function is used as

input to another elementary weight function. It was first published by Butcher [5].

This rule greatly simplifies in the case where the second operator is the ith derivative oper-

ator, giving

(αDi)(t) =



0, if r(t) < i

i!
γ(t)

, if r(t) = i∑
u<t,r(u)=i

i!
γ(u)

α(t\u), if r(t) > i.

In the case of the first derivative operator, where i = 1, this simplifies even further to

(αD)(t) =


0, if t = ∅,
1, if t = τ,

α(t1) · · ·α(tm), if t = [t1, ..., tm].

Expansion of the numerical solution

Let ξ(t) and η(t) be elementary weight functions representing the internal stages and the input

approximations respectively. We can now write

ξ(t) = A(ξD)(t) + Uη(t). (2.9)

The output approximation can then be found from

B(ξD)(t) + V η(t).

Assuming the method is of order p, this will correspond to Eη(t) within O(hp+1). We can

therefore write

Eη(t) = B(ξD)(t) + V η(t). (2.10)

Assuming the first output solution is an approximation to y(xn), the method is said to be of

order p if the first component of equation (2.10) is equal to E(t) for all t such that r(t) ≤ p.

The functions given in equations (2.9) and (2.10) are said to be the generating functions of

the method.

2.4 Examples of general linear methods

As noted above, this class of methods is a large one. It includes the traditional methods such

as Runge–Kutta methods and linear multistep methods, along with methods that have been

24 General linear methods

developed within the general linear methods framework, such as DIMSIMs and IRKS methods.

Here we comment briefly on some of these methods.

2.4.1 Runge–Kutta methods

Runge–Kutta methods are very simple to rewrite as general linear methods. The A matrix of

the general linear method is the same as the A matrix of the Runge–Kutta method. The B

matrix is bT , where b is the vector of weights of the Runge–Kutta method. Assuming the input

vector is an approximation to y(xn−1), the U matrix is e, a vector of 1’s. The V matrix consists

only of the number 1. This can be written as

M =



a11 a12 · · · a1s 1

a12 a22 · · · a2s 1
...

...
. . .

...
...

as1 as2 · · · ass 1

b1 b2 · · · bs 1


.

For example, we could rewrite the classical fourth order Runge–Kutta method with tableau

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

as the general linear method 

0 0 0 0 1
1
2 0 0 0 1

0 1
2 0 0 1

0 0 1 0 1
1
6

1
3

1
3

1
6 1


.

2.4.2 Linear multistep methods

Linear multistep methods have a multi-value nature. The general form of the methods is

yn =
k∑

i=1

αiyn−i + h

k∑
i=0

βif(yn−i).

2.4 Examples of general linear methods 25

If β0 is equal to 0 the method is called explicit. This means the current approximation depends

only on approximations to the solution and approximations to the derivative from the past. If

βo 	= 0 the method is called implicit because the current approximation depends on the derivative

at the current time-step.

Adams methods

The most common linear multistep methods used for solving non-stiff differential equations are

Adams methods. For these methods α1 = 1 and αi = 0 for i > 1. Therefore they take the form

yn = yn−1 + h
k∑

i=0

βif(yn−i).

Explicit methods of this type are called Adams–Bashforth methods. Implicit methods are known

as Adams–Moulton methods.

If we were to write this as a general linear method, the input vector is

y[n−1] =



y(xn−1)

hy′(xn−1)

hy′(xn−2)
...

hy′(xn−k)


,

where r = k + 1. This means we can write the method as

Y1

yn

hf(Y1)

hf(yn−1)

hf(yn−2)
...

hf(yn−k+1)


=



β0 1 β1 β2 · · · βk−1 βk

β0 1 β1 β2 · · · βk−1 βk

1 0 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0





hf(Y1)

yn−1

hf(yn−1)

hf(yn−2)

hf(yn−3)
...

hf(yn−k)


Although Adams–Moulton methods are implicit, they are only ever used to solve non-stiff

problems, due to their small stability regions. They are usually used as part of a predictor-

corrector pair. That is, an Adams–Bashforth method is used to predict an approximation and

then the Adams–Moulton method is used to correct the approximation. They are used in either

a (PEC) or (PECE) scheme, where P stands for predict, E stands for evaluate and C stands

for correct. In equation form this can be written as

26 General linear methods

y∗n = yn−1 + h

k∑
i=1

β∗
i f(yn−i),

yn = yn−1 + hβ0f(y∗n) + h
k∑

i=1

βif(yn−i).

A PEC method can be represented as the following general linear method (GLM)



Y1

yn

hf(yn)

hf(yn−1)

hf(yn−2)
...

hf(yn−k+1)


=



0 1 β∗
1 β∗

2 · · · β∗
k−1 β∗

k

β0 1 β1 β2 · · · βk−1 βk

1 0 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0





hf(Y1)

yn−1

hf(yn−1)

hf(yn−2)

hf(yn−3)
...

hf(yn−k)


,

whereas a PECE method can be represented as

Y1

Y2

yn

hf(yn)

hf(yn−1)

hf(yn−2)
...

hf(yn−k+1)



=



0 0 1 β∗
1 β∗

2 · · · β∗
k−1 β∗

k

β0 0 1 β1 β2 · · · βk−1 βk

β0 0 1 β1 β2 · · · βk−1 βk

0 1 0 0 0 · · · 0 0

0 0 0 1 0 · · · 0 0

0 0 0 0 1 · · · 0 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 · · · 1 0





hf(Y1)

hf(Y2)

yn−1

hf(yn−1)

hf(yn−2)

hf(yn−3)
...

hf(yn−k)



.

BDF methods

Backward differentiation (BDF) methods were the first numerical methods to be proposed for

stiff problems. They were introduced in 1952 by Curtiss and Hirschfelder [27] to overcome the

difficulties encountered in using Adams methods to solve stiff problems due to their lack of

stability. Since Gear’s 1971 book [35], they have been widely used to solve stiff problems.

For BDF methods all the β’s are zero except β0, meaning the approximated solution depends

on only one derivative value, which is evaluated at the current step. The updated approximation

is given by

yn =
k∑

i=1

αiyn−i + hβ0f(yn).

2.4 Examples of general linear methods 27

It is well-known that the BDF methods of order 7 and above are unstable (see, for example,

[35]). Furthermore, only methods with k = 1 and k = 2 are A-stable. For orders higher than this

the stability region becomes increasing inappropriate for solving stiff problems. The methods of

orders 1 to 6 are given here.

k = 1 : yn = yn−1 + hf(yn)

k = 2 : yn = 4
3yn−1 − 1

3yn−2 + 2
3hf(yn)

k = 3 : yn = 18
11yn−1 − 9

11yn−2 + 2
11yn−3 + 6

11hf(yn)

k = 4 : yn = 48
25yn−1 − 36

25yn−2 + 16
25yn−3 − 3

25yn−4 + 12
25hf(yn)

k = 5 : yn = 300
137yn−1 − 300

137yn−2 + 200
137yn−3 − 75

137yn−4 + 12
137yn−5 + 60

137

k = 6 : yn = 120
49 yn−1 − 150

49 yn−2 + 400
147yn−3 − 75

49yn−4 + 24
49yn−5 − 10

147 + 20
49hf(yn)

In general linear form these can be represented as

Y1

yn

yn−1

yn−2

yn−3

...

yn−k+1


=



β0 α1 α2 α3 · · · αk−1 αk

β0 α1 α2 α3 · · · αk−1 αk

0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0
...

...
...

...
...

...

0 0 0 0 · · · 1 0





hF (Y1)

yn−1

yn−2

yn−3

yn−4

...

yn−k


.

2.4.3 DIMSIMs

Diagonally implicit multistage integration methods (DIMSIMs), are a special class of general

linear methods which were first introduced by Butcher [7]. These methods were designed to

be an extension to diagonally implicit Runge–Kutta methods, retaining the high order of the

traditional methods, but increasing the stage order. To be a DIMSIM the method must have

several desirable properties. These are:

• The matrix A should be lower triangular, with constant diagonals to lower the cost of

solving the stage-value equations.

• The matrix V should be rank one to ensure zero stability.

• The quantities approximated by incoming and outgoing data should be related to the exact

solution by a weighted Taylor series.

28 General linear methods

Type A Application Architecture

1



0 0 0 · · · 0

a21 0 0 · · · 0

a31 a32 0 · · · 0
...

...
...

...

as1 as2 as3 · · · 0


Non-stiff Sequential

2



λ 0 0 · · · 0

a21 λ 0 · · · 0

a31 a32 λ · · · 0
...

...
...

...

as1 as2 as3 · · · λ


Stiff Sequential

3



0 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

...

0 0 0 · · · 0


Non-stiff Parallel

4



λ 0 0 · · · 0

0 λ 0 · · · 0

0 0 λ · · · 0
...

...
...

...

0 0 0 · · · λ


Stiff Parallel

Table 2.6: Types of DIMSIMs

• The order of the stages should be close to, if not equal to, the overall order of the method.

There are four different types of DIMSIMs. The type of the method is determined by the

structure of the A matrix, depending on whether the intended use of the method is for stiff or

non-stiff problems and whether the intended architecture is sequential or parallel. The types of

methods can be found in Table 2.6.

As has been mentioned, we require the incoming and outgoing values found in a step to be

approximations to a weighted Taylor series. This means we require the incoming approximations

2.4 Examples of general linear methods 29

to be given by

y
[n−1]
i = αi0y(xn−1) + αi1hy′(xn−1) + · · · + αiph

py(p)(xn−1) + O(hp+1), (2.11)

and the outgoing approximations by

y
[n]
i = αi0y(xn) + αi1hy′(xn) + · · · + αiph

py(p)(xn) + O(hp+1). (2.12)

If equations (2.11) and (2.12) are true for some choice of the matrix
α10 α11 · · · α1p

α20 α21 · · · α2p

...
...

...

αr0 αr1 · · · αrp

 ,

then this implies the method is of order at least p.

When the stage order is equal to the order of the method the order conditions greatly simplify,

leaving only

exp(cz) = zA exp(cz) + Uw(z) + O(hp+1),

exp(z)w(z) = zB exp(cz) + V w(z) + O(hp+1),

where

w(z) =


α10 + α11z + · · · + α1pz

p

α20 + α21z + · · · + α2pz
p

...

αr0 + αr1z + · · · + αrpz
p


and

exp(cz) =


exp(c1z)

exp(c2z)
...

exp(cs)z

 .

Most of the work on this class of methods has focused on methods with p = q = r = s as the

number of free parameters these methods have is the same as the number of equations required

to ensure RK-stability.

If one assumes that U = I, the matrix B can be found in terms of A and V by

B = B0 − AB1 − V B2 + V A,

30 General linear methods

where the (i, j)th element of the matrices B0, B1 and B2 is given by

B0 :
∫ 1+ci

0
lj(t) dt,

B1 : lj(ci + 1),

B2 :
∫ ci

0
lj(t) dt,

where lj(x) is the Lagrange interpolation basis polynomial given by

lj(x) =
r∏

k=1
k �=j

x − ck

cj − ck
.

Two simple examples are given here. Both of these methods have had their free parameters

chosen to ensure RK-stability. The first is a method of type 1, with c = [0, 1]:

M =


0 0 1 0

2 0 0 1
5
4

1
4

1
2

1
2

3
4 −1

4
1
2

1
2

 .

The second method is of type 4:

M =



3−√
3

2 0 1 0

0 3−√
3

2 0 1
18−11

√
3

4 −12+7
√

3
4

3−2
√

3
2 −1+2

√
3

2

22−13
√

3
4 −12+9

√
3

4
3−2

√
3

2 −1+2
√

3
2

 .

2.4.4 IRKS methods

Methods with inherent Runge–Kutta stability (IRKS) have been extensively studied by Butcher

and Wright [22], [23], [67], [68]. These methods were introduced to concentrate on general linear

methods with Runge–Kutta stability. RK-stability is a difficult condition to impose in the

general case, but it is possible to find an inter-relation between the matrices which ensures the

method has this property. While the conditions for IRKS are sufficient to ensure RK-stability,

they are not necessary.

In the rest of this section we will write ‘≡’ to denote the equivalence relation between two

matrices that deems two matrices to be equivalent if and only if they are identical except for

the first row.

2.4 Examples of general linear methods 31

Definition 2.16 A general linear method satisfying V e1 = e1 has inherent Runge–Kutta stabil-

ity if

BA ≡ XB, (2.13)

BU ≡ XV + V X, (2.14)

where X is some matrix and

det(wI − V) = wp(w − 1).

If the method is in Nordsieck form and the stage order is equal to the order of the method, the

most general matrix X satisfying equations (2.13) and (2.14) is a doubly companion matrix of

the form 

−α1 −α2 −α3 · · · −αp−1 −αp −αp+1 − βp+1

1 0 0 · · · 0 0 −βp

0 1 0 · · · 0 0 −βp−1

...
...

...
...

...
...

0 0 0 · · · 0 0 −β3

0 0 0 · · · 1 0 −β2

0 0 0 · · · 0 1 −β1


.

A direct consequence of a method having IRKS is that the eigenvalues of the stability matrix

will all be zero, except one, which will be equal to the truncated exponential series. This can

be written as

σ(V + zB(I − zA)−1U) = {R(z), 0},

where R(z) is the stability function of a Runge–Kutta method and is equal to exp(z)+O(zp+1).

In general, these methods are formulated in Nordsieck form, with the stage order equal to

the order and the number of values being passed from step to step equal to p + 1. Having the

stage order equal to the order of the method greatly simplifies the order conditions. If we let

Z = [1, z, z2, ..., zp]T ,

where z is a complex variable, then the order conditions can be written as

exp(cz) = zA exp(cz) + UZ + O(zp+1),

exp(z)Z = zB exp(cz) + V Z + O(zp+1).

32 General linear methods

This makes the derivation of the methods relatively easy as U and V are completely defined

by A, B and the abscissae vector c by

U = C − ACK,

V = E − BCK,

where C is the Vandermonde matrix

C =
[
e, c,

c2

2!
, · · · ,

cp

p!

]
,

and E is the Toeplitz matrix given by

1 1
1!

1
2! · · · 1

(p−2)!
1

(p−1)!
1
p!

0 1 1
1! · · · 1

(p−3)!
1

(p−2)!
1

(p−1)!

0 0 1 · · · 1
(p−4)!

1
(p−3)!

1
(p−2)!

...
...

...
...

...
...

0 0 0 · · · 1 1
1!

1
2!

0 0 0 · · · 0 1 1
1!

0 0 0 · · · 0 0 1


.

Methods for both stiff and non-stiff problems are known to high order. Two simple examples

are given here. The first is an explicit method of order 2, for which c = [13 , 2
3 , 1]:

M =



0 0 0 1 1
3

1
18

1
2 0 0 1 1

6
1
18

0 3
4 0 1 1

4 0

0 3
4 0 1 1

4 0

0 0 1 0 0 0

3 −3 2 0 −2 0


.

The second method is diagonally implicit method of order 2 with c = [14 , 1
2 , 1]:

M =



1
4 0 0 1 0 − 1

32

1
6

1
4 0 1 1

12 − 1
24

1
6

1
2

1
4 1 1

12 − 1
24

1
6

1
2

1
4 1 1

12 − 1
24

0 0 1 0 0 0

0 −2 2 0 0 0


.

2.4 Examples of general linear methods 33

It should be noted that DESIRE (Diagonally Extended Singly Implicit Runge–Kutta Ef-

fective order) [16] and ESIRK (Effective order Singly Implicit Runge–Kutta) methods [15] are

special cases of IRKS methods.

CHAPTER 3

Almost Runge–Kutta methods

Never be afraid to try something new. Remember amateurs built the Ark – profes-

sionals built the Titanic.

Anon

Almost Runge–Kutta (ARK) methods are a special class of general linear methods. They

were introduced by Butcher in 1997 [10]. The idea of these methods is to retain the multi-stage

nature of Runge–Kutta methods, but allow more than one value to be passed from step to step.

This gives the methods a multi-value character.

Of the three input and output values in ARK methods, one approximates the solution value

and the other two approximate the scaled first and second derivatives respectively. To make it

easy to start the methods, the second derivative is required to be accurate only to within O(h3),

where h is the stepsize. The method has inbuilt “annihilation conditions” to ensure this low

order does not adversely affect the solution value. These extra input values enable us to obtain

stage order two. Traditional explicit Runge–Kutta methods are only able to obtain stage order

one.1 The advantage of this higher stage order is that we are able to interpolate or obtain an

error estimate at little extra cost.

1A stage is of order q if Yi = y(x0 + hci) + O(hq+1). A method is said to have stage order q if each of the

stages is of order q.

36 Almost Runge–Kutta methods

The general form of ARK methods is

Y1

Y2

...

Ys

y
[n]
1

y
[n]
2

y
[n]
3



=

 A U

B V





hF (Y1)

hF (Y2)

...

hF (Ys)

y
[n−1]
1

y
[n−1]
2

y
[n−1]
3



,

where s is the number of internal stages. For an order p method the three output values are

y
[n]
1 = y(xn) + O(hp+1),

y
[n]
2 = hy′(xn) + O(hp+1),

y
[n]
3 = h2y′′(xn) + O(h3).

The coefficients of the method are chosen in a careful way to ensure the simple stability

properties of Runge–Kutta methods are retained.

In this chapter we will concentrate on methods where A is strictly lower triangular, and

hence the method is explicit, but most of the theory will carry over to implicit methods.

3.1 General form of explicit ARK methods

The general form of an explicit ARK method is

Y1

Y2

Y3

...

Ys−1

Ys

y
[n]
1

y
[n]
2

y
[n]
3



=



0 0 0 · · · 0 0

a21 0 0 · · · 0 0

a31 a32 0 · · · 0 0 e c − Ae c2

2 − Ac
...

...
...

...
...

as−1,1 as−1,2 as−1,3 · · · 0 0

b1 b2 b3 · · · bs−1 0

b1 b2 b3 · · · bs−1 0 1 b0 0

0 0 0 · · · 0 1 0 0 0

β1 β2 β3 · · · βs−1 βs 0 β0 0





hF (Y1)

hF (Y2)

hF (Y3)
...

hF (Ys−1)

hF (Ys)

y
[n−1]
1

y
[n−1]
2

y
[n−1]
3



.

3.1 General form of explicit ARK methods 37

As with a traditional Runge–Kutta method, b is a vector of length s representing the weights

and c is a vector of length s representing the positions at which the function f is evaluated. The

vector e is of length s, consisting entirely of ones.

The form of the U matrix is to ensure the stage order of the method is 2. To show this

is true, we look at a Taylor series expansion of the internal stages. The internal stages of the

method are given by:

Yi =
i−1∑
j=1

aijhF (Yi) + ui1y
[0]
1 + ui2y

[0]
2 + ui3y

[0]
3 . (3.1)

To have stage order two we require Yi = y(x0 + hci) + O(h3). If we also make the substitutions

y0 = y
[0]
1 , hy′0 = y

[0]
2 and h2y′′0 + O(h3) = y3[0], we obtain

y(x0 + hci) + O(h3) = ui1y0 + ui2hy′0 + ui3h
2y′′0 + h

i−1∑
j=1

aij y′(x0 + hcj) + O(h3). (3.2)

If we carry out a Taylor series expansion on both sides of equation (3.2) and equate the coeffi-

cients in y0 we find:

ui1y0 = y0, so that ui1 = 1.

Equating the coefficients in y′0 we find:

hciy
′
0 = ui2hy′0 + h

i−1∑
j=1

aijy
′
0, so that ui2 = ci −

i−1∑
j=1

aij .

Finally, equating the coefficients in y′′0 we find:

h2c2
i

2
y′′0 = ui3h

2y′′0 + h2
i−1∑
j=1

aijcjy
′′
0 , so that ui3 =

c2
i

2
−

i−1∑
j=1

aijcj .

We wish the final internal stage to give us the same quantity that is to be exported as the

first outgoing approximation. This implies that the first row of the B matrix is the same as the

last row of the A matrix, and the first row of the V matrix is the same as the last row of the U

matrix. It is also implies that we always have cs = 1.

We also wish the second outgoing approximation to be h times the derivative of the final

stage. This implies the second row of the B and V matrices consists of zeros, with the exception

of a 1 in the (2, s) position of B.

The use of an ARK method is very similar to that of a Runge–Kutta method. The main

difference is that we are now passing three pieces of information between steps. The first two

starting values are y(x0) and hf(y(x0)) respectively. The third starting value is obtained by

38 Almost Runge–Kutta methods

taking a single Euler step forward and taking the difference between the derivatives at these two

points. The starting vector is therefore[
y(x0), hf(y(x0)), hf

(
y(x0) + hf(y(x0))

)
− hf(y(x0))

]
.

This choice of starting method was chosen for its simplicity, but it is adequate, at least for low

order methods. The method for computing the three starting approximations can be written in

the form of the generalized Runge–Kutta tableau

0

1 1

1 0 0

0 1 0

0 −1 1

, (3.3)

where the zero in the first column of the last two rows indicates the fact that the term yn−1 is

absent from the output approximation. This can be interpreted in the same way as a Runge–

Kutta method, but with three output approximations.

Changing the stepsize poses no problem as we can simply scale the vector in the same way

we would scale a Nordsieck vector. If we set r = hj/hj−1 then the y vector needs to be scaled

by [1, r, r2].

3.2 Order and related conditions

The order conditions for the first output approximation can be written down using the standard

rooted-tree approach that is used for Runge–Kutta methods. The additional structure of ARK

methods means that fewer order conditions are required than for traditional Runge–Kutta meth-

ods. This is because having a stage order of 2 makes some of the order conditions redundant.

The trees that can be omitted are those that would be omitted for a Runge–Kutta method if the

C(2)2 condition is assumed; i.e. trees that contain a vertex from which only a single outgoing

arc is joined to another vertex, which in turn is joined to a terminal vertex.

For the higher order methods it is also convenient to assume the D(1) condition, that is
s∑

i=1

biaij = bj(1 − cj), j = 1, . . . , s. (3.4)

2The C(2) condition assumes
sX

j=1

aijcj =
c2
i

2
,

3.2 Order and related conditions 39

Trees not omitted

Trees omitted due to the C(2) condition

Trees omitted due to the D(1) condition

Table 3.1: Trees up to order 5 omitted due to the simplifying assumptions.

This enables us to also omit the trees that have only a single arc branching from the root. As

can be seen in Table 3.1 these simplifying assumptions greatly decrease the number of order

conditions that need to be considered.

Unfortunately, due to the fact that the third input approximation is accurate only to order 2,

some of the conditions that we have just omitted are now restored. This is so that the errors

in the third approximation do not combine to give low order error terms in the first or second

output approximations. The conditions that ensure the errors in the third input approximation

have no major effect on our first output approximation are called “annihilation conditions”.

An alternative way of looking at the order conditions is to consider the generating functions

given in Section 2.3.

We will use a slightly different notation than in the general case. Let ξ(t), α(t) and η(t) be

elementary weight functions associated with the internal stages, the first output approximation

and the third output approximation respectively. Using the special form of ARK method, (2.9)

can be written as

ξ(t) = 1 + (c − Ae)D(t) + (1
2c2 − Ac)η(t) + A(ξD)(t), (3.5)

Similarly, the first and and third components of (2.10) can be written respetively as

α(t) = 1 + b0D(t) + bT (ξD)(t), (3.6)

(Eη)(t) = β0D(t) + βT (ξD)(t), (3.7)

40 Almost Runge–Kutta methods

where 1 denotes the unit elementary weight function of ones, which maps y(x) to y(x). As the

second output approximation is the derivative of the first output approximation, this does not

need to be considered seperately.

The order conditions are found by setting α(t) = 1
γ(t) for all trees of order up to and including

p. Due to the stage order we notice that many of these conditions turn out to be equivalent,

leaving the same number of conditions as the alternative approach.

The annihilation conditions are needed to ensure the low order of the third input approx-

imation does not have an adverse affect on the first and second output approximations. It is

to be used mainly to increase the stage order to two. The annihilation conditions are found by

setting to zero the coefficients of any terms in α involving η, for trees of order ≤ p. For example,

α of the tree t7 is given by

α(t7) = bT (1
2c2 − Ac)η(t3) + bT Ac2.

For a method of order four or above, an annihilation condition is

bT (1
2c2 − Ac) = 0

or bT Ac =
1
6
.

This ensures the third input approximation does not affect the low order terms in the first output

approximation.

To ensure the third output value approximates h2y′′(xn+1) to within O(h3) it is necessary

to require that

βT e + β0 = 0, (3.8)

βT c = 1. (3.9)

This can be verified by carrying out a Taylor series expansion of the third output approximation.

The third output approximation is given by

y
[1]
3 = β0y

[0]
2 +

s∑
i=1

βihF (Yi).

To be of order two, we require y
[1]
3 = h2y′′(x0 + h) + O(h3). If we also make the substitutions

y0 = y
[0]
1 , hy′0 = y

[0]
2 and F (Yi) = y′(x0 + hci) + O(h3), we obtain

h2y′′(x0 + h) + O(h3) = β0hy′(x0) +
s∑

i=1

βihy′(x0 + hci) + O(h3).

3.3 Interpolation 41

If we carry out a Taylor series expansion on both sides of this equation we find

h2y′′(x0) + O(h3) = β0hy′(x0) + h
s∑

i=1

βi(y′(x0) + hciy
′′(x0)) + O(h3).

Equating the coefficients of y′(x0) gives

0 = β0h + h

s∑
i=1

βi implying that βT e + β0 = 0.

Equating the coefficients of y′′(x0) gives

h2 = h2
s∑

i=1

βici implying that βT c = 1.

The last constraint that is placed on the coefficients is that the method has RK-stability.

This will be discussed in detail in later sections.

For ease of analysis, the above conditions are sorted into two classes, α conditions and β

conditions. The α conditions are order conditions that are found from α(t) = 1/γ(t), subject

to the condition that the stage order is 2, along with the annihilation conditions. They have

the same form as corresponding order conditions for Runge–Kutta methods, except that some

of the conditions are omitted. They contain entries that occur in matrix A, and the vectors b

and c. The β conditions are the remaining conditions, that is βT e + β0 = 0 and βT c = 1 and

the conditions required for RK-stability. They include one or more occurance of βs.

A list of conditions required for s = p and s = p + 1, for methods of orders 3 and 4 are

outlined in subsequent sections.

3.3 Interpolation

One of the major advantages of ARK methods is the possibility of a cheap interpolator due to

the stage order. Unfortunately it is not possible to obtain an interpolator of the same order as

the method but it is possible to obtain an interpolator one order lower than the method. This

should be satisfactory for most practical applications.

To interpolate at point xn + ξh, in a step from xn to xn + h we need to find a vector b̃(ξ)

such that some modified order conditions are satisfied. That is, we want to choose polynomial

coefficients of degree p − 1 so that

y(xn + ξh) = yn−1 + h

s∑
i=1

b̃if(Yi) (3.10)

42 Almost Runge–Kutta methods

is exact when y(x) is a polynomial of degree p− 1. These conditions are dependent on the order

of the method, but are roughly equivalent to taking the standard order conditions for a method

one order less and multiplying the right hand side by ξr, where r is the order of the tree. Once

b̃ has been found, an approximation to the solution at the point xn + ξh can be obtained from

(3.10).

For consistency any free parameters that remain need to be chosen in such a way that b̃T = bT

when ξ = 1. We will also try to ensure that the bushy tree of the same order as the method is

satisfied.

Further details will be given in each of the individual cases.

3.4 Methods with s = p

In this section we look at methods which have the same number of stages as the order of the

method. Methods with this property are considered as we wish to minimise computation costs,

and it is not possible to satisfy all the order conditions for s < p. We will concentrate on third

and fourth order methods.

3.4.1 RK stability

As stated in section 2.1, the stability matrix of a general linear method is given by

M(z) = V + zB(I − zA)−1U.

A method is said to have RK stability if all the eigenvalues of the matrix M are zero, except one

which is equal to R(z), the stability region of a Runge Kutta method. For an explicit method

R(z) is given by:

R(z) = exps(z) =
s∑

i=0

zi

i!
.

As the trace of a matrix is equal to the sum of the eigenvalues, for a method to have RK

stability we require

Tr(V + zB(I − zA)−1U) = 1 + z +
z2

2
+ · · · + zs

s!
.

If we carry out a Taylor series expansion on the left-hand side of this equation and equate the

coefficients, this implies

Tr(BAi−1U) =
1
i!

, i = 1, . . . , s. (3.11)

3.4 Methods with s = p 43

Theorem 3.1 An ARK method of order p with p stages has RK-stability if and only if

βT (I + βsA) = βse
T
s , (3.12)(

1 + 1
2βsc1

)
bT As−2c =

1
s!

, (3.13)

c1 = − 2 exps(−βs)
βs exps−1(−βs)

, (3.14)

where eT
s = [0, 0, · · · , 0, 1] and has s components and

expn(x) = 1 +
x2!
2

+
x3

3!
+ · · · + xn

n!
.

Proof: (only if) From equation (3.11), with i = 1 we find:

Tr(BU) = bT e + eT
s (c − Ae) + βT

(
1
2c2 − Ac

)
1 = bT e + 1 − bT e + βT

(
1
2c2 − Ac

)
=⇒ βT

(
1
2c2 − Ac

)
= 0. (3.15)

From the generating functions, it can be shown that bT Ai−2c = 1/i!, for 1 < i < s, are order

conditions. Using this information, for 1 < i < s, equation (3.11) can be written as

Tr(BAi−1U) = bT Ai−1e + eT
s Ai−1(c − Ae) + βT Ai−1

(
1
2c2 − Ac

)
1
i!

= bT Ai−1e + bT Ai−2c − bT Ai−1e + βT Ai−1
(

1
2c2 − Ac

)
= bT Ai−2c + βT Ai−1

(
1
2c2 − Ac

)
=

1
i!

+ βT Ai−1
(

1
2c2 − Ac

)
.

=⇒ βT Ai−1
(

1
2c2 − Ac

)
= 0, i = 2, . . . , s − 1. (3.16)

When i = s we can no longer assume bT Ai−2c = 1/i!, however since A is strictly lower tri-

angular we know that As = 0. Due to the form of A, we also find βT As−1c2 = βsc1b
T As−2c.

Equation (3.11) now gives

Tr(BAs−1U) = bT As−1e + eT
s As−1(c − Ae) + βT As−1

(
1
2c2 − Ac

)
1
s!

= bT As−2c + βT As−1
(

1
2c2 − Ac

)
= bT As−2c + 1

2βT As−1c2

44 Almost Runge–Kutta methods

=⇒ (
1 + 1

2βsc1

)
bT As−2c =

1
s!

. (3.17)

Note that this is the same as equation (3.13).

Let

vT = βse
T
s − βT (I + θA), (3.18)

where θ is chosen so that vs−1 = 0. Using equations (3.15) and (3.16) and the fact that
1
2bT Ai−2c2 = bT Ai−1c, i = 2, ..., s − 2 we find

vT Ai−1
(

1
2c2 − Ac

)
= (βse

T
s − βT (I + θA))Ai−1

(
1
2c2 − Ac

)
= βsb

T Ai−2(1
2c2 − Ac) − βT Ai−1

(
1
2c2 − Ac

) − θβT Ai
(

1
2c2 − Ac

)
= 1

2βsb
T Ai−2c2 − βsb

T Ai−1c = 0,

and it follows that

vT Ai−1
(

1
2c2 − Ac

)
= 0, i = 1, . . . , s − 2. (3.19)

Since Ai−1
(

1
2c2 − Ac

) 	= 0, this implies that vT = 0. We then know that equation (3.19) also

holds for i = s − 1. This gives, in turn

vT As−2
(

1
2c2 − Ac

)
= 0,

(βse
T
s − βT (I + θA))As−2

(
1
2c2 − Ac

)
= 0,

1
2βsb

T As−3c2 − βsb
T As−2c − βT As−2

(
1
2c2 − Ac

)− βT θAs−1
(

1
2c2 − Ac

)
= 0.

This can be greatly simplified using bT As−3c2 = 2
s! , βT As−2(1

2c2 − Ac) = 0 and As = 0. This

gives, in turn

1
2βs

2
s! − βsb

T As−2c − 1
2βT θAs−1c2 = 0,

βsb
T As−2c + 1

2βT θAs−1c2 =
βs

s!
,(

βs + 1
2θβsc1

)
bT As−2c =

βs

s!
.

If we compare this equation with equation (3.13) we can see that θ = βs. Substituting this into

equation (3.18) we obtain equation (3.12).

Substituting βT = βse
T
s (I + βsA)−1 into the condition βT c = 1 gives

1 = βs

(
1 +

s−1∑
i=1

(−βs)ieT
s Aic

)

= βs

(
1 +

s−1∑
i=1

(−βs)ibT Ai−1c

)
.

3.4 Methods with s = p 45

Using equation (3.13) and the order conditions this gives, in turn

1 = βs

(
1 +

(−βs)s−1

s!
(
1 + 1

2c1βs

) +
s−2∑
i=1

(−βs)i

(i + 1)!

)
,

βs − 1 + βs

s−2∑
i=1

(−βs)i

(i + 1)!
=

−βs(−βs)s−1

s!
(
1 + 1

2c1βs

) ,
s! +

1
2
s!c1βs =

(−βs)s

βs − 1 + βs

s−2∑
i=1

(−βs)i

(i + 1)!

,

1
2
s!c1βs =

(−βs)s − s!

(
βs − 1 + βs

s−2∑
i=1

(−βs)i

(i + 1)!

)

βs − 1 + βs

s−2∑
i=1

(−βs)i

(i + 1)!

,

1
2
c1βs =

(−βs)s

s!
+

(
1 − βs +

s−2∑
i=1

(−βs)i+1

(i + 1)!

)

−
(

1 − βs +
s−2∑
i=1

(−βs)i+1

(i + 1)!

) ,

=
exps(−βs)

− exps−1(−βs)
,

c1 = − 2 exps(−βs)
βs exps−1(−βs)

.

(if) First we need to show that the third output approximation is of order 2. i.e. that

βT c = 1. To do this, rearrange (3.12) and substitute into this equation, to give

1 − βT c = 1 − βs(I + βsA)−1c, (3.20)

= 1 − βs

(
s∑

i=0

(−βs)ieT
s Aic

)
, (3.21)

= 1 − βs

(
1 +

s∑
i=1

(−βs)ibT Ai−1c

)
. (3.22)

Due to the form of the bT vector and the A matrix, bT As−1c = 0. Using this information, and

(3.13), the above can be written as

1 − βT c = 1 − βs

(
1 +

s−2∑
i=1

(−βs)i

(i + 1)!
+

(−βs)s−1

s!(1 + 1
2βsc1)

)
, (3.23)

= exps−1(−βs) +
(−βs)s

s!(1 + 1
2βsc1)

. (3.24)

46 Almost Runge–Kutta methods

Using (3.14), this can be written as

1 − βT c = exps−1(−βs) +
(−βs)s

s!

(
1 +

1
2
βs

(−2 exps(−βs)
βs exps−1(−βs)

))−1

, (3.25)

= exps−1(−βs) +
(−βs)s

s!

(
1 − exps(−βs)

exps−1(−βs)

)−1

, (3.26)

= exps−1(−βs) + (exps(−βs) − exps−1(−βs))
(

1 − exps(−βs)
exps−1(−βs)

)−1

, (3.27)

= 0. (3.28)

Next we need to show that the matrix has one non-zero eigenvalue, which is R(z). From (3.13),

we have tr(BAk−1U) = 1/k! for k = s. From (3.12) this holds in turn for k = s− 1, s− 2, . . . , 1.

This implies that the trace of the stability matrix is equal to R(z). To show that two of the

eigenvalues are zero we will write the stability matrix in the form

M(z) = M0 + zM1 + z2M2 + · · · + zsMs.

A similar matrix N(z) = (I − ze2e
T
1)M(z)(I + ze2e

T
1) is defined, and similarly expanded, to give

N(z) = N0 + zN1 + z2N2 + · · · + zsNs + zs+1Ns+1.

It can be shown that

N0 =


1 b0 0

0 0 0

0 β0 0

 ,

Nk =


bT Ak−2c bT Ak−1(c − Ae) bT Ak−1(1

2c2 − Ac)

0 0 0

βT Ak−2c βT Ak−1(c − Ae) βT Ak−1(1
2c2 − Ac)

 , k = 1, 2, . . . , s + 1.

This means that the second row of N(z) is zero. The second row and column, therefore, can be

deleted without altering the set of non-zero eigenvalues. Denote this modified matrix as Ñ(z),

which can be written as

Ñ(z) = Ñ0 + zÑ1 + z2Ñ2 + · · · + zsÑs + zs+1Ñs+1,

so that

Ñ0 =

 1 0

0 0

 ,

Ñ1 =

 1 0

0 βT (1
2c2 − Ac)

 .

3.4 Methods with s = p 47

Ñk =

 bT Ak−2c bT Ak−1(1
2c2 − Ac)

βT Ak−2c βT Ak−1(1
2c2 − Ac)

 , k = 2, 3, . . . , s + 1.

Using (3.12), Ñ(z) can now be written in the form

Ñ(z) =

 (1 + z
βs

)βT (I − zA)−1c (1 + z
βs

)βT (I − zA)−1(1
2c2 − Ac)

z2βT (I − zA)−1c z2βT (I − zA)−1(1
2c2 − Ac)

 .

As the second row is a scalar multiple of the first row, this has zero determinant.

3.4.2 Third order methods with three stages

A third order method with three stages takes the form:

 A U

B V

 =



0 0 0 1 c1
1
2c2

1

a21 0 0 1 c2 − a21
1
2c2

2 − a21c1

b1 b2 0 1 b0 0

b1 b2 0 1 b0 0

0 0 1 0 0 0

β1 β2 β3 0 β0 0


.

Order conditions

The order conditions for a third order method are:

b0 + bT e = 1, (3.29)

bT c =
1
2
, (3.30)

bT c2 =
1
3
. (3.31)

There are no annihilation conditions for this low order. This is because α(ti), does not have any

terms involving η(t), for trees of order 3 or less.

As we saw in Theorem 3.1, there are several equations that need to be satisfied for the

method to have RK-stability. For third order, three stage methods the equations are:

βT (I + β3A) = β3e
T
3 , (3.32)(

1 + 1
2β3c1

)
bT Ac =

1
6
, (3.33)

c1 = −2(1 − β3 + 1
2β2

3 − 1
6β3

3)
β3(1 − β3 + 1

2β2
3)

. (3.34)

48 Almost Runge–Kutta methods

For the third output approximation to be of order 2, we also require the method to satisfy

βT e + β0 = 0, (3.35)

βT c = 1. (3.36)

Condition (3.36) is actually satisfied by ensuring (3.34), but is mentioned here for completeness.

The reason for this can be seen in the proof of Theorem 3.1. This condition will be omitted

from further discussions about order, unless needed explicitly for the derivation of the methods.

Derivation of methods

The derivation of methods with s = p is very similar to traditional Runge–Kutta methods. The

free parameters are βs and the nodes c2, c3, · · · , cs−1. The value of c1 can be determined from

the conditions for Runge–Kutta stability. The bT vector can be found from the quadrature con-

ditions, and then the entries in the A matrix can be determined from the rest of the conditions.

Finally, the entries of β can be found from one of the conditions for Runge–Kutta stability. Here

we outline the case for s = 3.

For third order methods we have two free parameters. It is easiest if we take these to be β3

and c2.

Once β3 has been chosen we can find c1 from

c1 = −2
(
1 − β3 + 1

2β2
3 − 1

6β3
3

)
β3

(
1 − β3 + 1

2β2
3

) . (3.37)

From equations (3.30) and (3.31) we find

b1c1 + b2c2 =
1
2
, (3.38)

b1c
2
1 + b2c

2
2 =

1
3
. (3.39)

Rearranging equation (3.38) to make b1c1 the subject, and substituting into equation (3.39) we

find

1
2
c1 − b2c1c2 + b2c

2
2 =

1
3

=⇒ b2(c2
2 − c1c2) =

1
3
− 1

2
c1

=⇒ b2 =
2 − 3c1

6c2(c2 − c1)
. (3.40)

3.4 Methods with s = p 49

Substituting equation (3.40) back into equation (3.38) we find

b1c1 =
1
2
− 2 − 3c1

6(c2 − c1)

=
3c2 − 2

6(c2 − c1)

=⇒ b1 =
3c2 − 2

6c1(c2 − c1)
. (3.41)

It is possible to find methods such that c1 = c2, however bT needs to be calculated slightly

differently.

Equation (3.33) gives

(
1 + 1

2β3c1

)
b2a21c1 =

1
6

=⇒ a21 =
1

3b2c1(2 + β3c1)
. (3.42)

From equation (3.29) we find

b0 = 1 − b1 − b2. (3.43)

We can then find the β vector from equation (3.32). Evaluating both sides of this equation we

find

(β1 + β2β3a21 + β2
3b1, β2 + β2

3b2, β3) = (0, 0, β3).

This implies

β1 + β2β3a21 + β2
3b1 = 0 (3.44)

and β2 + β2
3b2 = 0. (3.45)

Equation (3.45) gives

β2 = −b2β
2
3 . (3.46)

From equation (3.44) we find

β1 = −β2β3a21 − β2
3b1

= b2β
3
3a21 − β2

3b1. (3.47)

Finally, we can calculate β0 from equation (3.35) which gives

β0 = −β1 − β2 − β3. (3.48)

In summary, once β3 and c2 have been chosen and c1 has been calculated from equation (3.37)

the remaining coefficients of a third order method can be found from

50 Almost Runge–Kutta methods

b1 =
3c2 − 2

6c1(c2 − c1)
, β2 = −b2β

2
3 ,

b2 =
2 − 3c1

6c2(c2 − c1)
, β1 = b2β

3
3a21 − β2

3b1,

b0 = 1 − b1 − b2, β0 = −β1 − β2 − β3,

a21 =
1

3b2c1(c1β3 + 2)
.

Some example methods

One particularly nice value for β3 is 2, since this gives c1 = 1
3 . This choice of β together with

a convenient choice for c2 gives some especially simple methods. Two of these are given below.

In the first method cT = [13 , 1, 1] and in the second cT = [13 , 2
3 , 1].

0 0 0 1 1
3

1
18

3
2 0 0 1 −1

2 0
3
4

1
4 0 1 0 0

3
4

1
4 0 1 0 0

0 0 1 0 0 0

0 −1 2 0 −1 0


,



0 0 0 1 1
3

1
18

1
2 0 0 1 1

6
1
18

0 3
4 0 1 1

4 0

0 3
4 0 1 1

4 0

0 0 1 0 0 0

3 −3 2 0 −2 0


Two more examples are given below. For the first cT = [1730 , 2

3 , 1] and for the second cT =

[8
15 , 2

3 , 1]. 

0 0 0 1 17
30

289
1800

25
136 0 0 1 197

408
17
144

0 3
4 0 1 1

4 0

0 3
4 0 1 1

4 0

0 0 1 0 0 0
150
17 −12 4 0 −14

17 0


,



0 0 0 1 8
15

32
225

25
108 0 0 1 47

108
8
81

0 3
4 0 1 1

4 0

0 3
4 0 1 1

4 0

0 0 1 0 0 0
75
16 −27

4 3 0 −15
16 0


Interpolation

To find a second order interpolator for a third order method we require b̃T to satisfy the following

requirements

b̃0 + b̃T e = ξ, (3.49)

b̃T c =
ξ2

2
, (3.50)

b̃T c2 =
ξ3

3
, (3.51)

3.4 Methods with s = p 51

where we are trying to find an approximation at xn−1 + ξh.

We also require b̃1(1) = b1, b̃2(1) = b2 and b̃3(1) = 0, to make the interpolator consistent. If

possible, we would also like b̃′1(1) = 0 and b̃′2(1) = 0.

Example: We will try to find an interpolator for the following method, where cT = [8
15 , 1, 1],

 A U

B V

 =



0 0 0 1 8
15

32
225

175
144 0 0 1 − 31

144 − 4
27

75
112

1
7 0 1 3

16 0
75
112

1
7 0 1 3

16 0

0 0 1 0 0 0

−75
56 −9

7 3 0 −3
8 0


From equations (3.49), (3.50) and (3.51) we find

b̃0 + b̃1 + b̃2 + b̃3 = ξ, (3.52)

8
15

b̃1 + b̃2 + b̃3 =
1
2
ξ2, (3.53)

64
225

b̃1 + b̃2 + b̃3 =
1
3
ξ3. (3.54)

Subtracting equation (3.54) from equation (3.53) gives

56
225

b̃1 =
ξ2

6
(3 − 2ξ), so that b̃1 =

75
112

ξ2(3 − 2ξ).

If we substitute this back into equation (3.53) we obtain

b̃2 + b̃3 =
1
2
ξ2 − 5

14
ξ2(3 − 2ξ)

=
ξ2(5ξ − 4)

7
.

From this we will choose b̃2 and b̃3 to be

b̃2 =
ξ2((5 − ν)ξ + µ − 4)

7
,

b̃3 =
ξ2(νξ − µ)

7
,

for some µ and ν.

We want b̃3 to vanish at ξ = 1. This implies µ = ν. We also wish to have b̃′2(1) = 0.

b̃2 =
1
7
(
(ν − 4)ξ2 + (5 − ν)ξ3

)
,

b̃′2 =
1
7
(
2(ν − 4)ξ + 3(5 − ν)ξ2

)
.

52 Almost Runge–Kutta methods

For this to vanish at ξ = 1 we require

2(ν − 4) + 3(5 − ν) = 0, so that ν = 7.

From this we find

b̃2 =
ξ2

7
(3 − 2ξ),

b̃3 = ξ2(ξ − 1),

b̃0 = ξ − 23
16

ξ2 − 5
8
ξ3.

In general we find

b̃1 = b1ξ
2(3 − 2ξ),

b̃2 = b2ξ
2(3 − 2ξ),

b̃3 = ξ2(ξ − 1),

b̃0 = ξ + ξ2(1 − 3b1 − 3b2) + ξ3(2b1 + 2b2 − 1).

An approximation at xn−1 + ξh can then be found from

y(xn−1 + ξh) ≈ y(xn−1) + b̃1hf(Y1) + b̃2hf(Y2) + b̃3hf(Y3) + b̃0hy′(xn−1).

For third order equations there is a simpler way of approaching the interpolation problem.

Since we only require an interpolant of order 3, we could use a Hermite interpolation to a

function ϕ through two points, xn and xn−1.

The formula for Hermite interpolation through two points is given by

H(x) = ϕ(x0)H1,0(x) + ϕ(x1)H1,1(x) + ϕ′(x0)Ĥ1,0(x) + ϕ′(x1)Ĥ1,1(x),

where

H1,0(x) = [1 − 2(x − x0)L′
10(x0)]L2

10(x)

=
[
1 − 2

(x − x0)
(x0 − x1)

]
(x − x1)2

(x0 − x1)2

= (1 + 2x)(x − 1)2,

H1,1(x) = [1 − 2(x − x1)L′
11(x1)]L2

11(x)

=
[
1 − 2

(x − x1)
(x1 − x0)

]
(x − x0)2

(x1 − x0)2

= (3 − 2x)x2,

3.4 Methods with s = p 53

Ĥ1,0(x) = (x − x0)L2
10(x)

= (x − x0)
(x − x1)2

(x0 − x1)2

= x(x − 1)2,

Ĥ1,1(x) = (x − x1)L2
11(x)

= (x − x1)
(x − x0)2

(x1 − x0)2

= (x − 1)x2.

Hence an approximation at xn−1 + ξh can be found from

y(xn−1 + ξh) ≈ (1 − ξ)2(1 + 2ξ)y[n−1]
1 + ξ(1 − ξ)2y[n−1]

2 + ξ2(3 − 2ξ)y[n]
1 + ξ2(ξ − 1)y[n]

2 .

If we rewrite this in terms of the incoming approximations and the stage derivatives we get

the same interpolation formula as above.

Unfortunately, this straight forward derivation of an interpolation formula does not apply to

higher orders.

3.4.3 Fourth order methods with four stages

The general form of a fourth order, four stage ARK method is

 A U

B V

 =



0 0 0 0

a21 0 0 0 e c − Ae 1
2c2 − Ac

a31 a32 0 0

b1 b2 b3 0

b1 b2 b3 0 1 b0 0

0 0 0 1 0 0 0

β1 β2 β3 β4 0 β0 0


. (3.55)

Order conditions

The conditions to ensure that a method of this form has the correct order and stability properties

are given in Theorem 3.2.

54 Almost Runge–Kutta methods

Theorem 3.2 A four stage method of the form (3.55), with c = [c1, c2, c3, 1], has order four

and is RK–stable if

b0 + bT e = 1, (3.56)

bT c =
1
2
, (3.57)

bT c2 =
1
3
, (3.58)

bT c3 =
1
4
, (3.59)

bT Ac =
1
6
, (3.60)

bT Ac2 =
1
12

, (3.61)

βT e + β0 = 0, (3.62)

βT (I + β4A) = β4e
T
4 , (3.63)

c1 = − 2 exp4(−β4)
β4 exp3(−β4)

, (3.64)

(1 + 1
2β4c1)bT A2c =

1
4!

. (3.65)

Proof: A full proof of this can be found in [11], but we outline the reasoning for it here.

First, using equation (3.5), we calculate the generating function of the internal stages for the

trees up to and including order 3. Recall that η(t1) = 0 and η(t2) = 1. For ease of notation we

write ηj = η(tj).

ξ(t1) = (c − Ae) + Ae,

= c,

ξ(t2) = (
1
2
c2 − Ac) + A(ξ(t1)),

=
1
2
c2,

ξ(t3) = (
1
2
c2 − Ac)η3 + A(ξ(t1)ξ(t1)),

= (
1
2
c2 − Ac)η3 + Ac2,

ξ(t4) = (
1
2
c2 − Ac)η4 + A(ξ(t2)),

= (
1
2
c2 − Ac)η4 +

1
2
Ac2.

3.4 Methods with s = p 55

Next, using equation (3.6), we calculate the generating function of the first output approxi-

mation for the trees up to and including order 4.

α(t1) = b0 + bT e,

α(t2) = bT (ξ(t1)),

= bT c,

α(t3) = bT (ξ(t1)ξ(t1)),

= bT c2,

α(t4) = bT (ξ(t2)),

=
1
2
bT c2,

α(t5) = bT (ξ(t1)ξ(t1)ξ(t1)),

= bT c3,

α(t6) = bT (ξ(t1)ξ(t2)),

=
1
2
bT c3,

α(t7) = bT (ξ(t3)),

= bT (
1
2
c2 − Ac)η3 + bT Ac2,

α(t8) = bT (ξ(t4)),

= bT (
1
2
c2 − Ac)η4 +

1
2
bT Ac2.

We do not wish the third output approximation to have any effect on the first output approxi-

mation up to order 4. For this to be the case we require that all terms containing non zero values

of η have zero coefficients, so that bT (1
2c2 − Ac) = 0, to ensure trees t7 and t8 are not affected.

This gives us condition (3.60). For the method to be order 4 we require that α(ti) = E(ti),

where the latter values can be computed using equation (2.7). This gives us conditions (3.56)–

(3.59) and (3.61). Also, we require the third output approximation to be of order 2. We need

conditions (3.62) to ensure this is true. Finally, conditions (3.63)–(3.65) are the conditions given

in Theorem 3.1 for Runge–Kutta stability.

56 Almost Runge–Kutta methods

Derivation of methods

These methods have three free parameters. For ease of calculations, we will take these to be c2,

c3 and β4. Once these parameters have been chosen the method can be uniquely determined

from Theorem 3.2. First, c1 can be calculated from condition (3.64). Then the bT vector can be

found from the quadrature conditions (3.57), (3.58) and (3.59), giving

b1 =
3 − 4c2 − 4c3 + 6c2c3

12c1(c1 − c2)(c1 − c3)
,

b2 =
3 − 4c1 − 4c3 + 6c1c3

12c2(c2 − c1)(c2 − c3)
,

b3 =
3 − 4c1 − 4c2 + 6c1c2

12c3(c3 − c1)(c3 − c2)
.

After finding b0 from condition (3.56), a32 can be found from a linear combination of conditions

(3.60) and (3.61). Provided c1 	= c2, we find

a32 =
1 − 2c1

12b3c2(c2 − c1)
.

Next we can find a21 and a31 from conditions (3.65) and (3.60) respectively:

a21 =
1

24b3a32c1(1 + 1
2β4c1)

,

a31 =
1
6 − b3a32c2 − b2a21c1

b3c1
.

Finally, βT can be found from condition (3.63).

In summary, once β4, c2 and c3 have been chosen and c1 has been calculated from equation

(3.64) the remaining coefficients of a fourth order method can be found from

b1 =
3 − 4c2 − 4c3 + 6c2c3

12c1(c1 − c2)(c1 − c3)
, a32 =

1 − 2c1

12b3c2(c2 − c1)
,

b2 =
3 − 4c1 − 4c3 + 6c1c3

12c2(c2 − c1)(c2 − c3)
, a21 =

1
24b3a32c1(1 + 1

2β4c1)
,

b3 =
3 − 4c1 − 4c2 + 6c1c2

12c3(c3 − c1)(c3 − c2)
, a31 =

1
6 − b3a32c2 − b2a21c1

b3c1
,

b0 = 1 − b1 − b2 − b3, βT = β4e
T
4 (I + β4A)−1,

β0 = −β1 − β2 − β3 − β4.

3.4 Methods with s = p 57

Classification of the methods

In [11] Butcher identified several special cases based on a possible confluence between the c values.

Due to the complicated relationship between β4 and c1 it is convenient to find combinations of

these parameters which result in reasonably simple numbers. Although a reasonable number of

simple pairs are known, for this we are interested in possible confluent cases, so will consider

the two choices β4 = 2, c1 = 1 and β4 = β̂4 = 2.625816818958466716, c1 = 1
2 .

The seven special cases are given below.

Case 1: cT = [12 , 1
2 , 1, 1]



0 0 0 0 1 1
2

1
8

2
a32(4+β̂4)

0 0 0 1 1
2 − 2

a32(4+β̂4)
1
8 − 1

a32(4+β̂4)

2 − a32 − 12b2
a32(4+β̂4)

a32 0 0 1 12b2
a32(4+β̂4)

− 1 6b2
a32(4+β̂4)

− 1
2

2
3 − b2 b2

1
6 0 1 1

6 0
2
3 − b2 b2

1
6 0 1 1

6 0

0 0 0 1 0 0 0

β1
β̂4

2
(a32−6b2)

6 − β̂4
2

6 β̂4 0 −24β̂4+14β̂4
2−3β̂4

3

24+6β̂4
0


,

with β1 = 2β̂4
2
(β̂4−4)

3(β̂4+4)
+ β̂4

2
(b2 − 1

6a32β̂4).

Case 2: cT = [1, 1
2 , 1, 1]



0 0 0 0 1 1 1
2

1
16 0 0 0 1 7

16
1
16

− 1
24b3

1
3b3

0 0 1 1 − 7
24b3

1
2 − 1

8b3

1
6 − b3

2
3 b3 0 1 1

6 0
1
6 − b3

2
3 b3 0 1 1

6 0

0 0 0 1 0 0 0

4b3 − 1 0 −4b3 2 0 −1 0


.

58 Almost Runge–Kutta methods

Case 3: cT = [12 , 0, 1, 1]



0 0 0 0 1 1
2

1
8

2
a32(4+β̂4)

0 0 0 1 − 2
a32(4+β̂4)

− 1
a32(4+β̂4)

2 − 12b2
a32(4+β̂4)

a32 0 0 1 u32
6b2

a32(4+β̂4)
− 1

2

2
3 b2

1
6 0 1 1

6 − b2 0
2
3 b2

1
6 0 1 1

6 − b2 0

0 0 0 1 0 0 0

β1 β2 − β̂4
2

6 β̂4 0 β0 0


,

with

β1 =
2β̂4

3 − 8β̂4
2

12 + 3β̂4

,

β2 =
a32β̂4

3 − 6b2β̂4
2

6
,

u32 =
12b2

a32(4 + β̂4)
− 1 − a32,

β0 = b2β̂4
2 − 1

6
a32β̂4

3 − 24β̂4 − 14β̂4
2
+ 3β̂4

3

24 + 6β̂4

.

Case 4: cT = [1, 1
2 , 0, 1]



0 0 0 0 1 1 1
2

1
16 0 0 0 1 7

16
1
16

− 1
24b3

1
3b3

0 0 1 − 7
24b3

− 1
8b3

1
6

2
3 b3 0 1 1

6 − b3 0
1
6

2
3 b3 0 1 1

6 − b3 0

0 0 0 1 0 0 0

−1 0 −4b3 2 0 4b3 − 1 0


.

3.4 Methods with s = p 59

Case 5: cT = [c1,
1
2 , 1, 1]



0 0 0 0 1 c1
1
2c2

1

1
4(2c1+β4c21)

0 0 0 1 1
2 − 1

8c1+4β4c21

β4c1
16+8β4c1

− 1
2c1+β4c21

2 0 0 1 1
2c1+β4c21

− 1 − β4c1
4+2β4c1

0 2
3

1
6 0 1 1

6 0

0 2
3

1
6 0 1 1

6 0

0 0 0 1 0 0 0

− β4
4

24c1+12β4c21

β3
4−2β2

4
3 −β2

4
6 β4 0 β0 0


,

where β0 =
5
6
β2

4 − 1
3
β3

4 +
β4

4

24c1 + 12β4c
2
1

− β4, and c1 can be found from equation (3.64).

Case 6: cT = [c1, 1, 1
2 , 1]



0 0 0 0 1 c1
1
2c2

1

c1−1
c1(2c1−1)(2+β4c1)

0 0 0 1 1 − c1−1
c1(2c1−1)(2+β4c1)

c1(2+β4(2c1−1))
(2c1−1)(2+β4c1)

c1(β4(1−2c1)−2)
8(c1−1)(2c1−1)(2+β4c1)

2c1−1
8(c1−1) 0 0 1 1

4 + −2+β4−2β4c1
8(2c1−1)(2+β4c1)

c1(−2+β4−2β4c1)
8(2c1−1)(2+β4c1)

0 1
6

2
3 0 1 1

6 0

0 1
6

2
3 0 1 1

6 0

0 0 0 1 0 0 0
−2β3

4+β4
4(1−2c1)

12c1(c1−1)(2+β4c1)
β2 −2

3β2
4 β4 0 β0 0


,

with

β0 =
β4

4

24c1 + 12β4c
2
1

− β4 +
5
6
β3

4 − β3
4

12c1
,

β2 =
1
6
(β3

4 − β2
4) +

β3
4

12(c1 − 1)
.

60 Almost Runge–Kutta methods

Case 7: cT = [c1, c2, c3, 1]



0 0 0 0 1 c1
c21
2

(c2−c1)c2
c1(1−2c1)(2+β4c1)

0 0 0 1 u22 u23

a31
(1−2c1)c3(c3−c1)(c3−c2)

(c2−c1)c2(3−4c1−4c2+6c1c2)
0 0 1 u32 u33

3−4c2−4c3+6c2c3
12c1(c2−c1)(c3−c1)

−3+4c1+4c3−6c1c3
12c2(c2−c1)(c3−c2)

3−4c1−4c2+6c1c2
12c3(c3−c1)(c3−c2)

0 1 b0 0
3−4c2−4c3+6c2c3

12c1(c2−c1)(c3−c1)
−3+4c1+4c3−6c1c3
12c2(c2−c1)(c3−c2)

3−4c1−4c2+6c1c2
12c3(c3−c1)(c3−c2)

0 1 b0 0

0 0 0 1 0 0 0

β1 β2
β2
4(−3+4c1+4c2−6c1c2)
12c3(c3−c1)(c3−c2)

β4 0 β0 0


,

with

u22 =
−3c1c2 + 4c2

1c2 − β4c
2
1c2 + 2β4c

3
1c2 + c2

2

c1(−1 + 2c1)(2 + β4c1)
,

u23 =
−2c1c2 + 4c1c

2
2 − β4c1c

2
2 + 2β4c

2
1c

2
2

2(−1 + 2c1)(2 + β4c1)
,

a31 =
1
b3

(
2c2 − 1

12c1(c2 − c1)
− b2a21

)
,

u32 = c3 − a31 − a32,

u33 =
1
2
c2
3 − a31c1 − a32c2,

b0 =
−3 + 4c1 + 4c2 − 6c1c2 + 4c3 − 6c1c3 − 6c2c3 + 12c1c2c3

12c1c2c3
,

β2 =
3β2

4 − 4β2
4c1 − β3

4c2 + 2β3
4c1c2 − 4β2

4c3 + β3
4c3 + 6β2

4c1c3 − 2β3
4c1c3

12(c1c
2
2 − c3

2 − c1c2c3 + c2
2c3)

,

β1 =
1 − β2c2 − β3c3 − β4

c1
,

β0 = −β1 − β2 − β3 − β4.

3.4 Methods with s = p 61

Some example methods

Specific examples of case 4 and case 5 are given below. In the case 4 example cT = [1, 1
2 , 0, 1]

and b3 = 1. In the case 5 example cT = [1124 , 1
2 , 1, 1] and β4 = 3.



0 0 0 0 1 1 1
2

1
16 0 0 0 1 7

16
1
16

− 1
24

1
3 0 0 1 − 7

24 −1
8

1
6

2
3 1 0 1 −5

6 0
1
6

2
3 1 0 1 −5

6 0

0 0 0 1 0 0 0

−1 0 −4 2 0 3 0


. (3.66)



0 0 0 0 1 11
24

121
1152

16
99 0 0 0 1 67

198
11
216

−64
99 2 0 0 1 −35

99 −11
54

0 2
3

1
6 0 1 1

6 0

0 2
3

1
6 0 1 1

6 0

0 0 0 1 0 0 0

−48
11 3 −3

2 3 0 − 3
22 0


. (3.67)

The last two methods are related to the 3
8 -quadrature formula. The c vectors are cT =

[1, 1
3 , 2

3 , 1] and cT = [1, 2
3 , 1

3 , 1] respectively. They are examples of case 7.



0 0 0 0 1 1 1
2

1
18 0 0 0 1 5

18 0
1
18 1 0 0 1 − 7

18 −1
6

1
8

3
8

3
8 0 1 1

8 0
1
8

3
8

3
8 0 1 1

8 0

0 0 0 1 0 0 0

−1
2

3
2 −3

2 2 0 −3
2 0


. (3.68)

62 Almost Runge–Kutta methods



0 0 0 0 1 1 1
2

1
18 0 0 0 1 11

18
1
6

− 5
18 1 0 0 1 − 7

18 −1
3

1
8

3
8

3
8 0 1 1

8 0
1
8

3
8

3
8 0 1 1

8 0

0 0 0 1 0 0 0

−3
2

3
2 −3

2 2 0 −1
2 0


. (3.69)

Interpolation

To find a third order interpolator we need a vector b̃T that satisfies the following conditions

b̃T c =
ξ2

2
, (3.70)

b̃T c2 =
ξ3

3
, (3.71)

b̃T c3 =
ξ4

4
, (3.72)

b̃T Ac =
ξ3

6
, (3.73)

b̂0 + b̂1 + b̂2 + b̂3 + b̂4 = ξ. (3.74)

There are no free parameters, but it transpires that b̃ = b when ξ = 1 automatically. It should

be noted that it is not always possible to find a suitable third order interpolator. For example,

it is not possible for method (3.66). For method (3.67) the coefficients are

b̃1 =
3456
143

(ξ2 − 2ξ3 + ξ4),

b̃2 = −2
3
(33ξ2 − 70ξ3 + 36ξ4),

b̃3 = − 1
78

(−543ξ2 + 1034ξ3 − 504ξ4),

b̃4 = − 1
13

(85ξ2 − 157ξ3 + 72ξ4),

b̃0 =
1
66

ξ(66 − 171ξ + 188ξ2 − 72ξ3).

3.5 Methods with s = p + 1 63

The coefficients for method (3.68) are

b̃1 = −1
8
(6ξ2 − 16ξ3 + 9ξ4),

b̃2 =
3
8
(12ξ2 − 20ξ3 + 9ξ4),

b̃3 = −3
8
(6ξ2 − 16ξ3 + 9ξ4),

b̃4 =
1
4
(5ξ2 − 14ξ3 + 9ξ4),

b̃0 = ξ − 11
4

ξ2 + 3ξ3 − 9
8
ξ4.

Finally, the coefficients for method (3.69) are

b̃1 =
1
8
(30ξ2 − 56ξ3 + 27ξ4),

b̃2 = −3
8
(6ξ2 − 16ξ3 + 9ξ4),

b̃3 =
3
8
(12ξ2 − 20ξ3 + 9ξ4),

b̃4 = −1
4
(13ξ2 − 22ξ3 + 9ξ4),

b̃0 = ξ − 11
4

ξ2 + 3ξ3 − 9
8
ξ4.

3.5 Methods with s = p + 1

As with traditional Runge–Kutta methods we can achieve enhanced performance if we have

more stages than are required for the order. We will concentrate on the case where we have one

more stage than is required.

3.5.1 RK-stability

As for the case where s = p we require the stability matrix to have only one non zero eigenvalue,

which is equal to R(z). In the case of s = p + 1 we gain a free parameter K, which gives us

64 Almost Runge–Kutta methods

some control over the stability region. This is due to the fact that R(z) is now given by

R(z) = exps−1(z) + Kzs

= 1 + z +
z

2
+ · · · + zs−1

(s − 1)!
+ Kzs.

3.5.2 Third order methods with four stages

A third order method with four stages takes the form

 A U

B V

 =



0 0 0 0

a21 0 0 0
e c − Ae

1
2
c2 − Ac

a31 a32 0 0

b1 b2 b3 0

b1 b2 b3 0 1 b0 0

0 0 0 1 0 0 0

β1 β2 β3 β4 0 β0 0


.

For a method of this form with RK stability, the stability function has the form

R(z) = 1 + z +
z2

2
+

z3

6
+ Kz4. (3.75)

Due to the number of free parameters we have a lot more freedom than with the three stage

methods. We have some control over the stability region due to the fact that K is at our disposal.

We also have control over the error in the bushy tree.

3.5 Methods with s = p + 1 65

Order conditions

For a four stage method to be of order three it needs to satisfy the following conditions

bT c =
1
2
, (3.76)

bT c2 =
1
3
, (3.77)

b0 = 1 − bT e, (3.78)

β0 = −βT e, (3.79)

β4e
T
4 (I + θA) = βT (I + φA + β4θA2), (3.80)

K

(
1
2
β4c1θα3 − α4

)
=
(

1 +
1
2
β4c1

)(
1 + α1 +

α2

2
+

α3

6

)
, (3.81)

where the values of αi are determined by expanding

1 + (φ − β4)z
1 + φz + β4θz2

=
∞∑
i=0

αiz
i,

bT Ac − 1
6

= θ(bT A2c − K), (3.82)

β4

(
1
2
bT Ac2 − K

)
= (β4 − φ)(bT A2c − K). (3.83)

Derivation of methods

We have a lot more free parameters now than we did with the 3-stage methods. We will take

these parameters to be c1, c2, c3, β4, φ, θ and L, where L− 1
4 is the error coefficient corresponding

to the bushy tree.

First we need to calculate the coefficients of the b vector. We can do this from the quadrature

66 Almost Runge–Kutta methods

conditions (3.76) and (3.77) and the additional condition bT c3 = L, which give

b1 =
−2c2 − 2c3 + 3c2c3 + 6L

6c1(c1 − c2)(c1 − c3)
,

b2 =
−2c1 − 2c3 + 3c1c3 + 6L

6c2(c2 − c1)(c2 − c3)
,

b3 =
−2c1 − 2c2 + 3c1c2 + 6L

6c3(c3 − c1)(c3 − c2)
,

and then equation (3.78) gives a value for b0. It is possible to find methods in which two of the

c coefficients are equal; however bT needs to be calculated slightly differently in this case.

Next we can calculate K from equation (3.81). From this we find

K =

(
1 + 1

2β4c1

) (
1 + α1 + α2

2 + α3
6

)
1
2β4c1θα3 − α4

.

We can also find K from the stability function. Using the same argument as we used in

Theorem 3.1, we obtain, in turn

Tr(BA3U) = K,

bT A3e + eT
4 A3(c − Ae) + βT A3

(
1
2c2 − Ac

)
= K,

bT A2c +
1
2
βT A3c2 = K,

(
1 + 1

2β4c1

)
bT A2c = K. (3.84)

For ease of computation we will define three more variables. These are

K1 = bT A2c,

K2 = bT Ac,

K3 = bT Ac2.

From equation (3.84) we find

K1 =
K

1 + 1
2c1β4

. (3.85)

From equation (3.82) we obtain

K2 =
1
6

+ θ(K1 − K). (3.86)

3.5 Methods with s = p + 1 67

Finally, from equation (3.83) we find

K3 = 2K − 2
(

φ

β4
− 1
)

(K1 − K). (3.87)

To find an expression for a21 we will take combinations of K1, K2 and K3. As A is strictly lower

triangular we have

a21c1(bT Ac2 − c1b
T Ac) = c2(c2 − c1)bT A2c.

Rearranging and solving for a21 gives

a21 =
c2(c2 − c1)K1

c1(K3 − c1K2)
. (3.88)

Next we can find a32 from equation (3.85). We obtain, in turn

bT A2c = K1,

b3a32a21c1 = K1,

a32 =
K1

b3a21c1
.

Now we can find a31 from equation (3.87). In turn, we find

bT Ac2 = K3,

b2a21c
2
1 + a31b3c

2
1 + b3a32c

2
2 = K3,

a31 =
K3 − b2a21c

2
1 − b3a32c

2
2

b3c
2
1

.

The last coefficients left to find are those of the β vector. These can be found simply from

equation (3.80).

In summary, once the parameters c1, c2, c3, β4, φ, θ and L have been chosen, the remaining

parameters can be found from:

68 Almost Runge–Kutta methods

b1 = −2c2−2c3+3c2c3+6L
6c1(c1−c2)(c1−c3)

, a21 = c2(c2−c1)K1

c1K3−c21K2
,

b2 = −2c1−2c3+3c1c3+6L
6c2(c2−c1)(c2−c3)

, a32 = K1
b3a21c1

,

b3 = −2c1−2c2+3c1c2+6L
6c3(c3−c1)(c3−c2)

, a31 = K3−b2a21c21−b3a32c22
b3c21

,

b0 = 1 − b1 − b2 − b3, βT = β4e
T
4 (I + θA)(I + φA + β4θA2)−1,

K =
(
1 + 1

2β4c1

)
bT A2c, β0 = −βT e,

K1 = K
1+ 1

2
c1β4

,

K2 = 1
6 + θ(K1 − K),

K3 = 2K − 2
(

φ
β4

− 1
)

(K1 − K),

Some example methods

It is difficult to determine which combination of parameters gives the best method. One possible

choice is to have φ = β4 + θ. If we substitute this into equation (3.80) we obtain, in turn

β4e
T
4 (I + θA) = βT (I + φA + β4θA2),

β4e
T
4 (I + θA) = βT (I + β4A)(I + θA),

β4e
T
4 = βT (I + β4A).

This is the same as equation (3.32), with the subscript 3 replaced by 4. This choice of parameters

greatly simplifies the method.

Below are two examples with φ = β4 +θ. In the first example cT = [14 , 1
2 , 3

4 , 1], β4 = 2, φ = 3,

θ = 1, K = 5
216 and L = 1

5 . In the second example cT = [14 , 1
2 , 3

4 , 1], β4 = 2, φ = 3, θ = 1,

K = 5
216 and L = 1

4 .



0 0 0 0 1 1
4

1
32

8
9 0 0 0 1 − 7

18 − 7
72

−29
6

5
8 0 0 1 119

24
113
96

−14
15

19
15

2
15 0 1 8

15 0

−14
15

19
15

2
15 0 1 8

15 0

0 0 0 1 0 0 0
32
5 −22

5 − 8
15 2 0 −52

15 0


. (3.89)

3.5 Methods with s = p + 1 69



0 0 0 0 1 1
4

1
32

8
9 0 0 0 1 − 7

18 − 7
72

7
6

1
8 0 0 1 −13

24 − 7
96

2
3 −1

3
2
3 0 1 0 0

2
3 −1

3
2
3 0 1 0 0

0 0 0 1 0 0 0

0 2 −8
3 2 0 −4

3 0


. (3.90)

Interpolation

The conditions that need to be solved to find an interpolator for a third order four stage method

are the same as those for a three stage method. These are given by conditions (3.49) – (3.51).

However we now have two free parameters rather than one. We will choose one of these param-

eters in a similar manner to the case s = p = 3 such that b̃ = b at ξ = 1 and, if possible, b̃′ = 0

at ξ = 1. The second parameter we will fix by choosing b̃4(1) = b4 = 0.

We will derive the interpolation coefficients for method (3.90) here. First, the conditions to

be satisfied are

1
4
b̃1 +

1
2
b̃2 +

3
4
b̃3 =

ξ2

2
, (3.91)

1
16

b̃1 +
1
4
b̃2 +

9
16

b̃3 =
ξ3

3
, (3.92)

b̃0 + b̃1 + b̃2 + b̃3 = ξ. (3.93)

Subtracting two times equation (3.92) from equation (3.91) leaves us with

b̃1 − 3b̃3 = 4ξ2 − 16
3

ξ3.

From this we choose b̃1 and b̃2 to be

b̃1 = 4ξ2u − 16
3

ξ3v,

b̃3 = −4
3
ξ2(1 − u) +

16
9

ξ3(1 − v),

for some u and v. For consistency we require b̃1 = b1 and b̃2 = b2 at ξ = 1. Both of these

conditions simplify to

4u − 16
3

v =
2
3
. (3.94)

70 Almost Runge–Kutta methods

We would also like to be able to ensure b̃′1 = 0 at ξ = 1. Rearranging equation (3.94) and

substituting into our equation for b̃1 gives us

b̃1 = 4ξ2

(
1
6

+
4
3
v

)
− 16

3
ξ3v.

Finding the derivative of this at ξ = 1 and setting equal to 0 gives v = 1
4 and hence u = 1

2 from

equation (3.94). We now have the following expressions for b̃1 and b̃3

b̃1 = 2ξ2 − 4
3
ξ3,

b̃3 = −2
3
ξ2 +

4
3
ξ3.

Substituting back into equation (3.91) gives us the following expression for b̃2

b̃2 = ξ2 − 4
3
ξ3.

Finally, equation (3.93) gives us an expression for b̃0

b̃0 =
ξ

3
(3 − 7ξ + 4ξ2).

Following a similar procedure for the method given in (3.89) the coefficients are found to be

b̃1 = −14
5

ξ2 +
28
15

ξ3,

b̃2 =
ξ2

15
(87 − 68ξ),

b̃3 = −34
15

ξ2 +
36
15

ξ3,

b̃4 = 0,

b̃0 =
ξ

15
(15 − 11ξ + 4ξ2).

3.5 Methods with s = p + 1 71

3.5.3 Fourth order method with five stages

A fourth order five stage ARK method takes the form

 A U

B V

 =



0 0 0 0 0

a21 0 0 0 0

a31 a32 0 0 0 e c − Ae
1
2
c2 − Ac

a41 a42 a43 0 0

b1 b2 b3 b4 0

b1 b2 b3 b4 0 1 b0 0

0 0 0 0 1 0 0 0

β1 β2 β3 β4 β5 0 β0 0



,

with stability function

R(z) = 1 + z +
z2

2
+

z3

6
+

z4

24
+ Kz5

Order conditions

For an ARK method with five stages to have order four it needs to satisfy the conditions

b0 = 1 − bT e, (3.95)

bT c =
1
2
, (3.96)

bT c2 =
1
3
, (3.97)

bT c3 =
1
4
, (3.98)

bT Ac =
1
6
, (3.99)

bT Ac2 =
1
12

, (3.100)

β0 = −βT e, (3.101)

βT c = 1, (3.102)

72 Almost Runge–Kutta methods

βT Ac =
θβ5 + β5 − φ

θβ5
, (3.103)

β5e
T
5 (I + θA) = βT (I + φA + β5θA2), (3.104)

K

(
1
2
β5c1θα4 − α5

)
=
(

1 +
1
2
β5c1

)(
1 + α1 +

α2

2
+

α3

6
+

α4

24

)
, (3.105)

where the values of αi are determined by expanding

1 + (φ − β5)z
1 + φz + β5θz2

=
∞∑
i=0

αiz
i,

bT A2c − 1
24

= θ(bTA3c − K), (3.106)

β5

(
1
2
bT A2c2 − K

)
= (β5 − φ)(bT A3c − K). (3.107)

Derivation of methods

As there are so many free parameters it would be desirable to make these parameters the ones

which we would most like to have control over. We will change the derivation slightly to allow

us to make K a free parameter. This makes the derivation more complicated than in the third

order case, but gives us more control over the stability function. The two parameters θ and β5

appear together most of the time. We will create a new parameter µ = θβ5. Our free parameters

are now c1, c2, c3, c4, φ, K, a43 and L, where L − 1
5 is the error in the bushy tree.

• First we need to calculate µ. This can be done by solving equation (3.105). There are

only a relatively small number of choices for c1, K and φ which give real, rational values

for µ. Some aesthetically pleasing choices are

c1 =
1
5
, φ = 2, K =

1
120

, µ =
4
3

(3.108)

c1 =
1
4
, φ = 4, K =

1
120

, µ = 8 (3.109)

c1 =
1
3
, φ = 3, K =

1
120

, µ = 6 (3.110)

c1 =
1
3
, φ = 6, K =

1
120

, µ = 12 (3.111)

3.5 Methods with s = p + 1 73

• The bT vector can be found from equations (3.96)-(3.98) and bT c4 = L. Solving gives

b1 =
3c2 + 3c3 + 3c4 − 4c2c3 − 4c2c4 − 4c3c4 + 6c2c3c4 − 12L

12c1(c2 − c1)(c1 − c3)(c1 − c4)
,

b2 =
3c1 + 3c3 + 3c4 − 4c1c3 − 4c1c4 − 4c3c4 + 6c1c3c4 − 12L

12c2(c1 − c2)(c2 − c3)(c2 − c4)
,

b3 =
3c1 + 3c2 + 3c4 − 4c1c2 − 4c1c4 − 4c2c4 + 6c1c2c4 − 12L

12c3(c1 − c3)(c3 − c2)(c3 − c4)
,

b4 =
3c1 + 3c2 + 3c3 − 4c1c2 − 4c1c3 − 4c2c3 + 6c1c2c3 − 12L

12c4(c1 − c4)(c2 − c4)(c3 − c4)
.

• Next we need to calculate θ. From equation (3.106) we have

θ =
1
24 − bT A2c

K − bT A3c
. (3.112)

In order to evaluate this we need to know the values of bT A2c and bT A3c. These can be

found by rearranging equation (3.104) and substituting into equations (3.102) and (3.103).

First, equation (3.102) gives

β5e
T
5 (I + θA)(I + φA + µA2)−1c = 1.

A series expansion of the above gives

eT
5 (γ0 + γ1A + γ2A

2 + γ3A
3 + γ4A

4)c − 1 = 0,

where γi is given by
β5 + µz

1 + φz + µz2
=

∞∑
i=0

γiz
i.

Using the appropriate order conditions this reduces to

γ0 +
γ1

2
+

γ2

6
+ γ3b

T A2c + γ4b
T A3c − 1 = 0. (3.113)

Next, equation (3.103) gives

β5e
T
5 (I + θA)(I + φA + µA2)−1Ac =

µ + β5 − φ

µ
.

A series expansion and simplification using the order conditions gives

γ0

2
+

γ1

6
+ γ2b

T A2c + γ3b
T A3c −

(
µ + β5 − φ

µ

)
= 0. (3.114)

Simultaneously solving equations (3.113) and (3.114) gives us values for bT A2c and bT A3c,

which can be substituted into equation (3.112) to find θ.

74 Almost Runge–Kutta methods

• Calculate β5 =
µ

θ
.

• We now introduce three new temporary variables to aid the calculations. These are

K1 = bT A3c,

K2 = bT A2c,

K3 = bT A2c2.

An expression for K1 can be found by looking at the stability matrix. As we have already

seen, we require the trace to be equal to R(z). This implies we have

K = Tr(BA4U)

= bT A4e + eT
5 A4(c − Ae) + βT A4(1

2c2 − Ac)

= bT A3c + 1
2βT A4c2

= (1 + 1
2β5c1)bT A3c,

giving

K1 =
K

1 + c1β5

2

. (3.115)

An expression for K2 can be found by rearranging equation (3.106), giving

K2 =
1
24

+ θ(K1 − K). (3.116)

Similarly, an expression can be found for K3 by rearranging equation (3.107), giving

K3 = 2K − 2
(

φ

β5
− 1
)

(K1 − K). (3.117)

• To find an expression for a21 we will take combinations of K1, K2 and K3. As A is strictly

lower triangular we have

a21c1(bT A2c2 − c1b
T A2c) = c2(c2 − c1)bT A3c.

Rearranging and solving for a21 gives

a21 =
c2(c2 − c1)K1

c1(K3 − c1K2)
. (3.118)

3.5 Methods with s = p + 1 75

• We will use a similar technique to calculate a32 from

bT A2c2 − c1b
T A2c = b4a43a32c2(c2 − c1),

giving

a32 =
K3 − c1K2

b4a43c2(c2 − c1)
. (3.119)

• To find a31, solve bT A2c = K2, giving

a31 =
K2 − a21a32b3c1 − a21a42b4c1 − a32a43b4c2

a43b4c1
.

• An expression for a42 can be found from solving the linear combination of equations (3.99)

and (3.100). i.e. by solving the equation

bT Ac(c − c1) =
1
12

− c1

6
,

for a42.

• To find a41, solve equation (3.99).

• The βT vector can be found by rearranging equation (3.104) giving

βT = β5e
T
5 (I + θA)(I + φA + β5θA2)−1.

• The U matrix can be found by simply forming the matrix
[
e, c − Ae, 1

2c2 − Ac
]
.

• Similarly, B can be found by augmenting the vectors bT , eT
5 and βT .

• The only non-constant elements of V are b0 and β0 which can be found from equations

(3.95) and (3.101) respectively.

Some example methods

We present here two example methods. They have both been chosen for their relatively simple

tableaux. Although neither of them have been optimised, we have chosen L = 1
5 and K = 1

120

for both methods, ensuring zero error for both the bushy tree and the tall tree.

76 Almost Runge–Kutta methods

In this first method the remaining free parameters have been chosen to be c = [13 , 1
2 , 3

4 , 1, 1]T ,

φ = 3 and a43 = 1.



0 0 0 0 0 1 1
3

1
18

3
16 0 0 0 0 1 5

16
1
16

−75
64

5
3 0 0 0 1 49

192 − 31
192

45
4 −113

12 1 0 0 1 −11
6

17
24

27
50 − 2

15
32
75

1
15 0 1 1

10 0
27
50 − 2

15
32
75

1
15 0 1 1

10 0

0 0 0 0 1 0 0 0

−468
125

42
25

8
125

4
25

6
5 0 16

25 0



. (3.120)

In the second method the remaining free parameters have been chosen to be c = [15 , 1
2 , 3

4 , 1, 1]T ,

φ = 2 and a43 = 1.



0 0 0 0 0 1 1
5

1
50

75
248 0 0 0 0 1 49

248
2
31

60375
992 −93

4 0 0 0 1 −36567
992 − 33

124

−476125
2046

2987
33

4
3 0 0 1 290249

2046
535
682

125
396

2
9

32
99

1
12 0 1 1

18 0
125
396

2
9

32
99

1
12 0 1 1

18 0

0 0 0 0 1 0 0 0
203200

891 −31438
405

17032
4455

28
15 −158

15 1 −58964
405 0



. (3.121)

Interpolation

The equations that need to be solved to find a third order interpolator are those given in

equations (3.70)–(3.74). We now have one free parameter. We will choose this such that an

extra fourth order condition is satisfied. That is

b̃Ac2 =
ξ4

12
. (3.122)

We can still also satisfy the consistency condition that b̃T = bT at ξ = 1.

3.5 Methods with s = p + 1 77

For the method given in (3.120) the coefficients are

b̃1 =
27

1150
ξ2(382 − 672ξ + 313ξ2),

b̃2 = − 2
345

ξ2(1257 − 2422ξ + 1188ξ2),

b̃3 =
16

1725
ξ2(189 − 194ξ + 51ξ2),

b̃4 =
1

345
ξ2(117 − 142ξ + 48ξ2),

b̃5 = −1
2
ξ2(1 − ξ2),

b̃0 =
1

230
ξ(230 − 753ξ + 908ξ2 − 362ξ3).

The coefficients for method (3.121) are

b̃1 =
125

1964952
ξ2(83749 − 147650ξ + 68863ξ2),

b̃2 = − 2
22329

ξ2(16762 − 43448ξ + 24205ξ2),

b̃3 =
32

245619
ξ2(938 + 8048ξ − 6505ξ2),

b̃4 =
ξ2

59544
(1733 + 16382ξ − 13153ξ2),

b̃5 =
ξ2

3308
(213 − 3734ξ + 3521ξ2),

b̃0 =
ξ

44658
(44658 − 180508ξ + 236966ξ2 − 98635ξ3).

CHAPTER 4

A special ‘fifth’ order method

Mathematics consists of proving the most obvious thing in the least obvious way.

George Polyá

4.1 Introduction

As is always the case when a method has many free parameters, it is difficult to know what

choice of parameters is going to give optimal performance. In the course of optimising fourth

order methods with five stages a special method was found that had zero error coefficients for

the fifth order trees. The values of the free parameters for this method are c = [14 , 1
2 , 3

4 , 1, 1]T ,

L = 1
5 , K = 1

120 , φ = 4 and a43 = 8
7 . The defining matrices of the method are

0 0 0 0 0 1 1
4

1
32

2
5 0 0 0 0 1 1

10
1
40

27
160

75
128 0 0 0 1 − 3

640 − 69
1280

69
35 −51

28
8
7 0 0 1 − 41

140
17
280

16
45

2
15

16
45

7
90 0 1 7

90 0

16
45

2
15

16
45

7
90 0 1 7

90 0

0 0 0 0 1 0 0 0

−1352
225

34
15 −256

75 −196
225

24
5 0 242

75 0



, (4.1)

80 A special ‘fifth’ order method

with stability matrix

M =


1+ 83

90z+ 19
45z2+ 3

32z3+ 1
48z4 7

90 + 7
90z+ 7

96z2+ 1
64z3+ 1

192z4 1
192z2+ 1

384z3+ 1
1536z4

z+ 83
90z2+ 19

45z3+ 3
32z4+ 1

48z5 7
90z+ 7

90z2+ 7
96z3+ 1

64z4+ 1
192z5 1

192z3+ 1
384z4+ 1

1536z5

−242
75 z+367

225z2+111
100z3+13

60z4+ 1
10z5 242

75 − 142
225z− 1

100z2+ 5
24z3+ 1

60z4+ 1
40z5 1

192z4+ 1
320z5

.

The eigenvalues of M are {1+z+ 1
2z2 + 1

6z3 + 1
24z4 + 1

120z5, 0, 0} which is consistent with the RK

stability of the method. For this method, the stability function satisfies R(z) = exp(z) + O(z6).

This property, along with the observation that bT c4 = 1
5 , just as for a fifth order Runge–Kutta

method, suggests the possibility that we may be able to obtain an order enhancement.

To understand the behaviour of the method, we consider what happens when the exact values

y(xn−1) and hy′(xn−1) are used as incoming approximations to y
[n−1]
1 and y

[n−1]
2 respectively

with an approximation, accurate only to within O(h3), of h2y′′(xn−1) used for y
(n−1)
3 . We want

to carry out the analysis only to within O(h6) so we need only use trees up to order 5. Because

we wish to carry out formal Taylor expansions about xn−1, we represent the first two incoming

approximations by 1 and D respectively. The third input approximation is represented by a

mapping η and we will write η(ti) = ηi, where i takes values 0 to 17. Because this input

quantity approximates h2y′′(xn−1) up to h2 terms, we assume that η0 = 0, η1 = 0 and η2 = 1.

We are now in a position to calculate the tree mappings corresponding to the stages, stage

derivatives and output approximations. We denote the mappings representing the stages by ξi,

with i = 1, 2, . . . , 5. From Equation (3.5), we can calculate these in sequence, together with ξiD

using

ξi = 1 + ui2D + ui3η +
∑
j<i

aijξjD, i = 1, 2, . . . , 5.

Because ξ5 also corresponds to the first output approximation and ξ5D to the second output

approximation, it is sufficient in assessing the accuracy of these approximations to compare ξ5

to E up to trees of the required order. To assess the quality of the third output approximation

we calculate

η̂ = E−1
(
β0D +

5∑
i=1

βiξiD
)
,

where β0 = v32 and βi = b3i, i = 1, 2, . . . , 5. The factor E−1 is introduced because we wish

4.1 Introduction 81

to carry out the Taylor expansion for this output approximation about xn, rather than about

xn−1.

The results of these calculations, where we show only the essential details, are presented in

Table 4.1.

The effect we observe, in which the values of ηi, for i ≥ 3, do not enter into fourth order

terms in the last two columns of Table 4.1, is the result of the so called annihilation conditions

we have imposed on the method.

Since the order is determined by terms ξi of the penultimate column of this table, which

are equal to reciprocals of γ(t), we see that order 4 is assured, even if we start the method off

with the standard crude approximation to h2y′′(x0) as would correspond to (1 + D)D −D (the

difference between the derivative found after one step of the Euler method and the derivative

computed at x0, as given in (3.3)).

Moreover, we see that if η3 = 1
5 and η4 = 1

10 all entries of the penultimate column are equal

to reciprocals of γ(t), so that order 5 may be achieved for this choice, at least for fixed stepsizes.

For example, to obtain a starting value y
[0]
3 = h2y′′(x0) + O(h3), whose leading coefficients in

the expansion would have values 1
5 and 1

10 in the two terms of order three, we might use the

generalized tableau

0 0 0

1
5

1
10

1
10

0 −5 5

.

This can be interpreted as a standard Runge–Kutta methods, with a coefficient of 0 for the

y(xn) component. That is, once the stage values have been calculated as usual, the output

approximation can be found from

y
[0]
3 = h(−5F1 + 5F2).

The coefficients of this tableau can be found by solving the modified order conditions

bT = e,

bT c = 1,

bT c2 =
1
5
,

bT Ac =
1
10

.

82 A special ‘fifth’ order method

i (ξ1D)(ti) (ξ2D)(ti) (ξ3D)(ti) (ξ4D)(ti) (ξ5D)(ti) ξ5(ti) η̂(ti)

0 0 0 0 0 0 1 0

1 1 1 1 1 1 1 0

2 1
4

1
2

3
4 1 1 1

2 1

3 1
16

1
4

9
16 1 1 1

3
1
5

4 1
32

1
8

9
32

1
2

1
2

1
6

1
10

5 1
64

1
8

27
64 1 1 1

4 −553
600

6 1
128

1
16

27
128

1
2

1
2

1
8 − 553

1200

7 η3

32
1
40 + η3

40
201
1280 − 69η3

1280
87
280 + 17η3

280
1
3

1
12 − 7

20

8 η4

32
1
80 + η4

40
201
2560 − 69η4

1280
87
560 + 17η4

280
1
6

1
24 − 7

40

9 1
256

1
16

81
256 1 1 1

5
1163
800

10 1
512

1
32

81
512

1
2

1
2

1
10

1163
1600

11 η3

128
1
80 + η3

80
603
5120 − 207η3

5120
87
280 + 17η3

280
1
3

13
192− η3

192
247
500 + 133η3

2000

12 η4

128
1

160 + η4

80
603

10240 − 207η4

5120
87
560 + 17η4

280
1
6

13
384− η4

192
247
1000 + 133η4

2000

13 1
1024

1
64

81
1024

1
4

1
4

1
20

1163
3200

14 η5

32
1

160 + η5

40
777

10240 − 69η5

1280
639
2240 + 17η5

280
1
4

1
20

137
300

15 η6

32
1

320 + η6

40
777

20480 − 69η6

1280
639
4480 + 17η6

280
1
8

1
40

137
600

16 η7

32
η3

80 + η7

40
15

1024 + 51η3

2560− 69η7

1280
15
112− 51η3

1120 + 17η7

280
1
12

1
64 + η3

192
3
20

17 η8

32
η4

80 + η8

40
15

2048 + 51η4

2560− 69η8

1280
15
224− 51η4

1120 + 17η8

280
1
24

1
128 + η4

192
3
40

Table 4.1: Algebraic analysis of the special 5 stage method.

4.2 Obtaining order 5 performance 83

Even if we start the computation in the naive way based on the generalized tableau (3.3),

after a single step, the output value corresponding to η̂ will have the correct values of η3 and

η4 and, from this point onwards, the method will maintain fifth order behaviour, at least with

constant stepsize.

In the next section, we will see that it is possible to obtain fifth order accuracy even if the

stepsize varies from step to step.

4.2 Obtaining order 5 performance

Although the method has order 5 behaviour for fixed stepsize, some sort of adjustment is nec-

essary to extend this behaviour to variable h. This is typical of any multistep method but

our aim is to ensure that the additional cost involved with changing stepsize is minimal. To

maintain only order 4 behaviour, changing stepsize according to the Nordsieck technique is quite

satisfactory. Let h = ρh denote the stepsize to be used in step number n + 1, after step n has

been completed with stepsize h. The output quantities from step n are approximations to y(xn),

hy′(xn) and h2y′′(xn), respectively. Since the first two of these are accurate to within O(h6),

it will be satisfactory to adjust these, as input to the next step, by leaving the first unchanged

and scaling the second by the stepsize ratio ρ. Hence, the second input component will become

an approximation to ρ · hy′(xn) = hy′(xn). Adjusting the third component by a factor ρ2 will

not be an adequate correction, because this component consists of several terms which we can

write as

h2y′′(xn) + h3 1
10

y(3)(xn) + h4Φ(xn) + O(h5),

where Φ(xn) is a linear combination of elementary differentials whose coefficients can be found

from the last column of Table 4.1. When we adjust y
(n)
3 for input to step number n + 1 by

multiplying by ρ2, we obtain

ρ2

(
h2y′′(xn) + h3 1

10
y(3)(xn) + h4Φ(xn) + O(h5)

)
= h

2
y′′(xn)+

h
3

ρ

1
10

y(3)(xn)+
h

4

ρ2
Φ(xn)+O(h5),

which will not give the correct result at the end of this step unless, somehow, the factor ρ−1 can

be removed from the h
3 term.

We propose to do this by replacing the third output approximation, by two approximations

which will approximate

h2y′′(xn) + θh4Φ(xn)

84 A special ‘fifth’ order method

and

h3 1
10

y(3)(xn) + (1 − θ)h4Φ(xn)

respectively. These will be scaled by ρ2 and ρ3 respectively so that their sum will be

h
2
y′′(xn) + h

3 1
10

y(3)(xn) + h
4Φ(xn)

(
θ

ρ2
+

1 − θ

ρ

)
+ O(h5).

The quality of this as an approximation, compared with what would have been received as input

to step number n + 1 if the stepsize had been constant with value h, is determined by how close

θ/ρ2 + (1 − θ)/ρ is to 1 for ρ ≈ 1. A suitable value for θ is θ = −1 because

θ

ρ2
+

1 − θ

ρ
− 1 = −(ρ − 1)((θ + 1) + (ρ − 1))

ρ2
.

We now partition the vector
[

β0 β1 β2 β3 β4 β5

]T
in the form

βT = β̂T + β
T + β̃T .

The three components are chosen so that, if the β values in the last row of B and the value of v32,

are replaced by the values in these components, then the elements up to order 4 corresponding

to the η̂ column of Table 4.1 are respectively

0

0

1

0

0

0

0

0

0



,



0

0

0

1
5

1
10

0

0

0

0



,



0

0

0

0

0

−553
600

− 553
1200

− 7
20

− 7
40



, (4.2)

which are independent of the values of η3 and η4.

We now look at the conditions that make this possible. We start by looking at the conditions

for β̂T . From (3.7) we obtain an expression for (Eη̂)(ti). Using the composition rule, an

4.2 Obtaining order 5 performance 85

alternative expression can be found. Equating these two expressions, and solving for η̂(ti) leads

to the following conditions

η̂(t1) = β̂0 + β̂T e − E(t1)η̂(∅), (4.3)

η̂(t2) = β̂T c − E(t2)η̂(∅) − E(t1)η̂(t1), (4.4)

η̂(t3) = β̂T c2 − E(t3)η̂(∅) − E(t1)E(t1)η̂(t1) − 2E(t1)η̂(t2), (4.5)

η̂(t4) =
1
2
β̂T c2 − E(t4)η̂(∅) − E(t1)η̂(t2) − E(t2)η̂(t1), (4.6)

η̂(t5) = β̂T c3 − E(t5)η̂(∅) − E(t1)E(t1)E(t1)η̂(t1) − 3E(t1)E(t1)η̂(t2) − 3E(t1)η̂(t3), (4.7)

η̂(t6) =
1
2
β̂T c3 − E(t6)η̂(∅) − E(t1)E(t2)η̂(t1) − E(t2)η̂(t2) − E(t1)E(t1)η̂(t2), (4.8)

− E(t1)η̂(t4) − E(t1)η̂(t3), (4.9)

η̂(t7) = β̂T Ac2 − E(t7)η̂(∅) − E(t3)η̂(t1) − 2E(t1)η̂(t4) − E(t1)E(t1)η̂(t2), (4.10)

η̂(t8) =
1
2
β̂T Ac2 − E(t8)η̂(∅) − E(t4)η̂(t1) − E(t2)η̂(t2) − E(t1)η̂(t4). (4.11)

As we wish η̂ to be equal to the first column of (4.2) this leads to the following conditions

β̂0 + β̂T e = 0,

β̂T c = 1,

β̂T c2 = 2,

1
2
β̂T c2 = 1,

β̂T c3 = 3,

1
2
β̂T c3 =

3
2
,

β̂T Ac2 = 1,

1
2
β̂T Ac2 =

1
2
.

86 A special ‘fifth’ order method

A similar analysis for the vector β
T , using the second column vector of (4.2), leads to the

following conditions

β0 + β
T
e = 0,

β
T
c = 0,

β
T
c2 =

1
5
,

1
2
β

T
c2 =

1
10

,

β
T
c3 =

3
5
,

1
2
β

T
c3 =

3
10

,

β
T
Ac2 =

1
5
,

1
2
β

T
Ac2 =

1
10

.

The final vector, β̃T , can simply be found from

β̃T = βT − β̂T − β
T
.

One possible solution to the above equations is

242
75

−1352
225

34
15

−256
75

−196
225

24
5



=



− 7
45

−32
45

76
15

−512
45

−532
45

19



+



−38
75

32
75

84
25

−448
75

−518
75

48
5



+



35
9

−1288
225

−154
25

3136
225

4018
225

−119
5



.

Putting these ideas together, we present a tableau for a variable stepsize version of our main

method. Note that in the U and V matrices, the factor ρ is the ratio of the stepsize in the

current step to that in the previous step. The third and fourth row of the B matrix are found

4.3 Interpolation 87

from β̂T + θβ̃T and β
T + (1 − θ)β̃T respectively, where we have chosen θ = −1.

0 0 0 0 0 1 1
4ρ 1

32ρ2 1
32ρ3

2
5 0 0 0 0 1 1

10ρ 1
40ρ2 1

40ρ3

27
160

75
128 0 0 0 1 − 3

640ρ − 69
1280ρ2 − 69

1280ρ3

69
35 −51

28
8
7 0 0 1 − 41

140ρ 17
280ρ2 17

280ρ3

16
45

2
15

16
45

7
90 0 1 7

90ρ 0 0

16
45

2
15

16
45

7
90 0 1 7

90ρ 0 0

0 0 0 0 1 0 0 0 0

376
75

842
75 −5696

225 −742
25

214
5 0 −182

45 ρ 0 0

−496
45 −224

25
4928
225

6482
225 −38 0 1636

225 ρ 0 0



. (4.12)

4.3 Interpolation

A third order interpolator can be found in exactly the same manner as for other fourth order

methods with five stages, i.e., solving equations (3.70)–(3.74) and (3.122). This leads to the

following coefficients for the interpolator.

b̃1(ξ) = 16
45ξ2(5 − 6ξ + 2ξ2),

b̃2(ξ) = 2
15ξ2(25 − 46ξ + 22ξ2),

b̃3(ξ) = −16
45ξ2(10 − 24ξ + 13ξ2),

b̃4(ξ) = − 7
90ξ2(70 − 144ξ + 73ξ2),

b̃5(ξ) = ξ2

2 (13 − 28ξ + 15ξ2),

b̃0(ξ) = ξ
90 (90 − 235ξ + 228ξ2 − 76ξ3).

To verify this interpolator experimentally, we have solved the D1 problem using 100 equal

sized steps. The D1 problem is part of the DETest test set. Details can be found in section

88 A special ‘fifth’ order method

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

5 5.5 6 6.5 7

0.7

0.75

0.8

0.85

0.9

0.95

Figure 4.1: The D1 problem solved using method (4.1) with 100 equal sized steps. The solution

points are represented with plus symbols (+). An interpolator has been used to estimate the

solution 1
3 and 2

3 of the way through each step. These points are represented with asterisks

(∗). The figure on the right is an enlargement of one of the turning points, as this is where the

solution is changing most rapidly. The dashed line is obtained from a cubic spline interpolation

through the solution points.

A.1. We have used the interpolator to find the solution 1
3 and 2

3 of the way through each step.

The results from this are presented in Figure 4.1. As we can see, the interpolator is giving very

reliable results.

4.4 Error estimation

There are several possible ways of estimating the error in ARK methods. The technique outlined

here is a two-step approximation to zero, as proposed by Butcher and Chan [14]. An approx-

imation to the error is calculated at the end of a step, which is O(h5). The difference of this

quantity over two steps gives an estimate of the local error which is O(h6). This will not give a

good approximation to the local truncation error itself, but will give an asymptotically correct

approximation.

Let d̂ = d0y
[n]
2 +

∑5
i=1 dihFi, where d = [d1, d2, ..., d5], be our O(h5) approximation to the

error in each step. To determine the values of d0, d1, ..., d5 we return to the generating functions

introduced in section 3.2. Let δ(t) be a mapping from the trees to the real numbers representing

the error in a step. Then

δ(t) = d0 + dT (ξD)(t),

4.5 Optimising these methods 89

where ξ(t) is a mapping from trees to the real numbers representing the internal stages. To

obtain an approximation to the error that is O(h5) we need to ensure δ(t) = 0 for all trees up to

and including order 4. As with the order conditions, we find the number of conditions is reduced

due to the stage order of the method. This leaves us with one free parameter. We will use this

to normalise the results by requiring that δ(t9) = 1
5 . The conditions on d0 and dT are

dT + d0 = 0, (4.13)

dT c = 0, (4.14)

dT c2 = 0, (4.15)

dT c3 = 0, (4.16)

dT

(
Ac2 − 1

β5
(2Ac − c2)

)
= 0, (4.17)

dT c4 =
1
5
. (4.18)

Solving these equations for the method given in (4.1), leads to the following coefficients

d =
[
−128

15
,
64
5

,−128
15

,
532
15

,−100
3

]
, d0 =

32
15

. (4.19)

Assuming a constant stepsize over two steps, a higher order approximation to the error can

be found by the difference in d̂ over these two steps. Keeping the stepsize constant over two

steps is not an unreasonable restriction. An estimate of the error can then be found, helping to

determine the stepsize for the next two steps.

An alternative approach is to alter condition (4.17) to incorporate the stepsize change into

it so that the error can be estimated after each step. This condition now becomes

dT

(
Ac2 − 1

rβ5
(2Ac − c2)

)
= 0,

where r is the ratio between the current and previous stepsizes. Solving this new system of

equations leads to the same solution as before, with d4 and d5 replaced with

d4 =
28(385 − 556r)
15(−85 + 76r)

, d5 =
300(−3 + 4r)
−85 + 76r

.

4.5 Optimising these methods

This special method was discovered almost by chance. It is natural to ask if other methods with

this special property exist, and if they do are we able to select an optimal method from among

90 A special ‘fifth’ order method

them. In order to do this we need to decide on our definition of optimal. We have already seen

that it is possible to ensure the errors in the fifth order trees are zero. We will define an optimal

method to be one that minimises the norm of the vector of the error coefficients of the sixth

order trees.

4.5.1 Fifth order error coefficients

To look for methods with this special property, we first need to ensure that the fifth order error

coefficients are zero. There are 9 trees of order five, however due to the stage order of the

methods many of the error coefficients are a scalar multiple of another. As stated in Section 3.2,

the trees that are omitted are those that would be omitted if the C(2) condition were assumed

for a Runge–Kutta method. The independent error coefficients are therefore

ε9 =
1
5
− bT c4, (4.20)

ε11 =
1
15

− bT c(
1
2
c2 − Ac)η(t3) − bT CAc2

=
1
15

− bT c(
1
2
c2 − Ac)(βT c2 − 2) − bT CAc2, (4.21)

ε14 =
1
20

− bT Ac3, (4.22)

ε16 =
1
60

− 1
2
bT A(

1
2
c2 − Ac)η(t4) − 1

4
bT A2c2

=
1
60

− 1
2
bT A(

1
2
c2 − Ac)(1

4βT c2 − 1) − 1
4bT A2c2. (4.23)

If we assume the D(1) condition, as we have whilst deriving these methods, then condition

(4.21) can be ignored. To see why this is true we start by expanding equation (4.21), giving

ε11 =
1
15

− (1
2bT c3 − bT Ac + bT A2c)(βT c2 − 2) − bT Ac2 + bT A2c2.

Using the standard order conditions along with conditions (3.106) and (3.107) this can be sim-

plified to

ε11 =
1
15

− (
1
8
− 1

6
+

1
24

+ θ(bT A3c − K))(βT c2 − 2) − 1
12

+
2(β5 − φ)

β5
(bT A3c − K) + 2K

= − 1
60

− θ(bT A3c − K)(βT c2 − 2) +
2(β5 − φ)

β5
(bT A3c − K) + 2K. (4.24)

4.5 Optimising these methods 91

To simplify further we will make use of one of the conditions that is satisfied in order to have

RK-stability, i.e.

βT (1
2c2 − Ac) = 0.

From this condition and condition (3.103) it is easy to see that

βT c2 − 2 =
2(β5 − φ)

θβ5
.

Substituting this into equation (4.24) shows that ε11 = − 1
60 + 2K, which equals 0 if we choose

K = 1
120 .

The equation ε9 = 0 can easily be satisfied by choosing parameter L to be 1
5 . The error in

tree (t16) is automatically 0, as we have chosen K = 1
120 to ensure ε(t11) = 0. Once c1, c2, c3

and c4 have been chosen there is a unique choice of a43 that ensures ε14 = 0 (and hence ε11 = 0

if we have assumed the D(1) condition).

4.5.2 Sixth order error coefficients

Once the fifth order conditions are satisfied we can concentrate on the sixth order conditions.

Assuming the D(1) condition, the independent error coefficients are

ε(t18) = bT ξ(t1)5 − 1
6

= bT c5 − 1
6
,

ε(t20) = bT ξ(t1)ξ(t1)ξ(t3) − 1
18

= bT c2

(
(
1
2
c2 − Ac)η(t3) + Ac2

)
− 1

18

= bT

(
(
1
2
c2 − Ac)(βT c2 − 2) + Ac2

)
c2 − 1

18
,

92 A special ‘fifth’ order method

ε(t23) = bT ξ(t1)ξ(t5) − 1
24

= bT c

(
(
1
2
c2 − Ac)η(t5) + Ac3

)
− 1

24

= bT c

(
(
1
2
c2 − Ac)(βT c3 − 3βT c2 − 9) + Ac3

)
− 1

24
,

ε(t25) = bT ξ(t1)ξ(t7) − 1
72

= bT c

(
(
1
2
c2 − Ac)η(t7) + A(

1
2
c2 − Ac)η(t3) + A2c2

)
− 1

72

= bT c

(
(
1
2
c2 − Ac)(βT (

1
2
c2 − Ac)(βT c2 − 2) + βT Ac2) +

A(
1
2
c2 − Ac)(βT c2 − 2) + A2c2

)
− 1

72
.

The free parameters we have left are c1, c2, c3 and φ. First c1 and φ need to be chosen in

such a way that an appropriate value of µ = θβ5 is found from equation (3.105). After many

numerical searches the values found which give usable values for µ are given in (3.108) – (3.111).

Next c2 and c3 need to be chosen to ensure ε18 is small. We have chosen to require ε18 = 0.

This is done by simultaneously solving

bT c =
1
2
, bT c2 =

1
3
, bT c3 =

1
4
,

bT c4 =
1
5
, bT c5 =

1
6
,

for an unknown bT .

If we use the choice of parameters given in (3.108), where c1 = 1
5 , we find the following

relationship between c2 and c3

c3 =
−7 + 10c2

−10 + 15c2
.

Using the parameters in (3.109), where c1 = 1
4 , gives the relationship

c3 =
−5 + 7c2

−7 + 10c2
.

Finally, using the parameters in either (3.110) or (3.111), where c1 = 1
3 , the relationship is

c3 =
−3 + 4c2

−4 + 5c2
.

4.5 Optimising these methods 93

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

c
2

c 3

c
1
=1/5

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

c
2

c 3

c
1
=1/4

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

c
2

c 3

c
1
=1/3

Figure 4.2: Optimising our special ‘fifth’ order method. Solving for the free parameters c2 and

c3. Clockwise from top left: c1 = 1
5 , c1 = 1

4 and c1 = 1
3 .

94 A special ‘fifth’ order method

In order to make the implementation as simple as possible we wish both c2 and c3 to lie between

0 and 1. The values of c2 and c3 are plotted in Figure 4.2 for each of the above values of c1.

We are left with only one free parameter, c2, to minimise the remaining three error coef-

ficients. Due to the complex nature of these equations the only way to optimise them is by

performing numerical searches.

A numerical search was performed for each of the four sets of parameters given in (3.108) –

(3.111). For the first set of parameters the optimal choice of the free parameters was found to

be

c =
[
1
5
,

1
20

,
26
37

, 1, 1
]

, µ =
4
3
, φ = 2.

The method defined by this set of parameters is



0 0 0 0 0 1 1
5

1
50

− 15
992 0 0 0 0 1 323

4960
53

12400

−353443935
3748322

724094280
1874161 0 0 0 1 −1092110669

3748322 − 795197
3748322

119973785
250263 −2531594960

1299753
783399298
523800459 0 0 1 530619764

361491
17767
18538

7625
13392 −32000

82593
69343957
154162008

299
3344 0 1 29

104 0
7625
13392 −32000

82593
69343957
154162008

299
3344 0 1 29

104 0

0 0 0 0 1 0 0 0

−92996
243

1217291984
743337

166800329
27972945

2093
1045 −158

15 0 −2197852
1755 0



.

The 2-norm of the vector of 20 sixth order coefficients is 1.22439 . The error coefficients for the

four distinct trees we are interested in are

ε18 = 0, ε20 =
69419

1032300
, ε23 = −249829

324000
, ε25 = − 1

360
.

Although this method optimises the norm of the errors, the numerators and denominators

of the coefficients are rather larger than we would prefer. Instead we propose a method with

only a slightly larger norm, but whose coefficients require fewer digits in their representations.

The free parameters for the method are

c =
[
1
5
,

1
3
,

11
15

, 1, 1
]

, µ =
4
3
, φ = 2.

4.5 Optimising these methods 95

The defining matrices are

0 0 0 0 0 1 1
5

1
50

25
279 0 0 0 0 1 68

279
7

186

38830
279 −2046

25 0 0 0 1 −394801
6975 −1331

4650

−660625
961

12627
31

450
341 0 0 1 2957689

10571
2393
1922

125
768

9
32

1125
2816

31
384 0 1 5

66 0
125
768

9
32

1125
2816

31
384 0 1 5

66 0

0 0 0 0 1 0 0 0
23365

48 −8261
30

2995
528

217
120 −158

15 0 −34378
165 0



.

The 2-norm of the sixth order coefficients is 1.28536, only slightly larger than for the previous

method. The error coefficients for the four distinct trees we are interested in are

ε18 = 0, ε20 =
893

11160
, ε23 = −5239

6480
, ε25 = − 1

360
.

For the second set of parameters the optimal choice of the free parameters was found to be

c =
[
1
4
,

19
20

,
33
50

, 1, 1
]

, µ = 8, φ = 4.

The defining matrices of the method are

0 0 0 0 0 1 1
4

1
32

266
125 0 0 0 0 1 −589

500 − 323
4000

11896929
17500000

39237
532000 0 0 0 1 − 555621

5937500 − 111111
5000000

245787
11480

38055
30856 −106250

13079 0 0 1 −14128
1045 −53

80

976
2583

2000
11571

781250
2001087 − 5

306 0 1 283
3762 0

976
2583

2000
11571

781250
2001087 − 5

306 0 1 283
3762 0

0 0 0 0 1 0 0 0

−24098
12915 −14510

11571 −2350000
667029

28
153

24
5 0 5204

3135 0



. (4.25)

The norm of the sixth order error coefficients is 0.102186. The error coefficients of the four

distinct trees we are interested in are

ε18 = 0, ε20 = − 49
90000

, ε23 = − 3719
57600

, ε25 = − 1
360

.

As with the first method, the coefficients for this method are rather unattractive. We propose a

method with only a slightly larger norm, but with more pleasing coefficients. The free parameters

for the method are

96 A special ‘fifth’ order method

c =
[
1
4
,

3
4
,

1
2
, 1, 1

]
, µ = 8, φ = 4.



0 0 0 0 0 1 1
4

1
32

6
5 0 0 0 0 1 − 9

20 − 3
160

− 31
160

25
96 0 0 0 1 13

30 − 7
320

−69
40

39
56

6
7 0 0 1 41

35 − 11
560

16
45

16
45

2
15

7
90 0 1 7

90 0
16
45

16
45

2
15

7
90 0 1 7

90 0

0 0 0 0 1 0 0 0

−602
225 −518

225 −16
15 −196

225
24
5 0 476

225 0


The norm of the vector of sixth order error coefficients is 0.10496. The error coefficients of the

four distinct trees we are interested in are

ε18 = 0, ε20 = − 29
18000

, ε23 = − 1273
19200

, ε25 = − 1
360

.

For the third set of parameters the optimal choice for the free parameters was found to be

c =
[
1
3
,

8
11

,
1
4
, 1, 1

]
, µ = 6, φ = 3.

The method defined by these parameters is

0 0 0 0 0 1 1
3

1
18

78
121 0 0 0 0 1 10

121
6

121

−1257
6656

4235
26624 0 0 0 1 573

2048 − 11
512

−3063
2314

26983
32396

1536
623 0 0 1 −347

356 −25
89

81
520

161051
393120

256
945

89
1080 0 1 13

160 0
81
520

161051
393120

256
945

89
1080 0 1 13

160 0

0 0 0 0 1 0 0 0

− 99
650

7139
23400 −512

225
89
450

6
5 0 29

40 0



.

The norm of the vector of sixth order error coefficients is 0.120674. The error coefficients of the

four distinct trees we are interested in are

ε18 = 0, ε20 = − 1
200

, ε23 = − 3013
39600

, ε25 = − 1
360

.

Another method, with only a slightly larger norm, but more pleasing coefficients is defined by

the free parameters

c =
[
1
3
,

2
3
,

1
2
, 1, 1

]
, µ = 6, φ = 3.

4.5 Optimising these methods 97

The defining matrices are

0 0 0 0 0 1 1
3

1
18

1
2 0 0 0 0 1 1

6
1
18

11
32 − 5

32 0 0 0 1 5
16

11
96

71
22

17
11 −32

11 0 0 1 −19
22 − 5

33

27
40

27
40 − 8

15
11
120 0 1 11

120 0
27
40

27
40 − 8

15
11
120 0 1 11

120 0

0 0 0 0 1 0 0 0

−213
50 −21

50
64
25

11
50

6
5 0 7

10 0



.

The norm of the vector of sixth order error coefficients is 0.12145. The error coefficients of the

four distinct trees we are interested in are

ε18 = 0, ε20 =
1

1800
, ε23 = − 829

10800
, ε25 = − 1

360
.

For the final set of parameters the optimal choice of the free parameters was found to be

c =
[
1
3
,

1
20

,
56
75

, 1, 1
]

, µ = 12, φ = 6.

The defining matrices for the method are

0 0 0 0 0 1 1
3

1
18

− 51
800 0 0 0 0 1 91

800
9

400

3410806
2390625 −1451296

860625 0 0 0 1 1273538
1265625 − 142394

1265625

−2513067
696694

1288200
123607

8015625
6311228 0 0 1 −131123

18508
154
661

1647
4216

32000
202521

10546875
27574624

661
8664 0 1 − 5

672 0
1647
4216

32000
202521

10546875
27574624

661
8664 0 1 − 5

672 0

0 0 0 0 1 0 0 0

−48519
2635

4398160
67507 −7340625

3446828 −5288
1805

42
5 0 −7011

140 0



.

The norm of the vector of sixth order error coefficients is 0.140703. The error coefficients of the

four distinct trees we are interested in are

ε18 = 0, ε20 = − 17
13500

, ε23 = − 1921
21600

, ε25 = − 1
360

.

Another method, with only a slightly larger norm, but more pleasing coefficients is defined by

the free parameters

c =
[
1
3
,

1
5
,

11
15

, 1, 1
]

, µ = 12, φ = 6.

98 A special ‘fifth’ order method

The defining matrices of the method are

0 0 0 0 0 1 1
3

1
18

− 3
25 0 0 0 0 1 8

25
3
50

121
75 −22

27 0 0 0 1 − 44
675 − 143

1350

−168
31

175
31

450
341 0 0 1 − 6

11
13
62

9
32

125
768

1125
2816

31
384 0 1 5

66 0
9
32

125
768

1125
2816

31
384 0 1 5

66 0

0 0 0 0 1 0 0 0

−162
5

305
8 −135

88 −31
10

42
5 0 −522

55 0



.

The norm of the vector of sixth order error coefficients is 0.141363. The error coefficients for

the four distinct trees we are interested in are

ε18 = 0, ε20 = − 7
5400

, ε23 = − 193
2160

, ε25 = − 1
360

.

It is easy to see that the method given in (4.25) is the overall optimal method among those

examined in detail.

CHAPTER 5

Stiff ARK methods

“Obvious” is the most dangerous word in mathematics.

Eric Temple Bell

The methods that have been considered so far have been explicit methods for non-stiff

differential equations. It is natural to ask how well these methods extend to implicit methods

for stiff differential equations. As the stage order of ARK methods is restricted to two we will

only consider methods of low order, with s = p, as it is likely they will suffer from some order

reduction. Order reduction is when the stiffness of a problem causes the method to decrease to

the order of the stages, rather than the expected order of the method.

5.1 Introduction

We will also only consider diagonally implicit methods to ensure computational costs are kept

as low as possible. The A matrix for a diagonally implicit method is lower triangular, with a

single eigenvalue, λ. The general form of a diagonally implicit ARK method is

 A U

B V

 =


A e c − Ae 1

2c2 − Ac

bT 1 b0 0

eT
s 0 0 0

βT 0 β0 0

 =


Â + λI e c − Ae 1

2c2 − Ac

b̂T + λeT
s 1 b0 0

eT
s 0 0 0

βT 0 β0 0

 , (5.1)

where bT = eT
s A, eT

1 V = eT
s U and where Â is strictly lower triangular. We will always assume

cs = 1. Recall that eT = [1, 1, ..., 1] and eT
s = [0, 0, . . . , 0, 1].

100 Stiff ARK methods

The property of RK stability implies that the stability matrix for the method has only a

single non-zero eigenvalue. To simplify the analysis, we will reformulate the method so that, of

the three quantities y
[n]
1 , y

[n]
2 and y

[n]
3 passed from step to step, only y

[n]
1 and y

[n]
3 appear in the

formulation. This is a straightforward change in the interpretation of the method because, for

the differential equation y′(x) = f(x, y(x)), y
[n]
2 = hf(xn, y

[n]
1). This means that we can compute

a quantity equal to y
[n−1]
2 in step number n by artificially inserting an additional stage into the

method. In a practical implementation of the method, this would never be done this way but is

introduced here purely to aid the analysis.

In this alternative formulation of the method, the defining matrices become

 Ã Ũ

B̃ Ṽ

 =


0 0 1 0

c − Ae A e 1
2c2 − Ac

b0 bT 1 0

β0 βT 0 0

 (5.2)

and the stability matrix for this modified method is given by

M̃(z) =

 1 0

0 0

+ z

 b0 bT

β0 βT

 1 0

−z(c − Ae) I − zA

−1  1 0

e 1
2c2 − Ac

 .

To simplify this expression, we use the matrices T and T−1 given by

T =

 1 0

e I

 , T−1 =

 1 0

−e I


to transform the various factors in the last term as follows b0 bT

β0 βT

T =

 1 bT

0 βT

 , T−1

 1 0

e 1
2c2 − Ac

 =

 1 0

0 1
2c2 − Ac


and

T−1

 1 0

−z(c − Ae) I − zA

−1

T = T−1

 1 0

z(I − zA)−1(c − Ae) (I − zA)−1

T,

=

 1 0

z(I − zA)−1c (I − zA)−1

 ,

where we have used the consistency conditions b0 + bT e = 1 and β0 + βT e = 0. The stability

5.1 Introduction 101

matrix can now be written in the form

M̃(z) = Ṽ + zB̃TT−1

 1 0

−z(c − Ae) I − zA

−1

TT−1Ũ ,

=

 1 + z + z2bT (I − zA)−1c zbT (I − zA)−1(1
2c2 − Ac)

z2βT (I − zA)−1c zβT (I − zA)−1(1
2c2 − Ac)

 .

To further simplify this we will make use of bT = eT
s A and eT

s c = 1. The (1, 1) element can be

written as

1 + z + z2eT
s A(I + zA + z2A2 + z3A3 + · · ·)c = 1 + zeT

s c + zeT
s (zA + z2A2 + z3A3 + · · ·)c

= 1 + zeT
s (I − zA)−1c.

A similar simplification can be made for the (1, 2) element. The stability matrix can now be

written as

M̃(z) =

 1 + zeT
s (I − zA)−1c eT

s (I − zA)−1(1
2c2 − Ac)

z2βT (I − zA)−1c zβT (I − zA)−1(1
2c2 − Ac)

 .

It will be convenient to make the substitution z = ẑ/(1 + λẑ) to obtain the matrix

M̂(ẑ) =

 M̂11(ẑ) M̂12(ẑ)

M̂21(ẑ) M̂22(ẑ)

 =

 1 + ẑeT
s (I − ẑÂ)−1c êT

s (I − ẑÂ)−1(1
2c2 − Âc − λc)

ẑ2βT (I − ẑÂ)−1c ẑβT (I − ẑÂ)−1(1
2c2 − Âc − λc)

 .

Just as the requirements of RK stability will be satisfied if M(z) has a single non-zero eigenvalue

equal to exp(z)+O(zs+1), we have the alternative criterion that M̂(ẑ) has only a single non-zero

eigenvalue equal to exp(ẑ/(1 + λẑ))) + O(ẑs+1).

Write

Eλ(ẑ) = exp
(

ẑ

1 + λẑ

)
= 1 + α1ẑ + α2ẑ

2 + · · · ,

and write the truncated series as

Eλ
s (ẑ) = 1 + α1ẑ + α2ẑ

2 + · · · + αsẑ
s.

A characteristic property of an ARK method is that the third output approximation is

accurate only to within O(h3) and that the coefficients of the method are chosen so that errors

of this magnitude in y
[n−1]
3 do not affect the order s accuracy of y

[n]
1 computed in step number n.

Consider the special case of the differential equation y′(x) = qy(x) and suppose that the input

to step number n consists of the quantities

y
[n−1]
1 = 1, y

[n−1]
2 = hq, y

[n−1]
3 = h2q2 + h3q3ε.

102 Stiff ARK methods

The quantity computed as the value of y
[n]
1 is eT

s Y , where the stage vector Y is given by

Y = e + hqAY + hq(c − Ae) + (h2q2 + εh3q3)(1
2c2 − Ac).

Solve for Y and evaluate the contribution to eT
s Y from the term involving the ε factor. This

contribution is

εh3q3eT
s (I − hqA)−1(1

2c2 − Ac)

and must be O(hs+1) for the order not to be disturbed by this perturbation. Write z = hq and

divide by z3. We see that

eT
s (I − zA)−1(1

2c2 − Ac) = O(zs−2).

This means that the (1, 2) element of M(z) is O(zs−2) which is equivalent to stating that

M̂12(ẑ) = O(ẑs−2). Because Âs = 0, M̂12(ẑ) consists of exactly two terms and can be written in

the form

M̂12(ẑ) = ẑs−2eT
s Âs−2(1

2c2 − Âc − λc) + ẑs−1eT
s Âs−1(1

2c2 − Âc − λc).

Now consider the (2, 1) element of the transformed stability matrix. As βT c = 1 this equals

M̂21(ẑ) = ẑ2 + O(ẑ3).

To ensure RK stability, M̂ (ẑ) must have a zero eigenvalue and is therefore singular. We can

write

M̂11(ẑ)M̂22(ẑ) = M̂12(ẑ)M̂21(ẑ). (5.3)

Since

M̂11 = 1 + ẑ + O(ẑ2),

it follows that M̂22(ẑ) consists of a single term. This term is equal to

M̂22(ẑ) = βT Âs−1(1
2c2 − Â − λc)ẑs

and furthermore, the coefficient of ẑs in M̂22(ẑ) is identical to the coefficient of ẑs−2 in M̂12(ẑ).

Write P as the product of the elements in the first subdiagonal of Â. This is the only non-zero

element in Âs−1 and is in the (s, 1) position. We can now write the second column of M̂(ẑ) in

full. We have

M̂12(ẑ) = ẑs−2βT Âs−1(1
2c2 − Âc − λc) + ẑs−1eT

s Âs−1(1
2c2 − Âc − λc),

= (βs + ẑ)Pc1(1
2c1 − λ)ẑs−2,

5.1 Introduction 103

and

M̂22(ẑ) = βsPc1(1
2c1 − λ)ẑs.

We will always assume that βsPc1(1
2c1 − λ) 	= 0 so that the method will be a genuine

multivalue method.

We can now evaluate the coefficient of ẑs in M̂11(ẑ) in two different ways. As the sum of the

eigenvalues of a matrix is equal to the trace, we have

M̂11 + M̂22 = Eλ
s (ẑ).

The coefficient of ẑs in M̂11 is therefore αs − βsPc1(1
2c1 − λ), where αs is the coefficient of ẑs in

Eλ(ẑ). It is also equal to Pc1 by evaluation of eT
s Âs−1c.

We can now conclude that

Pc1 =
αs

1 + βs(1
2c1 − λ)

and because of equation (5.3), we also conclude that M̂11(ẑ) has a factor ẑ + βs.

We can now summarise the main conclusions of this section.

Theorem 5.1 For any s stage order s diagonally implicit ARK method such that βsPc1(1
2c1 −

λ) 	= 0,

c1 = 2λ − 2Eλ
s (−βs)

βsEλ
s−1(−βs)

. (5.4)

Furthermore,

βT (I + βsA − βsλI) = βse
T
s , (5.5)

and

(1 + 1
2c1βs − λβs)(bT As−2c + αs − 1

s!) = αs. (5.6)

Proof: To prove equation (5.4), evaluate M̂11(ẑ) in the form

M̂11(ẑ) = 1 + α1ẑ + α2ẑ
2 + · · · + αs−1ẑ

s−1 +
αs

1 + βs(1
2c1 − λ)

ẑs =
Eλ

s (ẑ) + βs(1
2c1 − λ)Eλ

s−1(ẑ)
1 + βs(1

2c1 − λ)

Because ẑ + βs is a factor of this polynomial,

Eλ
s (−βs) + βs(1

2c1 − λ)Eλ
s−1(−βs) = 0

and equation (5.4) follows.

104 Stiff ARK methods

To prove equation (5.5), define vT = βT (I + βsÂ)− βse
T
s = βT (I + βsA− βsλI)− βse

T
s and

verify that vT Âi−1c(c − 2λ) = 0 for all i = 1, 2, . . . , s, using the known values of M̂12(ẑ) and

M̂22(ẑ). Hence, vT = 0.

To prove equation (5.6) we need to look at the trace of M̂ . This should be equal to Eλ
s (ẑ).

Equating the coefficients of ẑs gives

b̂T Âs−2c + βT Âs−1(1
2c2 − Âc − λc) = αs.

As Â is strictly lower triangular, this can be rewritten as

b̂T Âs−2c + 1
2βsc1b̂

T Âs−2c − λβsb̂
T Âs−2c = αs.

Rearranging and rewriting in terms of bT and A gives equation (5.6).

5.2 Order 3 stiff ARK methods

We will investigate the possibility of ARK methods with 3 stages and order 3. The tableau

defining the methods we are seeking is

 A U

B V

 =



λ 0 0

a21 λ 0 e c − Ae 1
2c2 − Ac

b1 b2 λ

b1 b2 λ 1 b0 0

0 0 1 0 0 0

β1 β2 β3 0 β0 0


. (5.7)

The stability function for an s-stage diagonally implicit Runge–Kutta method with order

p = s is

R(z) =
N(z)

(1 − λz)s
= exp z − σ(λ)zs+1 + O(zs+2), (5.8)

where σ(λ) is the error constant.

Since N(z) has degree 3, we can use equation (5.8) to evaluate N(z) and σ. These are

N(z) = 1 + (1 − 3λ)z + (1
2 − 3λ + 3λ2)z2 + (1

6 − 3
2λ + 3λ2 − λ3)z3, (5.9)

σ = 1
24 − 1

2λ + 3
2λ2 − λ3. (5.10)

We are interested only in A-stable methods. Because, for λ > 0, R(z) is analytic in the left

half-plane, it is necessary only to require that |R(z)| ≤ 1 for |Re(z)| ≤ 0. By the maximum

5.2 Order 3 stiff ARK methods 105

1
3

1.0685790.5 0.750
.0

0
0
.0

5
0
.1

0

λ

σ

Figure 5.1: Error constant for λ in A-stability interval

1
3

1.0685790.5 0.75

0
.0

0
.5

1
.0

−0
.5

λ

R
(∞

)

Figure 5.2: Values of R(∞)

modulus principle, this is equivalent to

|(1 − λz)|6 − |N(z)|2 ≥ 0,

for z = iy. This is the so-called E-polynomial and in this case becomes

E(y) = y4(1
12 − λ + 3λ − 2λ3) + y6(− 1

36 + 1
2λ − 13

4 λ2 + 28
3 λ3 − 12λ4 + 6λ5)

which is non-negative for all real y as long as the coefficients of y4 and y6 are non-negative. It

is found that necessary and sufficient conditions for this are

λ ∈ [13 , λ∗] where λ∗ ≈ 1.068579.

As a guide to the selection of suitable values of λ in this interval, the error constant σ is

plotted in Figure 5.1 and the value of R(∞) is shown in Figure 5.2.

106 Stiff ARK methods

Order conditions

The conditions to ensure the first output approximation is of order three and the third output

approximation is of order two are:

b0 + bT e = 1, (5.11)

bT c =
1
2
, (5.12)

bT c2 =
1
3
, (5.13)

βT e + β0 = 0, (5.14)

βT c = 1. (5.15)

From Theorem 5.1, the conditions to ensure the method has the correct stability function

are

βT (I + β3A − λβ3I) = β3e
T
3 , (5.16)

(1 + 1
2c1β3 − λβ3)(bT Ac + λ2 − λ) = 1

6 + λ2 − λ, (5.17)

c1 = 2λ − 2Eλ
3 (−β3)

β3Eλ
2 (−β3)

. (5.18)

Derivation of methods

The derivation of these methods is very simple. Once the free parameters, λ, β3 and c2, have

been chosen the method can be uniquely determined from conditions (5.11) to (5.18).

First c1 can be determined from equation (5.18). Then b1 and b2 can be determined from

equations (5.12) and (5.13), giving

b1 =
1
3 − λ + (λ − 1

2)c2

c2
1 − c1c2

,

b2 =
1
3 − λ + (λ − 1

2)c1

c2
2 − c1c2

.

Next, b0 can be found from equation (5.11). The only remaining term of the A matrix, a21

can be found by solving equation (5.17), then the βT vector can be found from equation (5.16).

Finally, β0 can be found from equation (5.14).

5.3 Order 4 stiff ARK methods 107

Some example methods

Two example methods are given here. This first method has been chosen to minimise the error

coefficients. The c values have been specially chosen to give zero error for the bushy tree. We

have chosen λ = 1
3 as this is a simple fraction and comes close to minimising σ(λ).

c =


1
1
2

1

 ,

 A U

B V

 =



1
3 0 0 1 2

3
1
6

− 1
16

1
3 0 1 11

48
1
48

−1
6

2
3

1
3 1 1

6 0

−1
6

2
3

1
3 1 1

6 0

0 0 1 0 0 0
1
3 −8

3 2 0 1
3 0


. (5.19)

In this next method λ has been chosen to obtain close to L-stability. To obtain L-stability

we would require λ = 0.435867. To find pleasing coefficient matrices for the method we have

chosen λ = 2
5 .

c =


2
3

1
2

1

 ,

 A U

B V

 =



2
5 0 0 1 4

15 − 2
45

− 11
144

2
5 0 1 127

720 − 13
540

−21
20

8
5

2
5 1 1

20 0

−21
20

8
5

2
5 1 1

20 0

0 0 1 0 0 0
39
20 −18

5
3
2 0 3

20 0


. (5.20)

5.3 Order 4 stiff ARK methods

In this section we will extend the analysis to stiff ARK methods with order four. As for the

order three case, we will consider only methods for which A has the diagonally implicit structure

with constant λ on the diagonal. We will consider only fourth order methods with exactly four

stages. Our first consideration is the choice of λ, where we will wish to find a balance between

stability and accuracy. The polynomial N(z) appearing in equation (5.8) and the error constant

σ are now given by

N(z) =1+(1 − 4λ)z+(1
2 − 4λ + 6λ2)z2+(1

6 − 2λ + 6λ2 − 4λ3)z3+(1
24− 2

3λ+3λ2−4λ3+λ4)z4,

σ = 1
120 − 1

6λ + λ2 − 2λ3 + λ4.

108 Stiff ARK methods

λ1 λ210.750
.0

0
0
.0

5
0
.1

0
0
.1

5
λ

σ

Figure 5.3: Error constant for λ in A-stability interval, where λ1 = 0.394338 and λ2 = 1.28058.

λ1 λ20.75 1

0
.0

0
.5

1
.0

−0
.5

λ

R
(∞

)

Figure 5.4: Values of R(∞) in A-stability interval, where λ1 = 0.394338 and λ2 = 1.28058.

As for third order methods, we are interested only in A-stable methods and we analyse this

using the E-polynomial, which in this case is found to be

E(y)=(1
72−1

3λ+17
6 λ2−32

3 λ3+17λ4−8λ5)y6+(− 1
576+ 1

18λ−25
36λ2+13

3 λ3−173
12 λ4+76

3 λ5−22λ6+8λ7)y8.

Using the maximum modulus principle, we see that A-stability is equivalent to E(y) ≥ 0 for all

real y and this is found to be the case if and only if λ lies in an interval [λ1, λ2], where

λ1 ≈ 0.394338, λ2 ≈ 1.28058.

Values of σ and R(∞) are shown for λ ∈ [λ1, λ2] in Figure 5.3 and Figure 5.4, respectively.

5.3 Order 4 stiff ARK methods 109

Order conditions

The conditions for the first output approximation to be of order 4 and the third output approx-

imation to be of order 2 are:

b0 + bT e = 1, (5.21)

bT c =
1
2
, (5.22)

bT c2 =
1
3
, (5.23)

bT c3 =
1
4
, (5.24)

bT Ac =
1
6
, (5.25)

bT Ac2 =
1
12

, (5.26)

βT e + β0 = 0, (5.27)

βT c = 1. (5.28)

From Theorem 5.1, the conditions for stability are:

βT (I + β4A − λβ4I) = β4e
T
4 , (5.29)

(1 + 1
2c1β4 − λβ4)(bT A2c − λ

2 + 3
2λ2 − λ3) = 1

24 − λ
2 + 3

2λ2 − λ3, (5.30)

c1 = 2λ − 2Eλ
4 (−β4)

β4E
λ
3 (−β4)

. (5.31)

Derivation of methods

The derivation of fourth order methods is also reasonably simple. The only difficulty lies in

choosing the parameters λ and β4 such that c1 lies in the interval [0, 1] and the method is

A-stable.

First c1 can be found from equation (5.31). Then b1, b2 and b3 can be found from equations

110 Stiff ARK methods

(5.22) – (5.24), giving

b1 =
1
4 − λ + (λ − 1

3)c2 + (λ − 1
3)c3 + (1

2 − λ)c2c3

c1(c1 − c2)(c1 − c3)
,

b2 =
1
4 − λ + (λ − 1

3)c1 + (λ − 1
3)c3 + (1

2 − λ)c1c3

c2(c2 − c1)(c2 − c3)
,

b3 =
1
4 − λ + (λ − 1

3)c1 + (λ − 1
3)c2 + (1

2 − λ)c1c2

c3(c3 − c1)(c3 − c2)
.

Next, b0 can be found from equation (5.21). To find the element a32 we solve a liner combination

of equations (5.25) and (5.26). That is, we solve

bT Ac2 − c1b
T Ac =

1
6
− c1

6

for a32, giving

a32 =
192b3λ + 25(24λ2 + 24b2c2(3c2 − 1) − 1)

300b3c2(1 − 3c2)
.

Element a21 can be found by solving equation (5.30) and a31 can then be found from equation

(5.25), giving

a31 =
1

10b3
(5 − 30λ2 − 60b2c2λ − 32b3λ − 20b1λ − 30a32b3c2 − 10a21b2).

The vector βT can now be found from equation (5.29) and β0 can be found from equation (5.27).

Some example methods

Two example methods are given here. In the first method we have chosen λ = 1
2 as this means

we obtain a reasonably small error constant. In the second method we have chosen λ = 3
5 as

this gives us a small value for |R(∞)|.

c =



21
22

1
3

2
3

1

 ,

 A U

B V

 =



1
2 0 0 0 1 5

11 − 21
968

− 4961
42336

1
2 0 0 1 − 2095

42336
1

1344

223003
1518804 −57

82
1
2 0 1 26485

37044 − 23
1176

−2662
5453

12
41

21
38

1
2 1 1

7 0

−2662
5453

12
41

21
38

1
2 1 1

7 0

0 0 0 1 0 0 0
123178
147231 −176

123 −56
57

4
3 0 46

189 0


(5.32)

5.4 Starting the method 111

c =
[

911
1146

,
1
3
,

2
3
, 1
]T

,

 A U

B V

=



3
5 0 0 0 1 1117

5730 − 2114431
13133160

− 38596898
214854795

3
5 0 0 1 − 18697714

214854795 − 2321
1415070

642101935076
12312970210125 − 85603

343850
3
5 0 1 12265149017

46551872250 − 20886679
153299250

−264779098
118070155 − 273

1058
130
49

3
5 1 451

1822 0

−264779098
118070155 − 273

1058
130
49

3
5 1 451

1822 0

0 0 0 1 0 0 0
598434324
118070155 −8721

5290 −585
98

3
2 0 9561

9110 0


.

(5.33)

5.4 Starting the method

For explicit ARK methods, it is possible to start the numerical process using a starter of the

form

 Â Û

B̂ V̂

 =



0 0 1

1 0 1

0 0 1

1 0 0

−1 1 0


.

From an initial value y0 = y(x0), this preliminary step computes in turn

Y1 = y0,

hF1 = hf(x0, Y1) = hy′(x0),

Y2 = y0 + hF1 = y(x0 + h) + O(h2),

hF2 = hf(x0 + h, Y2) = hy′(x0 + h) + O(h3),

y
[0]
1 = y0,

y
[0]
2 = hF1 = hy′(x0),

y
[0]
3 = hF2 − hF1 = h2y′′(x0) + O(h3).

Because the method requires input to the first step of approximations to y(x0), hy′(x0) and

h2y′′(x0), with the last of these accurate to within O(h3), this simple process is perfectly ade-

quate.

112 Stiff ARK methods

However, for a stiff ARK method we will need to avoid computing hf(x0, y0), except as the

solution to an implicit equation of the form

Y = λhf(X,Y) + C,

where C is a known quantity. Hence, we consider starting procedures of the form Â Û

B̂ V̂

 ,

where Â has a diagonally implicit structure, with the diagonal element λ equal to that of the

main method, and where Û = 1 and V̂ = e1. It is advisable to advance the solution a single

step in carrying out the starting process, so that we actually compute approximations at the

point x1 = x0 + h, as follows

y
[1]
1 ≈ y(x1),

y
[1]
2 ≈ hy′(x1),

y
[1]
3 ≈ h2y′′(x1).

We will examine in detail the construction of a starting method appropriate for the three

stage third order method (5.19).

As part of the design of this method, βT c = 1 appears as an order condition and corresponds

to the requirement that, for the starting method, eT
3 B̂ĉ = 1, which, together with βT1+v31 = 0,

corresponding to eT
3 B̂1 = 0, is exactly the condition that y

[1]
3 = h2y′′(x1) + O(h3). Note also

that βT c2 = 5
3 and βT Ac = 5

6 . Although corresponding assumptions are not strictly necessary

for the starting method, we will assume as additional requirements that

eT
3 B̂ĉ2 =

5
3
, eT

3 Âĉ =
5
6
.

We also assume that λ = 1
3 for the starting method, as for the main method.

To obtain order 3 and to satisfy these additional constraints, four stages are necessary and

we will also assume that c4 = 1 so that we can then aim for a method for which

eT
1 B̂ = eT

4 Â, eT
2 B̂ = eT

4 .

Although the starting method requires more stages than the ARK method used for propogation,

because it is used only to start the method, this does not add substantially to the cost of using

a method.

5.4 Starting the method 113

It now transpires that the starting method is fully determined once suitable values of ĉ2 and

ĉ3 have been determined. Because values of the coefficients of the method are very sensitive

to values of these free abscissae, we will choose values that give reasonably small values of the

magnitudes of these coefficients. Suitable choices are

ĉ2 =
2
3
, ĉ3 = 0.

From these considerations, the following starting method has been found:

 Â Û

B̂ V̂

 =



1
3 0 0 0 1
1
3

1
3 0 0 1

−5
3

4
3

1
3 0 1

1 −1
4 − 1

12
1
3 1

1 −1
4 − 1

12
1
3 1

0 0 0 1 0

−2 −1 2
3

7
3 0


.

Even though the method is used only for the starting step it is interesting to note that the

first component (which approximates y(x0 + h)) is A-stable with stability function

1 − 1
3z − 1

6z2 + 1
54z3

(1 − 1
3z)4

.

For the method (5.20), a suitable starting method is found to be

 Â Û

B̂ V̂

 =



2
5 0 0 0 1
1
10

2
5 0 0 1

− 9
11

78
55

2
5 0 1

25
18 −2

3 −11
90

2
5 1

25
18 −2

3 −11
90

2
5 1

0 0 0 1 0

−5
9 −4

3
979
1395

184
155 0


.

Again it is found that the Runge–Kutta method which generates the value of y
[1]
1 is A-stable,

with stability function
1 − 3

5z − 7
50z2 + 53

750z3

(1 − 2
5z)4

.

Although finding starting methods for the fourth order methods is complicated it can be

done in a similar way to the third order methods. For example, a suitable starting method for

114 Stiff ARK methods

(5.32) is found to be

 Â Û

B̂ V̂

 =



1
2 0 0 0 0 1
1
10

1
2 0 0 0 1

−2 5
2

1
2 0 0 1

−25
2

35
2 −7

2
1
2 0 1

10
3 −125

42
1
6 − 1

42
1
2 1

10
3 −125

42
1
6 − 1

42
1
2 1

0 0 0 0 1 0

−262
75 2 11

50
4
75

61
50 0



.

For the method (5.33), a suitable starting method is found to be

[
Â Û

B̂ V̂

]
=



3
5 0 0 0 0 1

−348
637

3
5 0 0 0 1

− 68311
178350 − 3029

178350
3
5 0 0 1

− 567619159
2934888450 − 50172957737

105204462900
2736300189
3144041420

3
5 0 1

448231
208800

73148383399
115642000800 −134603

167760 −674687
427860

3
5 1

448231
208800

73148383399
115642000800 −134603

167760 −674687
427860

3
5 1

0 0 0 0 1 0

−7192100307338731
1418153128942500

9782934214337011
1418153128942500 −22410947189722

2445091601625
22410947189722
2445091601625 −496328334674

271676844625 0



.

CHAPTER 6

Numerical Experiments

I think there’s a world market for maybe five computers.

Thomas Watson, chairman of IBM (1943)

This chapter presents the results from a variety of numerical experiments which verify that

ARK methods are competitive methods for solving both ordinary differential equations and delay

differential equations. We also wish to confirm that the special ‘fifth’ order methods discussed

in Chapter 4 behave like fifth order methods in practice, both for fixed and variable stepsize

implementations.

6.1 Non-stiff methods

The explicit methods discussed in Chapters 3 and 4 will be compared against existing methods

using fixed stepsize, fixed variable stepsize and variable stepsize implementations.

6.1.1 Fixed stepsize

In code development there are many choices that need to be made apart from the basic method

to be used. By comparing ARK methods against existing methods using fixed stepsize imple-

mentation it is possible to compare the methods themselves and not any design choices that

have been made.

The problems that will be used for this comparison are the DETest problem set [42]. For

convenience they are listed in section A.1.

116 Numerical Experiments

We wish to compare both fourth order methods with four stages and our special ‘fifth’ order

methods against existing methods. The methods we will use for these comparisons are ARK4,

a fourth order, four stage ARK method, the tableau of which is

 A U

B V

 =



0 0 0 0 1 1 1
2

1
16 0 0 0 1 7

16
1
16

−1
4 2 0 0 1 −3

4 −1
4

0 2
3

1
6 0 1 1

6 0

0 2
3

1
6 0 1 1

6 0

0 0 0 1 0 0 0

−1
3 0 −2

3 2 0 −1 0



,

where c = [1, 1
2 , 1, 1]; ARK451, the original ‘fifth’ order method, the tableau of which is given

in equation (4.1); ARK452, the optimised ‘fifth’ order method, the tableau of which is given in

equation (4.25); RK45, a fourth order, five stage Runge–Kutta method, the tableau of which is

0

1
3

1
3

1
3

1
6

1
6

1
2

1
8 0 3

8

1 1
2 0 −3

2 2

1
6 0 0 2

3
1
6

and RK56, the popular Dormand and Prince method [29] which is a fifth order, seven stage

6.1 Non-stiff methods 117

Runge–Kutta method, the tableau of which is

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561 −25360

2187
64448
6561 −212

729

1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 −2187

6784
11
84

35
384 0 500

1113
125
192 −2187

6784
11
84 0

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

− 71
57600 0 71

16695 − 71
1920

17253
339200 − 22

525
1
40

. (6.1)

To ensure a fair comparison between the methods, the method with 4 stages has been

implemented with a stepsize of 4
5h and the method with 7 stages has been implemented with a

stepsize of 7
5h. The values of h used is problem dependent, as some problems required smaller h

than others to obtain reasonable accuracy. The results of these experiments are given in Figures

6.1 - 6.5.

We can see that these results are very promising for our special ‘fifth’ order methods. Not only

are they behaving like fifth order, but in many cases they are competitive with the Dormand and

Prince method. There is very little difference between the accuracy of the two special methods,

although the optimised method does perform slightly better on some problems.

The fourth order ARK method also performs well, although unfortunately not always as well

as the fourth order Runge–Kutta method. This method was chosen for its simple coefficients.

It is hoped that if these experiments were repeated with an optimised method the results might

be more competitive.

It should be noted that for some of the results, a flattening-out is observed when h is small.

This is due to round-off error.

118 Numerical Experiments

A5

h

||e
rr

or
||

10−14

10−12

10−10

10−8

10−6

10−110−2

A3

h

||e
rr

or
||

10−14

10−12

10−10

10−8

10−6

10−4

10−110−2

A4

h

||e
rr

or
||

10−14

10−12

10−10

10−8

10−110−2

A1

h

||e
rr

or
||

10−16

10−14

10−12

10−1 10−0.5

A2

h

||e
rr

or
||

10−16

10−14

10−12

10−10

10−8

10−6

10−110−2

Figure 6.1: Comparison between RK45 (−·), RK56 (· · ·), ARK4 (—), ARK451 (x) and ARK452

(◦) using constant stepsize for the class A DETest problems.

6.1 Non-stiff methods 119

B5

h

||e
rr

or
||

10−14

10−12

10−10

10−8

10−6

10−4

10−110−2

B3

h

||e
rr

or
||

10−14

10−12

10−10

10−8

10−110−2

B4

h

||e
rr

or
||

10−14

10−12

10−10

10−8

10−6

10−4

10−2

10−110−2

B1

h

||e
rr

or
||

10−10

10−5

100

10−110−2

B2

h

||e
rr

or
||

10−16

10−14

10−12

10−1 10−0.5

Figure 6.2: Comparison between RK45 (−·), RK56 (· · ·), ARK4 (—), ARK451 (x) and ARK452

(◦) using constant stepsize for the class B DETest problems.

120 Numerical Experiments

C5

h

||e
rr

or
||

10−14

10−12

10−10

10−8

10−6

10−110−2

C3

h

||e
rr

or
||

10−14

10−12

10−10

10−16

10−110−2

C4

h

||e
rr

or
||

10−16

10−14

10−12

10−10

10−110−2

C1

h

||e
rr

or
||

10−14

10−12

10−10

10−8

10−16

10−110−2

C2

h

||e
rr

or
||

10−14

10−12

10−10

10−16

10−110−2

Figure 6.3: Comparison between RK45 (−·), RK56 (· · ·), ARK4 (—), ARK451 (x) and ARK452

(◦) using constant stepsize for the class C DETest problems.

6.1 Non-stiff methods 121

D5

h

||e
rr

or
||

10−14

10−12

10−10

10−8

10−6

10−310−410−5

D3

h

||e
rr

or
||

10−14

10−12

10−10

10−8

10−6

10−4

10−2

10−110−210−3

D4

h

||e
rr

or
||

10−14

10−12

10−10

10−8

10−6

10−310−4

D1

h

||e
rr

or
||

10−14

10−12

10−10

10−8

10−6

10−4

10−2

10−110−2

D2

h

||e
rr

or
||

10−14

10−12

10−10

10−8

10−6

10−4

10−2

10−110−2

Figure 6.4: Comparison between RK45 (−·), RK56 (· · ·), ARK4 (—), ARK451 (x) and ARK452

(◦) using constant stepsize for the class D DETest problems.

122 Numerical Experiments

E5

h

||e
rr

or
||

10−14

10−10

10−6

10−12

10−8

10−110−2

E3

h

||e
rr

or
||

10−14

10−12

10−10

10−8

10−6

10−4

10−2

10−110−2

E4

h

||e
rr

or
||

10−16

10−10

10−14

10−12

10−8

10−1 10−0.5

E1

h

||e
rr

or
||

10−14

10−4

10−12

10−10

10−8

10−6

10−110−2

E2

h

||e
rr

or
||

10−12

10−10

10−8

10−6

10−4

10−2

10−110−2

Figure 6.5: Comparison between RK45 (−·), RK56 (· · ·), ARK4 (—), ARK451 (x) and ARK452

(◦) using constant stepsize for the class E DETest problems.

6.1 Non-stiff methods 123

6.1.2 Fixed variable stepsize

In this section we will examine the effect of stepsize changes on the accuracy of the methods.

To do this, experiments were carried out using a scheme in which a predetermined sequence of

stepsizes was imposed. For each sequence of 5 steps, stepsizes in the ratios 1 : r : r2 : r : 1

were used, where r is a parameter. The expected performance of a fifth order method, assuming

asymptotic behaviour under such a scheme, would be that the global truncation errors would

be scaled up by a factor

F (r) =
(

2 + 2r + r2

5

)−6(2 + 2r6 + r12

5

)
, (6.2)

assuming that the total number of steps actually carried out is independent of r.

To see why this is true we examine the error that would have been generated using a fixed

stepsize. The size of each step would have been
(

2+2r+r2

5

)
h, so the error on each step would

have been

Ch6

(
2 + 2r + r2

5

)6

.

Using the fixed variable scheme the total error generated over 5 steps is 2Ch6 +2Ch6r6 +h6r12,

giving an average error per step of

Ch6

(
2 + 2r6 + r12

5

)
.

Dividing the above two expressions gives equation (6.2). For a stepsize ratio of r = 1.5 we

would expect the error to grow by a factor of 3.3253 and for r = 2 we would expect a factor of

13.2063. However, this prediction is somewhat optimistic because it ignores the possibility that

additional errors may have been introduced by the very process of adjusting the data between

one step and the next.

Two methods have been compared. These are the special ‘fifth’ order ARK method given

in (4.1) and the fifth order Runge–Kutta method given in (6.1). For the two methods, global

errors have been computer for n steps. The ARK method has been implemented in the manner

suggested in Chapter 4 to ensure fifth order behaviour. Only the results for the last problem

of each class of the DETest problems are presented here, for berevity. The remainder of the

problems produced similar results. The results for the ARK methods are given in Tables 6.1 -

6.5. The results for the Runge–Kutta method are given in Tables 6.6 - 6.10. The top grid of each

table gives the ratio between the errors when the stepsize has been doubled. We would expect

this to be about 32 for a fifth order method. The lower grid of each table gives the deterioration

factor. We would expect this to be approximately F (r).

124 Numerical Experiments

n Error (r = 1) Ratio Error (r = 1.5) Ratio Error (r = 2) Ratio

240 1.7183 ×10−10 6.0015 ×10−10 2.1213 ×10−9

480 5.6189 ×10−12

30.58
1.8491 ×10−11

32.46
6.4819 ×10−11

32.73

960 1.711 ×10−13

32.84
5.59 ×10−13

33.08
1.9665 ×10−12

32.96

1920 3.4 ×10−15

50.32
9.8 ×10−15

57.04
5.08 ×10−14

38.71

n Error (r = 1) Deterioration Error (r = 1.5) Deterioration Error (r = 2)
factor factor

240 1.7183 ×10−10 3.49 6.0015 ×10−10 12.35 2.1213 ×10−9

480 5.6189 ×10−12 3.29 1.8491 ×10−11 11.54 6.4819 ×10−11

960 1.711 ×10−13 3.27 5.59 ×10−13 11.49 1.9665 ×10−12

1920 3.4 ×10−15 2.88 9.8 ×10−15 14.94 5.08 ×10−14

Table 6.1: Comparison of error behaviours for fixed and variable stepsizes for problem A5 using

method ARK45. We expect the ratio to be about 32. The theoretical values for the deterioration

factor are F (1.5) = 3.3253 and F (2) = 13.2063.

n Error (r = 1) Ratio Error (r = 1.5) Ratio Error (r = 2) Ratio

480 2.8246 ×10−9 8.5225 ×10−9 2.9871 ×10−8

960 8.9064 ×10−11

31.71
2.6959 ×10−10

31.61
9.4911 ×10−10

31.47

1920 2.7988 ×10−12

31.82
8.4747 ×10−12

31.81
2.9886 ×10−11

31.76

3840 9.14 ×10−14

30.62
2.687 ×10−13

31.54
9.411 ×10−13

31.76

n Error (r = 1) Deterioration Error (r = 1.5) Deterioration Error (r = 2)
factor factor

480 2.8246 ×10−9 3.02 8.5225 ×10−9 10.58 2.9871 ×10−8

960 8.9064 ×10−11 3.03 2.6959 ×10−10 10.66 9.4911 ×10−10

1920 2.7988 ×10−12 3.03 8.4747 ×10−12 10.68 2.9886 ×10−11

3840 9.14 ×10−14 2.94 2.687 ×10−13 10.30 9.411 ×10−13

Table 6.2: Comparison of error behaviours for fixed and variable stepsizes for problem B5 using

method ARK45. We expect the ratio to be about 32. The theoretical values for the deterioration

factor are F (1.5) = 3.3253 and F (2) = 13.2063.

6.1 Non-stiff methods 125

n Error (r = 1) Ratio Error (r = 1.5) Ratio Error (r = 2) Ratio

60 1.3022 ×10−8 3.9008 ×10−8 1.3675 ×10−7

120 4.1199 ×10−10

31.61
1.2452 ×10−9

31.33
4.3899 ×10−9

31.15

240 1.2854 ×10−11

32.05
3.9199 ×10−11

31.77
1.3882 ×10−10

31.62

480 2.982 ×10−13

43.11
1.1251 ×10−12

34.84
4.2586 ×10−12

32.60

n Error (r = 1) Deterioration Error (r = 1.5) Deterioration Error (r = 2)
factor factor

60 1.3022 ×10−8 3.00 3.9008 ×10−8 10.50 1.3675 ×10−7

120 4.1199 ×10−10 3.02 1.2452 ×10−9 10.66 4.3899 ×10−9

240 1.2854 ×10−11 3.05 3.9199 ×10−11 10.80 1.3882 ×10−10

480 2.982 ×10−13 3.77 1.1251 ×10−12 14.28 4.2586 ×10−12

Table 6.3: Comparison of error behaviours for fixed and variable stepsizes for problem C5 using

method ARK45. We expect the ratio to be about 32. The theoretical values for the deterioration

factor are F (1.5) = 3.3253 and F (2) = 13.2063.

n Error (r = 1) Ratio Error (r = 1.5) Ratio Error (r = 2) Ratio

3840 9.5847 ×10−4 2.9954 ×10−3 1.0156 ×10−2

7680 3.1159 ×10−5

30.76
9.6976 ×10−5

30.89
3.4141 ×10−4

29.75

15360 9.8247 ×10−7

31.71
3.0301 ×10−6

32.00
1.0735 ×10−5

31.80

30720 3.0756 ×10−8

31.94
9.4225 ×10−8

32.16
3.3398 ×10−7

32.14

n Error (r = 1) Deterioration Error (r = 1.5) Deterioration Error (r = 2)
factor factor

3840 9.5847 ×10−4 3.13 2.9954 ×10−3 10.60 1.0156 ×10−2

7680 3.1159 ×10−5 3.11 9.6976 ×10−5 10.96 3.4141 ×10−4

15360 9.8247 ×10−7 3.08 3.0301 ×10−6 10.93 1.0735 ×10−5

30720 3.0756 ×10−8 3.06 9.4225 ×10−8 10.86 3.3398 ×10−7

Table 6.4: Comparison of error behaviours for fixed and variable stepsizes for problem D5 using

method ARK45. We expect the ratio to be about 32. The theoretical values for the deterioration

factor are F (1.5) = 3.3253 and F (2) = 13.2063.

126 Numerical Experiments

n Error (r = 1) Ratio Error (r = 1.5) Ratio Error (r = 2) Ratio

60 1.874 ×10−8 4.9849 ×10−8 1.6662 ×10−7

120 6.3521 ×10−10

29.50
1.8274 ×10−9

27.28
6.2546 ×10−9

26.64

240 2.0723 ×10−11

30.65
6.1248 ×10−11

29.84
2.1197 ×10−10

29.51

480 6.928 ×10−13

29.91
2.008 ×10−12

30.50
6.9068 ×10−12

30.69

n Error (r = 1) Deterioration Error (r = 1.5) Deterioration Error (r = 2)
factor factor

60 1.874 ×10−8 2.66 4.9849 ×10−8 8.89 1.6662 ×10−7

120 6.3521 ×10−10 2.88 1.8274 ×10−9 9.85 6.2546 ×10−9

240 2.0723 ×10−11 2.96 6.1248 ×10−11 10.23 2.1197 ×10−10

480 6.928 ×10−13 2.90 2.008 ×10−12 9.97 6.9068 ×10−12

Table 6.5: Comparison of error behaviours for fixed and variable stepsizes for problem E5 using

method ARK45. We expect the ratio to be about 32. The theoretical values for the deterioration

factor are F (1.5) = 3.3253 and F (2) = 13.2063.

n Error (r = 1) Ratio Error (r = 1.5) Ratio Error (r = 2) Ratio

240 8.9316 ×10−11 2.8857 ×10−10 1.1882 ×10−9

480 2.6793 ×10−12

33.34
8.9109 ×10−12

32.38
3.613 ×10−11

32.89

960 9.45 ×10−14

28.35
2.841 ×10−13

31.37
1.1078 ×10−12

32.61

1920 1.62 ×10−14

5.83
2.02 ×10−14

14.06
4.69 ×10−14

23.62

n Error (r = 1) Deterioration Error (r = 1.5) Deterioration Error (r = 2)
factor factor

240 8.9316 ×10−11 3.23 2.8857 ×10−10 13.30 1.1882 ×10−9

480 2.6793 ×10−12 3.33 8.9109 ×10−12 13.48 3.613 ×10−11

960 9.45 ×10−14 3.01 2.841 ×10−13 11.72 1.1078 ×10−12

1920 1.62 ×10−14 1.25 2.02 ×10−14 2.90 4.69 ×10−14

Table 6.6: Comparison of error behaviours for fixed and variable stepsizes for problem A5 using

Dormand and Prince. We expect the ratio to be about 32. The theoretical values for the

deterioration factor are F (1.5) = 3.3253 and F (2) = 13.2063.

6.1 Non-stiff methods 127

n Error (r = 1) Ratio Error (r = 1.5) Ratio Error (r = 2) Ratio

480 6.1763 ×10−10 2.12 ×10−9 8.6542 ×10−9

960 1.8576 ×10−11

33.25
6.2941 ×10−11

33.68
2.547 ×10−10

33.98

1920 5.668 ×10−13

32.77
1.9063 ×10−12

33.02
7.6608 ×10−12

33.25

3840 1.62 ×10−14

34.99
5.62 ×10−14

33.92
2.328 ×10−13

32.91

n Error (r = 1) Deterioration Error (r = 1.5) Deterioration Error (r = 2)
factor factor

480 6.1763 ×10−10 3.43 2.12 ×10−9 14.01 8.6542 ×10−9

960 1.8576 ×10−11 3.39 6.2941 ×10−11 13.71 2.547 ×10−10

1920 5.668 ×10−13 3.36 1.9063 ×10−12 13.52 7.6608 ×10−12

3840 1.62 ×10−14 3.47 5.62 ×10−14 14.37 2.328 ×10−13

Table 6.7: Comparison of error behaviours for fixed and variable stepsizes for problem B5 using

Dormand and Prince. We expect the ratio to be about 32. The theoretical values for the

deterioration factor are F (1.5) = 3.3253 and F (2) = 13.2063.

n Error (r = 1) Ratio Error (r = 1.5) Ratio Error (r = 2) Ratio

60 8.3002 ×10−9 3.5367 ×10−8 1.7603 ×10−7

120 1.8909 ×10−10

43.89
7.3405 ×10−10

48.18
3.3974 ×10−9

51.81

240 5.0009 ×10−12

37.81
1.7945 ×10−11

40.91
7.7685 ×10−11

43.73

480 2.199 ×10−13

22.74
5.559 ×10−13

32.28
2.0961 ×10−12

37.06

n Error (r = 1) Deterioration Error (r = 1.5) Deterioration Error (r = 2)
factor factor

60 8.3002 ×10−9 4.26 3.5367 ×10−8 21.21 1.7603 ×10−7

120 1.8909 ×10−10 3.88 7.3405 ×10−10 17.97 3.3974 ×10−9

240 5.0009 ×10−12 3.59 1.7945 ×10−11 15.53 7.7685 ×10−11

480 2.199 ×10−13 2.53 5.559 ×10−13 9.53 2.0961 ×10−12

Table 6.8: Comparison of error behaviours for fixed and variable stepsizes for problem C5 using

Dormand and Prince. We expect the ratio to be about 32. The theoretical values for the

deterioration factor are F (1.5) = 3.3253 and F (2) = 13.2063.

128 Numerical Experiments

n Error (r = 1) Ratio Error (r = 1.5) Ratio Error (r = 2) Ratio

3840 2.5141 ×10−5 2.0741 ×10−4 3.0414 ×10−3

7680 2.8966 ×10−6

8.68
7.4281 ×10−6

27.92
1.2942 ×10−5

234.99

15360 9.7901 ×10−8

29.59
3.2153 ×10−7

23.10
1.205 ×10−6

10.74

30720 2.9652 ×10−9

33.02
1.0058 ×10−8

31.97
4.039 ×10−8

29.83

n Error (r = 1) Deterioration Error (r = 1.5) Deterioration Error (r = 2)
factor factor

3840 2.5141 ×10−5 8.25 2.0741 ×10−4 120.97 3.0414 ×10−3

7680 2.8966 ×10−6 2.56 7.4281 ×10−6 4.47 1.2942 ×10−5

15360 9.7901 ×10−8 3.28 3.2153 ×10−7 12.31 1.205 ×10−6

30720 2.9652 ×10−9 3.39 1.0058 ×10−8 13.62 4.039 ×10−8

Table 6.9: Comparison of error behaviours for fixed and variable stepsizes for problem D5 using

Dormand and Prince. We expect the ratio to be about 32. The theoretical values for the

deterioration factor are F (1.5) = 3.3253 and F (2) = 13.2063.

n Error (r = 1) Ratio Error (r = 1.5) Ratio Error (r = 2) Ratio

60 3.0722 ×10−9 8.7498 ×10−9 3.2743 ×10−8

120 1.0109 ×10−10

30.39
3.1882 ×10−10

27.44
1.2314 ×10−9

26.59

240 3.2026 ×10−12

31.57
1.054 ×10−11

30.25
4.14 ×10−11

29.74

480 6.28 ×10−14

51.00
3.025 ×10−13

34.84
1.2965 ×10−12

31.93

n Error (r = 1) Deterioration Error (r = 1.5) Deterioration Error (r = 2)
factor factor

60 3.0722 ×10−9 2.85 8.7498 ×10−9 10.66 3.2743 ×10−8

120 1.0109 ×10−10 3.15 3.1882 ×10−10 12.18 1.2314 ×10−9

240 3.2026 ×10−12 3.29 1.054 ×10−11 12.93 4.14 ×10−11

480 6.28 ×10−14 4.82 3.025 ×10−13 20.64 1.2965 ×10−12

Table 6.10: Comparison of error behaviours for fixed and variable stepsizes for problem E5

using Dormand and Prince. We expect the ratio to be about 32. The theoretical values for the

deterioration factor are F (1.5) = 3.3253 and F (2) = 13.2063.

6.1 Non-stiff methods 129

As we can see from the tables, both methods produce a ratio of approximately 32 when the

stepsize is doubled. This indicates that our variable stepsize implementation is maintaining the

correct order. The few ratios that diverge significantly from 32 are due to round off error in the

smaller step-sizes.

The deterioration factors for the Runge–Kutta method are very close to the theoretical values

predicted by F (r), however the deterioration factors for the ARK method are much better than

predicted. For r = 1.5 this factor is approximately 3, for r = 2 this factor is approximately

11. This can be interpreted to mean that changing stepsize does not add additional errors to

the computation, but rather that there can even be a cancellation of some of the accumulated

truncation error under stepsize change.

6.1.3 Variable stepsize

In practice, unless it is required by the problem, most ordinary differential equations are solved

using a variable stepsize code. This is because parts of the solution can be very smooth, hence a

large stepsize is appropriate, while other parts can change rapidly, requiring a small stepsize. It is

therefore important to see how well our methods compare in a variable stepsize implementation.

We have compared our special ‘fifth’ order ARK method given in (4.1) with the Dormand

and Prince method given in (6.1). They were tested on the DETest problem set, with many

different tolerances, tol = 10−i, i = 3, .., 12. The results for the final problem in each class

are plotted in Figure 6.6. The number of function evaluations has been plotted against the

error. Function evaluations have been chosen as it was felt that etime is an unreliable measure

of work done on shared computers, and flops, while giving the same information as function

evaluations, are more difficult to measure.

As we can see, these results are promising, although the Dormand and Prince method gives

slightly better results. This is possibly, in part, due to the manner in which the error estimator

for the ARK method was implemented. The stepsize was kept constant over two steps, and then

the error estimated at the end of two steps. This has two disadvantages. First, if the error is

too large in a step, two steps need to be repeated. Also, it is possible that keeping the stepsize

constant over two steps is restricting the growth rate of the stepsize, thereby requiring more

steps to finish the integration.

130 Numerical Experiments

E5

||Error||

fu
nc

tio
n

ev
al

s

10−14 10−12 10−10 10−8 10−6 10−4
102

103

C5

||Error||

fu
nc

tio
n

ev
al

s

10−12 10−10 10−8 10−6 10−4 10−2
102

103

D5

||Error||

fu
nc

tio
n

ev
al

s

10−10 10−8 10−6 10−4 10−2

103

104

A5

||Error||

fu
nc

tio
n

ev
al

s

10−12 10−10 10−8 10−6 10−4
102

103

B5

||Error||

fu
nc

tio
n

ev
al

s

10−12 10−10 10−8 10−6 10−4 10−2

103

104

Figure 6.6: Comparison between RK56 (−·) and ARK45 (—) using variable stepsize for a

selection of the DETest problems.

6.1 Non-stiff methods 131

6.1.4 DDEs

Solving DDEs requires the use of a good quality interpolator in order to calculate the lag

term. One of the main advantages of ARK methods is the ability to interpolate without any

additional function evaluations being required. This set of experiments allows us to test not

only the method itself, but the interpolator as well.

Again, we have compared our special ‘fifth’ order ARK method given in (4.1) with the

Dormand and Prince method given in (6.1). The interpolator used for the ARK method in

these experiments is discussed in section 4.3. The interpolator used for the Dormand and Prince

method has been taken from [55]. The coefficients are

b̃1(ξ) = ξ − ξ2 1337
480

+
1039
360

ξ3 − ξ4 1163
1152

,

b̃2(ξ) = 0,

b̃3(ξ) = ξ2 4216
1113

− ξ3 18728
3339

+ ξ4 7580
3339

,

b̃4(ξ) = ξ2 − 27
16

+ ξ3 9
2
− ξ4 415

192
,

b̃5(ξ) = −ξ2 2187
8480

+ ξ3 2673
2120

− ξ4 8991
6784

,

b̃6(ξ) = ξ2 33
35

− ξ3 319
105

+ ξ4 187
84

,

b̃7(ξ) = 0.

The methods were tested on a variety of delay differential equations using variable stepsize, with

varying tolerances, tol = 10−i, i = 3, ..., 13. The details of these equations are given in section

A.3. The results from these experiments are given in Figure 6.7.

The results are very favourable. The ARK method has delivered results which are better

than the Dormand and Prince method on three out of the six problems, and worse results on

only one. We can also see, for this method, that the order has not deteriorated, and it is still

giving order 5 performance.

132 Numerical Experiments

Equation 1.4.6

||Error||

fu
nc

tio
n

ev
al

s

10−14 10−12 10−10 10−8 10−6 10−4

102.5

103

103.5

Equation 1.4.9

||Error||

fu
nc

tio
n

ev
al

s

10−6 10−4 10−2 100

103

103.5

104

Equation 1.1.12

||Error||

fu
nc

tio
n

ev
al

s

10−12 10−10 10−8 10−6 10−4 10−2

102.5

103

103.5

104

Equation 1.4.1

||Error||

fu
nc

tio
n

ev
al

s

10−8 10−6 10−4 10−2

103

103.5

104

Equation 1.1.6

||Error||

fu
nc

tio
n

ev
al

s

10−12 10−10 10−8 10−610−14

103

103.2

103.4

103.6

Equation 1.1.10

||Error||

fu
nc

tio
n

ev
al

s

10−12 10−10 10−8 10−610−14
102.6

102.8

103

103.2

103.4

103.6

103.8

Figure 6.7: Comparison between RK56 (−·) and ARK45 (—) using variable stepsize for a

selection of DDE problems.

6.2 Stiff methods 133

6.2 Stiff methods

Stiff methods are much more difficult to implement than many non-stiff methods as they are,

by necessity, implicit. Newton iterations are now needed to solve for the stage values. As with

the explicit methods, we are interested in comparing the stiff methods using fixed stepsize. This

allows us to compare the basic methods, and not any design choices or error estimators. To do

this we compared the best of the third and fourth order stiff ARK methods (DIARK), i.e. (5.20)

and (5.33), and third and fourth order diagonally implicit Runge–Kutta methods (DIRK). The

tableaux for the DIRK methods are

λ λ

1
2(1 + λ) 1

2(1 − λ) λ

1 1
4(−6λ2 + 16λ − 1) 1

4(6λ2 − 20λ + 5) λ

1
4(−6λ2 + 16λ − 1) 1

4(6λ2 − 20λ + 5) λ

,

where λ = 0.4358665215, and

1
4

1
4

3
4

1
2

1
4

11
20

17
50 − 1

25
1
4

1
2

371
1360 − 137

2720
15
544

1
4

1 25
24 −49

48
125
16 −85

12
1
4

25
24 −49

48
125
16 −85

12
1
4

.

The problems used for this comparison are the Oregonator problem, Prothero-Robinson problem

and the HIRES problem. Readers unfamiliar with these problems are referred to A.2. The results

from these experiments are presented in Figure 6.8.

There is little difference between the performances of the ARK and DIRK methods for the

Oregonator and HIRES problems. However, for the Prothero-Robinson problem we see a definite

order reduction for all methods. The Prothero-Robinson problem is very stiff. Due to this the

order of the method has decreased to the stage order. This gives the ARK methods a big

advantage. The DIRK methods are only giving order 1 performance, but the ARK methods are

giving order 2 performance. This can be seen from the slope of the graphs. For small stepsizes

134 Numerical Experiments

Oregontator Problem

h

||e
rr

or
||

10−2

10−4

10−8

10−6

10−4 10−3

HIRES Problem

h

||e
rr

or
||

10−12

10−10

10−8

10−6

10−110−2

Prothero−Robinson Problem

h

||e
rr

or
||

10−10

10−8

10−6

10−1 10−0.510−1.5 100

Figure 6.8: Comparison between DIARK3 (· · ·), DIARK4 (—), DIRK3 (x) and DIRK4 (o) on

a selection of stiff problems.

this particularly makes a big difference. This order reduction reinforces our original motivation

to explore only low order diagonally implicit ARK methods.

CHAPTER 7

Conclusions

A Mathematician is a machine for turning coffee into theorems.

Paul Erdös

ARK methods are a special class of general linear methods which retain many of the prop-

erties of traditional Runge-Kutta methods, but with some advantages. The main aim of this

thesis was to explore ARK methods and to see how these methods compare with traditional

Runge-Kutta methods.

The multi-value nature of ARK methods allows a stage order of 2. The advantage of this

is that we are able to interpolate or obtain an error estimate at little extra cost. For higher

orders, this also means we are able to obtain methods with less stages than for a traditional

Runge-Kutta method. The details of third and fourth order methods have been extensively

explored. The majority of these ideas will carry forward naturally to higher orders.

A special class of ‘fifth’ order methods has been explored. This special class of methods is

fourth order with five stages, but have had their free parameters chosen in such a way to ensure

we have zero error coefficients for the fifth order trees. Although the method exhibits fifth order

behaviour for fixed stepsize, the method experiences a reduction in order for variable h, as the

fifth order annihilation conditions have not been satisfied. We have shown it is possible, by

implementing the method in the correct way, to retain order five behaviour, even for variable h.

Numerical optimisation has led to a specific choice of the free parameters which gives competitive

performance.

Low order ARK methods for solving stiff problems have been considered. We have chosen

to consider only methods which are diagonally implicit to ensure computational costs are kept

136 Conclusions

as low as possible. We have also restricted ourselves to low order methods as it is likely they

will suffer from some order reduction. Methods of order 3 and 4 have been explored, along with

the corresponding starting methods.

In general, the results from our numerical experiments are promising. Our special ‘fifth’

order methods have retained their order for both fixed and variable stepsize. We have also seen

that the deterioration in the error when changing stepsize is much better than theoretically

predicted. For fixed stepsize, the special ARK method compares well against Dormand and

Prince. Unfortunately this is not the case for variable stepsize. This is possibly owing, in part,

to the manner in which the error estimator for the ARK method was implemented. The stepsize

was kept constant over two steps, and then the error estimated at the end of two steps. This

has two disadvantages. First, if the error is too large in a step, two steps need to be repeated.

Also, it is possible that keeping the stepsize constant over two steps is restricting the growth

rate of the stepsize, meaning it requires more steps to finish the integration.

Unfortunately our fourth order method did not compare as favourably for the fixed stepsize

experiments. Although it gave good results, the performance of the fourth order, five stage

Runge-Kutta method was better on most problems. The ARK method was chosen for its simple

coefficients. It is hoped that if these experiments were repeated with an optimised method the

results might be more competitive.

As expected, the ARK methods performed very well on DDEs. It was expected that the

higher stage order, and hence ability to interpolate cheaply, would make these methods particu-

larly suited for solving this type of problem. When our ‘fifth’ order ARK method was compared

with Dormand and Prince, the ARK method gave better performance on the large majority of

problems used for testing. Using an interpolator which has an order less than that of the method

does not appear to have adversely affected its performance.

Our diagonally implicit ARK methods also compared very favourably with traditional DIRK

methods. For moderately stiff problems there is little difference between the performance of

ARK and DIRK methods. For very stiff problems the ARK methods perform much better. As

is expected, on very stiff problems we experience an order reduction to the stage order of the

method. This means the DIRK methods only give order 1 performance, but the ARK methods

give order 2 performance.

There are still many ideas we would like to explore. The most obvious of these is the extension

of explicit ARK methods to higher orders. A stage order of 2 means we can find ARK methods

with less stages than a traditional Runge-Kutta method of the same order.

6.2 Stiff methods 137

There are still many improvements that could be made to the code developed for this thesis.

One possible change is the way in which the error is estimated. It is probable that estimating

the error after each step, rather than every two steps, will lead to more efficient code. The

stepsize controller we have implemented is the traditional dead-beat controller. Although we

have implemented this in such a way as to try and limit the number of unnecessary rejections, it

is thought that the proportional integral controller, which has been successfully used by Runge-

Kutta methods, will lead to more stable stepsize control. Given how successful our results were

for DDEs, we would like to extend the code written to solve DDEs to work for problems with

variable delay and state dependent delays. We would like to extend the code developed for

solving stiff differential equations to allow variable stepsize.

APPENDIX A

Test Problems

The mathematician may be compared to a designer of garments, who is utterly

oblivious of the creatures whom his garments may fit. To be sure, his art originated

in the necessity for clothing such creatures, but this was long ago; to this day a shape

will occasionally appear which will fit into the garment as if the garment had been

made for it. Then there is no end of surprise and delight.

Dantzig

The test problems used in this thesis are well known problems used for testing initial value

problem solvers. These have been divided into non-stiff and stiff problems. The non-stiff prob-

lems come from the DETest problem set [42]. The stiff problems come from a variety of sources.

A selection of DDE problems are also included. These come from [57].

A.1 DETest problems

Class A: Single equations

A1: (the negative exponential).

y′ = −y, y(0) = 1 (A.1)

(solution: y = Ce−x, C = 1)

140 Test Problems

A2: (a special case of the Riccati equation).

y′ = −y3

2
, y(0) = 1 (A.2)

(solution: y = 1/
√

x + C,C = 1)

A3: (an oscillatory problem).

y′ = y cos x, y(0) = 1 (A.3)

(solution: y = Cesinx, C = 1)

A4: (a logistic curve).

y′ =
y

4

(
1 − y

20

)
, y(0) = 1 (A.4)

(solution: y =
20

1 + 19Ce−x4 , C = 1)

A5: (a spiral curve).

y′ =
y − x

y + x
, y(0) = 4 (A.5)

(solution in polar co-ordinates: r = Ce−θ, C = 4eπ/2)

Class B: Small systems

B1: (the growth of two conflicting populations).

y′1 = 2(y1 − y1y2), y1(0) = 1,

y′2 = −(y2 − y1y2), y2(0) = 3.
(A.6)

B2: (a linear chemical reaction).

y′1 = −y1 + y2, y1(0) = 2,

y′2 = y1 − 2y2 + y3, y2(0) = 0,

y′3 = y2 − y3, y3(0) = 1.

(A.7)

B3: (a nonlinear chemical reaction).

y′1 = −y1, y1(0) = 1,

y′2 = y1 − y2
2, y2(0) = 0,

y′3 = y2
2, y3(0) = 0.

(A.8)

A.1 DETest problems 141

B4: (the integral surface of a torus).

y′1 = −y2 − y1y3√
y2
1 + y2

2

, y1(0) = 3,

y′2 =
y1 − y2y3√

y2
1 + y2

2

, y2(0) = 0,

y′3 =
y1√

y2
1 + y2

2

, y3(0) = 0.

(A.9)

B5: (Euler equations of motion for a rigid body without external forces).

y′1 = y2y3, y1(0) = 0,

y′2 = −y1y3, y2(0) = 1,

y′3 = −.51y1y2, y3(0) = 1.

(A.10)

Class C: Moderate systems

C1: (a radioactive decay chain).

y′1

y′2
...

y′9

y′10


=



−1 0

1 −1
.

1 −1

0 1 0





y1

y2

...

y9

y10


, y(0) =



1

0
...

0

0


. (A.11)

C2: (another radioactive decay chain).

y′1

y′2

y′3
...

y′9

y′10


=



−1 0

1 −2

2 −3
.

8 −9

0 9 0





y1

y2

y3

...

y9

y10


, y(0) =



1

0

0
...

0

0


. (A.12)

C3: (derived from a parabolic differential equation).

y′1

y′2
...

y9

y10


=



−2 1 0

1 −2 1
.

1 −2 1

1 −2





y1

y2

...

y9

y10


, y(0) =



1

0
...

0

0


. (A.13)

142 Test Problems

C4: The same as C3 except with 51 equations.

C5: (The five body problem).

The five body problem models the motion of the 5 outer planets around the sun, assumed

in this model to contain the four inner planets. The 3 spatial coordinates of the jth body are

y1j , y2j , y3j where j = 1, 2, ..., 5. Each satisfy the second order differential equation

y′′ij = k2

−(m0 + mj)
yij

r3
j

+
5∑

k=1
k �=j

mk

[
yik − yij

d3
jk

− yik

r3
k

] , (A.14)

where

r2
j =

3∑
i=1

y2
ij and d2

kj =
3∑

i=1

(yik − yij)2, k, j = 1, ..., 5.

and the physical constants are

k2 = 2.95912208286 (gravitational constant)

m0 = 1.00000597682 (mass of the sun and the 4 inner planets)

m1 = 0.00095478610 (Jupiter)

m2 = 0.00028558373 (Saturn)

m3 = 0.00004372731 (Uranus)

m4 = 0.00005177591 (Neptune)

m5 = 0.00000277777 (Pluto).

When this system of equations is rewritten using first order differential equations the dependent

vector has 30 components with initial values

y11 = 3.4294741518, y21 = 3.3538695971, y31 = 1.3549401715,

y′11 = −0.5571605704, y′21 = 0.5056967832, y′31 = 0.2305785439,

y12 = 6.6414554255, y22 = 5.9715695787, y32 = 2.1823149972,

y′12 = −0.4155707763, y′22 = 0.3656827228, y′32 = 0.1691432132,

y13 = 11.2630437207, y23 = 14.6952576794, y33 = 6.2796052506,

y′13 = −0.3253256691, y′23 = 0.1897060219, y′33 = 0.0877265322,

y14 =−30.1552268759, y24 = 1.6569996640, y34 = 1.4378575272,

y′14 = −0.0240476254, y′24 =−0.2876595326, y′34 =−0.1172195431,

y15 =−21.1238353380, y25 = 28.4465098142, y35 = 15.3882659679,

y′15 = −0.1768607531, y′25 =−0.2163934530, y′35 =−0.0148647893.

A.1 DETest problems 143

Class D: Orbit equations

y′1 = y3, y1(0) = 1 − ε,

y′2 = y4, y2(0) = 0,

y′3 =
−y1

(y2
1 + y2

2)
3
2

, y3(0) = 0,

y′4 =
−y2

(y2
1 + y2

2)
3
2

, y4(0) =

√
1 + ε

1 − ε
.

(A.15)

D1: Equation (A.15) with ε = .1.

D2: Equation (A.15) with ε = .3.

D3: Equation (A.15) with ε = .5.

D4: Equation (A.15) with ε = .7.

D5: Equation (A.15) with ε = .9.

Class E: Higher order equations

E1: (derived from Bessel’s equation of order 1
2 with the origin shifted one unit to the left)

y′1 = y2, y1(0) = J 1
2
(1) = .6713967071418030,

y′2 = y1

(
1

4(x + 1)2
− 1
)
− y2

x + 1
, y2(0) = J ′

1
2

(1) = .09540051444747446.
(A.16)

E2: (derived from Van der Pol’s equation).

y′1 = y2, y1(0) = 2,

y′2 = (1 − y2
1)y2 − y1, y2(0) = 0.

(A.17)

E3: (derived from Duffing’s equation)

y′1 = y2, y1(0) = 0,

y′2 =
y3
1

6
− y1 + 2 sin(2.78535x), y2(0) = 0.

(A.18)

E4: (derived from the falling body equation)

y′1 = y2, y1(0) = 30,

y′2 = .032 − .4y2
2 , y2(0) = 0.

(A.19)

E5: (derived from a linear pursuit equation)

y′1 = y2, y1(0) = 0,

y′2 =

√
1 + y2

2

(25 − x)
, y2(0) = 0.

(A.20)

144 Test Problems

A.2 Stiff problems

A.2.1 Oregonator

The ‘Oregantor’ is the chemical reaction between HBrO2, Br− and Ce(IV) [34]. The system

of equations is

y′1 = 77.27(y2 + y1(1 − 8.375 × 10−6y1 − y2)),

y′2 =
1

77.27
(y3 − (1 + y1)y2),

y′3 = 0.161(y1 − y3),

with initial condition y(0) = (1, 2, 3).

A.2.2 HIRES

This problem was first proposed by Schäfer [62] in 1975. It originates from plant physiology

and describes how light is involved in morphogenesis. More specifically, it explains the ‘High

Irradiance Responses’ (HIRES) of photomorphogenesis on the basis of phytochrome, by means

of a chemical reaction involving eight reactants.

The initial value problem is given by

dy

dt
= f(y) y(0) = y0,

where

f(y) =



−1.71y1 + 0.43y2 + 8.32y3 + 0.0007

1.71y1 − 8.75y2

−10.03y3 + 0.43y4 + 0.035y5

8.32y2 + 1.71y3 − 1.12y4

−1.745y5 + 0.43y6 + 0.43y7

−280y6y8 + 0.69y4 + 1.71y5 − 0.43y6 + 0.69y7

280y6y8 − 1.81y7

−280y6y8 + 1.81y7



(A.21)

and

y0 = (1, 0, 0, 0, 0, 0, 0, 0.0057)T .

A.3 Delay differential equation problems 145

A.2.3 Prothero-Robinson problem

The Prothero and Robinson problem [58] takes the form

y′(x) = L(y − φ(x)) + φ′(x), y0 = y(x0) = φ(x0),

where Re(L) ≤ 0. It has the exact solution y(x) = φ(x). We choose φ(x) = sin(x) and L = −106,

which makes the problem stiff.

A.3 Delay differential equation problems

These problems have been taken from [57]. The numbering of the equations is the same as in

this paper.

A.3.1 Equation 1.1.6

y′(t) = −y(t − 1) + y(t − 2) − y(t − 3)y(t − 4), t ≥ 0,

Y (t) = 1, t < 0,

Y (0) = 0.

(A.22)

The analytical solution is

y(t) =



−t, 0 ≤ t ≤ 1,
1
2t2 − t − 1

2 , 1 ≤ t ≤ 2,

−1
6t3 + 1

2 t2 − 7
6 , 2 ≤ t ≤ 3,

1
24 t4 − 1

6t3 − 1
4t2 + t − 19

24 , 3 ≤ t ≤ 4,

− 1
120 t5 + 1

6t4 − 5
3t3 + 109

12 t2 − 24t + 2689
120 , 4 ≤ t ≤ 5.

This problem originally comes from [56]. It has a zeroth-order discontinuity at t = 0 and an

n-th order discontinuity at t = {4n − 3, 4n − 2, 4n − 1, 4n} for n ≥ 1. The equation is linear up

to t = 4 and non-linear beyond.

A.3.2 Equation 1.1.10

y′(t) = y(t − π)y(t), t ≥ 0,

Y (t) =


0

−2

−1

t < −π
2 ,

−π
2 ≤ t < 0,

t = 0.

(A.23)

146 Test Problems

The analytical solution is

y(t) =



−1, 0 ≤ t ≤ π
2 ,

− exp(π − 2t), π
2 ≤ t ≤ π,

− exp(−t), π ≤ t ≤ 3π
2 ,

− exp
(−3

2π + 1
2 (exp(3π − 2t) − 1)

)
, 3π

2 ≤ t ≤ 6.

This problem originally comes from [64]. There is an n-th order discontinuity at t =
{

(2n−1)π
2 , nπ

}
.

The problem also has a discontinuous initial function.

A.3.3 Equation 1.1.12

y′(t) = y(t) + y(t − 1), t ≥ 0,

Y (t) =

 0,

1,

−1 ≤ t < −1
3 ,

−1
3 ≤ t ≤ 0.

(A.24)

The analytical solution is

y(t) =



exp(t), 0 ≤ t ≤ 2
3 ,

c1 exp(t) − 1, 2
3 ≤ t ≤ 1,

t exp(t − 1) + c2 exp(t), 1 ≤ t ≤ 5
2 ,

1 + c1t exp(t − 1) + c3 exp(t), 5
3 ≤ t ≤ 2,

(1
2t2 − t) exp(t − 2) + c2t exp(t − 1) + c4 exp(t), 2 ≤ t ≤ 8

3 ,

where c1 = 1 + exp(−2
3), c2 = c1 − 2e−1, c3 = 5

3e−1(1 − c1) + c2 − exp(−5
3) and c4 = e−2 + c3 +

2(c1 − c2)e−1.

This problem originally comes from [45]. It is a version of the linear stability DDE test

equation, but with a discontinuous initial function. It has an (n + 1)-st order discontinuity at

t = n, n + 2
3 .

A.3.4 Equation 1.4.1

y′1(t) = y1(t − 1) + y2(t), t ≥ 0,

y′2(t) = y1(t) − y1(t − 1), t ≥ 0,

Y1(t) = et, t ≤ 0,

Y2(0) = 1 − e−1.

(A.25)

The analytical solution is

y1(t) = et, t ≥ 0,

y2(t) = et − exp(t − 1), t ≥ 0.

A.3 Delay differential equation problems 147

This problem originally comes from [56]. This system is equivalent to solving a scalar integro-

differential equation.

A.3.5 Equation 1.4.6

y′1(t) = y2(t), t ≥ 0,

y′2(t) = −y1(t) − y2(t − 1), t ≥ 0,

Y (t) = [0, sin(2πt)]T , t ≤ 0.

(A.26)

The analytical solution is

y1(t) =

 1
4π2−1

(sin(2πt) − 2π sin(t)),
2π

4π2−1 (1
2(t + 1) sin(t − 1) − sin(t) + 1

4π2−1(cos(2πt) − cos(t − 1))),

0 ≤ t ≤ 1,

1 ≤ t ≤ 2,

y2(t) =

 2π
4π2−1

(2 cos(πt)2 − cos(t) − 1),
π

4π2−1
(sin(t − 1) + (t + 1) cos(t − 1) − 2 cos(t) + 2 sin(t−1)−4π sin(2πt)

4π2−1
),

0 ≤ t ≤ 1,

1 ≤ t ≤ 2.

This system is equivalent to the second-order scalar DDE which appears in [2]. It has a first

order discontinuity at t = 0 and a (n + 2)-nd order discontinuity at t = n in y1(t) for n ≥ 1. It

also has a first-order discontinuity at t = 0 and a (n + 1)-st order discontinuity at t = n in y2(t)

for n ≥ 1.

A.3.6 Equation 1.4.9

y′1(t) = y3(t), t ≥ 0,

y′2(t) = y4(t), t ≥ 0,

y′3(t) = −2my2(t) + (1 + m2)(−1)my1(t − π), t ≥ 0,

y′4(t) = −2my1(t) + (1 + m2)(−1)my2(t − π), t ≥ 0,

Y1(t) = sin(t) cos(mt), t ≤ 0,

Y2(t) = cos(t) sin(mt), t ≤ 0,

Y3(t) = cos(t) cos(mt) − m sin(t) sin(mt), t ≤ 0,

Y4(t) = m cos(t) cos(mt) − sin(t) sin(mt), t ≤ 0,

(A.27)

where we have chosen m = 2. The analytical solution is

y1(t) = sin(t) cos(mt), t ≥ 0,

y2(t) = cos(t) sin(mt), t ≥ 0,

y3(t) = cos(t) cos(mt) − m sin(t) sin(mt), t ≥ 0,

y4(t) = m cos(t) cos(mt) − sin(t) sin(mt), t ≥ 0.

This system of equations originally appears in [45]. The analytical solution is a continuation of

the initial function.

References

The simplest schoolboy is now familiar with facts for which Archimedes

would have sacrificed his life.

Ernest Renan

[1] F. Bashforth and J. C. Adams, An attempt to Test the Theories of Capillary Action

by Comparing the Theoretical and Measured Forms of Drops of Fluid, with an Ex-

planation of the Method of Integration Employed in Constructing the Tables which

Give the Theoretical Forms of Such Drops, Cambridge University Press, Cambridge

(1883).

[2] H. T. Banks and F. Kappel, Spline Approximations for Functional Diff. Eqns., J.

Differential Equations 34 (1979), 496–522.

[3] J. C. Butcher, Coefficients for the study of Runge–Kutta integration processes, J.

Aust. Math. Soc. 3 (1963), 185–201.

[4] J. C. Butcher, On the convergence of numerical solutions of ordinary differential

equations, Math. Comp. 20 (1966), 1–10.

[5] J. C. Butcher, An algebraic theory of integration methods, Math. Comp. 26 (1972),

79–106.

[6] J. C. Butcher, The numerical analysis of ordinary differential equations: Runge–

Kutta and general linear methods, John Wiley & Sons, Chichester, New York, 1987.

150 References

[7] J. C. Butcher, Diagonally implicit multistage integration methods, Appl. Numer.

Math. 11 (1993), 347–363.

[8] J. C. Butcher, An introduction to DIMSIMs, Comput. Appl. Math. 14 (1995), 59–72.

[9] J. C. Butcher, On fifth order Runge–Kutta methods, BIT 35, (1995), 202–209.

[10] J. C. Butcher, An introduction to “Almost Runge–Kutta” methods, Appl. Numer.

Math., 24 (1997), 331–342.

[11] J. C. Butcher, ARK methods up to order five, Numer. Algorithms, 17 (1998), 193–

221.

[12] J. C. Butcher, Order and effective order, Appl. Numer. Math., 28 (1998), 179–191.

[13] J. C. Butcher, Numerical Methods for Ordinary Differential Equations, J. Wiley,

Chichester, 2003.

[14] J. C. Butcher and T. M. H. Chan, Multi-step zero approximations for stepsize control,

Appl. Numer. Math., 34 (2000), 167–177.

[15] J. C. Butcher and D. J. L. Chen, ESIRK methods and variable stepsize, Appl. Numer.

Math., 28 (1998), 193–207.

[16] J. C. Butcher and M. Diamantakis, DESIRE: diagonally extended singly implicit

Runge–Kutta effective order methods, Numer. Algorithms 17 (1998), 121–145.

[17] J. C. Butcher and N. Moir, Experiments with a new fifth order method, Numer.

Algorithms, 33 (2003), 137–151.

[18] J. C. Butcher and Z. Jackiewicz, Diagonally implicit general linear methods for or-

dinary differential equations, BIT 33 (1993), 452–472.

[19] J. C. Butcher and Z. Jackiewicz, Construction of diagonally implicit general linear

methods of type 1 and 2 for ordinary differential equations, Appl. Numer. Math., 21

(1996), 385–415.

[20] J. C. Butcher and N. Rattenbury, ARK methods for stiff problems, Appl. Numer.

Math., 53 (2005), 165–181.

References 151

[21] J. C. Butcher and G. Wanner, Runge–Kutta methods: some historical notes, Appl.

Numer. Math. 22 (1996), 113–151.

[22] J. C. Butcher and W. M. Wright, A transformation relating explicit and diagonally-

implicit general linear methods, Appl. Numer. Math. 44 (2003), 313–327.

[23] J. C. Butcher and W. M. Wright, The construction of practical general linear meth-

ods, BIT 43 (2003), 695–721.

[24] G. D. Byrne and R. J. Lambert, Pseudo Runge–Kutta methods involving two points,

J. Assoc. Comput. Mach. 13 (1966), 114–123.

[25] T. M. Chan, Algebraic structures for the analysis of numerical methods, Ph.D thesis,

The University of Auckland, Department of Mathematics, 1998.

[26] P. Chartier, The Potential of Parallel Multi-Value Methods for the Simulation of

Large Real-life Problems, CWI Quart., 11(1) (1998), 7-32.

[27] C. F. Curtiss and J. O. Hirschfelder, Integration of stiff equations, Proc. Nat. Acad.

Sci., 38 (1952), 235-243.

[28] G. Dahlquist, Convergence and stability in the numerical integration of ordinary

differential equations, Math. Scand., 4 (1956), 33–53.

[29] J. R. Dormand and P. J. Prince, A family of embedded Runge–Kutta formulae, J.

Comput. Appl. Math., 6 (1980), 19–26.

[30] R. D. Driver, Ordinary and Delay Differential Equations, Springer-Verlag, New York

(1977).

[31] L. Euler, De integratione aequationum differentialium per approximationem, In

Opera Omnia, 1st series, Vol. 11, Institutiones Calculi Integralis, Teubner, Leipzig

and Berlin, 424–434, (1913).

[32] E. Fehlberg, Classical fifth, sixth, seventh and eighth order Runge–Kutta formulas

with stepsize control, NASA TR R-287, (1968).

[33] E. Fehlberg, Klassiche Runge–Kutta-Formeln fünfter und siebenter Ordnung mit

Schrittweiten-Kontrolle, Computing, 4 (1969), 93–106.

152 References

[34] J. R. Field and R. M. Noyes, Oscillations in chemical systems. IV. Limit cycle

behaviour in a model of a real chemical reaction, J. Chem. Physics, 60 (1974), 1877-

1884.

[35] C. W. Gear, Numerical initial value problems in ordinary differential equations,

Prentice-Hall, (1971).

[36] C. W. Gear, The Automatic Integration of Ordinary Differential Equations, Com-

mun. of ACM, 14 (1971), 176–179.

[37] C. W. Gear, Runge–Kutta starters for multistep methods, ACM. Trans. Math. Soft-

ware, 6 (1980), 263–279.

[38] E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I:

Non-stiff problems, Springer-Verlag, (2000).

[39] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Dif-

ferential Algebraic Equations, Springer-Verlag, (1991).

[40] K. Heun, Neue Methoden zur approximativen Integration der Differentialgleichungen

einer unabhängigen Veränderlichen, Z. Math. Phys., 45 (1900), 23–38.

[41] R. Hügel, Numerischer Vergleich von Programmen zur Lösung von Delay Gleichun-

gen, 5/85 N, Westfalische Wilhelms-Universitat, Münxter, West Germany (1985).

[42] T. E. Hull, W. H. Enright, B. M. Fellen and A. E. Sedgwick, Comparing numerical

methods for ordinary differential equations, SIAM J. Numer. Anal, 9 (1972), 603–637.

[43] A. Hut̆a, Une amélioration de la méthode de Runge–Kutta-Nyström pour la résolution

numérique des équations différentielles du premier ordre, Acta. Fac. Nat. Univ.

Comenian. Math., 1 (1956), 201–224.

[44] A. Hut̆a, Contribution à la formule de sixième ordre dans la méthode de Runge–

Kutta-Nyström, Acta Fac. Nat. Univ. Comenian. Math., 2 (1957), 21–24.

[45] K. Ito, H. T. Tran and A. Manitius, A Fully-Discrete Spectral Method for Delay Diff.

Eqns., SIAM J. Numer. Anal. 28 (1991), 1121–1140.

[46] Z. Jackiewicz, R. Renaut and A. Feldstein, Two-step Runge–Kutta methods, SIAM

J. Numer. Anal. 28 (1991), 1165–1182.

References 153

[47] U. Kirchgraber, Multistep Methods are Essentially One-step Methods, Numer. Math.,

48 (1986), 85–90.

[48] W. Kutta, Beitrag zur näherungsweisen Integration totaler Differentialgleichungen,

Z. Math. Phys., 46 (1901), 435–453.

[49] R. H. Merson, An operational method for the study of integration processes, Proc.

Symp. Data Processing, (1957), 1–25.

[50] W. E. Milne, A note on the numerical integration of differential equations, J. Res.

Nat. Bur. Stand., 43 (1949), 537–542.

[51] N. Moir, ARK methods: some recent developments, J. Comput. Appl. Math., to

appear.

[52] F. R. Moulton, New Methods in Exterior Ballistics, University of Chicago Press

(1926).

[53] A. Nordseick, On numerical integration of ordinary differential equations, Math.

Comp., 16 (1962), 22–49.

[54] E. J. Nyström, Über die numerische Integration von Differentialgleichungen, Acta

Coc. Sci. Fenn., 50 (1925), 1–54.

[55] B. Owren and M. Zennaro, Derivation of efficient, continuous, explicit Runge–Kutta

methods, SIAM J. Sci. Statist. Comput., 13 (1992), 1488–1501.

[56] C. A. H. Paul, Concerning Explicit Runge–Kutta Techniques for Delay Diff. Eqns.,

MSc Thesis, Math. Dept., Manchester University (1989).

[57] C. A. H. Paul, A Test Set of Functional Differential Equations, Numerical Analysis

Report No. 243, The University of Manchester (1994).

[58] A. Prothero and A. Robinson, On the stability and accuracy of one-step methods

for solving stiff systems of ordinary differential equations, Math. Comp., 28 (1974),

145–162.

[59] L. F. Richardson, The deferred approach to the limit, Philos. Trans. Roy. Soc. London,

Ser. A, 299–361 (1927).

154 References

[60] H. H. Robertson, The solution of a set of reaction rate equations, In Numerical

Analysis, An Introduction, J. Walsh (Ed.), Academ. Press, (1966), 178–182.

[61] C. Runge, Über die numerische Auflösung von Differentialgleichungen, Math. Ann.,

46 (1895), 167–178.

[62] E. Schäfer, A new approach to explain the ‘high irradiance responses’ of photomor-

phogenesis on the basis of phytochrome, J. Math. Biol., 2 (1975), 41–56.

[63] D. Stoffer, General linear methods: connection to one step methods and invariant

curves, Numer. Math., 64 (1993), 395–407.

[64] L. Tavernini, CTMS User Guide, Math. Div., Comp. Sci. and Systems Design, Univ.

of Texas at San Antonio, Texas (1987).

[65] B. van der Pol, On relaxation-oscillations, Philos. Mag. Ser. 7, 2 (1926), 978–992.

[66] J. H. Verner, Explicit Runge–Kutta methods with estimates of the local truncation

error, SIAM J. Numer. Anal., 15 (1978), 772–790.

[67] W. M. Wright, General linear methods with inherent Runge–Kutta stability, PhD

thesis, The University of Auckland, Department of Mathematics, 2002.

[68] W. M. Wright, Explicit general linear methods with inherent Runge–Kutta stability,

Numer. Algorithms, 31 (2002), 381–399.

Index

A-stability, 13

Adams methods, 6, 24

Anglin, W. S., 1

annihilation conditions, 36, 37

BDF methods, 6, 25

Butcher, J. C., 29

C(2) condition, 36

composition of elementary weight functions,

21

consistency, 11

convergence, 12

D(1) condition, 36

Dantzig, 133

DDEs, see delay differential equations

delay differential equations, 5, 125

density of a tree, 14

derivation of methods, 43, 51, 60, 67, 100,

103

derivative operator, 21

DETest, 109, 117, 123, 133

DIMSIMs, 26

Dormand and Prince, 111, 123, 125

E-polynomial, 98, 101

elementary differentials, 18

elementary weights, 19

Erdös, P., 129

error estimators, 7, 82

Euler’s method, 6

existence and uniqueness, 2

general linear methods, 9

generating functions, 22, 37

Hermite interpolation, 47

HIRES, 138

Inherent Runge–Kutta stability, 29

initial value problem, 2

interpolation, 39, 46, 57, 63, 70, 81, 125

Hermite, 47

IRKS methods, 29

L-stability, 13

linear multistep methods, 6

Adams methods, 6, 24

as general linear methods, 23

BDF methods, 6, 25

Lipschitz condition, 2

one-sided, 4

optimisation, 83

order, 16

order conditions, 36, 43, 49, 60, 66, 99, 103

order of a tree, 14

ordinary differential equations, 2

Oregonator, 138
155

156 Index

Plato, 9

Polyá, G., 73

population growth, 5

preconsistency, 10

Prothero-Robinson problem, 139

Renan, Ernest, 143

RK stability, 38, 39, 58

Runge–Kutta methods, 7

as general linear methods, 23

simplifying assumptions, 36

stability, 11

A-stability, 13

L-stability, 13

stability function, 12

stability matrix, 12

stability region, 12

starting procedures, 16, 35, 105

stiff ARK methods, 93

stiff differential equations, 3, 93

symmetry of a tree, 16

trees, 14

density, 14

elementary differentials, 18

elementary weights, 19

order, 14

symmetry, 16

variable stepsize, 36, 80, 123

Watson, Thomas, 109

Wright, W. M., 29

