ALMOST RUNGE-KUTTA METHODS
FOR STIFF AND NON-STIFF PROBLEMS

NICOLETTE RATTENBURY

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy, The University of Auckland, 2005.

Abstract

Ordinary differential equations arise frequently in the study of the physical world. Un-
fortunately many cannot be solved exactly. This is why the ability to solve these equations
numerically is important.

Traditionally mathematicians have used one of two classes of methods for numerically solving
ordinary differential equations. These are linear multistep methods and Runge-Kutta methods.
General linear methods were introduced as a unifying framework for these traditional methods.
They have both the multi-stage nature of Runge-Kutta methods as well as the multi-value
nature of linear multistep methods. This extremely broad class of methods, besides containing
Runge-Kutta and linear multistep methods as special cases, also contains hybrid methods, cyclic
composite linear multistep methods and pseudo Runge-Kutta methods.

In this thesis we present a class of methods known as Almost Runge-Kutta methods. This
is a special class of general linear methods which retains many of the properties of traditional
Runge-Kutta methods, but with some advantages.

Most of this thesis concentrates on explicit methods for non-stiff differential equations, paying
particular attention to a special fourth order method which, when implemented in the correct
way, behaves like order five. We will also introduce low order diagonally implicit methods for

solving stiff differential equations.

Acknowledgements

During the course of my PhD I have been very fortunate to receive the guidance and support
of many wonderful people.

My supervisor Prof. John Butcher is an inspiration. His enthusiasm is contagious. It is hard
not to be excited about an idea when discussing it with him. Nobody could ask for a more
patient, caring and supportive supervisor and friend.

Dr Robert Chan, my co-supervisor, has also been very supportive. He was always available
when I wished to discuss my work.

My office mate, Dr Allison Heard, has been a wonderful mentor and friend. The many hours
she has spent proof-reading my work has been invaluable. As have the many hours spent poring
over the odd cryptic crossword!

Our weekly numerical analysis meetings have also been a great source of support. They have
given me the chance to present my work informally and receive feedback. Apart from those I
have already mentioned, I would particularly like to thank Dr Will Wright, Dr Shirley Huang,
Angela Tsai and Dr Helmut Podhaisky. They have all become good friends as well as supportive
colleagues.

Finally I would like to thank my husband, Dr Nicholas Rattenbury. There is a great quotation
from the famous Winnie the Pooh that sums up how I feel about him “If you live to be 100,
I want to live to be 100 minus one day, so I never have to live without you”. 1 am extremely

lucky to have found someone who believes in me as much as he does.

Contents

Abstract iii
Acknowledgements v
Contents vii
List of Tables xi
List of Figures xiii
Introduction 1
1.1 Ordinary differential equations L L L oo 2
1.1.1 Existence and uniqueness of solutions 2

1.1.2 Stiff differential equations Lo 3

1.2 Delay differential equations Lo oL 5
1.3 A brief history of numerical methods L. 5
General linear methods 9
2.1 Consistency and stabilityo 11
2.1.1 Stability regions 12

2.2 Tree theory e 15
2.3 Order e 17
2.3.1 Algebraic analysis of order Lo oL o 18
Expansion of the exact solution 19

Elementary weights oo 22

Expansion of the numerical solution 23

viii Contents

2.4 Examples of general linear methods oL 23
24.1 Runge-Kuttamethods 0. 24

2.4.2 Linear multistep methods 24
Adams methods 25

BDF methods L 26

243 DIMSIMS o e 27

244 TRKSmethods 30
Almost Runge—Kutta methods 35
3.1 General form of explicit ARK methods 36
3.2 Order and related conditions o 38
3.3 Imterpolation e 41
34 Methods with s =p 42
3.4.1 RKstability 42

3.4.2 Third order methods with three stages 47
Order conditions 47

Derivation of methods oL 48

Some example methods, 50

Interpolation 50

3.4.3 Fourth order methods with four stages 53
Order conditions 53

Derivation of methods L 56

Classification of the methods 57

Some example methods Lo oo L 61

Interpolation 62

3.5 Methods with s =p+1 63
3.5.1 RK-stability 63

3.5.2 Third order methods with four stages 64
Order conditionso 65

Derivation of methods L 65

Some example methodso L oo 68

Interpolation 69

3.5.3 Fourth order method with five stages 71

Contents

ix

Order conditions e

Derivation of methods

Some example methods

Interpolation L

4 A special ‘fifth’ order method
4.1 Introduction. L e
4.2 Obtaining order 5 performance

4.3 Interpolation

4.4 Error estimation
4.5 Optimising these methods L
4.5.1 Fifth order error coefficients L.
4.5.2 Sixth order error coefficients Lo

5 Stiff ARK methods

5.1 Imtroduction. L
5.2 Order 3 stiff ARK methods
Order conditions

Derivation of methods

Some example methods, .

5.3 Order 4 stiff ARK methods
Order conditions

Derivation of methods

Some example methodso oo

5.4 Starting the method L

6 Numerical Experiments

6.1 Non-stiff methods
6.1.1 Fixed stepsize e

6.1.2 Fixed variable stepsize Lo o

6.1.3 Variable stepsize

6.1.4 DDEs e

6.2 Stiff methods

7 Conclusions

71
72
75
76

79
79
83
87
88
89
90
91

99

99
104
106
106
107
107
109
109
110
111

115
115
115
123
129
131
133

135

Contents

A Test Problems

A.1 DETest problems
A.2 Stiff problems

A21
A22

A.2.3 Prothero-Robinson problem

A.3 Delay differential equation problems

A3.1
A3.2
A3.3
A34
A35
A.3.6

References

Index

Oregonator

HIRES

Equation 1.1.6

Equation 1.1.10
Equation 1.1.12

Equation 1.4.1.
Equation 1.4.6
Equation 1.4.9.

139

List of Tables

2.1
2.2
2.3
24
2.5
2.6
3.1
4.1
6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Treesup toorder 6. L e 15
Number of trees of orders 1 to 10. 16
Order, density and symmetry of the trees up toorder 5. 17
Elementary differentials for trees up toorder 5. Lo 20
Composition of elementary weight functions up toorder 5. 21
Types of DIMSIMS o s 28
Trees up to order 5 omitted due to the simplifying assumptions. 39
Algebraic analysis of the special 5 stage method. 82
Comparison of error behaviours for fixed and variable stepsizes for problem A5 using

method ARK45. 124
Comparison of error behaviours for fixed and variable stepsizes for problem B5 using
method ARK45. e 124
Comparison of error behaviours for fixed and variable stepsizes for problem C5 using
method ARK45. 125
Comparison of error behaviours for fixed and variable stepsizes for problem D5 using
method ARK45. 125
Comparison of error behaviours for fixed and variable stepsizes for problem E5 using
method ARK45. e 126
Comparison of error behaviours for fixed and variable stepsizes for problem A5 using
Dormand and Prince.o 126
Comparison of error behaviours for fixed and variable stepsizes for problem B5 using
Dormand and Prince. 127
Comparison of error behaviours for fixed and variable stepsizes for problem C5 using

Dormand and Prince. 127

xii List of Tables

6.9 Comparison of error behaviours for fixed and variable stepsizes for problem D5 using
Dormand and Prince. e 128
6.10 Comparison of error behaviours for fixed and variable stepsizes for problem E5 using

Dormand and Prince. e 128

List of Figures

1.1
21

2.2

4.1

4.2

5.1

5.2

5.3

5.4

6.1

6.2

6.3

6.4

6.5

6.6

Implicit Euler and explicit Euler methods applied to differential equation 1.1. 4
Stability regions for explicit Runge-Kutta and composite Adams—Bashforth methods,

fororders 1 to 4. e 14
The order of a general linear method. 18
The D1 problem solved using method (4.1) with 100 equal sized steps. An interpo-

lator has been used to estimate the solution % and % of the way through each

Step. . . o e 88

Optimising our special ‘fifth’ order method. Solving for the free parameters co and c3. 93

Error constant for A in A-stability interval o000 105
Values of R(00) o oo 105
Error constant for A\ in A-stability interval, where A; = 0.394338 and A\ = 1.28058. . 108
Values of R(c0) in A-stability interval, where A\; = 0.394338 and Ay = 1.28058. . . . 108
Comparison between RK45, RK56, ARK4, ARK451 and ARK452 using constant

stepsize for the class A DETest problems. 118
Comparison between RK45, RK56, ARK4, ARK451 and ARK452 using constant
stepsize for the class B DETest problems. 119
Comparison between RK45, RK56, ARK4, ARK451 and ARK452 using constant
stepsize for the class C DETest problems. 120
Comparison between RK45, RK56, ARK4, ARK451 and ARK452 using constant
stepsize for the class D DETest problems. 121
Comparison between RK45, RK56, ARK4, ARK451 and ARK452 using constant
stepsize for the class E DETest problems. 122
Comparison between RK56 and ARK45 using variable stepsize for a selection of the

DETest problems. e 130

Xiv List of Figures

6.7 Comparison between RK56 and ARK45 using variable stepsize for a selection of DDE

6.8 Comparison between DIARK3, DIARK4, DIRK3 and DIRK4 on a selection of stiff

problems. 134

CHAPTER 1

Introduction

Mathematics is not a careful march down a well-cleared highway, but a journey into
a strange wilderness, where the explorers often get lost. Rigour should be a signal
to the historian that the maps have been made, and the real explorers have gone
elsewhere.

W.S. ANGLIN

Ordinary differential equations arise frequently in the study of the physical world. Unfor-
tunately many cannot be solved exactly. This is why the ability to obtain accurate numerical
approximate solutions is important.

In this chapter we will give a summary of the types of differential equations we are interested
in, as well as give a brief background to the numerical methods that have traditionally been
used to solve them.

Chapter 2 gives an introduction to general linear methods, which were introduced as a unify-
ing framework for traditional methods. We will also see how much of the theory for traditional
methods can be generalised to encompass general linear methods.

In chapter 3 we introduce Almost Runge-Kutta methods. These are a special class of general
linear methods which were introduced to retain many of the desirable properties of Runge-Kutta
methods, with some of the advantages of linear multi—step methods. This chapter outlines most
of the theory of these methods.

Chapter 4 pays particular attention to a family of special fourth order methods which, when

implemented in the correct way, behave like order five.

2 Introduction

Stiff Almost Runge—Kutta methods are introduced in chapter 5. These methods can be used
to solve ordinary differential equations which exhibit the property known as stiffness.

In chapter 6 we give the results from some numerical experiments, where we compare the
performance of the methods described in this thesis with traditional Runge-Kutta methods in
solving standard test problems.

Finally, chapter 7 gives the conclusions from this study and outlines further work in this

area.

1.1 Ordinary differential equations

Ordinary differential equations can be represented in one of two ways. The first is known as

non-autonomous form. The ordinary differential equation (ODE) is written as

y'(x) = fz,y(x)).

The variable x is called the independent variable and y(z) is the solution to the differential
equation. It should be noted that y(x) can be a vector-valued function, going from R — R™,
where m is the dimension of the differential equation.

In the second form, y'(x) does not depend directly on z, except as a parameter of y(x). This

second form is known as autonomous form and can be written as

In this thesis, we will mainly consider equations in autonomous form. This does not lead to a
loss of generality, as any non-autonomous system may be written in autonomous form by adding
the equation ' = 1 to the system.

If we add the initial condition yo = y(x¢) to the system of equations we get the initial value

problem (IVP)

1.1.1 Existence and uniqueness of solutions

Before we look at ways to numerically approximate the solution to an initial value problem it is
important to consider whether the solution is unique, or even if indeed a solution exists at all.
There are many criteria for determining these two considerations, but the most commonly used

approach is the Lipschitz condition.

1.1 Ordinary differential equations 3

Definition 1.1 The function f : [a,b] x RN — R is said to satisfy a Lipschitz condition in
its second variable if there exists a constant L, known as a Lipschitz constant, such that for any

velab] and Y, Z RV, ||f(w,Y) — f(z. 2)|| < LIV — Z|.
This definition is used in the following theorem.

Theorem 1.1 Consider an initial value problem

y'(x) = flz,y(@), y(zo) = yo,

where f: [a,b] x RN — RY is continuous in its first variable and satisfies a Lipschitz condition

in its second variable. Then there exists a unique solution to this problem.

Proof: A proof of this can be found in many books. See, for example, [6]. |

1.1.2 Stiff differential equations

There is no agreed formal definition of what stiffness is. Stiff problems can best be recognised
from the behaviour they can display when approximated by standard numerical methods. Al-
though the exact solution is extremely stable, the numerical solution can be extremely unstable.
Explicit methods cannot be used to solve this type of problem as the bounded stability regions
of these methods mean that they have to take excessively small stepsizes, even when the prob-
lem being solved is relatively smooth. That is, the stability requirements rather than accuracy
requirements drive the sizes of the steps taken. This behaviour is usually observed in problems
that have some components that decay much more rapidly than other components.

Due to this behaviour, ordinary differential equations have been divided into stiff and non-
stiff problems. Different types of numerical methods are needed for the different problem types.
This is a relatively new idea. It was not until 1952 that Curtiss and Hirschfelder [27] realised
that different types of methods work better on some classes of problems.

To see the effects of stiffness we will consider the simple initial value problem
y' = —100(y — cos z), y(0) = 0. (1.1)

As we can see in Figure 1.1, when we apply the implicit Euler method the numerical solution
follows the exact solution fairly closely, taking only 5 steps. However, if we try to solve the same
initial value problem using the explicit Euler method the numerical solution oscillates around
the exact solution, even using as many as 75 steps.

With stiff problems, sometimes the Lipschitz condition can be too pessimistic. Instead we

consider the idea of a one-sided Lipschitz condition.

4 Introduction

i Hmnm

|
WHUHl!l!lll!‘!‘ll!lV‘!

y
o
o

-051 -051

Figure 1.1: Implicit Euler (left) and explicit Euler (right) methods applied to differential equa-

tion 1.1.

Definition 1.2 The function f satisfies a one-sided Lipschitz condition, with one-sided Lips-

chitz constant 1, if for all x € [a,b] and all u,v € RY,

(f(@,u) = 2, 0),u—v) < -l

It is possible that a problem will have a very large Lipschitz constant, but a manageable
one-sided Lipschitz constant. This can help us find realistic growth estimates for the effect of

perturbations, as can be seen in the following theorem.

Theorem 1.2 If f satisfies a one-sided Lipschitz condition with constant I, and y and z are

each solutions of
y'(z) = f(z,y(2)),
then for all x > x,

ly(x) = 2(2)]| < exp(i(z — z0)) [ly(z0) — 2(xo)l-

Proof: A proof of this can be found in [6]. [|

1.2 Delay differential equations 5

1.2 Delay differential equations

In many cases ordinary differential equations are not the most natural way to model a physical
system. Consider, for example, population growth. This is commonly modelled using the
differential equation

N'(t) = k (1 _ @) N(), (1.2)

where k and P are positive constants. Although this is a reasonable model, it is perhaps more
realistic that the rate of change of the population at time ¢ is dependent on the population at
some time ¢ — r, r > 0. This changes equation (1.2) to

N'(t) =k <1 - w> N(t).

This type of equation is known as a delay differential equation (DDE). Delay differential equa-
tions depend not only on the solution at time ¢, but also on the solution at some previous time

or times. The general form of a delay differential equation is

y'(@) = fly@),y(z — 1), ... y(x = m)).

The terms 7q,...,7, are known as the delays or time lags. The complexity of these delays
determines the type of the delay equation. If the delays are constant we have a constant delay
differential equation. In the case where 71, ..., 75, are dependent on x we have a variable delay
differential equation. Finally, if the delays are functions of both x and y the delay differential
equation is called state dependent.

One main difference between delay differential equations and ordinary differential equations
is that delay differential equations require an initial value function, ¢(z) such that for x < x,
we require y(z) = ¢(x), rather than just an initial value. It turns out that even if f(y,z),
71(2,Y), .o, Tn(z,y) and ¢(z) are C°, the solution y(z) is seldom better than C° for z > z.
These discontinuities propagate throughout the interval of integration. Any numerical solver

needs a strategy for handling these discontinuities.

1.3 A brief history of numerical methods

The first numerical method for solving ordinary differential equations was devised by Euler in
the 1760’s and republished in his collected works in 1913 [31]. The idea behind this method is
very simple. The interval to be integrated over is divided into sub-intervals of size h;, where

7 is the step number. The stepsizes can either be the same, giving us constant stepsize, or of

6 Introduction

varying lengths, leading to a variable stepsize implementation. In practice, the stepsizes in a
variable stepsize implementation are chosen during the integration process. In each step we take
we assume that the value of the derivative does not change much over the step. Euler’'s method

then states that the approximation to the solution at the end of the step is given by

Yn+1 = Yn + hnf(xna yn)

When y,, = y(z,,), the Taylor series expansion of this Euler approximation is equal to that
for the Taylor series expansion of y(z,+1) up to and including terms in the first power of h,.
The method is therefore said to be of order one. There are two natural ways of extending this
result to improve the accuracy.

The first generalisation of Euler’s method was by Adams and Bashforth [1] in 1883. Their
methods use more information from the past to take a step forward. The Adams—Bashforth
methods are a special case of a class of methods known as linear multistep methods, which take

the form

Yn = 1 Yn—1+ -+ yn—r +h(Bof(Yn) + Brf (Yn-1) + - + Brf (Un—k)) -

In the case of the Adams—Bashforth methods a; = 1, a, ..., = 0 and Gy = 0. An extension
of this idea was developed by Moulton [52] in which y # 0. This gives the methods an implicit
structure. Changing the stepsize under this formulation is difficult as the integration coefficients
need to be recalculated in each step. In 1962 Nordseick [53] proposed a method which alleviates
this problem. The values passed from step to step are the scaled k+ 1 derivatives, including the
order zero derivative.

In practice linear multistep methods tend to be implemented as a predictor-corrector pair. An
approximation to y, is predicted using an Adams—Bashforth method and is then corrected using
an Adams—Moulton method. This idea was proposed by Milne [50] in 1949. Two advantages
of implementing the methods in this way are that the implementation is now explicit in nature
and they have a simple type of error estimator known as Milne’s device. The scaled difference
between the two approximations can be used to approximate the error.

Backward differentiation methods were introduced by Curtiss and Hirshfelder [27] in 1952.
For these methods 8y = o = --- = B = 0. These methods play a special role in the solution
of stiff problems, despite not being A-stable for methods of order 3 or above. The most widely
used adaptive codes for solving stiff differential equations are based on backward differentiation
methods. The first code was written by Gear [36] in 1971, making use of Nordseick represen-

tation. For a Nordsieck method of order p, the data imported into step number n consists of

1.3 A brief history of numerical methods 7

approximations to

1 1
y(xn—l)v hy,(xn—l)v §h2y”(xn—1)v R thy(p)(xn—l)'
The output quantities, therefore, approximate
1 1
y(xn)u hy/(xn)u Eth”(xn)u Ty Ehpy(p)(xn) (13)

To change the stepsize from h to rh, the quantites in (1.3) are scaled by powers of the scale

factor r, giving

1 1
y(wn)s hy @a)s 0%y @), - s Sy).

This is then used as the input to step number n + 1.

A large proportion of the theory of linear multistep methods was developed by Dahlquist
[28].

The other obvious generalisation of Euler’s method is to use more derivative values per
step. Methods of this type were first devised in 1895 by Runge [61]. Further contributions
were made by Heun [40] and Kutta [48]. Kutta completely characterised the family of fourth
order methods and developed the first fifth order method. These methods are now known as

Runge-Kutta methods and take the form

Y; :yn—1+hzaijf(xn—l+th7}/})7 t=1,..,s (14)
j=1
Yn = Yn—1 T hzbif(xn—l + Ciham)a (1'5)

i=1
where s is the number of internal stages. Many contributions were also made by Nystréom who
developed special methods for second order differential equations [54]. It was not until the
1950’s that methods of order six were developed by Hufa [43], [44]. Since then many people
have developed methods of higher orders.

Another important development of these methods was the introduction of error estimators,
enabling variable stepsize implementation. The first error estimators were developed by Richard-
son [59] in 1927. These estimators require each step to be repeated using two steps with half
the original stepsize. Although effective, this method of error estimation is expensive. The
standard approach now used is embedded methods, where a Runge-Kutta method of one order
is embedded inside a higher order Runge-Kutta method. The difference between these two
approximations can be used to approximate the error. This idea was originally developed by
Merson [49] in 1957, but considerable work has also been done in this area by Fehlberg [32],
[33], Verner [66] and Dormand and Prince [29].

CHAPTER 2

General linear methods

Mathematics is like checkers in being suitable for the young, not too difficult, amus-
ing, and without peril to the state.

PrATO

General linear methods were introduced by Butcher [4] as a unifying framework for traditional
methods. They have both the multi-stage nature of Runge—Kutta methods as well as the multi-
value nature of linear multistep methods.! This extremely broad class of methods, besides
containing Runge-Kutta and linear multistep methods as special cases, also contains hybrid
methods, cyclic composite linear multistep methods and pseudo Runge-Kutta methods.

For compactness of notation we write Y and F' for the vector of Y; and F; values respectively,
where Y; ~ y(z, + ¢;h) is the approximation at the i-th internal stage and F; = f(z,Y;). As
with a Runge-Kutta method, the vector ¢ = [c1, ¢, - ,CS]T, is called the vector of abscissae.
For ease of computation it is usually preferred that the stages approximate the solution within
the current integration interval i.e. 0 < ¢; < 1, however this isn’t always the case. We also
write y®~1 for the vector of approximations imported into step n and y[™ for the quantities
computed in this step and exported for use by the following step. The detailed computation is

now based on the formula

Y =h(A® I)F + (U ® Iy (2.1)

for the stages, and

Yy =B I)F+ (VeI)yr ! (2.2)

1A method is multi-value if it propogates more than one value for each component. In contrast, a method is

multi-stage if it utilizes intermediate values on each step to generate the new values to be propogated.

10 General linear methods

for the output values, where I is the identity matrix of size equal to the differential equation

system to be solved. The Kronecker product of two matrices is given by the following definition.

Definition 2.1 If G is an m X n matriz and H is a p X ¢ matriz, then the Kronecker product

G ® H is the mp X ng block matriz

guH - g,H
GH =

| gmlH e gmnH
githit guhie -+ guihig -+ - giwhir ghiz 0 giahig
githa1 guhae -+ guiheg -+ - ginhor ginhae -0 ginhag
githpr guhpz - guihpg 0 0 ginhpr Giahp2 0 Ginlipg
gmih11 gmihi2 - gmihig o0 o Gmnhil Gmahi2 0 gmnhag
gm1h21 gmihoo -+ gmihag -+ 0 gmnh21r Gmnh2z o Gmnhag

| Im1 hpl gmlhp2 e gmlhpq e e gmnhpl gmnhpQ o gmnhpq |

With a slight abuse of notation, equations (2.1) and (2.2) are often written in the form

Y hf(Y1)
Y hf(Yz)
AlU
Ve | = hf(Ys) | (2.3)
D BV 1]
Y1 Y1
-y7[qn] | i yLn—l} |

where s is the number of internal stages and r is the number of values passed from step to step.
To begin computation with a general linear method, certain values in addition to the intial
values for the ODE are needed. These are determined by special starting methods, such as those

detailed in section 2.3.

2.1 Consistency and stability 11

2.1 Consistency and stability

As with linear multistep methods, a general linear method needs to be consistent and stable in
order to give meaningful results.

At the very least we would expect our method to be able to solve the trivial initial value
problem y'(xz) = 0, y(0) = a, exactly at the beginning and end of each step. Therefore, we
would like to ensure

" = wy(wn—1) + O(h),

" = uy(a,) + O(h),

for a vector u, which is called the pre-consistency vector. Applying a general linear method to
the problem y/(z) = 0 gives
ylnl — Uy[nflh
yM = vyl
This leads to the following definition.
Definition 2.2 A general linear method is ‘preconsistent’ if there exists a vector u such that
e =Uu,
u = Vu,
where e is a vector of all ones.

We would also like a method to be able to solve the simple initial value problem y'(x) = 1,
y(xo) = 0, exactly at the beginning and end of each step. If the quantities being passed from step
to step are linear combinations of the solution y(z) and the scaled derivative y'(z) we require

Y = ey(z,) + chy' (z) + O(h?)
Y = wy(z,_1) + vhy (2n_1) + O(h?)
Y = uy(@,) + ohy' (x,) + O(h?),
where the vector v is called the consistency vector. Applying a general linear method to the
problem ' (x) = 1, y(zg) = 0 gives
vl = Aeh + Uyln =Y,

y" = Beh + vyl

12 General linear methods

Using the exact solution y(z) = x — x¢ and the equations above leads to the following definition.

Definition 2.3 A general linear method is ‘consistent’ if it is preconsistent with preconsistency

vector u and there exists a vector v such that
u—+v=Be+ V.

Stability is also necessary to obtain meaningful results. Stability guarantees that errors
introduced in a step do not grow without bound in subsequent steps. A general linear method
is stable if the solution to the trivial differential equation 3/'(z) = 0 is bounded. Applying a

general linear method to this differential equation gives
yll = yyln=1l = g 0],
This leads to the following definition.

Definition 2.4 A general linear method is ‘stable’ if there exists a constant C' such that for all

n=1,2, .. ||V <C.

As with linear multistep methods, it is known that stability and consistency are necessary
and sufficient for convergence of general linear methods. This was shown by Butcher in [4]. A

definition of convergence is given here.
Definition 2.5 A general linear method is ‘convergent’ if for any initial value problem

Y'(x) = fly(x), y(zo) = wo,

subject to the Lipschitz condition || f(y)—f(2)|| < L||ly—z||, there exists a non-zero vector u € R",
and a starting procedure ¢ : (0,00) — R", such that for alli = 1,2, ...,r, limy_g ¢;(h) = w;y(zo),
and such that for any T > xq, the sequence of vectors y["], computed using n steps with stepsize

h = (% — xo)/n and using y°) = ¢(h) in each case converges to uy(z).

2.1.1 Stability regions

As with Runge-Kutta methods and linear multistep methods, the linear stability of general

linear methods is studied by considering the scalar test problem

/

Yy =qy.

2.1 Consistency and stability 13

Applying equation (2.3) to this problem gives

Y = AhqY + Uy~ (2.4)

yl"l = Bhgy + vylr—1 (2.5)
Rearranging equation (2.4) and substituting into equation (2.5) gives
yt" = M(hq)y™ 1,

where

M(z) =V +2B(I — zA)~'U,

and z = hq. The matrix M is known as the stability matrix of the method.
The stability function of the method is determined by the characteristic polynomial of M,

as given in the following definition.

Definition 2.6 The ‘stability function’ for a general linear method with stability matriz M (z)
is the polynomial ®(w, 2)
O (w, z) = det(wl — M(z)).

The ‘stability region’ is the subset of the complex plane such that if z is in this subset, then

s%ji ||M(2)"]] < oo. (2.6)

The solution to equation (2.6) has a decaying norm, and if z lies in this region, then for this
linear problem, the numerical solution obtained by (2.3) decays as well.
The traditional definitions of A-stability and L-stability can be slightly modified to apply to

general linear methods.

Definition 2.7 A general linear method is ‘A-stable’ if M(z) is power bounded for every z in

the left half complex plane.
Definition 2.8 A general linear method is ‘L-stable’ if it is A-stable and p(M (o)) = 0.

Most other types of stability can also be modified to apply to general linear methods, but this
is not required for this work.
The stability function of a general linear method is more complicated than the stability

function of a Runge-Kutta method or linear multistep method. One possible way of simplifying

14 General linear methods

this function is to make it equivalent to the stability function of one of the traditional methods.
We would like the stability region to take up as much of the left half complex plane as possible,
hence giving good stability properties.

If we compare the stability regions of different methods it becomes apparent that the number
of stages has the greatest effect on the size of the stability region. To make the comparison
between Runge-Kutta methods and linear multistep methods fair we should use the stability
region of s compositions of the linear multistep method, where s is the number of stages of the

Runge-Kutta method. This composition gives a linear multistep method with s stages.

Figure 2.1: Stability regions for explicit Runge-Kutta (left) and composite Adams-Bashforth
methods (right), for orders 1 to 4.

The stability regions of explicit Runge—Kutta methods and composite Adams—Bashforth
methods of orders 1 to 4 are shown in Figure 2.1. It is clear from the figure that Runge-Kutta

methods have the more desirable stability properties. This leads to the following definition.
Definition 2.9 If a general linear method has a stability function which takes the special form
®(w, z) = det(wl — M(2)) = v (w — R(2)),

where R(z) is the stability region of a Runge—Kutta method, then the method is said to have
Runge—Kutta stability.

2.2 Tree theory 15

to 1 to t3 t4 t5 tg t7 tg tg

o | Ll v el VY e
t10 t11 12 t13 t14 t1s5 t16 t17 t1s t1g

too to1 too tog tosg tos tog to7 tog tog

t30 31 32 t33 t34 t35 36 t37

Table 2.1: Trees up to order 6.
Trees up to order 6. Each vertex is denoted by a dot. The order of a tree is equal to the

number of vertices.

This is equivalent to the stability matrix having only one non-zero eigenvalue, which is R(z).

2.2 Tree theory

For a convenient development of the order of a method, we need to introduce some basic tree
theory. This theory will be used in the next section, and throughout the rest of this thesis.

A tree is a rooted graph which contains no circuits. The symbol 7 is used to represent
the tree with only one vertex. All rooted trees can be represented using 7 and the operation
[t1,...,tm]. This operation takes the roots of the trees ¢i,...,t,, and joins them to a new root.
This is known as grafting.

We first need to introduce some definitions. The order of a tree is a measure of how big the

tree is.

16 General linear methods

Order 1 2 3 4 5 6 7 8 9 10
Number of trees |1 1 2 4 9 20 48 115 286 719
Cumulative total | 1 2 4 8 17 37 85 200 486 1205

Table 2.2: Number of trees of orders 1 to 10.

Definition 2.10 The order of the tree t is defined by

1, ift=r
T+r(t)+-+7(tm), ift="[t1,....tm]

In other words, the order of a tree is the number of vertices the tree has. The trees up to
order 6 can be seen in Table 2.1. In Table 2.2 the number of trees of each order up to order ten
are given, along with the number of trees of order less than or equal to that order. We see that
the number of trees increases quickly.

The height of a tree is k — 1, where k is the number of vertices in the longest path beginning
with the root.

The density of a tree is a measure of ‘non-bushyness’. The higher the density the less bushy

the tree is.
Definition 2.11 The density of the tree t = [t1,...,tn] is defined by

1, ift=r

r(t)y(t)y(b2) - y(tm), ift = [tr, ., tm]

A simple way of finding the density of a tree is to attach to each vertex a number that is
equal to the number of vertices above it plus one. The density is then equal to the product of

the numbers attached to the vertices.

Example: The tree represented by [[73], [T, [7]]]

2.3 Order 17

t 1123 4,5 6 7 8|9 10 11 12 13 14 15 16 17
r(¢) /1123 3|4 4 4 4|5 5 5 5 5 5 5 5)
~yt) 11213 6|4 8 12 24| 5 10 15 30 20 20 40 60 120
ot)y{1{1]2 16 1 2 1{24 2 2 1 2 6 1 2 1

Table 2.3: Order, density and symmetry of the trees up to order 5.

Y(t) =9x4x4x2

= 288

|

A bushy tree is defined to be a tree of height one, which therefore has a density of r(¢). A

tall tree is defined to be a tree of height r(¢) — 1, which therefore has a density of r(¢)!. Examples
of bushy trees are to, t3, t5, tg, and t15. Examples of tall trees are to, t4, tg and ;7.

The symmetry of a tree is the order of the automorphism group of t. The mapping of a tree

onto itself is a mapping that preserves the root and the tree structure. It is a measure of how

symmetric the tree is.
Definition 2.12 The symmetry of the tree t = [t]*, ..., thm], where ty, ...ty are all distinct is

defined by

1, ift=r

nilngl . nplo(t)™ . o(ty)™™, ift=[t]", ..., t0"]

A high value of o indicates a highly symmetric tree.

The order, density and symmetry of trees up to order 5 can be found in Table 2.3.

2.3 Order

As many general linear methods are multi-value methods they require a starting procedure to
obtain an initial vector, y[o], from the initial value yo. If we let Y1, ..., Y5 be the internal stages,

the starting procedure can be defined as

Y = hSu f(Y) + Siayo

yl% = hSy; F(YV) + Saayp.

18 General linear methods

I Yl

Figure 2.2: The order of a general linear method.

This can be written as the (54 r) x (5 + 1) partitioned tableau:

S11 | S12
So1 | Sa2

where 5 is the number of internal stages of the starting procedure and r is the number of initial
approximations required. For preconsistency it is required that Sso = w and S12 = €, where € is
the vector of length 5, with each component equal to 1.

If a method is of order p it is generally the case that each of the r components of 3% will be
of order at least p.

The order of a method can now be defined in relation to a starting method. If the starting
method, S, is applied to a problem, followed by one step of the method M the result is M o S.
The exact solution shifted forward one step is represented by the shift operator E. If it were
possible to take one step forward in time using E then apply the starting method the result
would be S o E. As we can see in Figure 2.2, a method is of order p if the difference between
these two approximations is O(hP*1). In general, the first component of the solution vector is
an approximation to y(x,). This means it is only the first component that is required to be

O(hP*1) to have a method of order p.

2.3.1 Algebraic analysis of order

As with traditional methods, to determine the order of a general linear method we compare the

Taylor series expansions of the exact and numerical solutions.

2.3 Order 19

Expansion of the exact solution

The Taylor series expansion of the exact solution is given by

h2 " h3 "
W+) = y(@) +y/(e) + LD D

where ¢/ (z) = f(y(z)).

Using the chain rule to evaluate each term gives

S+) — y(a) 4 fuey 4 T GEDT)

2!
3
% (f" (@) (f (@), fy(@))) + fy@)(f @) (f @) + -

Each of these individual terms were named elementary differentials by Butcher [3]. There is a

direct relationship between elementary differentials and trees, leading to the following definition.

Definition 2.13 For any t € T, the elementary differential, F(t), for a function f is defined

y(z), ift =0,
Ft)(y(z) =1 fly(z)), ift=r
FOF(t), F(ta), ..., Ftm))(y(x)), ift=T[t1,t2,...,tm].

Each elementary differential can easily be found uniquely from its associated rooted tree where
each vertex is associated with the nth derivative of f, where n is the number of children that
vertex has. The elementary differentials for trees up to order 5 are shown in Table 2.4.

The nth derivative of y(z) can be found by taking a linear combination of the elementary

differentials of the trees of order n. This leads to the following theorem.

Theorem 2.1 If y(z) is n times differentiable then

r(t)=n

where €(t) is the number of ways of labelling a tree such that if (i,j) is a labelled edge, then
i < j. The value of €(t) is

Proof: A proof of this can be found in [6]. |

20

General linear methods

t] FO)
t1 f
ty | 1 f'f
ts | v F(f5 1)
t| | Fff
ts | N ST
to | V| LS
| P
ts 1 F'rrs
ty |~ | SO f0)
to | LD
t | V| P F)
w| | e
o | V| SRS
fa | L | PG)
ns| Y| s
ti6 \f P 1)
tir l FEFFs

Table 2.4: Elementary differentials for trees up to order 5.

21

2.3 Order

(¢1)g + (Bng (o + (M)g(e)o + (2 g (P + (11)g(31)0 + (9)g (412)0

(Mg + (g (T)og + (")g + (F)o + (g (B + (T)g (L) + (9)g (91)0

()¢ + (Bng (o + (L)g (M) + ()g ("o + (Mg (en)o + (2r)g(en)o(t)o + (1n)g(91)0 + (09)g (<)o

(")g + (Lng()og + (M) g (T)vg + (2 g (7)o + (M) g(n)o + ()¢ ()0

(51 g + (219 ()0g + (E)g ()0 + (") g (2)0g + (4)¢ (2r)o(T)0g + () ()0 + (0)g (£Tp)0

(e)g + (g (1o + (g ()0 + (") g (1) + (E) g (en)o + (g (ep)o(T)o + (2)g ("o + (T)g (Fr)o(T)o + (07)g(21)0
(T)g + (g ()og + (L0g(1n)o + (7)o (")0g + (1) ("0 + () g (10 + (20 g (1o + (T)g (F)o(T)o + (07)g (1) 0
(0)g + (“Dg (o + (Mg (M)og + (M)g ()0 + (BN ()0 + (2)) + (21)d(¢(1)0 + (21)o(11)og) + (11)g (20, (1) + (9)g(0t)0
(61 + (Dg ()01 + (81)g ()09 + (21 g (T)or + (1) g5 (F1)0 + (9)g/(62)0

(8g + (g (t)o + (2)g(en)o + (f)g (") + (9)g(3p)0

(40 + (Mg (T)og + (2n)g ()0 + (1Dg (B0 + (9)g (L)

(1 + (Mg (o + (Eng () + (21)g (T + (2n)g (21)0 + () g ()0 (1) + (9)g/(92)0

(D¢ + (5Dg("p)og + ((n)g(1)og + (1)g(T)0 + (9)g(Sp)o

("Dg + (eng(t)o + (f)g(er)o + (99)g (1)

(E0g + (g (")og + (")g (T + (0)g(82)0

(g + (*)g(tp)o + (9)g(er)o

(Tng + (“ng(Tp)o

(92)¢

> > O e > b e e

> S s —

Sw

9Ty
§Ty
1y
€1y
ey
11y
01y
67
82
4
9
“
&}
€2
&
I
07

Table 2.5: Composition of elementary weight functions up to order 5.

22 General linear methods

Elementary weights

Before we look at the Taylor expansion of the numerical approximation we need several defini-
tions.

An elementary weight function is a mapping from trees to the real numbers. There are two
special elementary weight functions which we are interested in. The first of these is the ith

derivative operator.

Definition 2.14 Let D; be the ith derivative operator. Then for i € N
1! , .
Dift) = Wt)’ ifr(t) =1
0, if r(t) # 1.
Provided that y(z) is sufficiently smooth in the neighbourhood of x, the ith derivative operator
maps y(z) to hyy? (x). The most common derivative operator we will be using is Dy, which we

will simplify to D. From the above definition we obtain

1, ift=r
D(t) =
0, ift#r.
The second elementary weight function of special interest is
t
(1)

This corresponds to the exact solution of the differential equation, as represented by the Picard

iteration scheme. In the case ¢ = 1 we get the exact elementary weight function

1
E(t) = —, forallt e T. 2.7
© V(t) 27)
The reverse exact elementary weight function is also useful. This is given by
—1)r®
E7l(t) = i, forall t € T.
(1)

The final definition we need before we can continue is the composition of two elementary

weight functions.

Definition 2.15 The composition rule for elementary weight functions, o and 3, is given by

(aB)(t) = BD)a(t) + B(t) +>_ Bu)a(t\u), VteT, (2.8)
u<t
where u < t denotes any proper subtree u sharing the same root with the tree t, and t\u denotes

the remainder of the tree t after deleting the subtree u from it. We will let a(t\u) be the product

of a of the trees that make up t\u.

2.4 Examples of general linear methods 23

This rule defines the output when the output of one elementary weight function is used as
input to another elementary weight function. It was first published by Butcher [5].
This rule greatly simplifies in the case where the second operator is the ith derivative oper-

ator, giving

) if 7(t) <

i | .

(aD;)(t) = Wt)’ } if 7(t) =i
(uq%)i Wa(t\u)’ if r(t) > i.

In the case of the first derivative operator, where ¢ = 1, this simplifies even further to

0,)
(aD)(t) =4 1, if t =,
a(tl)“'a(tm)v if t = [tla"'vtﬂ’L]'

Expansion of the numerical solution

Let £(t) and n(t) be elementary weight functions representing the internal stages and the input

approximations respectively. We can now write
§(t) = A(ED)(t) + Un(t). (2.9)
The output approximation can then be found from
B(ED)(t) + Vn(t).

Assuming the method is of order p, this will correspond to En(t) within O(hP*!). We can
therefore write

En(t) = BED)(t) + Vn(d). (2.10)

Assuming the first output solution is an approximation to y(zy), the method is said to be of
order p if the first component of equation (2.10) is equal to E(t) for all ¢ such that r(t) < p.
The functions given in equations (2.9) and (2.10) are said to be the generating functions of

the method.

2.4 Examples of general linear methods

As noted above, this class of methods is a large one. It includes the traditional methods such

as Runge-Kutta methods and linear multistep methods, along with methods that have been

24 General linear methods

developed within the general linear methods framework, such as DIMSIMs and IRKS methods.

Here we comment briefly on some of these methods.

2.4.1 Runge-Kutta methods

Runge-Kutta methods are very simple to rewrite as general linear methods. The A matrix of
the general linear method is the same as the A matrix of the Runge-Kutta method. The B
matrix is b, where b is the vector of weights of the Runge-Kutta method. Assuming the input
vector is an approximation to y(x,—_1), the U matrix is e, a vector of 1’s. The V matrix consists

only of the number 1. This can be written as

a1 a2 - as |1

al2 a - ag |1
M =

Gs1 Qg2 -+ Ggs | 1

by by -+ b |1

For example, we could rewrite the classical fourth order Runge-Kutta method with tableau

0
11
212
1 1
310 3
110 0 1
11 1 1
6 3 3 ©
as the general linear method
0 0 0 01
1
53 00 01
0 4 0 0]1
0 0 1 01
1 1 1 1
6 3 3 6|1]

2.4.2 Linear multistep methods

Linear multistep methods have a multi-value nature. The general form of the methods is

k k
=1 1=0

2.4 Examples of general linear methods 25

If By is equal to 0 the method is called explicit. This means the current approximation depends
only on approximations to the solution and approximations to the derivative from the past. If
Bo # 0 the method is called implicit because the current approximation depends on the derivative

at the current time-step.

Adams methods

The most common linear multistep methods used for solving non-stiff differential equations are

Adams methods. For these methods a; = 1 and «; = 0 for ¢ > 1. Therefore they take the form

k
Yn = Yn—1 + hZﬁzf(yn—z)

i=0
Explicit methods of this type are called Adams—Bashforth methods. Implicit methods are known
as Adams—Moulton methods.

If we were to write this as a general linear method, the input vector is

y(xn—l)
hy,(fcnfl)
[nfl}_ /

Yy = | h(vn2) |,

L hy/(xnfk) |

where r = k + 1. This means we can write the method as

_ Y1 [Bo|l B B2 - Br-1 Bk 11 hf(Y1) _
Yn Bo|l B B2 - Br-1 B Yn—1
hf(Y1) 110 0 0 0 0 hf(yn-1)
hf(yn—1) | =1 0]0 1 0 0 0 hf(yn—2)
hf(yn—2) 010 0 1 0 0 hf(yn—3)
| W Ynkt) |] 0JO 0 0 o 10| | Pf(Ynr) |

Although Adams—Moulton methods are implicit, they are only ever used to solve non-stiff
problems, due to their small stability regions. They are usually used as part of a predictor-
corrector pair. That is, an Adams—Bashforth method is used to predict an approximation and
then the Adams—Moulton method is used to correct the approximation. They are used in either
a (PEC) or (PECE) scheme, where P stands for predict, E stands for evaluate and C stands

for correct. In equation form this can be written as

26 General linear methods

k
Yn=Yn1+h>_ B f(Yni),
=1

- k
Yn = Yn-1+ hBof () + 1Y Bif (Yni)-
=1

A PEC method can be represented as the following general linear method (GLM)

Y 011 B8 B3 -+ By B hf(Y1)
Yn Bo|l B B2 -+ Br-1 DB Yn—1
hf(yn) 1700 0 -~ 0 0 hf(yn-1)
hflyn-1) | =(00 1T 0 -~ 0 0 hf(yn—2) |-
hf(yn—2) o6 0 1 -+ 0 0 hf(yn—3)
| W Ynkt) |] 0OJO 0O 0 o1 O | | Af(Ynk) |
whereas a PECE method can be represented as
Y, 0 0|1 B B5 - Bi_y B hf(Y1)
Ys Bo O|1 Bi B2 - PBe—1 OBk hf(Y2)
Yn Bo O|1 B B2 - PBr-1 B Yn—1
hf(yn) B O 10 0 O .- 0 0 hf(Yn-1)
M) || 0 0[0 1 0 o 0 0 || Ay
hf(yn—2) 0 0j0 0 1 0 0 hf(yn—3)
| hf(nk4r) | | O O[O0 0 0 - 10 || Af(yn—t) |

BDF methods

Backward differentiation (BDF) methods were the first numerical methods to be proposed for
stiff problems. They were introduced in 1952 by Curtiss and Hirschfelder [27] to overcome the
difficulties encountered in using Adams methods to solve stiff problems due to their lack of
stability. Since Gear’s 1971 book [35], they have been widely used to solve stiff problems.

For BDF methods all the §’s are zero except 3y, meaning the approximated solution depends
on only one derivative value, which is evaluated at the current step. The updated approximation
is given by .

Yn = Y Qi + hBof (Yn)-

=1

2.4 Examples of general linear methods 27

It is well-known that the BDF methods of order 7 and above are unstable (see, for example,
[35]). Furthermore, only methods with £k = 1 and k = 2 are A-stable. For orders higher than this
the stability region becomes increasing inappropriate for solving stiff problems. The methods of

orders 1 to 6 are given here.

k=1: yn:yn—1+hf(yn)
k=2: Yn = %yn—l - %yn—Q + %hf(yn)
k=3: yn=1n-1— 11¥n—2 + 5Un-3 + S (Un)
 Yn 11Yn—1 11 Yn—2 11 Yn—3 11 Yn
k=4: yp= %yn—l - %%—2 + %yn—3 - 23—5%—4 + %hf(yn)

_ . __ 300 300 200 75 12 60
kE=5: yn=13137Yn-1— I37Yn—2+ T3-Yn—3 — 137Yn—4 T 15°Yn—5 + 19-

k=6: yn= %ynfl - %ynf2 + %yn%S - %ynfll + Z_gynff) - % + %hf(yn)

In general linear form these can be represented as

Y1 Bolar ag az - Qp_1 Qg hF(Y7)
Yn Bo|lar a a3 -+ ap-1 o Yn—1
Un 0/1 0 0 - 0 0 o
vmos |=]0]0 1 0 - 0 0 Yn_a
s olo o 1 -~ 0 0 Unt
ak | [00 0 0 o 10 || mek

2.4.3 DIMSIMs

Diagonally implicit multistage integration methods (DIMSIMs), are a special class of general
linear methods which were first introduced by Butcher [7]. These methods were designed to
be an extension to diagonally implicit Runge-Kutta methods, retaining the high order of the
traditional methods, but increasing the stage order. To be a DIMSIM the method must have

several desirable properties. These are:

e The matrix A should be lower triangular, with constant diagonals to lower the cost of

solving the stage-value equations.
e The matrix V should be rank one to ensure zero stability.

e The quantities approximated by incoming and outgoing data should be related to the exact

solution by a weighted Taylor series.

28

General linear methods

Type A Application | Architecture
[0 0 o0 0
a1 0 0 0
1 as; aszz O 0 Non-stiff Sequential
| @s1 Qs2 Qg3 0
A 0 0 0
as1 A0 0
2 as; aszy A 0 Stiff Sequential
| @s1 Qs2 Qs3 A
[0 0 o0 0
0 0 0 0
3 0 0 0 0 Non-stiff Parallel
L0 0 o0 0
A 00 0]
0 A 0 0
4 0 0 A 0 Stiff Parallel
L0 0 0 A

Table 2.6: Types of DIMSIMs

e The order of the stages should be close to, if not equal to, the overall order of the method.

There are four different types of DIMSIMs.

The type of the method is determined by the

structure of the A matrix, depending on whether the intended use of the method is for stiff or

non-stiff problems and whether the intended architecture is sequential or parallel. The types of

methods can be found in Table 2.6.

As has been mentioned, we require the incoming and outgoing values found in a step to be

approximations to a weighted Taylor series. This means we require the incoming approximations

2.4 Examples of general linear methods 29

to be given by
yz[n—l} = oy (zp_1) + anhy (Tp_1) +--- + oziphpy(p) (2n_1) + O(hPT), (2.11)
and the outgoing approximations by

ol = qioy(ea) + ainhy/ (22) + -+ aighy® (z,) + O(hH). (212)

If equations (2.11) and (2.12) are true for some choice of the matrix

alp Qi1 oty
oy Qa1 o Qrgp
)
| Q0 Qp1 0 Qpp |

then this implies the method is of order at least p.
When the stage order is equal to the order of the method the order conditions greatly simplify,

leaving only

exp(cz) = zAexp(cz) + Uw(z) + O(hPT),

exp(2)w(z) = zBexp(cz) + Vw(z) + O(hPT),

where

a1p + 112 + -0+ agpd?

Qoo + 12 + -+ + agp2?

i rg + 1z + -+ Q2P]

and

exp(c12)

oo — | P

i exp(cs)z |

Most of the work on this class of methods has focused on methods with p = ¢ = r = s as the
number of free parameters these methods have is the same as the number of equations required
to ensure RK-stability.

If one assumes that U = I, the matrix B can be found in terms of A and V by

B=DBy— AB, — VBy + VA,

30 General linear methods

where the (i, j)th element of the matrices By, By and Bs is given by

14c;
Bo: / (1) dt,
0

By : lj(CZ‘ + 1),

By / L(t) dt,
0

where [;(z) is the Lagrange interpolation basis polynomial given by

L) =] T

C; —C '
k=1 0 K
k#j

Two simple examples are given here. Both of these methods have had their free parameters

chosen to ensure RK-stability. The first is a method of type 1, with ¢ = [0, 1]:

(0 0 |1 0]
2 0 |01
M =
5 1 11
1 4 2 2
3 _1 L1
L1 1 2 2
The second method is of type 4:
8-v3 0 1 0 |
0 B/ 0 1

18—11v/3 12473 3—2v3 1423
1 1 2 2

22-13v/3 12493 3-2v/3 1423
4 4 2 2

2.4.4 TIRKS methods

Methods with inherent Runge—Kutta stability (IRKS) have been extensively studied by Butcher
and Wright [22], [23], [67], [68]. These methods were introduced to concentrate on general linear
methods with Runge—Kutta stability. RK-stability is a difficult condition to impose in the
general case, but it is possible to find an inter-relation between the matrices which ensures the
method has this property. While the conditions for IRKS are sufficient to ensure RK-stability,
they are not necessary.

In the rest of this section we will write ‘=’ to denote the equivalence relation between two
matrices that deems two matrices to be equivalent if and only if they are identical except for

the first row.

2.4 Examples of general linear methods 31

Definition 2.16 A general linear method satisfying Ve, = ey has inherent Runge—Kutta stabil-

ity if
BA=XB, (2.13)

BU = XV + VX, (2.14)

where X is some matriz and

det(wl — V) = wP(w —1).

If the method is in Nordsieck form and the stage order is equal to the order of the method, the

most general matrix X satisfying equations (2.13) and (2.14) is a doubly companion matrix of

the form))
—a1 —az —az o —Qpo1 —0p —0p41 — Ppt1
1 0 0o - 0 0 —Byp
0 1 0o - 0 0 —Bp—1
0 0 0o - 0 0 —f3
0 0 0o - 1 0 —[2
0 0 0o - 0 1 -5

A direct consequence of a method having IRKS is that the eigenvalues of the stability matrix
will all be zero, except one, which will be equal to the truncated exponential series. This can

be written as

o(V + zB(I — zA)"'U) = {R(z), 0},

where R(z) is the stability function of a Runge-Kutta method and is equal to exp(z) + O(zP*1).
In general, these methods are formulated in Nordsieck form, with the stage order equal to
the order and the number of values being passed from step to step equal to p + 1. Having the

stage order equal to the order of the method greatly simplifies the order conditions. If we let
Z=11, z, 2% ., zp]T,
where z is a complex variable, then the order conditions can be written as

exp(cz) = zAexp(cz) + UZ + O(2PT),

exp(2)Z = zBexp(cz) + VZ + O(zPT).

32

General linear methods

This makes the derivation of the methods relatively easy as U and V are completely defined

by A, B and the abscissae vector ¢ by

where C is the Vandermonde matrix

and FE is the Toeplitz matrix given by

0
0

i

S =

0
0

BSIT

0
0

U=C-ACK,
V =F — BCK,
c? cP
|:€7 c, 57 :) p:|)
1 1 1 i
(P-2)! (p-1)! !
1 1 1
=3t (®=-2)! (»-1)!
1 1 1
-9 @-3)! (»-2)!
1 T
0 1 &
0 0 1

Methods for both stiff and non-stiff problems are known to high order. Two simple examples

are given here. The first is an explicit method of order 2, for which ¢ = [%, %, 1]:

o o o1 L+ &
Looooft b4
o 3 ot L o0
o 2 o)1 1 o0
0 0 1|0 0 o0
3 -3 2/0 -2 0

The second method is diagonally implicit method of order 2 with ¢ = [i, %, 1]:

1 1
Lo o1 0 -4
1 1 1 1
5 1 0|1 13 —55
101 1)1 1 _1
6 2 4 12 24
101 17 L1 _1
6 2 4 12 4
0 0 1/0 0 0
0o -2 210 O 0

2.4 Examples of general linear methods 33

It should be noted that DESIRE (Diagonally Extended Singly Implicit Runge-Kutta Ef-
fective order) [16] and ESIRK (Effective order Singly Implicit Runge-Kutta) methods [15] are

special cases of IRKS methods.

CHAPTER 3

Almost Runge—-Kutta methods

Never be afraid to try something new. Remember amateurs built the Ark — profes-
sionals built the Titanic.

ANON

Almost Runge-Kutta (ARK) methods are a special class of general linear methods. They
were introduced by Butcher in 1997 [10]. The idea of these methods is to retain the multi-stage
nature of Runge—Kutta methods, but allow more than one value to be passed from step to step.

This gives the methods a multi-value character.

Of the three input and output values in ARK methods, one approximates the solution value
and the other two approximate the scaled first and second derivatives respectively. To make it
easy to start the methods, the second derivative is required to be accurate only to within O(h?),
where h is the stepsize. The method has inbuilt “annihilation conditions” to ensure this low
order does not adversely affect the solution value. These extra input values enable us to obtain
stage order two. Traditional explicit Runge-Kutta methods are only able to obtain stage order

1

one.- The advantage of this higher stage order is that we are able to interpolate or obtain an

error estimate at little extra cost.

LA stage is of order ¢ if Yi = y(zo + hc;) + O(h9™). A method is said to have stage order ¢ if each of the

stages is of order gq.

36 Almost Runge—Kutta methods

The general form of ARK methods is

Y hE(Y1)
Ys hE(Y2)
AU
Ys | = hE(Y) | >

BV -
ygn} ygnfl]
ygn} yénfl]

_ y:[gn} _ _ ygnfl] _

where s is the number of internal stages. For an order p method the three output values are
y = () + O,
v = hy/(x) + O(W*),
uy! = B2y (2n) + O(?).
The coefficients of the method are chosen in a careful way to ensure the simple stability
properties of Runge-Kutta methods are retained.

In this chapter we will concentrate on methods where A is strictly lower triangular, and

hence the method is explicit, but most of the theory will carry over to implicit methods.

3.1 General form of explicit ARK methods

The general form of an explicit ARK method is

v] [o o o - 0 o 1 [wre) |
Vs as: 0 0 - 0 0 hE(Ys)
Y3 asi aso 0 0 0 |e c— Ae %—Ac hF(Y3)
Yeoiu | = | as-11 as—12 as—13 -+ 0 0 hEF(Ys_1)
Y, by by by - beq O hE(Y;)
yl! by by by oo bey 0|1 b 0 yln
e 0 0 0 - 0 1]0 0 0 yb=1

] L B B B Bea B|0 By o || Y]

3.1 General form of explicit ARK methods 37

As with a traditional Runge-Kutta method, b is a vector of length s representing the weights
and c is a vector of length s representing the positions at which the function f is evaluated. The
vector e is of length s, consisting entirely of ones.

The form of the U matrix is to ensure the stage order of the method is 2. To show this
is true, we look at a Taylor series expansion of the internal stages. The internal stages of the

method are given by:
i—1
Y; ==j£:(ujhl?(}§)-kz@1ygﬂ-FzQngﬂ—kzugygﬂ. (3.1)
j=1

To have stage order two we require Y; = y(zo + he;) + O(h?). If we also make the substitutions

Yo = ygo}’ hyl, = ygﬂ and h?y) + O(h®) = y3[0], we obtain

i—1
y($0 + hci) + O(h3) = Ui1Y0 + Uighyé + ui3h2y8 + hz aij y,($0 + th) + O(h3) (32)
J=1

If we carry out a Taylor series expansion on both sides of equation (3.2) and equate the coeffi-
cients in yo we find:

U;1Yo = Yo, so that Uil = 1.

Equating the coefficients in y(, we find:

i—1 i—1
hciyf) = uzghyf) + hz aijyf), so that Uip = C; — Z Q-
j=1 j=1

Finally, equating the coefficients in y we find:

h262)) 1—1 Cz i—1
(/A X " o 1 .
5 Yo = uish“yy + h E a;jcjYg, so that w;3= 5 a;i;c;.
j=1 j=1

We wish the final internal stage to give us the same quantity that is to be exported as the
first outgoing approximation. This implies that the first row of the B matrix is the same as the
last row of the A matrix, and the first row of the V' matrix is the same as the last row of the U
matrix. It is also implies that we always have ¢y = 1.

We also wish the second outgoing approximation to be h times the derivative of the final
stage. This implies the second row of the B and V matrices consists of zeros, with the exception
of a 1 in the (2, s) position of B.

The use of an ARK method is very similar to that of a Runge-Kutta method. The main
difference is that we are now passing three pieces of information between steps. The first two

starting values are y(xo) and hf(y(xo)) respectively. The third starting value is obtained by

38 Almost Runge—Kutta methods

taking a single Euler step forward and taking the difference between the derivatives at these two

points. The starting vector is therefore

y(@0), hf (y(@o)), hf (y(wo) + hf (y(0))) = hf (y(wo)) | -

This choice of starting method was chosen for its simplicity, but it is adequate, at least for low
order methods. The method for computing the three starting approximations can be written in

the form of the generalized Runge-Kutta tableau

0

1| 1

1l 0o o0 , (3.3)
ol 1 o0

0]-1 1

where the zero in the first column of the last two rows indicates the fact that the term y,,_1 is
absent from the output approximation. This can be interpreted in the same way as a Runge—
Kutta method, but with three output approximations.

Changing the stepsize poses no problem as we can simply scale the vector in the same way
we would scale a Nordsieck vector. If we set r = h;/h;j_; then the y vector needs to be scaled

by [1,7,72].

3.2 Order and related conditions

The order conditions for the first output approximation can be written down using the standard
rooted-tree approach that is used for Runge-Kutta methods. The additional structure of ARK
methods means that fewer order conditions are required than for traditional Runge-Kutta meth-
ods. This is because having a stage order of 2 makes some of the order conditions redundant.
The trees that can be omitted are those that would be omitted for a Runge-Kutta method if the
C(2)? condition is assumed; i.e. trees that contain a vertex from which only a single outgoing
arc is joined to another vertex, which in turn is joined to a terminal vertex.

For the higher order methods it is also convenient to assume the D(1) condition, that is

Zbiai]’ :bj(l—Cj), j: 1,...,8. (34)
1=1

2The C(2) condition assumes
2
i

S
2 ;
aijcj = -,
2
=1

3.2 Order and related conditions 39

Trees not omitted

R ERVIEN VAN 4

Trees omitted due to the C'(2) condition

EEELER

Trees omitted due to the D(1) condition

BEREEERE

Table 3.1: Trees up to order 5 omitted due to the simplifying assumptions.

This enables us to also omit the trees that have only a single arc branching from the root. As
can be seen in Table 3.1 these simplifying assumptions greatly decrease the number of order
conditions that need to be considered.

Unfortunately, due to the fact that the third input approximation is accurate only to order 2,
some of the conditions that we have just omitted are now restored. This is so that the errors
in the third approximation do not combine to give low order error terms in the first or second
output approximations. The conditions that ensure the errors in the third input approximation
have no major effect on our first output approximation are called “annihilation conditions”.

An alternative way of looking at the order conditions is to consider the generating functions
given in Section 2.3.

We will use a slightly different notation than in the general case. Let £(¢), a(t) and n(t) be
elementary weight functions associated with the internal stages, the first output approximation
and the third output approximation respectively. Using the special form of ARK method, (2.9)

can be written as
£(t) =1+ (c— Ae)D(t) + (3¢% — Ac)n(t) + A(ED)(t), (3.5)
Similarly, the first and and third components of (2.10) can be written respetively as
alt) =14+ byD(t) + b7 (£D)(t), (3.6)
(En)(t) = BoD(t) + BT (£D)(t), (3.7)

40 Almost Runge—Kutta methods

where 1 denotes the unit elementary weight function of ones, which maps y(z) to y(x). As the
second output approximation is the derivative of the first output approximation, this does not
need to be considered seperately.

The order conditions are found by setting a(t) = % for all trees of order up to and including
p. Due to the stage order we notice that many of these conditions turn out to be equivalent,
leaving the same number of conditions as the alternative approach.

The annihilation conditions are needed to ensure the low order of the third input approx-
imation does not have an adverse affect on the first and second output approximations. It is
to be used mainly to increase the stage order to two. The annihilation conditions are found by

setting to zero the coefficients of any terms in « involving 7, for trees of order < p. For example,

a of the tree ty is given by
a(ty) = b7 (5c2 — Ac)n(ts) + bT Ac?.

For a method of order four or above, an annihilation condition is
bT(

2c2 — Ac) =

or bl Ac =

= 2@

This ensures the third input approximation does not affect the low order terms in the first output
approximation.
To ensure the third output value approximates h?y”(z,41) to within O(h?) it is necessary

to require that

Bre+ By =0, (3.8)
fle=1. (3.9)

This can be verified by carrying out a Taylor series expansion of the third output approximation.

The third output approximation is given by
S
1 0
yy! = Boyy + D BihF(Y)).
i=1

To be of order two, we require yi[,)l} = h2y"(zo + h) + O(h?). If we also make the substitutions

Yo = y£0}7 hy(, = yg)] and F(Y;) = ¢/ (zo + he;) + O(h?), we obtain

W2y (o + h) + O(h%) = Bohy/ (zo) + Y _ Bily/ (w0 + hei) + O(R?).
=1

3.3 Interpolation 41

If we carry out a Taylor series expansion on both sides of this equation we find

W2y (z0) + O(h?) = Bohy/ (o) + 1Y _ Bi(y (xo) + heiy (o)) + O(R?).
=1

Equating the coefficients of 3/(xg) gives

0= Boh+h Zﬂi implying that BTe+ 3, =0.
i=1

Equating the coefficients of 3" (z¢) gives

h? = h? Zﬂici implying that (87¢ = 1.
i=1

The last constraint that is placed on the coefficients is that the method has RK-stability.
This will be discussed in detail in later sections.

For ease of analysis, the above conditions are sorted into two classes, a conditions and (8
conditions. The « conditions are order conditions that are found from «(t) = 1/7(t), subject
to the condition that the stage order is 2, along with the annihilation conditions. They have
the same form as corresponding order conditions for Runge-Kutta methods, except that some
of the conditions are omitted. They contain entries that occur in matrix A, and the vectors b
and c¢. The § conditions are the remaining conditions, that is #Te 4+ Gy = 0 and #7¢ = 1 and
the conditions required for RK-stability. They include one or more occurance of Js.

A list of conditions required for s = p and s = p + 1, for methods of orders 3 and 4 are

outlined in subsequent sections.

3.3 Interpolation

One of the major advantages of ARK methods is the possibility of a cheap interpolator due to
the stage order. Unfortunately it is not possible to obtain an interpolator of the same order as
the method but it is possible to obtain an interpolator one order lower than the method. This
should be satisfactory for most practical applications.

To interpolate at point x,, + £h, in a step from z,, to x, + h we need to find a vector l~)(§)
such that some modified order conditions are satisfied. That is, we want to choose polynomial

coefficients of degree p — 1 so that

Y(@n +Eh) = yn1 +h Y _bif (V) (3.10)
i=1

42 Almost Runge—Kutta methods

is exact when y(z) is a polynomial of degree p — 1. These conditions are dependent on the order
of the method, but are roughly equivalent to taking the standard order conditions for a method
one order less and multiplying the right hand side by £", where r is the order of the tree. Once
b has been found, an approximation to the solution at the point x,, + £k can be obtained from
(3.10).

For consistency any free parameters that remain need to be chosen in such a way that T
when £ = 1. We will also try to ensure that the bushy tree of the same order as the method is
satisfied.

Further details will be given in each of the individual cases.

3.4 Methods with s =1p

In this section we look at methods which have the same number of stages as the order of the
method. Methods with this property are considered as we wish to minimise computation costs,
and it is not possible to satisfy all the order conditions for s < p. We will concentrate on third

and fourth order methods.

3.4.1 RK stability

As stated in section 2.1, the stability matrix of a general linear method is given by
M(z) =V +2B(I — zA)"'U.

A method is said to have RK stability if all the eigenvalues of the matrix M are zero, except one
which is equal to R(z), the stability region of a Runge Kutta method. For an explicit method

R(z) is given by:

S %

R(z) = expy(2) = Y =

1=0

As the trace of a matrix is equal to the sum of the eigenvalues, for a method to have RK
stability we require
2 5

TT(V—l—zB(I—zA)’lU):1+z+%+...+z_'.
St

If we carry out a Taylor series expansion on the left-hand side of this equation and equate the
coefficients, this implies

. 1
Tr(BA™'U) = G =l (3.11)

3.4 Methods with s =p 43

Theorem 3.1 An ARK method of order p with p stages has RK-stability if and only if

BT+ BsA) = Beel, (3.12)
(1+ 1Bsc1) bl A 2c = %, (3.13)
cl = %L(_Bs) (3.14)

 Beexp,_1(—fs)’

where eI =10,0,---,0,1] and has s components and
_1 x2! 3 "™
eXpn(CC)— +7+—'+ +m

Tr(BU) =b"e + el (c — Ae) + g7 (2 — Ac)
1 :bT6+1—bT6+ﬁT(%C2—AC)
— BT (32— Ac) =0. (3.15)

From the generating functions, it can be shown that b” A*~2¢ = 1/i!, for 1 < i < s, are order

conditions. Using this information, for 1 < i < s, equation (3.11) can be written as

Te(BAT'U) =b" A e + el A (e — Ae) + BT AT (A2 — Ac)

%:HAF%+HAF%—§Af%+ﬂ%v4gé—A@
— bTAi—2c+ﬂTAi—1 (%62 _ Ac)
= 1 AT (32— Ac).
= BTAT (32— Ac) =0, i=2,...,5s—1. (3.16)

When i = s we can no longer assume b’ A~2¢ = 1/i!, however since A is strictly lower tri-
angular we know that A° = 0. Due to the form of A, we also find ST A" 1c? = B,c1bT A5 2c.

Equation (3.11) now gives

Tr(BAS'U) =" A% e + el A5 (c — Ae) + 1A% (32 — Ac)
1
g — bTAS_2C+ﬁTAS_1 (%CQ _ AC)

— bTAsf2c+ %5TA57102

44 Almost Runge—Kutta methods

1
= (1+38sc1) b A% 2c = N (3.17)

Note that this is the same as equation (3.13).
Let
= Bl — T(I +64), (3.18)

where 6 is chosen so that vs_1 = 0. Using equations (3.15) and (3.16) and the fact that
%I)TA"*QC2 =bTA" e, i=2,...,5s—2 we find
oA (362 = Ac) = (Bsel — BT (I +0A) A" (5% — Ac)
= ﬂstAi72(%c2 — Ac) — pTA? (%62 — Ac) — 98T A (%02 — AC)
— %ﬂstAi_2C2 _ ﬂstAi_lc — 0’
and it follows that
vl AT (%62—_46) =0, i=1,...,8—2. (3.19)
Since A1 (3¢ — Ac) # 0, this implies that v7 = 0. We then know that equation (3.19) also
holds for ¢ = s — 1. This gives, in turn
vl A5 (%62 — Ac) =0,
(Bsel — BT+ 0A)) A2 (3c2 — Ac) =0,

%ﬁstAS_3C2 _ ﬂstAS_2C _ ﬂTAS_2 (%62) ﬂTQAS 1 (_ AC) = 0.

1.2
2¢

This can be greatly simplified using b7 A573¢? = 2, g7 A5~ 2(— Ac) = 0 and A®* = 0. This

Slv

gives, 1n turn

16,2 — BT A2 — LgT9A12 =0,

BbT A e+ $BTHAT P = ﬂs
S— /BS
(Bs + 3085c1) bT A2 = o

If we compare this equation with equation (3.13) we can see that § = [3;. Substituting this into
equation (3.18) we obtain equation (3.12).
Substituting 37 = Bsel (I + B,A)~! into the condition 37c = 1 gives

1—ﬁs<1+z @”AZ)
<1+Z —Bs) bTA“>

3.4 Methods with s =p 45

Using equation (3.13) and the order conditions this gives, in turn

_ a3\s—1 5=2 . aNg
1_&(”‘(553 . (.ﬁs)>7
S: . .

s—2 i
(_ﬂs)z - _ﬂs(_ﬂs)s_l
ﬂs—1+ﬂsz (’L"‘l)l o s! (1+%Clﬂs)7

=1
sl + ls!clﬁs = (=55)° —,
2 s—2 (_55)Z
ﬂs_Hﬂs;(iH)!
s—2 ;
(_ﬂS)Z
—Ms 5 — ' s 1 + S .
13'015 e <5 ’ ;(z—i—l)!)
9% s — 52 ;)
(_55)
ﬁs_1+ﬁsi (i+1)'
(=B)° S (8
1 5! +<1_ﬁs+_ (i+1)'>
56155 = PR =1 1)
— |1 _ﬁ + ﬂ
T i+ 1)
— exps(_ﬂs)
_expsfl(_ﬂs)’
2exp,(—p0s)

ﬂs expsfl(S) '

(if) First we need to show that the third output approximation is of order 2. i.e. that
B#Tc = 1. To do this, rearrange (3.12) and substitute into this equation, to give

1-pTc=1- 6,1+ B,A)7 e, (3.20)
=1-3, (Z(-@%ZA%) : (3.21)

=0
=1- 4, (1 + i(—ﬁs)ibTAi‘1c> : (3.22)

Due to the form of the b7 vector and the A matrix, b7 A*“'¢ = 0. Using this information, and

(3.13), the above can be written as

7 _ s—1
L gTe—1-p, (HZ oy, t f)ﬁ>> (323
_ P O G)
= exps_l(55) + sI(1 + %ﬂscl) : (3'24)

46 Almost Runge—Kutta methods

Using (3.14), this can be written as

s —2exp.(— -1
1= e = exp, 1=+ O (14 g (ooRl L)) (3.25)
—[(s)° exp.(—fs -1
— exp, 1 (—f) + & gs) (1_7@;3(1(_ﬁ 51)) : (3.26)

€XPs—1 (_ﬂs
=0. (3.28)

~1
— expy1(—s) + (expy(—Bs) — expy_1(—)) (1—&5))) T

Next we need to show that the matrix has one non-zero eigenvalue, which is R(z). From (3.13),
we have tr(BA*~1U) = 1/k! for k = s. From (3.12) this holds in turn for k = s — 1,5 —2,..., 1.
This implies that the trace of the stability matrix is equal to R(z). To show that two of the

eigenvalues are zero we will write the stability matrix in the form
M(z) = Mo + zMy + 2* My + - - - 4 2° M.
A similar matrix N(z) = (I — zege?)M (2)(I + zegel) is defined, and similarly expanded, to give
N(z) = No+ 2Ny + 22Ny + -+ + 2° Ny + 2° T N 1.

It can be shown that

L by 0
No=10 0 0|,
0 Bo O

bTAR=2c pT AR 1(c— Ae) bTAF (3¢ — Ac)
Ny, = 0 0 0 , k=1,2,...,5s+1.
BrAR=2c BT AR1(c— Ae) BTAR1(12 — Ac)
This means that the second row of N(z) is zero. The second row and column, therefore, can be
deleted without altering the set of non-zero eigenvalues. Denote this modified matrix as N (2),

which can be written as

N(z) = No+ 2Ny + 22Ny + - -« + 2° N, + 2°T' N4,

so that
- 10
NO —)
0 0
~ 1 0

3.4 Methods with s =p 47

Using (3.12), N(z) can now be written in the form

N() (1+ i)ﬁT(I —zA) e (1+ i)ﬂT(I — ZA)_I(%CQ — Ac)
) =
228T(I — zA)" e 22T (1 — zA)71(3c¢? — Ac)

As the second row is a scalar multiple of the first row, this has zero determinant. |

3.4.2 Third order methods with three stages

A third order method with three stages takes the form:

0 0 01 @« s
asq 0 011 Co — 421 %C% — a21C1
AU by by 0|1 bo 0
BV by by 0|1 bo 0
0O 0 110 0 0
| B B2 B30 Bo 0]
Order conditions
The order conditions for a third order method are:
bo +ble =1, (3.29)
1
ble= 5 (3.30)
1
vl = 3 (3.31)

There are no annihilation conditions for this low order. This is because «(t;), does not have any
terms involving 7(t), for trees of order 3 or less.
As we saw in Theorem 3.1, there are several equations that need to be satisfied for the

method to have RK-stability. For third order, three stage methods the equations are:

BT (I + B3A) = Bsef , (3.32)
(14 383c1) bT Ac = é (3.33)

21— By + 305 — 55%)

3.34
B5(1 — B3+ 33) (3.54)

Ccl = —

48 Almost Runge—Kutta methods

For the third output approximation to be of order 2, we also require the method to satisfy

Bre+ By =0, (3.35)
fle=1. (3.36)

Condition (3.36) is actually satisfied by ensuring (3.34), but is mentioned here for completeness.
The reason for this can be seen in the proof of Theorem 3.1. This condition will be omitted

from further discussions about order, unless needed explicitly for the derivation of the methods.

Derivation of methods

The derivation of methods with s = p is very similar to traditional Runge-Kutta methods. The
free parameters are 3; and the nodes cs, c3, -+, ¢s_1. The value of ¢; can be determined from
the conditions for Runge-Kutta stability. The b7 vector can be found from the quadrature con-
ditions, and then the entries in the A matrix can be determined from the rest of the conditions.
Finally, the entries of § can be found from one of the conditions for Runge-Kutta stability. Here
we outline the case for s = 3.

For third order methods we have two free parameters. It is easiest if we take these to be (3
and cs.

Once (3 has been chosen we can find ¢; from

2(1- f+ 4%~ 153)

SN (¥ (%37

From equations (3.30) and (3.31) we find
bres + bacy — % (3.38)
bic? + boch = é (3.39)

Rearranging equation (3.38) to make bjc; the subject, and substituting into equation (3.39) we

find

1
501 — bacieo + bQC% =

1
21

2 — 301
602(02 — Cl))

— bQ(C% — 6102) =

W =Wl =

— by = (3.40)

3.4 Methods with s =p 49

Substituting equation (3.40) back into equation (3.38) we find

biey — 1 _ 2 — 301
1= 2 6(02 - Cl)
. 362—2
6(02—61)
362—2
! 661(62—61) ()

It is possible to find methods such that ¢; = ¢, however b” needs to be calculated slightly
differently.
Equation (3.33) gives

1
(1+ £Bsc1) baagicy = 6
1

:> fry .
21 3[)261 (2 + 5361)

(3.42)
From equation (3.29) we find
bp=1—by — bo. (3.43)

We can then find the § vector from equation (3.32). Evaluating both sides of this equation we
find

(Br + BaBsast + B3b1, Ba + B3ba, B3) = (0,0, 33).

This implies

B1+ Bafsag + F3b1 =0 (3.44)
and By + B2by = 0. (3.45)

Equation (3.45) gives
By = —baf33. (3.46)

From equation (3.44) we find

B1 = —Bafsas — B3b1

= byF5as — B3bi. (3.47)
Finally, we can calculate 3y from equation (3.35) which gives
Bo=—p1— B2 — Bs. (3.48)

In summary, once 3 and ¢y have been chosen and ¢; has been calculated from equation (3.37)

the remaining coefficients of a third order method can be found from

50 Almost Runge—Kutta methods
302 -2
by = ———W—— = —by32
1 601 (62 — Cl)) ﬁ? 2537
2— 301
b - - - = b 3 _ 2b
2 6ealcs — 1)’ b 205021 — P3b1,
bo = 1—0b1— by, Bo = —P1—P2—0Os,
1
= 3byc1(c1fz +2)

Some example methods

One particularly nice value for 3 is 2, since this gives ¢;

%. This choice of 8 together with

a convenient choice for ¢y gives some especially simple methods. Two of these are given below.

In the first method ¢’ = [£,1,1] and in the second ¢’ = [3, %, 1].
(0 0 o0f1 1 L] (0 o0 o0f1 1 L]
5001 =3 0 : o001 1 &
5 Lol o0 o0 0 2 01 1 0
5 Lol o0 o0 0 32 01 1 0
0 0 1/0 0 0 0 0 1/0 0 0
|0 -1 2|0 -1 0 | | 3 -3 2|0 -2 0|
Two more examples are given below. For the first ¢! = [%, %, 1] and for the second ¢! =
(150511
[0 0 0|1 LT 2897 [0 0 0|1 & 2]
zZ o001 w4 z 001 &0
0 5011 L o0 0 5 0/1 L o0
0 350/ 1 o0 0 501 1 o0
0O 0 1|0 0 0 0 1{0 0 0
2 12 4|0 -2 0] R -EF 3|0 -2 0 |
Interpolation

To find a second order interpolator for a third order method we require b7 to satisfy the following

requirements
(3.49)
(3.50)

2
3
%, (3.51)

3.4 Methods with s =p 51

where we are trying to find an approximation at x,_1 + £h.
We also require 51(1) = by, 52(1) = by and l~)3(1) = 0, to make the interpolator consistent. If
possible, we would also like (1) = 0 and b,(1) = 0.

Example: We will try to find an interpolator for the following method, where ¢! = [1§7 1,1],

0 0 0 1 % %
7 4
=0 0| 1 -3 —%
75 1 3
A ‘ Ul s 01 & 0
7
B ‘ 1% &= 1 0 1 & 0
0 0 1| 0 0 0
75 9 3
| 5% —7 3| 0 -3 0]
From equations (3.49), (3.50) and (3.51) we find
Eo —1—51 +52 +53 =¢, (3.52)
8- - - 1
— by + by + b3 = =¢£2 .
5012+ bs 25, (3.53)
64 - - - 1
—— by + by 4 by = =€ 3.54
pa5 1t Th2 b= 3L (3:54)

Subtracting equation (3.54) from equation (3.53) gives

56 ; & L

If we substitute this back into equation (3.53) we obtain

b+ by = 562~ 23— %)

£2(5¢ — 4)

- .
From this we will choose l~)2 and 53 to be

(B vEtu-1)
2 — 7)
53 _ 52(7/5 —)

7 9

for some p and v.

We want b to vanish at & = 1. This implies y = v. We also wish to have b,(1) = 0.

(v =2)€*+ (5 -v)e’),
(2(v —4)¢ +3(5 —v)€?) .

52 Almost Runge—Kutta methods

For this to vanish at £ = 1 we require
2v—4)+3(b—-v)=0, sothat v=T.

From this we find

B 2
bQZ%(S_Qg)v
53252(5_1)7
g B O
=€ - 68— 268

In general we find

b = bhi€*(3 — 2¢),

by = bo€?(3 — 2¢),

by = £2(6 — 1),

Do = & + €2(1 — 3by — 3by) + £3(2by + 2by — 1).

An approximation at x,_1 4+ £h can then be found from
Y(@n1 +Eh) & y(wn 1) + bih f(Y1) + boh f(Ya) + bsh f(Y3) + bohy/ (zn1).

For third order equations there is a simpler way of approaching the interpolation problem.
Since we only require an interpolant of order 3, we could use a Hermite interpolation to a
function ¢ through two points, z,, and x,_1.

The formula for Hermite interpolation through two points is given by
H(z) = ¢(x0)Hy0(x) + @(x1)Hi1(x) + ¢ (z0) Hyo(x) + ¢ (21) H1 1 (@),
where

Hypo(z) = [1 = 2(x — z0) Lig(0)| Lip(x)

1y (x —) (:c—xl)2
a [1 2(5'30—901)] (xo — 1)?

= (1 +2z)(z — 1)%,

Hy(x) = [1 = 2(x — 21) Ly (21)] LT, ()
_ [1_2 (x—xl)] (7 — x0)?

(1 —z0) | (21 — 900)2

= (3 —2x)z?,

3.4 Methods with s =p 53

Hence an approximation at x,,_1 + £h can be found from

Y(@n1 4+ Eh) ~ (1=)21+ 20"+ e(1— 2l + 23 — 200y 4+ 26 — 1)yl

If we rewrite this in terms of the incoming approximations and the stage derivatives we get
the same interpolation formula as above.
Unfortunately, this straight forward derivation of an interpolation formula does not apply to

higher orders.

3.4.3 Fourth order methods with four stages

The general form of a fourth order, four stage ARK method is

0 0 0 0
asgr 0 0 0]e c¢— Ae %02 — Ac
azp aze 0 0
AU
B|V
b1 by b3 0|1 bo 0
0 0 0 110 0 0
Br P2 B3 B0 Bo 0

Order conditions

The conditions to ensure that a method of this form has the correct order and stability properties

are given in Theorem 3.2.

54 Almost Runge—Kutta methods

Theorem 3.2 A four stage method of the form (3.55), with ¢ = [c1,¢2,c3,1], has order four

and is RK-stable if

bo+ble=1,
1
T e
b 0—2,
bTCQ—1
37
1
bT3__
C 4,
1
b Ac = =
C 6,
1
T 42
A2 =
b Ac o
/6T6—|—ﬁ0:0,
BT + B1A) = Byed,

_ _2expy(—f1)
Ba eXP3(—ﬂ4)’

1
(1+ 3B4c1)T A%c = ik

(3.56)
(3.57)
(3.58)
(3.59)
(3.60)
(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

Proof: A full proof of this can be found in [11], but we outline the reasoning for it here.

First, using equation (3.5), we calculate the generating function of the internal stages for the

trees up to and including order 3. Recall that n(t1) = 0 and 7(t2) = 1. For ease of notation we

write n; = n(t;).

E(12) = (3¢ — Ac) + A(E(n))
_1o
= 5@ ,

E(ts) = (3¢ — Acys + A(E()E(R)),
- (%& — Ac)ns + A,

E(t0) = (3¢ — Achna + A(E(12),

1 1
— (502 — Ac)ng + §A02.

3.4 Methods with s =p

55

Next, using equation (3.6), we calculate the generating function of the first output approxi-

mation for the trees up to and including order 4.

afty) = by + ble,

afty) = b (£(t)),

=bvle,

afts) = b7 (£(t1)E(t)),

We do not wish the third output approximation to have any effect on the first output approxi-

mation up to order 4. For this to be the case we require that all terms containing non zero values

of n have zero coefficients, so that bT(%c2 — Ac) = 0, to ensure trees t; and tg are not affected.

This gives us condition (3.60). For the method to be order 4 we require that a(t;) = E(t;),

where the latter values can be computed using equation (2.7). This gives us conditions (3.56)—

(3.59) and (3.61). Also, we require the third output approximation to be of order 2. We need

conditions (3.62) to ensure this is true. Finally, conditions (3.63)—(3.65) are the conditions given

in Theorem 3.1 for Runge-Kutta stability.

56

Almost Runge—Kutta methods

Derivation of methods

These methods have three free parameters. For ease of calculations, we will take these to be cs,
cs and B4. Once these parameters have been chosen the method can be uniquely determined

from Theorem 3.2. First, ¢; can be calculated from condition (3.64). Then the b” vector can be

found from the quadrature conditions (3.57), (3.58) and (3.59), giving

After finding by from condition (3.56), a3z can be found from a linear combination of conditions

(3.60) and (3.61). Provided ¢y # co2, we find

3 —4dcy — 4eg + 6eacs

by =

3 —4cy — 4eg + 6cqc3

1201 (Cl — CQ)(Cl — 03) ’

3— 461 — 402 + 60162

- 1202(62 — Cl)(CQ — 03)’

asz2

o 1203(63 — 61)(03 — 62) ’

- 12b362(02 - Cl) '

Next we can find ag; and a3; from conditions (3.65) and (3.60) respectively:

Finally, 87 can be found from condition (3.63).

In summary, once (4, co and c3 have been chosen and c¢; has been calculated from equation

a21 =

24()3@3201(1 + % 461)’

1
5 — b3agaca — baagicy

a3z =

(3.64) the remaining coefficients of a fourth order method can be found from

b1

by

b3

bo

Bo

3 — 4cy — 4eg + 6eacs
12¢1(c1 — e2)(e1 —¢3)’
3 —4cy — 4es + 6c1c3
12¢9(ca — c1)(c2 — ¢3)’

3 —4c; — 4ey + 6c109
1263(03 — Cl)(C3 — 02)7

1 —0b1 — by — b3,

—B1 — P2 — B3 — 4.

a32

a21

a31

ﬁT

1-— 261
12b362(62 - 61)7

1
1)
24bzazzci (1 4 554c1)

1
5 — bzagaca — baagicy

bscy

Bael (I + B1A)71,

)

3.4 Methods with s =p

Classification of the methods

In [11] Butcher identified several special cases based on a possible confluence between the ¢ values.
Due to the complicated relationship between (4 and c; it is convenient to find combinations of
these parameters which result in reasonably simple numbers. Although a reasonable number of

simple pairs are known, for this we are interested in possible confluent cases, so will consider

the two choices 4 =2, ¢c; =1 and (4 = 54 = 2.625816818958466716, c; = %
The seven special cases are given below.
Case 1: ¢I' = [%,%,1,1]
0 0 0 0 : :
-2 1 2 r_ 1
asz (4+41) 0 0 0 2 az(4+Pa) 8 asz(4+s)
_ __ 12bp _ 126y __6by 1
2082 = ey 452 00 ag2 (4+61) ag2(4+61) 2
2 1 1
53— b2 by g U 6 0
2 1 1
5 —bo ba 6 0 6 0
0 0 0 1 0 0
£ 2 A2 R N 22 _ -3
o s 4o e
A2 A
. 284" (B1—4) 52 1 5
with /1 = m + B4 (b2 — gas2fs).
Case 2: ¢! =1, %, 1,1]
0 0 0 0]1 1 i
1 7 1
6 0 0 01 16 6
1 1 71 1
sm 3 O O\l l-mg 5o
by 2 by 0|1 : 0
6“3 3 3 6
t—bs % by 0|1 0
0 0 0 110 0 0
4b3—1 0 —4b3 2|0 -1 0

58

Almost Runge—Kutta methods

Case 3: ¢ =[1

707171]

with

0 0o 0 0|1 : :
2 _ 2 . 1
as2(4464) 0 0 0 as2(4+041) as2(4+1)
_ 12by 6ba _1

gy 2 0 Ol 32 asa(4+f1) 2

2 1 1

3 bQ 6 0 1 5 bQ 0)

2 1 1

0 0 0 110 0 0

~ 2 R
b1 B =L pylo0 Bo 0 |
A3 A2
_ 204 — 80
12 + 304
~ 3 A2
_azefs —6b25y
ﬂQ - 6)
120,
= > —1l—as,
as2(4 4+ Ba)
A A2 A3
3 b B 2 1 B 3 2404 — 1484 + 304
0 = 0204 — Zaz2Ps — > :
6 24 + 634
5,0,1]

o 0 0 0|1 1 i

1 7 1
L0 o o1t £ i

1 1 7 1

o w0 Ol o

1 2 1

L 2 by 0|1 Li-b3 O
2 by 0|1 f-b3 O

0 0O 0 1/0 0 0
1 0 —4by 2|0 4b5—1 0

3.4 Methods with s =p

59

Case 5: ¢!’ = [cy, %, 1,1]

9 1
where 3y = éﬂz — gﬂi’ +

Case 6: ¢ =[c1,1, 3

7571]

24c¢1 + 12043

X b0 c bt
1 1 1 Bac
4(2c1+Pacy) 0 0 0 2 7 8c1+4Bac? 16+48514c1
_ 1 1 _ __Bia
2c1+Pact 2 0 0 2c1+Bac3 4+2B4¢1
2 1 1
2 1 1
0 3 g O 5 0
0 0 0 1 0 0
,84 372,32 52
| “darizmE 3 "6 M fo 0 |
Bl

— f4, and ¢; can be found from equation (3.64).

PR
52—6(54 ﬁ4)+712(61—1)'

0 0 0 0 1 %C%
-l 0 0 0 1— c1—1 c1(24B4(2¢1—-1))
c1(2c1—1)(2+B4c1) c1(2¢1—1)(2+B4c1) (2c1—1)(2+Bac1)

c1(84(1—2¢1)—2) 2¢1—1 0 0 1, —2+4B4—2B4c1 1 (=24 B4—2B1c1)
8(c1—1)(2c1—1)(2+fac1) 8(c1—1) 17 8@ —1)(2+Psc1) 8(2c1—1)(2+Bacr)

0 5 30 § 0

0 o 50 § 0
—203+64 (1—2¢c1) 9
12c1(§1—14)(2+ﬁ4161) B2 —gﬁf N Bo 0

with
_ pi 5 . B
fo = 24cy + 12B4¢2 Pat 654 12¢;
o

60 Almost Runge—Kutta methods
Case 7: ¢ = [cy,ca,¢3,1]
i 2
0 0 0 01 ¢ 9
(c2—cq)e
=) (2t Aae) 0 0 0 U2 U23
(1—2¢1)es(ez—c1)(c3—c2)
asi (62—61)612(33—561—14621-60?02) 0 0 ug2 U33
3—4co—4c3+6¢acs —3+4c1+4c3—6¢1c3 3—4c1—4co+6¢1c2 0 b 0
1261(02—01)(63—01) 12¢o(ca—c1)(c3—c2) 1203(63—01)(63—02) 0
3—4co—4c3+6¢ac3 —3+4c1+4c3—6¢1c3 3—4c1—4ca+6¢1co 0 b 0
1261(02—01)(63—01) 12c2(ca—c1)(c3—c2) 1203(63—01)(63—02) 0
0 0 0 1 0 0
,@2(—3+4C1+402—66162)
L A Ba 41203(037@)(037@) B Bo 0
with
oy — —3cic + 46%62 — ﬁ46%62 + 2ﬂ4c‘i’02 + C%
- c1(=142¢1)(2 + Bacr) ’
—2cyc9 + 46162 ﬂ46162 + 2ﬂ4clc2
u23 = ’

1
Qa = —
31 bS

2(1+ 201)(2 + ﬁ461)

262—1

—— b
1261 (02 — Cl) 2@21) ’

U32 = €3 — as1 — as2,

1
Uss = 5C3 — A31C1 — 432,
b — —3 4+ 4c1 +4co — 6¢1c9 + 4eg — 6¢1c3 — 6cgcs + 12¢1cacs
0= 12610263 ’
303 — 4B3c1 — Bica + 2Bic1cy — 481 cs + Bies + 68Fcics — 2546103
BQ = 3
12(c1c3 — 3 — creacs + c3es)
1 — Baco — B3c3 — By
ﬂl =)

C1

Bo = —p1— P2 — B3 — Ba.

3.4 Methods with s =p 61

Some example methods

Specific examples of case 4 and case 5 are given below. In the case 4 example ¢! = [1, %,O, 1]

and b3 = 1. In the case 5 example ¢! = [%—1, %, 1,1] and B4 = 3.

0 0 0 o] 1 1 3 _
L0 o0 of 1 £ &
&30 0] 1 f o
21 o)1 =2 o0 (3.66)
¢ 2 1 o0 1 -2 0
O 0 0 1| 0 0 0
-1 0 -4 2/ 0 3 0
0 0 o0 o 1 = 1112512_
L 0 o o 1 L K
-% 2 o o] 1 - -4
o 2 & o] 1 3 0 (3.67)
o 2 i+ o 1 1 0
O 0 0 1] 0 0 0
-8 3 -3 3] 0 -3 0

The last two methods are related to the %—quadrature formula. The ¢ vectors are ¢! =

1, %, %, 1] and ¢ = [1, 2,1 1] respectively. They are examples of case 7.

0 0 o0 o 1 1 %_
L0 o o 1 & o0
£ 1 0 o] 1 —% -4
o2 3 o1 Lo oo (3.68)
s s s 01 g 0
o 0 0 1] 0 0 0
433 2l 0 3 o

62 Almost Runge—Kutta methods

o o o of 1 1 1

£ o0 o o 1 # &
- 1 0 0| 1 —% -3

o2 o2 o1 L0 (3.69)
5 s 5 01 5 0

O 0 0 1] 0 0 0

5 33 2l 0 4 o

Interpolation

To find a third order interpolator we need a vector b7 that satisfies the following conditions

- €2
ble= > (3.70)
_ 3
ble? = % (3.71)
_ 4
v'e? = %, (3.72)
s
bl Ae = =, (3.73)
bA() + bA1 + bAQ + 63 + bA4 =¢. (3.74)

There are no free parameters, but it transpires that b = b when ¢ = 1 automatically. It should
be noted that it is not always possible to find a suitable third order interpolator. For example,
it is not possible for method (3.66). For method (3.67) the coefficients are

- 3456

1= m(fQ —28 + ¢,

- 2
by = —5(3352 — 70&3 + 36¢%),

) 1
by = — = (—543¢7 4 10346” — 504¢"),
- 1

by = ——13(8552 — 15763 4+ 7261,

|
bo = &5(66 — 171 + 1882 — 72¢3).

3.5 Methods with s =p+1 63

The coefficients for method (3.68) are
~ 1
b = —5 (66" = 16¢% + 9¢%),
-3
by = 5(1252 —206% 4 9¢Y),

Iy = ~2(66% — 166+ 9¢"),

b = (56— 146° + 96,
o= - 6 +36 - 26t

Finally, the coefficients for method (3.69) are

-1
by = g(3052 — 56£3 + 27¢%),

by = (66" — 166° + 9¢%),

by = 2 (1267 - 206° + 96%),

by = —3(1352 — 2263 4+ 9¢1),

~ 11 9
bp =§ — 152 + 36 — §f4-

3.5 Methods with s=p+1

As with traditional Runge-Kutta methods we can achieve enhanced performance if we have

more stages than are required for the order. We will concentrate on the case where we have one

more stage than is required.

3.5.1 RK-stability

As for the case where s = p we require the stability matrix to have only one non zero eigenvalue,

which is equal to R(z). In the case of s = p+ 1 we gain a free parameter K, which gives us

64 Almost Runge—Kutta methods

some control over the stability region. This is due to the fact that R(z) is now given by

R(z) = exp,_1(2) + Kz°

s—1

z z
=1 — 4 — + K2
—i—z—|—2+ +(s—1)!+ z

3.5.2 Third order methods with four stages

A third order method with four stages takes the form

[0 0 0 O]
o 000 e c— Ae 162 — Ac
az1 azxx 0 O 2
AU =1 by b2 bg O
BV b by by 0|1 b 0
0 0 0 110 0 0
| O B O3 B0 Do U

For a method of this form with RK stability, the stability function has the form

2’2 23
R(z) =142+ + 5+ K21 (3.75)

Due to the number of free parameters we have a lot more freedom than with the three stage
methods. We have some control over the stability region due to the fact that K is at our disposal.

We also have control over the error in the bushy tree.

3.5 Methods with s =p+1 65

Order conditions

For a four stage method to be of order three it needs to satisfy the following conditions

Hb:%, (3.76)
ﬂé:%, (3.77)
bp=1—0b"e, (3.78)

By = —(Te, (3.79)

Baes (I +0A) = (I + pA + B10A?), (3.80)

1 B 1 Q2 Q3
K <§ﬁ46190¢3 — Oz4> = (1 + §ﬁ461> (1 + a7 + 7 + E) s (381)

where the values of a; are determined by expanding

1+ (¢ — 1)z _i i

I ¢Z n ﬂ4922 = 2 ;2 ,
b%@—%:mﬂn%—Kx (3.82)
Ba (%bTA(? - K) = (81— ¢)(b" A%~ K). (3.83)

Derivation of methods

We have a lot more free parameters now than we did with the 3-stage methods. We will take
these parameters to be ¢, c3, 3, B4, ¢, 8 and L, where L—% is the error coefficient corresponding

to the bushy tree.

First we need to calculate the coefficients of the b vector. We can do this from the quadrature

66 Almost Runge—Kutta methods

conditions (3.76) and (3.77) and the additional condition b”¢® = L, which give

—2¢9 — 2¢c3 4 3cacs + 6L

b =
! 601(01 — 02)(61 — 03)
—261 — 263 + 36163 + 6L
by =
662(02 - Cl)(CQ - 63)
b —261 — 262 + 36162 + 6L
3 p—

663(03 - Cl)(C;g - 62)
and then equation (3.78) gives a value for by. It is possible to find methods in which two of the
c coefficients are equal; however b needs to be calculated slightly differently in this case.

Next we can calculate K from equation (3.81). From this we find

1+ 38icr) (T4 + 2+ %
2 2 T %)

K = T
3Bsc10as — oy

We can also find K from the stability function. Using the same argument as we used in

Theorem 3.1, we obtain, in turn
Tr(BAU) = K,
bl A%e + e A%(c — Ae) + BT A® (A2 — Ac) = K,
bl A%c + %ﬁTA?’ 2= K,
(1+1B4c1) " A% c = K. (3.84)

For ease of computation we will define three more variables. These are

K1 = bTA2C,
Ky =b" Ac,
K5 = bl A
From equation (3.84) we find
K
Ki=—5——. (3.85)
1+ §Clﬂ4

From equation (3.82) we obtain

1
Ky = 6 + H(Kl — K) (3.86)

3.5 Methods with s =p+1 67

Finally, from equation (3.83) we find

Ky =2K — 2 (% - 1) (K; — K). (3.87)

To find an expression for as; we will take combinations of K7, Ko and K3. As A is strictly lower

triangular we have
aglcl(bTAc2 - cleAc) = co(ca — cl)bTA2c.
Rearranging and solving for as; gives

ca(ca — 1)K,
= 3.88
a2l c1 (K3 — a1 K») (3.88)

Next we can find age from equation (3.85). We obtain, in turn

bTA2C = Kl,

bsasoasicy = K7,

Ky
bsagicy

as32
Now we can find az; from equation (3.87). In turn, we find

bTA62 = Kg,

2 2 2
b2a2161 + a31b301 + b3a3262 = K3,

2 2
K3 — baagicf — bsazacs
azy — .

2
bgcl

The last coefficients left to find are those of the § vector. These can be found simply from
equation (3.80).
In summary, once the parameters ¢y, co, c3, B4, ¢, 6 and L have been chosen, the remaining

parameters can be found from:

68 Almost Runge—Kutta methods

bl _ —2c2—2¢c3+4+3coc3+6L C2 (CQ*CI)Kl

= TBeilci—ca)(ci—c3) 421 = [Ks—cKy
by = 762521(;2253:;)3(0220—3;%% azy = 535201’
b= R ™
bp = 1—bi—by—bs, BT = Buel (I+0A)(I+ A+ B1OA%),
K = (1+3pic1) 0" A%, Bo = —pe,
Ky = H%ﬁ,
Ky = $+0(Ki—K),

Ky — 2K—2<ﬁi’4—1)(K1—K),

Some example methods

It is difficult to determine which combination of parameters gives the best method. One possible

choice is to have ¢ = (4 + 6. If we substitute this into equation (3.80) we obtain, in turn
Brei (I +04) = 67 (I + oA + 10 A%),
Baet (I +60A4) = BT (1 + B1A)(I +6A),
Baey = 51 (I + f1A).

This is the same as equation (3.32), with the subscript 3 replaced by 4. This choice of parameters
greatly simplifies the method.

Below are two examples with ¢ = 34 +6. In the first example ¢! = [i, %, %, 1], Bs =2, ¢ = 3,

0 =1, K = 52 and L = $. In the second example ¢ = [1,2,3,1], B4 =2, ¢ =3, 0 = 1,
K =3 and L=1.
o o o o 1 1 &%
8 0 0o o 1 —-% -5
-2 3 0 o] 1 Ko
-2 2 o1 £ 0 (3.89)
-5 B % 0] 1 & 0
o 0 0 1| 0 0 0

3.5 Methods with s =p+1

69

o 0 o0 o 1 I %
5 0 0 0] 1 —-% -%
6 s 0 0) 1 -5 5
2 -1 2 o 1 0 0
2 -1 2 o 1 0 O
o 0 0 1,0 0 O
0o 2 -% 2/ 0 -% o0

Interpolation

(3.90)

The conditions that need to be solved to find an interpolator for a third order four stage method

are the same as those for a three stage method. These are given by conditions (3.49) — (3.51).

However we now have two free parameters rather than one. We will choose one of these param-

eters in a similar manner to the case s = p = 3 such that b="b at ¢ =1 and, if possible, V=0

at &€ = 1. The second parameter we will fix by choosing by(1) = by = 0.

We will derive the interpolation coefficients for method (3.90) here. First, the conditions to

be satisfied are

4 2 4 2
1- 1. 9. &
1—61)1 + ZbQ + 1—6b3 =3

l~)0+51+52+l~)3:§.

Subtracting two times equation (3.92) from equation (3.91) leaves us with

16

by — 3bg = 4€2 — 353.

From this we choose l~)1 and l~)2 to be

16

by = 462y — gg%,

by = —5€(1 —) + g €1 -),

(3.91)

(3.92)

(3.93)

for some u and v. For consistency we require 51 = by and 62 = by at £ = 1. Both of these

conditions simplify to

(3.94)

70 Almost Runge—Kutta methods

We would also like to be able to ensure B’l = 0 at £ = 1. Rearranging equation (3.94) and

substituting into our equation for by gives us
~ 1 4 16
b1:4§2(6-%§v>-—?;§%k

Finding the derivative of this at £ = 1 and setting equal to 0 gives v = % and hence u = % from

equation (3.94). We now have the following expressions for by and by

~ 4
bl = 252 - 5537

~ 2 4
by = —=€2 4 &3,
3 35 + 35
Substituting back into equation (3.91) gives us the following expression for by
~ 4
by =& — 353-
Finally, equation (3.93) gives us an expression for by

by = (3 — 7€ + 4¢2).

[SVRIa,Y

Following a similar procedure for the method given in (3.89) the coefficients are found to be

28

bl - 5 f + 155)
- £2
by = 1—5(87—685)7

~ 34 36
he = — 2 2)

by =0,

o
S
I

§ 2
75 (15— 11€ +4¢%).

3.5 Methods with s=p+1 71
3.5.3 Fourth order method with five stages
A fourth order five stage ARK method takes the form
0 0 0 O
a1 0 0 0
1
a1 azxp 0 0 0 |e c— Ae §CQ—AC
A U _ a4q1 Q42 Q43 0 0
BV b1 b2 b3 b4 0
b1 bo b3 by 0|1 bo 0
0 0 0 110 0 0
B B2 B3 Ba B |0 Bo 0 |
with stability function
2 3
R(z):1+z+3+%+z—+Kz5
Order conditions
For an ARK method with five stages to have order four it needs to satisfy the conditions
bop=1-0ble, (3.95)
T 1
b c= -, (3.96)
2
T2 1
bl = -, (3.97)
3
T3 _ 1
b e’ = -, (3.98)
4
T 1
b* Ac = 6 (3.99)
A = — (3.100)
12’ ’
By = —A"e, (3.101)
fre=1, (3.102)

72 Almost Runge—Kutta methods

T, 0B85+ 05— ¢
gl Ac = — (3.103)
Bsel (I +0A) = 1 (I + ¢A + B504%), (3.104)

1 1 Qay a3 oy
K(= - =(1+4= (1 == ——-—» 1
(2ﬁ561(9044 Oé5> (+ 25501) + a1 + 5 + 6 + 24 (3 05)

where the values of o; are determined by expanding

14+ (¢ —fs)z 7% i

L+ ¢z + 5022 — i
ﬂA%-%Z:mNA%—Km (3.106)
Bs @bTAQc2 - K) = (85 — 9)(b" A’c— K). (3.107)

Derivation of methods

As there are so many free parameters it would be desirable to make these parameters the ones
which we would most like to have control over. We will change the derivation slightly to allow
us to make K a free parameter. This makes the derivation more complicated than in the third
order case, but gives us more control over the stability function. The two parameters 8 and (5
appear together most of the time. We will create a new parameter u = 635. Our free parameters

are now ci, ca, 3, ¢4, ¢, K, aqs and L, where L — % is the error in the bushy tree.

e First we need to calculate p. This can be done by solving equation (3.105). There are
only a relatively small number of choices for ¢;, K and ¢ which give real, rational values

for u. Some aesthetically pleasing choices are

1 1 4
C1 57 ¢) 1207 14 3 (3 08)
S —8 (3.109)
Ty -5 “100 M7 '
R —6 (3.110)
“T3 - “1200 M7 '
*1 ¢ =06 K = L =12 (3111)
61_37 — Y _1207 n = .

3.5 Methods with s =p+1 73

e The b7 vector can be found from equations (3.96)-(3.98) and b”¢? = L. Solving gives

_ 362 + 363 + 364 - 46263 - 46264 — 46364 + 6626364 —12L

b ;
! 12¢1(ca — ¢1)(e1 — e3)(c1 — ¢q)

3¢y + 3¢3 + 3cq — 4depeg — 4depeq — degey + 6cpegeq — 121

b2 - ;
1202(61 — CQ)(CQ — 63)(62 - 04)

361 + 362 + 364 - 46162 - 46164 — 46264 + 6616264 —12L

b3 ==)
12¢3(c1 — ¢3)(e3 — c2)(cs3 — ¢4)

b 361 + 362 + 363 - 46162 - 46163 — 46263 + 6616263 —12L

| = .

1204(61 — 64)(02 — 64)(63 - 04)

e Next we need to calculate 6. From equation (3.106) we have

9 — i — bl A%

=B (3.112)

In order to evaluate this we need to know the values of b7 A%¢c and b7 A3¢c. These can be
found by rearranging equation (3.104) and substituting into equations (3.102) and (3.103).
First, equation (3.102) gives

Bsel (I 4+0A)(I + pA+ pA?)~le=1.
A series expansion of the above gives
et (Yo + 1A+ 72A? +434% + 1At e -1 =0,

where 7; is given by

B5 + pz _OO i
1+ 62 + 22 _Z,Z;W'

Using the appropriate order conditions this reduces to

N+ 5+ % +ybT A% + b AP — 1 =0, (3.113)

Next, equation (3.103) gives

H+ﬁ5—¢'

Bset (I +0A) I+ ¢A+ pA*)tAc= p

A series expansion and simplification using the order conditions gives

% + % +72bT A%c + 3b" Adc — (W) =0. (3.114)

Simultaneously solving equations (3.113) and (3.114) gives us values for b7 A%c and b7 A3c,

which can be substituted into equation (3.112) to find 6.

74 Almost Runge—Kutta methods

e Calculate 85 = %

e We now introduce three new temporary variables to aid the calculations. These are

K, =bl A3,
KQ = bTA2C,
Ky =bT A%

An expression for K7 can be found by looking at the stability matrix. As we have already

seen, we require the trace to be equal to R(z). This implies we have
K = Tr(BA')
=" A'e + el A'(c — Ae) + BT AY (3% - Ac)
= T A3c + LBT Ate?

= (1 + %5561)[)TA3C,

giving
K
1+
An expression for Ky can be found by rearranging equation (3.106), giving
1
Ky = ﬁ‘i‘e(Kl —K). (3.116)

Similarly, an expression can be found for K3 by rearranging equation (3.107), giving

Ky =2K —2 (ﬁ% - 1> (K, — K). (3.117)

e To find an expression for as; we will take combinations of Ky, Ko and K3. As A is strictly

lower triangular we have
aglcl(bTA262 — CleAQC) = co(cg — cl)bTA?’c.

Rearranging and solving for ag; gives

CQ(CQ — Cl)Kl
Qg = 22 UL 3.118
T (K — a1 Ko) ()

3.5 Methods with s =p+1 75

e We will use a similar technique to calculate ags from
bTA2C2 — CleA2C = b4a43a3202(62 - Cl),
giving

K3 —a Ky
byaszea(ca — 1)’

aso (3119)

e To find a3, solve b7 A%c = K, giving

Ko — az1azabzci — az1asnbscy — azaaszbacy

az1 =
aszbacy

e An expression for aso can be found from solving the linear combination of equations (3.99)

and (3.100). i.e. by solving the equation

1

T 1

Aclc — 1) = — — —

b* Ac(c — ¢1) 56
for a4s.

e To find a4, solve equation (3.99).

e The 37 vector can be found by rearranging equation (3.104) giving

BT = Bsel (I + 0A)(I + pA + Bs0A%) .

e The U matrix can be found by simply forming the matrix [e, c — Ae, %02 — Ac].
e Similarly, B can be found by augmenting the vectors b*, el and 7.

e The only non-constant elements of V' are by and Gy which can be found from equations

(3.95) and (3.101) respectively.

Some example methods

We present here two example methods. They have both been chosen for their relatively simple
tableaux. Although neither of them have been optimised, we have chosen L = % and K = ﬁ

for both methods, ensuring zero error for both the bushy tree and the tall tree.

76 Almost Runge—Kutta methods

In this first method the remaining free parameters have been chosen to be ¢ = [%, %, %, 1,17,
¢ =3 and ay3 = 1.
_ 1 .
0 0 0 0 0|1 3 8
3 5 1
16 0 0 0 01 +5 6
75 5 49 31
—61 3 0 0 0|1 45 —3io
45 113 11 17
K B 2 (3.120)
27 2 32 1 1
50 "1 w15 0|l g5 0
27 2 32 1 1
56 15 0w o1 V)1 0
0 0 0 0 170 0 0
468 42 8 4 6 16
| 13 3 > » 3|0 0]
In the second method the remaining free parameters have been chosen to be ¢ = [%, %, %, 1,17,
qb:2anda43:1.
_ 1 o
0 0 0 0 0 |1 £ =0
75 49 2
248 0 0 0 0 |1 348 a7
60375 93 36567 33
992 4 0 0 0 L =502 T 124
476125 2987 4 0 0 |1 290249 535
2046 33 3 2046 682 . (3.121)
125 2 32 1 1
396 5 w 1w 0]l 0
125 2 32 1 1
396 5 o 1 O |1 0
0 0 0 0 1 10 0 0
203200 _ 31438 17032 28 158 | | _ 58964 0
i 891 405 4455 15 15 405 i

Interpolation

The equations that need to be solved to find a third order interpolator are those given in
equations (3.70)—(3.74). We now have one free parameter. We will choose this such that an
extra fourth order condition is satisfied. That is

bAC? = é (3.122)
12

We can still also satisfy the consistency condition that b" =T at E=1.

3.5 Methods with s =p+1 77

For the method given in (3.120) the coefficients are

by = 115052(382 — 672¢ + 313¢2),

by = —%52(1257 — 2422¢ + 1188¢2),
by = 172552(189 — 194¢ + 51€%),

by = 3455 (117 — 142¢ + 48¢2),

b = €1 &),

bo = %5(230 — T53€ + 9082 — 362¢3).

The coefficients for method (3.121) are

- 125
b 2(83749 — 14 2

1= 19649525 (83749 7650¢ + 68863¢2),

by = ———£2(16762 — 4344 24205¢2

by 223295 (1676 3448¢ + 24205¢7),

by = 2 £2(938 + 8048¢ — 6505¢2),

® 7 245619

- €2 5

by = 1 16382¢ — 131

A 59544(733 + 16382¢ — 13153¢2),

- £2

by = 21 4 21

5 3308(3 — 3734 + 3521€2),

bo = ¢ —— (44658 — 180508¢ + 2369662 — 98635£3).

44658

CHAPTER 4

A special ‘fifth’ order method

Mathematics consists of proving the most obvious thing in the least obvious way.

GEORGE PoryA

4.1 Introduction

As is always the case when a method has many free parameters, it is difficult to know what
choice of parameters is going to give optimal performance. In the course of optimising fourth
order methods with five stages a special method was found that had zero error coefficients for

the fifth order trees. The values of the free parameters for this method are ¢ = [i, %, %, 1,17,

L= %, K= 1—;0, ¢ =4 and a43 = %. The defining matrices of the method are
1 1
0 0 0 o of1 1 L
2 1 1
£ 0 0 0 011 6 0
27 75 3 69
160 98 0 0 0|1 -5 —m2m0
69 51 8 41 17
3 s 7 0 01 —1p5 280
, (4.1)
16 2 16 7 7
' 15 T o O]l g 0
16 2 16 7 7
Vi 15 T s 0|1 g 0
0 0 0 0 110 0 0
_ 1352 34 _256 196 21| 242 0
| ~ 225 15 75 25 5 75]

80 A special ‘fifth’ order method

with stability matrix

M =
2 7,7, 7.2,1.3, 1 4 1 .2, 1 3, 1 .4
1+903+45Z +32Z +482 90+902+96Z +51%" t 1027 1027 T 3827 T 1536 %
83.2,19.3 5 5 1 .3, 1 .4, 1 .5
Z+g57 + % +32z —1—48z Oz—l— z —l— z —1—642 +192z 1932 T 3577 T 155627

242 36721113134 242 142 1 .2 3 1 .4, 1 .5
o952 1007 +10 75 2257 1007 + 7 +6OZ +40 1937 13307

The eigenvalues of M are {1+ 2+ 322+ 23+ 5727+ 1352°,0,0} which is consistent with the RK
stability of the method. For this method, the stability function satisfies R(z) = exp(z) + O(z9).
This property, along with the observation that b’ ¢ = é, just as for a fifth order Runge-Kutta
method, suggests the possibility that we may be able to obtain an order enhancement.

To understand the behaviour of the method, we consider what happens when the exact values

[n—1] [n—1]

y(zn—1) and hy'(z,—1) are used as incoming approximations to y; and ys respectively

with an approximation, accurate only to within O(h?), of h?y”(z,,_1) used for yé"fl). We want
to carry out the analysis only to within O(h%) so we need only use trees up to order 5. Because
we wish to carry out formal Taylor expansions about x,_1, we represent the first two incoming
approximations by 1 and D respectively. The third input approximation is represented by a
mapping 7 and we will write n(t;) = n;, where i takes values 0 to 17. Because this input

2y"(x,_1) up to h? terms, we assume that ng = 0, 71 = 0 and 7o = 1.

quantity approximates h
We are now in a position to calculate the tree mappings corresponding to the stages, stage
derivatives and output approximations. We denote the mappings representing the stages by &;,
with ¢ = 1,2,...,5. From Equation (3.5), we can calculate these in sequence, together with &D

using

fl-zl—l—uigD—l—uign—FZaijﬁjD, 1=1,2,...,5.
j<i
Because &5 also corresponds to the first output approximation and &5D to the second output
approximation, it is sufficient in assessing the accuracy of these approximations to compare &5

to E up to trees of the required order. To assess the quality of the third output approximation

we calculate .
i=E" (6D +> p&D),
i=1

where 3y = v32 and ; = bsi, i = 1,2,...,5. The factor E~! is introduced because we wish

4.1 Introduction 81

to carry out the Taylor expansion for this output approximation about x,, rather than about
Tp—1-

The results of these calculations, where we show only the essential details, are presented in
Table 4.1.

The effect we observe, in which the values of 7;, for ¢ > 3, do not enter into fourth order
terms in the last two columns of Table 4.1, is the result of the so called annihilation conditions
we have imposed on the method.

Since the order is determined by terms &; of the penultimate column of this table, which
are equal to reciprocals of (t), we see that order 4 is assured, even if we start the method off
with the standard crude approximation to h?y”(z¢) as would correspond to (14 D)D — D (the
difference between the derivative found after one step of the Euler method and the derivative
computed at zg, as given in (3.3)).

Moreover, we see that if 13 = % and 7y = %0 all entries of the penultimate column are equal
to reciprocals of (¢), so that order 5 may be achieved for this choice, at least for fixed stepsizes.
For example, to obtain a starting value y:[))O] = h%y"(x0) + O(h?), whose leading coefficients in
the expansion would have values % and % in the two terms of order three, we might use the

generalized tableau

0| O 0

i 1L 1
5] 10 10

0] -5)

This can be interpreted as a standard Runge-Kutta methods, with a coefficient of 0 for the
y(z,) component. That is, once the stage values have been calculated as usual, the output

approximation can be found from
gl = h(—5F, + 5F).

The coefficients of this tableau can be found by solving the modified order conditions

=e,
ble=1,
ble? = !
5

bl Ac = %

A special ‘fifth’ order method

(ED)(t:) (&D)(t:) (&3D)(ts) (§4D)(t:) (&D)(t:) &5(ts) 1(t:)
0 0 0 0 0 1 0
1 1 1 1 1 1 0
1 1 3 1
1 3 1 1 1 3 1
1 1 9 1 1
16 1 16 1 1 3 5
L 1 3 1 1 1 L
32 8 32 2 2 6 10
1 1 27 1 1 1 553
64 8 64 4 600
1 1 27 1 1 1 _ 553
128 16 128 2 2 8 1200
U3 1y 201 _ 693 87 4 1z 1 L _z
32 10 T 40 1280 ~ 1280 280 T 280 3 12 20
na Lym 201 69ms 87 4 17ma 1 L _
32 80 T 40 2560 1280 560 T 280 6 24 40
1 1 81 1 1 1 1163
256 16 256 5 800
1 1 81 1 1 1 1163
512 32 12 2 2 10 1600
3 L ms 603 _ 207n3 87 4 1g 1 13 M3 247 | 13313
128 80 T80 5120 5120 280 T 280 3 192 192 500 ' 2000
n 1ym 603 207m 87 4 1Tm 1 13 ma 247 133m
128 160 " 80 10240 5120 560 280 6 384 192 1000 2000
1 1 81 1 1 1 1163
1024 64 1024 4 4 20 3200
15 1 777 69ns 639 | 1715 1 1 137
32 160 ' 40 10240 1280 2240 280 4 20 300
U L. 777 69ns 639 | 17ns 1 1 137
32 320 ' 40 20480 1280 4480 280 8 40 600
n m3 g 15 4 Slys 697 15 Blus | 1Tnz L L4 s 3
32 80 ' 40 1024 ' 2560 1280 112 1120 280 12 64 ' 192 20
s ma g ms 15 Slna 69ng 15 Blma | 1Tng L Ly m 3
32 80 ' 40 2048 ' 2560 1280 224 1120 280 24 128 ' 192 40

Table 4.1: Algebraic analysis of the special 5 stage method.

4.2 Obtaining order 5 performance 83

Even if we start the computation in the naive way based on the generalized tableau (3.3),
after a single step, the output value corresponding to 7 will have the correct values of n3 and
14 and, from this point onwards, the method will maintain fifth order behaviour, at least with
constant stepsize.

In the next section, we will see that it is possible to obtain fifth order accuracy even if the

stepsize varies from step to step.

4.2 Obtaining order 5 performance

Although the method has order 5 behaviour for fixed stepsize, some sort of adjustment is nec-
essary to extend this behaviour to variable h. This is typical of any multistep method but
our aim is to ensure that the additional cost involved with changing stepsize is minimal. To
maintain only order 4 behaviour, changing stepsize according to the Nordsieck technique is quite
satisfactory. Let h = ph denote the stepsize to be used in step number n + 1, after step n has
been completed with stepsize h. The output quantities from step n are approximations to y(z,,),
hy'(z,) and h%y”(z,), respectively. Since the first two of these are accurate to within O(h®),
it will be satisfactory to adjust these, as input to the next step, by leaving the first unchanged
and scaling the second by the stepsize ratio p. Hence, the second input component will become
an approximation to p - hy/(z,) = hy'(z,). Adjusting the third component by a factor p? will
not be an adequate correction, because this component consists of several terms which we can

write as

h2y”(:cn) + hgl—loy(?’) (xn) + h4q)(:cn) + O(h5),

where ®(zy,) is a linear combination of elementary differentials whose coefficients can be found
from the last column of Table 4.1. When we adjust y:(g") for input to step number n + 1 by
multiplying by p?, we obtain

-3 -4
p° (h2y"(xn) + h?’%y(?ﬂ (@n) + 1'®(p) + O(h5)> — E2y”(ﬂcn)—|—%%y(3) (xn)+%q>(xn)+0(h5),

which will not give the correct result at the end of this step unless, somehow, the factor p~! can

be removed from the &> term.
We propose to do this by replacing the third output approximation, by two approximations

which will approximate

h2y" (x,) + OR D (2,)

84 A special ‘fifth’ order method

and

W5y (@) + (1= O1D(z,)

respectively. These will be scaled by p? and p? respectively so that their sum will be

-2 =31 (3 —4 06 1-0 5
hy"(xn) + h Ey() (zn) + B ®(x) (? + 7) + O(h°).

The quality of this as an approximation, compared with what would have been received as input
to step number n + 1 if the stepsize had been constant with value h, is determined by how close

0/p*+ (1 —0)/pisto 1 for p~ 1. A suitable value for § is § = —1 because

%+¥_1__<p—1)((0+p;)+(p—1)).

T
We now partition the vector [Bo B1 B2 Bz Ba Bs in the form
T 2T BT | AT
pr=p"+5 +5.

The three components are chosen so that, if the 3 values in the last row of B and the value of vss,
are replaced by the values in these components, then the elements up to order 4 corresponding

to the 77 column of Table 4.1 are respectively

-o- -0- - 0 -

0 0 0

1 0 0

0 1 0

0| L 0 ; (4.2)
0 0 -3

0 0 — o

0 0 ;

| 0] o [%

which are independent of the values of 73 and 4.
We now look at the conditions that make this possible. We start by looking at the conditions

for B7. From (3.7) we obtain an expression for (E7)(t;). Using the composition rule, an

4.2 Obtaining order 5 performance

85

alternative expression can be found. Equating these two expressions, and solving for 7)(¢;) leads

to the following conditions
i(t) = Bo + Be — E(t1)7(0),
A(t2) = BT c = E(t2)7(0) — E(t1)ii(t),
A(ts) = B¢ = B(ts)7(0) — E(t1) E(t)A(t) — 2E(t1)ii(ts),

ta) = 557 = B(a)a0) — B(n)it) - B)in),

i(ts) = B7¢* = E(t:)7(0) — E(t)E(t) E(t1)ii(h) — BE(h) E(h)ii(ts) — 3E(t1)7(t),

i(te) = %3%3 — E(te)n(0) — E(t) E(t2)n(t1) — E(t2)7(t2) — E(t) E(t1)n(t2),

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

As we wish 7 to be equal to the first column of (4.2) this leads to the following conditions

BO+BT6207
//B\TC:L
gre? =2,
1
5/8 62:]—7
/663:37
At
BTACQZL

S3T AR = =

0 AT =35

86 A special ‘fifth’ order method

A similar analysis for the vector BT, using the second column vector of (4.2), leads to the

following conditions

Bo+ B e=0,
Ble=0,
7=,
=
7 =2,
A=
ad =1,

%BTACQ = 1—10

The final vector, BT, can simply be found from

gr=p" - -3
One possible solution to the above equations is

242 _7 38 35
75 a5 75 9

_ 1352 _32 32 _ 1288
225 45 75 225
34 76 84 _ 154
15 5 25 25

= + +

256 _ 512 _ 448 3136
75 45 75 225

196 532 _ 518 4018
225 45 75 225
24 48 119

e - A R e

Putting these ideas together, we present a tableau for a variable stepsize version of our main
method. Note that in the U and V matrices, the factor p is the ratio of the stepsize in the

current step to that in the previous step. The third and fourth row of the B matrix are found

4.3 Interpolation 87

from 57 + 637 and BT +(1-9) BT respectively, where we have chosen 6 = —1.

0 0 0 0 0 [1 ip +5p° 507

2 0 0 0 0 [1 50 1650 50

o 150 0 0 |1 —ggr —mml’ ol

5k 7 00 |1 —ipp w el

1 2 1 = 0 |1 &p 0 0 - (412)
803 B & 0t g o 0

0 0 0 0 1 [0 0 0 0

B A I R 0o |

4.3 Interpolation

A third order interpolator can be found in exactly the same manner as for other fourth order
methods with five stages, i.e., solving equations (3.70)—(3.74) and (3.122). This leads to the

following coefficients for the interpolator.

bi(§) = 18€2(5 —6¢ +262),
ba(€) = F£E2(25 — 46¢ + 2262,

b3(€) = —12€2(10 — 24¢ + 13€2),
ba(€) = —55€%(70 — 144¢ + 73¢2),

bs(€) = (13 — 28¢ + 15¢2),

bo(€) = &(90 — 235¢ + 22862 — 76¢3).

To verify this interpolator experimentally, we have solved the D1 problem using 100 equal

sized steps. The D1 problem is part of the DETest test set. Details can be found in section

88 A special ‘fifth’ order method

05 | 09k

0.85-

0.8

Figure 4.1: The D1 problem solved using method (4.1) with 100 equal sized steps. The solution
points are represented with plus symbols (+). An interpolator has been used to estimate the
solution % and % of the way through each step. These points are represented with asterisks
(*). The figure on the right is an enlargement of one of the turning points, as this is where the

solution is changing most rapidly. The dashed line is obtained from a cubic spline interpolation

through the solution points.

A.1. We have used the interpolator to find the solution % and % of the way through each step.
The results from this are presented in Figure 4.1. As we can see, the interpolator is giving very

reliable results.

4.4 FError estimation

There are several possible ways of estimating the error in ARK methods. The technique outlined
here is a two-step approximation to zero, as proposed by Butcher and Chan [14]. An approx-
imation to the error is calculated at the end of a step, which is O(h®). The difference of this
quantity over two steps gives an estimate of the local error which is O(h®). This will not give a
good approximation to the local truncation error itself, but will give an asymptotically correct
approximation.

Let d = doyén] + Z?Zl d;hF;, where d = [dy,ds, ...,ds], be our O(h%) approximation to the
error in each step. To determine the values of dy, d1, ..., d5 we return to the generating functions
introduced in section 3.2. Let §(¢) be a mapping from the trees to the real numbers representing

the error in a step. Then

3(t) = do +d" (€D)(1),

4.5 Optimising these methods 89

where £(t) is a mapping from trees to the real numbers representing the internal stages. To
obtain an approximation to the error that is O(h®) we need to ensure §(t) = 0 for all trees up to
and including order 4. As with the order conditions, we find the number of conditions is reduced
due to the stage order of the method. This leaves us with one free parameter. We will use this

to normalise the results by requiring that d(tg) = % The conditions on dy and d” are

dT +dy =0, (4.13)
d'c =0, (4.14)
dt'e® =0, (4.15)
dte® =0, (4.16)
1
dr <A62 — —(24c— 62)> =0, (4.17)
Bs
T4 _ 1
dc =—. (4.18)
5
Solving these equations for the method given in (4.1), leads to the following coefficients
128 64 128 532 100 32
d= |22 22 22 902 V0 dy = —. 4.19
[155 15 15’ 3}’ 715 (4.19)

Assuming a constant stepsize over two steps, a higher order approximation to the error can
be found by the difference in d over these two steps. Keeping the stepsize constant over two
steps is not an unreasonable restriction. An estimate of the error can then be found, helping to
determine the stepsize for the next two steps.

An alternative approach is to alter condition (4.17) to incorporate the stepsize change into

it so that the error can be estimated after each step. This condition now becomes

1
dr (A62 - r—(2AC - 62)) =0,
5

where 7 is the ratio between the current and previous stepsizes. Solving this new system of

equations leads to the same solution as before, with d4 and ds replaced with

o _ 28(385 — 556r) ~300(—3 + 4r)
47 15(—85 + 76r) 5T 85 + T6r

4.5 Optimising these methods

This special method was discovered almost by chance. It is natural to ask if other methods with

this special property exist, and if they do are we able to select an optimal method from among

90 A special ‘fifth’ order method

them. In order to do this we need to decide on our definition of optimal. We have already seen
that it is possible to ensure the errors in the fifth order trees are zero. We will define an optimal
method to be one that minimises the norm of the vector of the error coefficients of the sixth

order trees.

4.5.1 Fifth order error coefficients

To look for methods with this special property, we first need to ensure that the fifth order error
coefficients are zero. There are 9 trees of order five, however due to the stage order of the
methods many of the error coefficients are a scalar multiple of another. As stated in Section 3.2,
the trees that are omitted are those that would be omitted if the C'(2) condition were assumed

for a Runge-Kutta method. The independent error coefficients are therefore

€9 = % — vl (4.20)
€11 — L ch(102 — Ac)n(ts) — W' C AP
ST 2 ’
1 1
=5 bTC(ECQ — Ac)(ﬁTc2 —-2)— WI'C A, (4.21)
€14 = L bl A (4.22)
14 20 ’ .
1 1. 1, Lop 22
€16 = &5 2b (20 c)n(ty) 4b c
1 1 1
= == = SVTAGE — A (6T — 1) - hpT a2, (4:23)

If we assume the D(1) condition, as we have whilst deriving these methods, then condition

(4.21) can be ignored. To see why this is true we start by expanding equation (4.21), giving

1
€11 = T (%ch?’ — bl Ac + bTA2c)(ﬁTc2 —-2)— bl Ac? + bT A% 2.

Using the standard order conditions along with conditions (3.106) and (3.107) this can be sim-

plified to
1111 T3 T 2 1 2(85—9) 7 3
611_1_5_(§_6+ﬁ+0(b AC—K))(ﬁ C —2)—E+T(b AC—K)+2K
= —% — 0T APc— K) (BT —2) + W(ZFASC — K)+2K. (4.24)
5

4.5 Optimising these methods 91

To simplify further we will make use of one of the conditions that is satisfied in order to have
RK-stability, i.e.

AT (ke - Ac) =

From this condition and condition (3.103) it is easy to see that

2(Bs —
/BTC2 —9— (/85 ¢))
055
Substituting this into equation (4.24) shows that €;; = —% + 2K, which equals 0 if we choose

- 1
K= 13

The equation eg = 0 can easily be satisfied by choosing parameter L to be % The error in
tree (t16) is automatically 0, as we have chosen K = ﬁ to ensure €(t11) = 0. Once ¢q, c2, c3
and ¢4 have been chosen there is a unique choice of a43 that ensures €14 = 0 (and hence €17 = 0

if we have assumed the D(1) condition).

4.5.2 Sixth order error coefficients

Once the fifth order conditions are satisfied we can concentrate on the sixth order conditions.

Assuming the D(1) condition, the independent error coefficients are

c(tis) = 7€)~ ¢
el
eltz0) = BT E()EE () — 15

1 1
— bTC2 ((562 — AC)T](t:g) + AC2> — E

(12 T 2 2 2
= —c"—A -2)+A - —
b ((20 o) (B c) et =15

92 A special ‘fifth’ order method

1

€(tag) = b E(t1)E(t5) — 2

1 1
=blc((c2-A A) — —
b c ((20 o)n(ts) + Ac 51

1
=l ((502 —Ae)(BTe —387c2 —9) + Ac3) ~ 50

1
€(tas) = b E(t1)E(t7) — 7

1 1 1
= e (3¢~ Aehnler) + Ay~ Aopta) + 47 — o

=blec ((%c2 - Ac)(ﬂT(%c2 — Ac) (BT —2) + BT AP) +

12_ T2 2.2 _i
A(Ge" = Ae)(F7¢” = 2) + A%c -

The free parameters we have left are ci, co, c3 and ¢. First ¢; and ¢ need to be chosen in
such a way that an appropriate value of p = 65 is found from equation (3.105). After many
numerical searches the values found which give usable values for ;4 are given in (3.108) — (3.111).

Next co and c3 need to be chosen to ensure €1g is small. We have chosen to require ¢13 = 0.

This is done by simultaneously solving

for an unknown b7
If we use the choice of parameters given in (3.108), where ¢; = %, we find the following

relationship between co and c3
—7 + 10c¢y

%= 90+ 150y

Using the parameters in (3.109), where ¢; = i, gives the relationship

-5 + 762

ST T 100y

Finally, using the parameters in either (3.110) or (3.111), where ¢; = %, the relationship is

-3 + 462

@ = —4‘1’562.

4.5 Optimising these methods 93

3l c1=1/5

-1

3l c1=1/3

Figure 4.2: Optimising our special ‘fifth’ order method. Solving for the free parameters co and

c3. Clockwise from top left: ¢ = %, c1 = % and ¢; = %

94 A special ‘fifth’ order method

In order to make the implementation as simple as possible we wish both c¢o and c3 to lie between

0 and 1. The values of ¢ and c¢3 are plotted in Figure 4.2 for each of the above values of ¢;.

We are left with only one free parameter, ¢, to minimise the remaining three error coef-
ficients. Due to the complex nature of these equations the only way to optimise them is by

performing numerical searches.

A numerical search was performed for each of the four sets of parameters given in (3.108) —
(3.111). For the first set of parameters the optimal choice of the free parameters was found to

be

1 1 26 4
= gu %7 §7]-71 ’ :U’:§7 ¢:2
The method defined by this set of parameters is
0 0 0 0 0 |1 : 5
15 323
T 992 0 0 0 0 1 4960 12400
_ 353443935 724094280 0 0 0 1 — 1092110669 _ 795197
3748322 1874161 3748322 3748322
119973785 _ 2531594960 783399298 | 0 1 530619764 17767
250263 1299753 523800459 361491 18538
7625 _ 32000 69343957 299 0 1 29 0
13392 82593 154162008 3344 104
7625 32000 69343957 299 0 1 29 0
13392 82593 154162008 3344 104
0 0 0 0 1 0 0 0
92996 1217291984 166800329 2093 _ 158 0 2197852 0
i 243 743337 27972945 1045 15 1755 i

The 2-norm of the vector of 20 sixth order coefficients is 1.22439 . The error coefficients for the

four distinct trees we are interested in are

69419
~ 1032300’

249829 1

€93 — _—%

€18 =0, € -, €25 =
18 20 324000 25
Although this method optimises the norm of the errors, the numerators and denominators
of the coefficients are rather larger than we would prefer. Instead we propose a method with
only a slightly larger norm, but whose coefficients require fewer digits in their representations.

The free parameters for the method are

4.5 Optimising these methods

95

The defining matrices are

1 1
0 0 0 0 0 |1 1 &
25 68 7
379 0 0 0 0 |1 279 86
38830 2046 394801 1331
279 25 0 0 0 L - 6975 4650
_ 660625 12627 450 0 0 1 2957689 2393
961 31 341 10571 1922
125 9 1125 31 5
768 3 2816 384 0 |1 56 0
125 9 1125 31 5
768 33 osi6 3sa O |1 %6 0
0 0 0 0 1 |0 0 0
23365 8261 2995 217 158 | _ 34378 0
48 30 528 120 15 165

The 2-norm of the sixth order coefficients is 1.28536, only slightly larger than for the previous

method. The error coefficients for the four distinct trees we are interested in are

893
111607

5239 1
360"

623——®7 €25 =

€18 = 0, €20

For the second set of parameters the optimal choice of the free parameters was found to be

1 19 33
= Zu %7 %7 ’ 1) n= 87 ¢ =4
The defining matrices of the method are
1 1
0 0 0 0 0 i 35
266 589 323
25 0 0 0 0 ~500 ~ 4000
11896929 39237 0 0 0 _ 555621 _ 111111
17500000 532000 5937500 5000000
245787 38055 _ 106250 0 0 _ 14128 _ 53
11480 30856 13079 1045 80 (4.25)
976 2000 781250 _ 5 0 283 0 '
2583 11571 2001087 306 3762
976 2000 781250 _ 5 0 283 0
2583 11571 2001087 306 3762
0 0 0 0 1 0 0
_ 24098 _ 14510 2350000 28 24 5204 0
|~ 12915 11571 667029 153 5 3135 i

The norm of the sixth order error coeflicients is 0.102186. The error coeflicients of the four

distinct trees we are interested in are

49 3719 !
90000’ 360°

€23 = _57600’ €25 =

€18 = 0, €20 = —

As with the first method, the coefficients for this method are rather unattractive. We propose a
method with only a slightly larger norm, but with more pleasing coefficients. The free parameters

for the method are

96 A special ‘fifth’ order method

C—B,Z,%,l,l}, =S8, p=4
[0 0 0 0 0|1 1 3]
s 0 0 0 01 —g5 s
3 z 0 0 01 £ -
10 % 7 0 0|1 3% —5
i B 5w 0|l 0
15 5 05w 0|l g 0
0 0 0 0 110 0 0

The norm of the vector of sixth order error coefficients is 0.10496. The error coefficients of the

four distinct trees we are interested in are

0 29 1273 1
€18 =0, €0 = ———, €23 = ———, €5 = ———.
e %07 718000 7 19200 » 7360
For the third set of parameters the optimal choice for the free parameters was found to be
1 8 1
c= |:§7 ﬁa 17 17 1:|) M:67 ¢:3
The method defined by these parameters is
0 0 0 0o o1 2 L
78 10 6
151 0 0 0 011 151 o7
1257 4235 573 11
" 6656 26624 0 0 011 258 —312
_ 3063 26983 1536 0 o0l1 347 _25
2314 32396 623 356 89
81 161051 256 8 o1 13 0
520 393120 945 1080 160
81 161051 256 89 011 13 0
520 393120 945 1080 160
0 0 0 0 110 0 0
9 7139 512 89 6| 29 0
| T 650 23400 225 550 5 40]

The norm of the vector of sixth order error coefficients is 0.120674. The error coeflicients of the

four distinct trees we are interested in are

1 3013 1

:0 = —— e ——— = ——
as=o o 0T To00 BT T306000 T 7360

Another method, with only a slightly larger norm, but more pleasing coefficients is defined by

the free parameters

4.5 Optimising these methods 97

The defining matrices are

0 0 0 0 o1 i L
3 0 0 0 o1 ¢ L
5 -3 0 0 o1 & 5
% n o —un 0 0|1 -3 -3
I s A AL B
¥ % 5 1 0|l w0
0 0 0 0 1/0 0 0
_ 213 _21 64 61 e 0
| 50 50 25 50 5 10]

The norm of the vector of sixth order error coefficients is 0.12145. The error coefficients of the

four distinct trees we are interested in are

0 829 1
€18 = €20 = ——— €23 = ————— €25 = — :
8= 27 1800 % 10800’ 25 360

For the final set of parameters the optimal choice of the free parameters was found to be

1 1 56
= |:§7 2_07 7_57 17 1 ’ H:127 ¢:6
The defining matrices for the method are
1 1
0 0 0 0 011 3 5
_ 5L 91 9
800 0 0 0 011 800 400
3410806 _ 1451296 0 0 0 |1 1273538 _ 142304
2390625 860625 1265625 1265625
_ 2513067 1288200 8015625 0 0|1 131123 154
696694 123607 6311228 18508 661
1647 32000 10546875 661 0l1 _5 0
1216 202521 27574624 8664 672
1647 32000 10546875 661 011 _—25 0
4216 202521 27574624 8664 672
0 0 0 0 110 0 0
_ 48519 4398160 _ 7340625 _ 5288 2|9 _71ou 0
2635 67507 3446828 1805 5 140 i

The norm of the vector of sixth order error coefficients is 0.140703. The error coefficients of the

four distinct trees we are interested in are

4 Y 1921 1
as="% 207 Tres000 BT 7216000 P 3607

Another method, with only a slightly larger norm, but more pleasing coefficients is defined by

the free parameters

98 A special ‘fifth’ order method

The defining matrices of the method are

0 0 0 o o1 1 1
—5% 0 0 0 o1 & 3
5% 0 0 01 -4 U
-5 F i 0 0|1 -& 1
i’% % % % 0|1 % 0
% % % % 0|1 % 0
0 0 0 0 1|0 0 0
-2 B B & 2|0 -8 0
L 5 8 33 0 & = |

The norm of the vector of sixth order error coeflicients is 0.141363. The error coefficients for

the four distinct trees we are interested in are

7 193 1

—0 _ P _
as=u T TEn0 BT o600 P T 7360

It is easy to see that the method given in (4.25) is the overall optimal method among those

examined in detail.

CHAPTER 5

Stiff ARK methods

“Obvious” is the most dangerous word in mathematics.

Eric TEMPLE BELL

The methods that have been considered so far have been explicit methods for non-stiff

differential equations. It is natural to ask how well these methods extend to implicit methods

for stiff differential equations. As the stage order of ARK methods is restricted to two we will

only consider methods of low order, with s = p, as it is likely they will suffer from some order

reduction. Order reduction is when the stiffness of a problem causes the method to decrease to

the order of the stages, rather than the expected order of the method.

5.1 Introduction

We will also only consider diagonally implicit methods to ensure computational costs are kept

as low as possible. The A matrix for a diagonally implicit method is lower triangular, with a

single eigenvalue, A. The general form of a diagonally implicit ARK method is

A e c—Ae %CQ—AC- [A+ I c— Ae %CQ—AC
AU | |1 b 0 b7+ AeT bo 0
Blv| |elo o 0 T 0 0

BT 0 B o | | 6 Bo 0

where b7 = el A, eIV = ¢l'U and where Ais strictly lower triangular. We will always assume

cs = 1. Recall that e’ =[1,1,...,1] and eI = [0,0,...,0,1].

100 Stiff ARK methods

The property of RK stability implies that the stability matrix for the method has only a

single non-zero eigenvalue. To simplify the analysis, we will reformulate the method so that, of

the three quantities ygn], ygn} and yz[,)"} passed from step to step, only ygn} and ygn] appear in the

formulation. This is a straightforward change in the interpretation of the method because, for

the differential equation y'(z) = f(z, y(z)), yén] = hf(zy, y&n]) This means that we can compute

a quantity equal to ygnfl} in step number n by artificially inserting an additional stage into the
method. In a practical implementation of the method, this would never be done this way but is
introduced here purely to aid the analysis.

In this alternative formulation of the method, the defining matrices become

0 o1 o]
A ‘ U _ c—Ae A le %CQ — Ac (5.2)
B ‘ 1% bp b1 0

B 6|0 0 |

and the stability matrix for this modified method is given by
-1
. 10 bo b7 1 0 1 0
M(z) = +z
00 Bo BT —z(c—Ae) I—zA e %CQ — Ac

To simplify this expression, we use the matrices T and T~ given by

T= , T'=
e I —e I

to transform the various factors in the last term as follows

by b" I |1 0 1 0
T — , T =
Bo BT 0o gT e %62 — Ac 0 %02 — Ac
and
-1
. 1 0 . 1 0
T T=T T,
—z(c—Ae) I—zA 2(I —zA)"Yc— Ae) (I —zA)!
1 0

2(I —z2A)"te (I—24)71

where we have used the consistency conditions by + b7e = 1 and By + 87e = 0. The stability

5.1 Introduction 101

matrix can now be written in the form
-1
— - ~ 1 0
M(z) =V +2zBTT
—z(c—Ae) I—zA

TT-'U,
L+ z+ 2201 — 24)" e 26T (1 — 2A)71(

zQﬂT(I — ZA)_lc zﬂT(I — ZA)_l(

To further simplify this we will make use of b = eSTA and eSTc = 1. The (1,1) element can be

written as

142+ 22T AT+ 2A+22A2 + 2343+)e = 1+ zelct zel (A4 22A% 4 2343 4.)c

= 14 zel'(I—-2z24)7c

A similar simplification can be made for the (1,2) element. The stability matrix can now be
written as
—~ 1+ zel (I —2zA)"te el(I—2A)7 (3% — Ac)
M(z) =
2011 — 2zA) e 2BT(1 — 2A)71(3 — Ac)

It will be convenient to make the substitution z = zZ/(1 4+ AZ) to obtain the matrix

i My(2) M) 1+ 20 (1 —2A) e &1 —2A) (3 — Ac— A¢)
Z) = - . = N R -
My (3) My (3) 2071 —2A) e 27T —2A)" (A2 — Ac — Ao)

Just as the requirements of RK stability will be satisfied if M (z) has a single non-zero eigenvalue
equal to exp(z)+O(z°1), we have the alternative criterion that M (%) has only a single non-zero
eigenvalue equal to exp(Z/(1 + A2))) + O(Z°T1).

Write

~

z
ENZ) =

and write the truncated series as

)—14—0&1/2’\—1—042/2\2-1—“‘,

E)N2) =14+ 12+ agZ® + - + ag2".

A characteristic property of an ARK method is that the third output approximation is
accurate only to within O(h3) and that the coefficients of the method are chosen so that errors
of this magnitude in yz[,)n_l} do not affect the order s accuracy of ygn] computed in step number n.
Consider the special case of the differential equation 3/(z) = qy(x) and suppose that the input

to step number n consists of the quantities

w =1 T =hg oy = 02 4 e

102 Stiff ARK methods

The quantity computed as the value of ygn] is eI'Y, where the stage vector Y is given by

Y = e+ hqAY + hg(c — Ae) + (R%¢® + eh?’q?’)(%c2 — Ac).

Solve for Y and evaluate the contribution to 'Y from the term involving the ¢ factor. This
contribution is

eh3g®el (I — hgA) 1 (3c¢* — Ac)
and must be O(h*T!) for the order not to be disturbed by this perturbation. Write z = hq and
divide by z3. We see that

el'(1— zA)7H (i — Ac) = 0(*7?).

This means that the (1,2) element of M(z) is O(2*"2) which is equivalent to stating that
M\lg(/z\) = O(z°7?). Because A = 0,]\712(2) consists of exactly two terms and can be written in
the form

]/W\lg(%\) = AS_268TA\S_2(%C2 — Ac—\e) + 35_16325_1(%62 — Ac — o).

Now consider the (2, 1) element of the transformed stability matrix. As 37¢ = 1 this equals

My (3) =22 + 0(3%).

o~

To ensure RK stability, M (Z) must have a zero eigenvalue and is therefore singular. We can

write

Mi1(2)Maz(3) = Mia(2) M (3). (5.3)

Since

My =1+2+0(2%),
it follows that Mas (%) consists of a single term. This term is equal to
My (2) = BT A V(L2 — A — A2

and furthermore, the coefficient of 2* in Moy (%) is identical to the coefficient of 252 in Mys(Z).
Write P as the product of the elements in the first subdiagonal of A. This is the only non-zero
element in A*~! and is in the (s,1) position. We can now write the second column of M (2) in

full. We have

]\712(2) = ?S*QﬁTA\Sfl(%CQ — Ac—Xe) + %\3716211571(%02 — Ac— o),

= (Bs +2)Pci(3er — X252,

5.1 Introduction 103

and

My (2) = BsPer(3e1 — N)Z°.

We will always assume that 55P61(%61 — A) # 0 so that the method will be a genuine
multivalue method.
We can now evaluate the coefficient of z*° in]/\4\11(3) in two different ways. As the sum of the

eigenvalues of a matrix is equal to the trace, we have
My + My = E2(3).

The coefficient of z*° in]\/4\11 is therefore oz — ﬂsPcl(%cl — \), where a is the coefficient of 2% in
EXZ). Tt is also equal to Pcy by evaluation of esTjsﬂ 5

We can now conclude that

P61

and because of equation (5.3), we also conclude that]\/4\11(3) has a factor z + (.

We can now summarise the main conclusions of this section.

Theorem 5.1 For any s stage order s diagonally implicit ARK method such that ﬁsPcl(%cl —

A) #0,
2B (—Bs
1 =2\ — # (5.4)
ﬂsEsfl(_ﬂS)
Furthermore,
BU(I + BsA = BAI) = Beer (5:5)
and
(1+ %clﬁs — Aﬁs)(bTA“Qc + g — %) = Q. (5.6)
Proof: To prove equation (5.4), evaluate M\H(E) in the form
. as s B2E) 4 Bs(za = NE}L(3)

l’

M\H(E)zl—i—al?—|—a222—|—---+a_1%\5_ 72 =

Because z + (3; is a factor of this polynomial,
E?(_QS) + BS(%CI -)‘)E?fl(_ﬁs) =0

and equation (5.4) follows.

104 Stiff ARK methods

To prove equation (5.5), define vT = 7 (I + 8,A) — BseL = BT (I + By A — BA) — Beel and
verify that vTﬁiflc(c —2)\) =0 for all : = 1,2,...,s, using the known values of]/\4\12(%\) and
M\QQ(E). Hence, v = 0.

To prove equation (5.6) we need to look at the trace of M. This should be equal to E) 7).

Equating the coefficients of z° gives
bl A2+ ﬁTA\S_l(%C2 — Ac— Ac) = a.
As A is strictly lower triangular, this can be rewritten as
bl A2 + %ﬂsclngTS_Qc —)\BSZTA\S_% = .

Rearranging and rewriting in terms of b7 and A gives equation (5.6). |

5.2 Order 3 stiff ARK methods

We will investigate the possibility of ARK methods with 3 stages and order 3. The tableau

defining the methods we are seeking is

A 0 0]
a1 A 0 |e c— Ae %CQ — Ac
A ‘ U by by A
S (5.7)
B ‘ v by by A |1 bo 0
0 0 110 0 0
L B B2 B30 fo 0]
The stability function for an s-stage diagonally implicit Runge-Kutta method with order
p=sis
N
R(z) = ﬁ =expz —o(N)2* T+ 0251, (5.8)

where o()) is the error constant.

Since N(z) has degree 3, we can use equation (5.8) to evaluate N(z) and o. These are
N(z) =1+ (1-3Nz+ (3 =3X+3X%)2% + (§ — A +3)7 =A%), (5.9)
o=5;— A+ EINT =A% (5.10)

We are interested only in A-stable methods. Because, for A > 0, R(z) is analytic in the left

half-plane, it is necessary only to require that |R(z)| < 1 for |Re(z)| < 0. By the maximum

5.2 Order 3 stiff ARK methods 105

=]
=
o=l

g
0.05
T

0.5 0.75 A\ 1.068579

wl=

Figure 5.1: Error constant for A in A-stability interval

[e)
—
0
— O._
K < I ! J
e 1 \os 0.75 1.068579
A
0
Cl; -

Figure 5.2: Values of R(c0)

modulus principle, this is equivalent to
(1= 22)]° = IN(2)* > 0,
for z = 4y. This is the so-called E-polynomial and in this case becomes
E(y) =y*(5 — A +30—2X%) +0(— % + 23— X2 4 X3 1201 +6)%)

which is non-negative for all real y as long as the coefficients of y* and 3® are non-negative. It

is found that necessary and sufficient conditions for this are

A€ [3,A"] where A"~ 1.068579.

As a guide to the selection of suitable values of A in this interval, the error constant o is

plotted in Figure 5.1 and the value of R(co) is shown in Figure 5.2.

106 Stiff ARK methods

Order conditions

The conditions to ensure the first output approximation is of order three and the third output

approximation is of order two are:

bo+ble=1, (5.11)
1
ble=3, (5.12)
1
vl'e? = 3 (5.13)
le+ By =0, (5.14)
gle=1. (5.15)

From Theorem 5.1, the conditions to ensure the method has the correct stability function

are
BT(I + B3A = ABsI) = Bsel, (5.16)
(L4 3c185 — AB3)(bT Ac+ A2 — \) = £+ A2 —), (5.17)
263 (—f33)
=2\ — —3 5.18
“a 3523 (—Bs) (5.18)

Derivation of methods

The derivation of these methods is very simple. Once the free parameters, A, 83 and cs, have
been chosen the method can be uniquely determined from conditions (5.11) to (5.18).
First ¢; can be determined from equation (5.18). Then b; and bs can be determined from

equations (5.12) and (5.13), giving

b . %—)\4-()\—%)62
1 CQ—C

1 1€2
b2: %—)\4-()\—%)61.

C% — C1C9
Next, by can be found from equation (5.11). The only remaining term of the A matrix, a9
can be found by solving equation (5.17), then the 37 vector can be found from equation (5.16).

Finally, £y can be found from equation (5.14).

5.3 Order 4 stiff ARK methods 107

Some example methods

Two example methods are given here. This first method has been chosen to minimise the error

coefficients. The ¢ values have been specially chosen to give zero error for the bushy tree. We

1

have chosen A = % as this is a simple fraction and comes close to minimising o(\).

3

1 0 of1 2 1]

1 1 11 1

) —16 3 011 | 3

A‘U -1 2t oo

1 B‘V ~1 ERE S R O

0 0 110 0 O
L 5 -5 2]0 5 0

In this next method A has been chosen to obtain close to L-stability. To obtain L-stability
we would require A = 0.435867. To find pleasing coefficient matrices for the method we have

chosen \ = %

i 2 4 2]
2 o o1 & -2
11 2 127 13
) i1 5 011 %5 —s5i0
3
A‘U —2 8 211 L 0
c=|11, — z‘i Z ‘;’ 210 (5.20)
1 B‘V -2 8 211 L 0
0 0 110 O 0
39 18 3 3
. % —35 2|0 g5 U

5.3 Order 4 stiff ARK methods

In this section we will extend the analysis to stiff ARK methods with order four. As for the
order three case, we will consider only methods for which A has the diagonally implicit structure
with constant A on the diagonal. We will consider only fourth order methods with exactly four
stages. Our first consideration is the choice of A\, where we will wish to find a balance between
stability and accuracy. The polynomial N (z) appearing in equation (5.8) and the error constant

o are now given by

N(z) =141 — 4N)z+ (3 — 4X + 602)22 4+ (§ — 20 + 607 — AN?) 2P + (o — EA+3AZ AN 40124,

0= 135 — sA+ AT =223 4 AL

108 Stiff ARK methods

0.05
T

= 1 1]

S
A1 0.75 1 A2
A

Figure 5.3: Error constant for A in A-stability interval, where A; = 0.394338 and Ao = 1.28058.

1.0

0.5

Figure 5.4: Values of R(c0) in A-stability interval, where A\; = 0.394338 and Ay = 1.28058.

As for third order methods, we are interested only in A-stable methods and we analyse this

using the E-polynomial, which in this case is found to be

B(y)= (73— 5 A+ g A= ZNHITA8N)y 4 (— g+ 5 A B AP+ A AT AT 22004807y,

Using the maximum modulus principle, we see that A-stability is equivalent to F(y) > 0 for all

real y and this is found to be the case if and only if A lies in an interval [A1, A2], where

A1~ 0.394338, Ay ~ 1.28058.

Values of ¢ and R(oc0) are shown for A € [A1, Ao] in Figure 5.3 and Figure 5.4, respectively.

5.3 Order 4 stiff ARK methods 109

Order conditions

The conditions for the first output approximation to be of order 4 and the third output approx-

imation to be of order 2 are:

bo +ble =1, (5.21)
1
ble=—, (5.22)
2
T2 1
bl ==, (5.23)
3
pred — 1 (5.24)
47
1
vl Ac = R (5.25)
AR — L (5.26)
127
Bre+ By =0, (5.27)
gle=1. (5.28)

From Theorem 5.1, the conditions for stability are:

BT + B1A — \B4I) = Buey, (5.29)

(L4 3e18s = AB)(WTA%c — 5+ 302 = X3) = L — 5+ 302 — A3, (5.30)
2E7 (—f41)

=2\ — —4 5.31

“ BiE}(—fu) (531

Derivation of methods

The derivation of fourth order methods is also reasonably simple. The only difficulty lies in
choosing the parameters A and (34 such that ¢; lies in the interval [0,1] and the method is

A-stable.

First ¢; can be found from equation (5.31). Then by, by and b3 can be found from equations

110 Stiff ARK methods

(5.22) — (5.24), giving

L-ax+ (0 =Ha+ = DHes+ (& = Neaes

by =)

! 01(61 - 02)(01 - C3)

by = %_)“"()\—%)614—()\—%)034-(%—)\)0103
caca — c1)(c2 — c3) ’

by i—)\+(>\—%)C1+(>\—%)02+(%—>\)6162'

63(63 — Cl)(Cg — CQ)
Next, by can be found from equation (5.21). To find the element a3y we solve a liner combination

of equations (5.25) and (5.26). That is, we solve

C1
6

WU AP — b Ac = é

for ass, giving
192b3\ + 25(24A2 + 24byca(3ca — 1) — 1)
300[)362(1 — 362)

a3z =

Element as; can be found by solving equation (5.30) and a3; can then be found from equation
(5.25), giving

1
as) — W(E) - 30)\2 - 60[)262)\ - 32[)3)\ - 20[)1)\ - 300,32()362 - 10@21b2).
3

The vector 37 can now be found from equation (5.29) and 3y can be found from equation (5.27).

Some example methods

Two example methods are given here. In the first method we have chosen A\ = % as this means

we obtain a reasonably small error constant. In the second method we have chosen A = % as

this gives us a small value for |R(o0)].

1 5 21
5 0 0 01 I — 558
4961 1 2095 1
[91] "~ 42336 2 0 01 —3335 1344
22 223003 57 1 01 26485 23
1 Al 1518804 82 2 37044 1176
3 _ 2662 12 21 1 1
=1 5 | ~ | T543 1 3 3|1 7 0 (5.32)
5 B|V
_ 2662 12 21 111 1 0
1 5453 41 38 2 7
B N 0 0 0 110 0 0
123178 __ 176 _56 410 46 0
| 147231 123 57 3 189]

5.4 Starting the method 111

911 1 2 17
c= 5 5 o) 1 5
1146° 3~ 3
3 1117 2114431
5 0 0 01 5730 " 13133160
38596898 3 0 011 _ 18697714 2321
214854795 5 214854795 1415070
642101935076 85603 3 0ol1 12265149017 20886679
AlU 12312970210125 343850 5 46551872250 153299250
— 264779098 273 130 311 451 0
Blv 118070155 1058 49 5 1822
264779098 273 130 311 451 0
118070155 1058 49 5 1822
0 0 0 110 0 0
598434324 _ 8721 _ 585 300 9561 0
| 118070155 5290 08 2 9110

(5.33)

5.4 Starting the method

For explicit ARK methods, it is possible to start the numerical process using a starter of the

form

0 01
o~ 1 0|1
A U —
~ | = 0 01
B V

1 00

! 110 |

From an initial value yo = y(zg), this preliminary step computes in turn

Yl = Yo,
hFl = hf(xo,Yl) = hy’(xo),
Yo = yo + hFy = y(zo + h) + O(h?),
hFy = hf(zo+ h,Ys) = hy'(zo + h) + O(h3),
0 _
yl - 3107
ygﬂ = hE} = hy'(z0),
g = hRy —hFy = W% (z0) + O(R).

Because the method requires input to the first step of approximations to y(zg), hy'(z¢) and
h2y"(xq), with the last of these accurate to within O(h?), this simple process is perfectly ade-

quate.

112 Stiff ARK methods

However, for a stiff ARK method we will need to avoid computing hf(xg,yo), except as the

solution to an implicit equation of the form
Y = Mf(X,Y)+C,
where C is a known quantity. Hence, we consider starting procedures of the form
AU
BV
where A has a diagonally implicit structure, with the diagonal element A equal to that of the
main method, and where U=1and V = e1. It is advisable to advance the solution a single

step in carrying out the starting process, so that we actually compute approximations at the

point 1 = xzg + h, as follows

ygl} R y(xl)a

y ~ (1),

vy~ b2y (1),

We will examine in detail the construction of a starting method appropriate for the three
stage third order method (5.19).

As part of the design of this method, 37¢c = 1 appears as an order condition and corresponds
to the requirement that, for the starting method, eggﬁz 1, which, together with 571 +wv3; = 0,
corresponding to e3T§1 = 0, is exactly the condition that y:[;] = h2y"(z1) + O(h?). Note also
that g7¢? = % and BT Ac = %. Although corresponding assumptions are not strictly necessary
for the starting method, we will assume as additional requirements that

~9 O ~. 5
el B&? = 3’ el Ac= .

We also assume that A\ = % for the starting method, as for the main method.
To obtain order 3 and to satisfy these additional constraints, four stages are necessary and

we will also assume that ¢4 = 1 so that we can then aim for a method for which
TB=cTA TB=el

Although the starting method requires more stages than the ARK method used for propogation,
because it is used only to start the method, this does not add substantially to the cost of using

a method.

5.4 Starting the method 113

It now transpires that the starting method is fully determined once suitable values of ¢; and
¢3 have been determined. Because values of the coefficients of the method are very sensitive
to values of these free abscissae, we will choose values that give reasonably small values of the

magnitudes of these coefficients. Suitable choices are

~

2 .
2= 73, c3 = 0.

From these considerations, the following starting method has been found:

0 0 01
i 3 0 01
5 4 1
ol |
B\‘/} 4 12 3
Ik
0 0 0 1|0
-2 -1 2 2o

Even though the method is used only for the starting step it is interesting to note that the

first component (which approximates y(xg + h)) is A-stable with stability function

_ 1,2, 1.3
1 z— 52"+ 557

% z
1— %2)4

For the method (5.20), a suitable starting method is found to be

- _
. 0 0 0|1
1 2
L z 0 0|1
9 78 2
SN -2 . 2 0|1
AU 11 55 5
| x5 _2 _u 2 |
BV 18 3 90 5
%5 _2 _u 2 [q
18 3 90 5
0 0 0 110
5 _4 919 184 |
| 79 3 1395 155]

Again it is found that the Runge-Kutta method which generates the value of ygl] is A-stable,

with stability function
3 7.2, 53 .3
(1- %2)4

Although finding starting methods for the fourth order methods is complicated it can be

done in a similar way to the third order methods. For example, a suitable starting method for

114 Stiff ARK methods

(5.32) is found to be

_é 0 0 0 o0l1]

= : 0 0 01

-2 5 : 0 01
Aol |- % 5 4 op
BV | % w1 4 1
I

0 0 0 0 110

| -F 2 % %5 w0

For the method (5.33), a suitable starting method is found to be

3 0 0 0 0 1
_ 348 3
537 = 0 0 0 1
68311 3029 3
178350 178350 5 0 0 1
~ o~ 567619159 50172957737 2736300189 3 0 1
A U|_ 2934888450 105204462900 3144041420 5
B ‘7 448231 73148383399 134603 674687 3 1
208300 115642000800 167760 127860 5
448231 73148383399 134603 _ 674687 3 1
208300 115642000800 167760 127860 5
0 0 0 0 1 0
_7192100307338731 9782034214337011 _ 22410047189722 22410047189722 _ 496328334674 |)
1418153128042500 1418153128942500 2445091601625 2445091601625 271676844625 |

CHAPTER 6

Numerical Experiments

I think there’s a world market for maybe five computers.

THOMAS WATSON, CHAIRMAN OF IBM (1943)

This chapter presents the results from a variety of numerical experiments which verify that
ARK methods are competitive methods for solving both ordinary differential equations and delay
differential equations. We also wish to confirm that the special ‘fifth’ order methods discussed
in Chapter 4 behave like fifth order methods in practice, both for fixed and variable stepsize

implementations.

6.1 Non-stiff methods

The explicit methods discussed in Chapters 3 and 4 will be compared against existing methods

using fixed stepsize, fixed variable stepsize and variable stepsize implementations.

6.1.1 Fixed stepsize

In code development there are many choices that need to be made apart from the basic method
to be used. By comparing ARK methods against existing methods using fixed stepsize imple-
mentation it is possible to compare the methods themselves and not any design choices that
have been made.

The problems that will be used for this comparison are the DETest problem set [42]. For

convenience they are listed in section A.1l.

116 Numerical Experiments

We wish to compare both fourth order methods with four stages and our special ‘fifth’ order
methods against existing methods. The methods we will use for these comparisons are ARK4,

a fourth order, four stage ARK method, the tableau of which is

0o 0 0 o0f1 1 l
7
&= 0 0 0|1 £ &
-+ 2 0 o1 -2 -1
AU
=/ 0 2 ¢ 0|1 ¢ 0 |-
B|V
0o 2 & 0|1 ¢ 0
0 0 0 1{0 o0 0
1 2
-3 0 -3 2|0 -1 0 |

where ¢ = [1, %, 1,1]; ARK451, the original ‘fifth’ order method, the tableau of which is given

in equation (4.1); ARK452, the optimised ‘fifth’ order method, the tableau of which is given in
equation (4.25); RK45, a fourth order, five stage Runge-Kutta method, the tableau of which is

0
11
3|3
1011
316 6
111 3
§§08
1 3
1L 0 -3 2
1 2 1
§ 0 0 35 3

and RK56, the popular Dormand and Prince method [29] which is a fifth order, seven stage

6.1 Non-stiff methods 117

Runge-Kutta method, the tableau of which is

0
1 1
5 5
3 3 9
10 10 10
4 44 56 32
45 15 9
8 19372 25360 64448 212
9 6561 2187 6561 729
(6.1)
1 9017 _ 355 46732 49 5103
3168 33 5247 176 18656
1 35 0 500 125 _ 2187 11
384 1113 192 6784]84
35 0 500 125 2187 11 0
384 1113 192 6784 84
5179 0 7571 393 92097 187 1
57600 16695 640 339200 2100 40
. n 0 71 n 17253 2 1
57600 16695 1920 339200 525 40

To ensure a fair comparison between the methods, the method with 4 stages has been
implemented with a stepsize of %h and the method with 7 stages has been implemented with a
stepsize of %h. The values of h used is problem dependent, as some problems required smaller A
than others to obtain reasonable accuracy. The results of these experiments are given in Figures
6.1 - 6.5.

We can see that these results are very promising for our special ‘fifth’ order methods. Not only
are they behaving like fifth order, but in many cases they are competitive with the Dormand and
Prince method. There is very little difference between the accuracy of the two special methods,
although the optimised method does perform slightly better on some problems.

The fourth order ARK method also performs well, although unfortunately not always as well
as the fourth order Runge-Kutta method. This method was chosen for its simple coefficients.
It is hoped that if these experiments were repeated with an optimised method the results might
be more competitive.

It should be noted that for some of the results, a flattening-out is observed when A is small.

This is due to round-off error.

118

Numerical Experiments

1072

llerrorll

107

107"

107

1078

llerrorll

107"

1072

107

A2
Al 1076
- 4
| L
8 e
L 1078 - s 1
- e e e
PR - P)
. -,
. . P
- , = 10} < / 4
PR e s . //
e e 2 e /
. e - /
-7 ,® 4 7 4
P L /
- e 107 AN / 7
. s -
. 7 <
s]
o P
. :
. <D
. Pad
e 1074+ i R
7 s
- L5
e
1 10—16 L s L ;
107 107%° 10 h 10
A3 A4
10° -]
-
P
P s
. 27
P Lz
. 2
107 - P /JQ 4
= . LY
5 - .
= 4 o
5 . P
2 . P
- I
s @ 7
- s X
b e
— - I
1072 | P G |
e e
. i
P Voo
g
P et
. 7’
,
.
.
10—14 L~ // i
[«
, ,
1072 h 107"
A5
107 - - |
- //
<
- x -7
" -
1078 - e 4
// ////
P L7
= g <7
S s 2]
© -
= 107\07 // /// 4
/// ////
- g
e
- g
g g
s P
107121 - ot]
P e
- s
7
7,
e
s
14 -
10ME S g - . |
B
. .
02 h 107"

Figure 6.1: Comparison between RK45 (—-), RK56 (---), ARK4 (—), ARK451 (x) and ARK452

(o) using constant stepsize for the class A DETest problems.

6.1 Non-stiff methods

119

B1

llerrorll

10710

B3

10710

llerrorll

10712

10714

llerrorll

1o

107

107®

107"

10712 [

B2
10712 T
- - 4
. .
P .
P .
P .
. .
. .
= -7 .
5 B .
5 14 -7 -
2 .
107 F - o 1
. ,
. .
. .
. .
. .
. .
. .
. .
. .
. .
| . .
P .
. .
. .
P .
.
.
®
L 10716
107" 107! h 10705
B4
1072 >
PR
Pae P
- 7
-4 | PR 4 4
10 z U
Phe z
- 7
P ;;/
107 -7 Mo ,
- - 4
- 7
= - //
= 10} - 7 1
PR 7
- P
PR 4
~ »7
1070 ;Q 7
/4/
>
&
102k -7 4
_®7
10714 L L
107 h 107!
B5
e le”
P
PR
T
X,///
- [97)
- s
- X,//
P LR
g - - s
~ P
g .
~ .
~ P
~ .
&
23
////
S
. .
1072 h 107"

Figure 6.2: Comparison between RK45 (—-), RK56 (---), ARK4 (—), ARK451 (x) and ARK452

(o) using constant stepsize for the class B DETest problems.

120

Numerical Experiments

1078

107"

llerrorll

1072

107

107"

1072

llerrorll

107

1071

c c2
10710 T ! ;
’ - 7
P
P 9
P ,
. g
P ;
. g
- @
- 7 i 10712
. v
- e -
, =
PR s e
- & 3
P . o
< '
- 7
P , |
- .
P o
g e 10714
- - //
. s
P ; |
' - /@
T e
L L 10716 L L
107 h 107" 1072 h 107
107"
5 102
3
107
L L 1046 L L
-2 -1 107 107"
10 h 10 h
c5
10—6 |
=
< z
1078 e L7
2 ;7
= -7 4
e - s
5 4 7
=) P /;/
1070 - - "
- {ef
7
- 7
- 7
- 7
- 7
- 7
107120 L P
- s
PR 4
B v
== ——— 8l
le
10714 L L
1072 h 107"

Figure 6.3: Comparison between RK45 (—-), RK56 (---), ARK4 (—), ARK451 (x) and ARK452

(o) using constant stepsize for the class C DETest problems.

6.1 Non-stiff methods 121

D1 D2
1072 T . 1072 . .
P
107 b T 107 F
L
-7
;/
107 - ~ , 107 -
-4
= e =
5 - 5
5] P 5]
= 10 - - = 108
PR
- s s
- /8
-10 - - // -10
10710 F -, 10
- - 4
P y-4
- -
PRe i
1012F -7 e 10712
. _®
P
~
-
o
107 — — 107
1072 10
D3 -6
1072 T 10
%
4
i
107 b e
p
/;/ 1078
P
6 ys
107 ?7
= P =
& v g
g P 5
9o %7 = -10
= 10° 2{;’ 10
ok
R
L2
1070 PR 4
e 27 12
- ;s/ 10
- P
o] 7
10 »
L2
P
1071 I | 10)
-3 —2 -1 . -
10 h 10 10 1074 ho 107
B
kS

Figure 6.4: Comparison between RK45 (—-), RK56 (---), ARK4 (—), ARK451 (x) and ARK452

(o) using constant stepsize for the class D DETest problems.

122

Numerical Experiments

E1 E2
107 1072
- - b
L
P B
10 L -)8’// | 10
- - . //
g ,
g p
g g
»
g ® 1078
=z 10° - y 1 =
g -7 e 8
H - v 5]
k] g »” 2
-7 .7 107®
P ’
1010 7 - |
P o
- - // _10
g e 10
_12 e 27
1072 @
y
.
-7 1072
y
_ -
10-14 == L L L L
1072 107! 1072 107!
h h
E3
1072 E4
107 T
27 P
107 - Sz’ B -
oL -
T 1010k PPt el
6 | PR & | Phs P
10 B P - Lol
_ Pie Vil - ~Ze”
z g e _ - -
S - = P -
3 P A g - oz
107 P e 7 2 qo2f PN T]
- P -~ X2 -
e - P
fite L& PR et
1070 . - /é// N ///
P 1014 e i
P e
P
1072 1 P 1
2
2
/,/
10714 L L 1046 L
2 -1 -1 -0.5
10 h 10 i) 10
. E5
10” ~
P
P
>
P
2 7z
P 7
8 |
10 7 S
P .
P %7
P ,
2 //o
. 2 4
= . .
o P s
© P s/
= 4o . x;/ 4
P ,@
Z s
P .
P
P .
P %7
P)
10712, _ P //// |
P L
_ L
_ P
_— -8
e
1071 L L
1072 h 107"

Figure 6.5: Comparison between RK45 (—-), RK56 (---), ARK4 (—), ARK451 (x) and ARK452

(o) using constant stepsize for the class E DETest problems.

6.1 Non-stiff methods 123

6.1.2 Fixed variable stepsize

In this section we will examine the effect of stepsize changes on the accuracy of the methods.
To do this, experiments were carried out using a scheme in which a predetermined sequence of
stepsizes was imposed. For each sequence of 5 steps, stepsizes in the ratios 1 : 7 : r? : r: 1
were used, where r is a parameter. The expected performance of a fifth order method, assuming
asymptotic behaviour under such a scheme, would be that the global truncation errors would

be scaled up by a factor

24 2r 472\ "° (2426 4 12
= (PR (B, 62)

assuming that the total number of steps actually carried out is independent of r.
To see why this is true we examine the error that would have been generated using a fixed

stepsize. The size of each step would have been (W) h, so the error on each step would

O (2+2r+r2)6

have been

5
Using the fixed variable scheme the total error generated over 5 steps is 2Ch% + 2Ch676 4+ n6r12,

giving an average error per step of

O (2 +2r0 + 7”12) .
5
Dividing the above two expressions gives equation (6.2). For a stepsize ratio of r = 1.5 we
would expect the error to grow by a factor of 3.3253 and for » = 2 we would expect a factor of
13.2063. However, this prediction is somewhat optimistic because it ignores the possibility that
additional errors may have been introduced by the very process of adjusting the data between
one step and the next.

Two methods have been compared. These are the special ‘fifth’ order ARK method given
in (4.1) and the fifth order Runge-Kutta method given in (6.1). For the two methods, global
errors have been computer for n steps. The ARK method has been implemented in the manner
suggested in Chapter 4 to ensure fifth order behaviour. Only the results for the last problem
of each class of the DETest problems are presented here, for berevity. The remainder of the
problems produced similar results. The results for the ARK methods are given in Tables 6.1 -
6.5. The results for the Runge—Kutta method are given in Tables 6.6 - 6.10. The top grid of each
table gives the ratio between the errors when the stepsize has been doubled. We would expect

this to be about 32 for a fifth order method. The lower grid of each table gives the deterioration
factor. We would expect this to be approximately F(r).

124 Numerical Experiments

n Error (r =1) | Ratio | Error (r = 1.5) | Ratio | Error (r =2) | Ratio
240 | 1.7183 x10~1° 30.58 | 6-0015 x10710 99 46 | 21213 x1079 3973
480 | 5.6189 x10712 3984 | 1:8491 x10711 3308 | 6-4819 x10711 3996
960 | 1.711 x10713 5039 | 59 x10713 5704 | 1:9665 x10~12 3871
1920 | 3.4 x1071 9.8 x1071° 5.08 x10~14
n Error (r = 1) | Deterioration | Error (r = 1.5) | Deterioration | Error (r = 2)
factor factor
240 | 1.7183 x10~10 3.49 6.0015 x10~10 12.35 2.1213 x107°
480 | 5.6189 x10~1'2 3.29 1.8491 x10~1! 11.54 6.4819 x10~ 1
960 | 1.711 x10713 3.27 5.59 x10713 11.49 1.9665 x10~12
1920 | 3.4 x10~% 2.88 9.8 x10~1 14.94 5.08 x10714

Table 6.1: Comparison of error behaviours for fixed and variable stepsizes for problem A5 using
method ARK45. We expect the ratio to be about 32. The theoretical values for the deterioration
factor are F'(1.5) = 3.3253 and F(2) = 13.2063.

n Error (r =1) | Ratio | Error (r = 1.5) | Ratio | Error (r =2) | Ratio
480 | 2.8246 x107? 5171 | 85225 x107? 3161 | 29871 x1078 31.47
960 | 8.9064 x10~!! 4189 | 26959 x10710 181 | 94911 x10710 3176
1920 | 2.7988 x 1012 30,62 | 84747 x10712 3154 | 2:9886 x10~ 1 3176
3840 | 9.14 x10~™ 2.687 x10713 9.411 x10~13
n Error (r = 1) | Deterioration | Error (r = 1.5) | Deterioration | Error (r = 2)
factor factor
480 | 2.8246 x107? 3.02 8.5225 x 1079 10.58 2.9871 x1078
960 | 8.9064 x10~! 3.03 2.6959 x 10710 10.66 9.4911 x 10719
1920 | 2.7988 x10~12 3.03 8.4747 x10712 10.68 2.9886 x10~ 1
3840 | 9.14 x10~ ™ 2.94 2.687 x10~13 10.30 9.411 x10~13

Table 6.2: Comparison of error behaviours for fixed and variable stepsizes for problem B5 using
method ARK45. We expect the ratio to be about 32. The theoretical values for the deterioration

factor are F'(1.5) = 3.3253 and F'(2) = 13.2063.

6.1 Non-stiff methods 125

n | Error (r =1) | Ratio | Error (r = 1.5) | Ratio | Error (r =2) | Ratio
60 | 1.3022 x1078 3161 | 3-9008 x1078 4133 | 13675 x10~7 3115
120 | 4.1199 x10710 3905 | 1-2452 x1079 4177 | 43899 x1079 3169
240 | 1.2854 x10~1! 4311 | 3:9199 x10~1 3484 | 1-3882 x10~10 39,60
480 | 2.982 x10713 1.1251 x10~12 4.2586 x 10712
n | Error (r =1) | Deterioration | Error (r = 1.5) | Deterioration | Error (r = 2)
factor factor
60 | 1.3022 x1078 3.00 3.9008 x1078 10.50 1.3675 x10~7
120 | 4.1199 x10~10 3.02 1.2452 x107? 10.66 4.3899 x10~?
240 | 1.2854 x10~! 3.05 3.9199 x10~! 10.80 1.3882 x10~10
480 | 2.982 x10713 3.77 1.1251 x10~'2 14.28 4.2586 x10~12

Table 6.3: Comparison of error behaviours for fixed and variable stepsizes for problem C5 using
method ARK45. We expect the ratio to be about 32. The theoretical values for the deterioration
factor are F'(1.5) = 3.3253 and F'(2) = 13.2063.

n Error (r =1) | Ratio | Error (r = 1.5) | Ratio | Error (r = 2) | Ratio
3840 | 9.5847 x10~* 076 | 2:9954 x1073 50.89 | 10156 x1072 99 75
7680 | 3.1159 x107° q171 | 96976 x1075 3900 | 34141 x1074 31.80
15360 | 9.8247 x10~7 4104 | 30301 x10~6 3916 | 1-0735 x107° 3914
30720 | 3.0756 x107® 9.4225 x1078 3.3398 x10~7
n Error (r = 1) | Deterioration | Error (r = 1.5) | Deterioration | Error (r = 2)
factor factor
3840 | 9.5847 x10~4 3.13 2.9954 x1073 10.60 1.0156 x10~2
7680 | 3.1159 x107° 3.11 9.6976 x 1075 10.96 3.4141 x10~*
15360 | 9.8247 x10~7 3.08 3.0301 x1076 10.93 1.0735 x107°
30720 | 3.0756 x 1078 3.06 9.4225 x10~8 10.86 3.3398 %1077

Table 6.4: Comparison of error behaviours for fixed and variable stepsizes for problem D5 using
method ARK45. We expect the ratio to be about 32. The theoretical values for the deterioration
factor are F'(1.5) = 3.3253 and F'(2) = 13.2063.

126 Numerical Experiments

n | Error (r=1) | Ratio | Error (r =1.5) | Ratio | Error (r =2) | Ratio
60 | 1.874 x1078 09 50 | 4-9849 x1078 o7 o8 | 1-6662 x10~7 96,64
120 | 6.3521 x10~10 3065 | 1-8274 x1079 09 g4 | 6-2546 x1079 99 51
240 | 2.0723 x10~ ! 99 g1 | 6-1248 x10~ 1 30.50 | 21197 x10~10 20,69
480 | 6.928 x10713 2.008 x10712 6.9068 x 10712
n | Error (r =1) | Deterioration | Error (r = 1.5) | Deterioration | Error (r = 2)
factor factor
60 | 1.874 x1078 2.66 4.9849 %1078 8.89 1.6662 x10~7
120 | 6.3521 x10~10 2.88 1.8274 x107? 9.85 6.2546 x107?
240 | 2.0723 x10~! 2.96 6.1248 x 10~ 10.23 2.1197 x10710
480 | 6.928 x10~13 2.90 2.008 x10~12 9.97 6.9068 x10~12

Table 6.5: Comparison of error behaviours for fixed and variable stepsizes for problem E5 using
method ARK45. We expect the ratio to be about 32. The theoretical values for the deterioration
factor are F'(1.5) = 3.3253 and F(2) = 13.2063.

n Error (r =1) | Ratio | Error (r = 1.5) | Ratio | Error (r =2) | Ratio
240 | 8.9316 x10~1! 3394 | 28857 x10710 3959 | 1:1882 x107? 3989
480 | 2.6793 x10~12 93,35 | 89109 x10712 137 | 3613 x10~ 11 39,61
960 | 9.45 x10~4 g3 | 2841 x10713 1406 | 11078 x10712 93 62
1920 | 1.62 x10~ 4 2.02 x10~ 4.69 x1071
n Error (r = 1) | Deterioration | Error (r = 1.5) | Deterioration | Error (r = 2)
factor factor
240 | 8.9316 x10~ ! 3.23 2.8857 x 10710 13.30 1.1882 x1079
480 | 2.6793 x10~12 3.33 8.9109 x 10712 13.48 3.613 x10~ 11
960 | 9.45 x10~ 3.01 2.841 x10713 11.72 1.1078 x10~1'2
1920 | 1.62 <1074 1.25 2.02 x1071 2.90 4.69 x10~14

Table 6.6: Comparison of error behaviours for fixed and variable stepsizes for problem A5 using
Dormand and Prince. We expect the ratio to be about 32. The theoretical values for the

deterioration factor are F'(1.5) = 3.3253 and F'(2) = 13.2063.

6.1 Non-stiff methods 127

n Error (r =1) | Ratio | Error (r = 1.5) | Ratio | Error (r =2) | Ratio
480 | 6.1763 x10710 3395 | 212 x1079 4363 | 80542 x1079 33,08
960 | 1.8576 x10~1! g9 77 | 6:2941 x10711 33,02 | 2547 x10710 3395
1920 | 5.668 x10~13 409 | 1:9063 x10~12 3399 | 7-6608 x10~12 3901
3840 | 1.62 x10714 5.62 x10~ 1 2.328 x10713
n Error (r =1) | Deterioration | Error (r = 1.5) | Deterioration | Error (r = 2)
factor factor
480 | 6.1763 x10~10 3.43 2.12 x107? 14.01 8.6542 x107*
960 | 1.8576 x10~ ! 3.39 6.2941 x10~ 1! 13.71 2.547 x10719
1920 | 5.668 x10713 3.36 1.9063 x10~12 13.52 7.6608 x 10712
3840 | 1.62 x10714 3.47 5.62 x10714 14.37 2.328 x10713

Table 6.7: Comparison of error behaviours for fixed and variable stepsizes for problem B5 using
Dormand and Prince. We expect the ratio to be about 32. The theoretical values for the

deterioration factor are F'(1.5) = 3.3253 and F'(2) = 13.2063.

n | Error (r =1) | Ratio | Error (r = 1.5) | Ratio | Error (r =2) | Ratio
60 | 8.3002 x107? 43.89 | 35367 x1078 4818 | 17603 x10~7 5181
120 | 1.8909 x10~10 4781 | 7-3405 x10710 4091 | 33974 x107Y 4373
240 | 5.0009 x10~12 9974 | 17945 x107H 3993 | 7-7685 x10~ 1 3706
480 | 2.199 x10713 5.559 x10713 2.0961 x10712
n | Error (r =1) | Deterioration | Error (r = 1.5) | Deterioration | Error (r = 2)
factor factor
60 | 8.3002 x10~? 4.26 3.5367 x1078 21.21 1.7603 x10~7
120 | 1.8909 x10~10 3.88 7.3405 x10~10 17.97 3.3974 x107?
240 | 5.0009 x10~1'2 3.59 1.7945 x10~H 15.53 7.7685 x1071!
480 | 2.199 x10713 2.53 5.559 x10~13 9.53 2.0961 x 10712

Table 6.8: Comparison of error behaviours for fixed and variable stepsizes for problem C5 using
Dormand and Prince. We expect the ratio to be about 32. The theoretical values for the

deterioration factor are F'(1.5) = 3.3253 and F'(2) = 13.2063.

128 Numerical Experiments

n Error (r =1) | Ratio | Error (r = 1.5) | Ratio | Error (r =2) | Ratio
3840 | 2.5141 x107° sy | 20741 x1074 o7 g9 | 3-0414 x1073 934,99
7680 | 2.8966 x 1076 09 59 | 7-4281 x1076 93 10 | 1:2942 x1075 10.74
15360 | 9.7901 x10~® 3302 | 32153 x1077 3197 | 1:205 %1076 99 83
30720 | 2.9652 x10~° 1.0058 %1078 4.039 x108

n Error (r = 1) | Deterioration | Error (r = 1.5) | Deterioration | Error (r = 2)
factor factor

3840 | 2.5141 x107° 8.25 2.0741 x10~* 120.97 3.0414 x1073

7680 | 2.8966 x107° 2.56 7.4281 x107° 4.47 1.2942 x107°

15360 | 9.7901 x10~8 3.28 3.2153 x10~7 12.31 1.205 x1076

30720 | 2.9652 x10~? 3.39 1.0058 x1078 13.62 4.039 x10~8

Table 6.9: Comparison of error behaviours for fixed and variable stepsizes for problem D5 using
Dormand and Prince. We expect the ratio to be about 32. The theoretical values for the

deterioration factor are F'(1.5) = 3.3253 and F'(2) = 13.2063.

n | Error (r=1) | Ratio | Error (r = 1.5) | Ratio | Error (r =2) | Ratio
60 | 3.0722 x10~? 30,39 | 87498 x1079 o7 4q | 32743 x1078 96.59
120 | 1.0109 x10710 4157 | 31882 x10710 3095 | 1-2314 x1079 99 74
240 | 3.2026 x10~1'2 5100 | 1054 x10~ 1 apqq | 414 x10711 31.03
480 | 6.28 x10714 3.025 x10~13 1.2965 x10~'2
n | Error (r =1) | Deterioration | Error (r = 1.5) | Deterioration | Error (r = 2)
factor factor
60 | 3.0722 x107° 2.85 8.7498 x107° 10.66 3.2743 x1078
120 | 1.0109 x10~10 3.15 3.1882 x 10710 12.18 1.2314 x1079
240 | 3.2026 x10~12 3.29 1.054 <10~ 12.93 4.14 x10~H
480 | 6.28 x10714 4.82 3.025 x10~13 20.64 1.2965 x10~12

Table 6.10: Comparison of error behaviours for fixed and variable stepsizes for problem E5
using Dormand and Prince. We expect the ratio to be about 32. The theoretical values for the

deterioration factor are F'(1.5) = 3.3253 and F'(2) = 13.2063.

6.1 Non-stiff methods 129

As we can see from the tables, both methods produce a ratio of approximately 32 when the
stepsize is doubled. This indicates that our variable stepsize implementation is maintaining the
correct order. The few ratios that diverge significantly from 32 are due to round off error in the
smaller step-sizes.

The deterioration factors for the Runge—Kutta method are very close to the theoretical values
predicted by F(r), however the deterioration factors for the ARK method are much better than
predicted. For r = 1.5 this factor is approximately 3, for r = 2 this factor is approximately
11. This can be interpreted to mean that changing stepsize does not add additional errors to
the computation, but rather that there can even be a cancellation of some of the accumulated

truncation error under stepsize change.

6.1.3 Variable stepsize

In practice, unless it is required by the problem, most ordinary differential equations are solved
using a variable stepsize code. This is because parts of the solution can be very smooth, hence a
large stepsize is appropriate, while other parts can change rapidly, requiring a small stepsize. It is
therefore important to see how well our methods compare in a variable stepsize implementation.

We have compared our special ‘fifth’ order ARK method given in (4.1) with the Dormand
and Prince method given in (6.1). They were tested on the DETest problem set, with many
different tolerances, tol = 107%,i = 3,..,12. The results for the final problem in each class
are plotted in Figure 6.6. The number of function evaluations has been plotted against the
error. Function evaluations have been chosen as it was felt that etime is an unreliable measure
of work done on shared computers, and flops, while giving the same information as function
evaluations, are more difficult to measure.

As we can see, these results are promising, although the Dormand and Prince method gives
slightly better results. This is possibly, in part, due to the manner in which the error estimator
for the ARK method was implemented. The stepsize was kept constant over two steps, and then
the error estimated at the end of two steps. This has two disadvantages. First, if the error is
too large in a step, two steps need to be repeated. Also, it is possible that keeping the stepsize
constant over two steps is restricting the growth rate of the stepsize, thereby requiring more

steps to finish the integration.

130

Numerical Experiments

AS B5
‘ ! ! ! !
10* —
N
N
> ~
N
N
N
| “ .
] :
3 s N
5 B »
3 5 °
5 = 0% AN 1
- AY
\
102 L L L L L L
1072 107"° 1078 107° 107 107" 107" 1078 107 107 1072
lErrorll lIErrorll
D5
cs T . T ! :
N
N N
N N
N N
N N
N
o 10t F S g
10° N J 2 N
@ N 3 N N
g N < N
8 N S N
S ™ S S
c ~ e N
] ~
s 10° 1 RN
102 .))) <
10712 10710 1078 107® 107 1072 10710 107 107° 107 1072
lIErrorll lErrorll
E5
10° - N 1
P
3
g
3
c N
5 N
° ~
102 L L L b
107" 107"2 107" 107 107 107
lIErrorll

Figure 6.6: Comparison between RK56 (—-) and ARK45 (—) using variable stepsize for a

selection of the DETest problems.

6.1 Non-stiff methods 131

6.1.4 DDEs

Solving DDEs requires the use of a good quality interpolator in order to calculate the lag
term. One of the main advantages of ARK methods is the ability to interpolate without any
additional function evaluations being required. This set of experiments allows us to test not
only the method itself, but the interpolator as well.

Again, we have compared our special ‘fifth’ order ARK method given in (4.1) with the
Dormand and Prince method given in (6.1). The interpolator used for the ARK method in
these experiments is discussed in section 4.3. The interpolator used for the Dormand and Prince

method has been taken from [55]. The coefficients are

NG L
Ba() = 0,

e) =€~ 27 53——54‘11;2,
bole) = €50 — 20+ 6L

The methods were tested on a variety of delay differential equations using variable stepsize, with
varying tolerances, tol = 10,7 = 3,...,13. The details of these equations are given in section
A.3. The results from these experiments are given in Figure 6.7.

The results are very favourable. The ARK method has delivered results which are better
than the Dormand and Prince method on three out of the six problems, and worse results on
only one. We can also see, for this method, that the order has not deteriorated, and it is still

giving order 5 performance.

132

Numerical Experiments

103 6 |
103.4 L

0

3

g

o

c

S

3

S

- 103.2 L
10°

107"

10*
103.5 L

@

©

g

3

c

S

5

2

3
10°
102.5 L
1035 L

©

©

>

H

c

S

5

5 103 L
1025 L

Figure 6.7:

Equation 1.1.6
T

Equation 1.1.10
T

1038 L

1038 |

1034 L

1032 L

function evals

\ 1028 -

1072 107" 107®

lIFrrorll

L 1026

107"

lErrorll

Equation 1.4.1

Equation 1.1.12
T

10t +

1035

function evals

100 +

107" 107" 1078

lIFrrorll

1078

107 107 107

lErrorll

Equation 1.4.9

Equation 1.4.6
T

1035 |

function evals

10710 107

lErrorll

10714 10712

selection of DDE problems.

Comparison between

RK56 (

) and ARK45 (—) using variable

107 107 1072

lIErrorll

stepsize for a

6.2 Stiff methods 133

6.2 Stiff methods

Stiff methods are much more difficult to implement than many non-stiff methods as they are,
by necessity, implicit. Newton iterations are now needed to solve for the stage values. As with
the explicit methods, we are interested in comparing the stiff methods using fixed stepsize. This
allows us to compare the basic methods, and not any design choices or error estimators. To do
this we compared the best of the third and fourth order stiff ARK methods (DIARK), i.e. (5.20)
and (5.33), and third and fourth order diagonally implicit Runge-Kutta methods (DIRK). The
tableaux for the DIRK methods are

A A
S(1+) F(1—=N) A

9

1 2(—6A2 +16A —1) 1(6A2 —20A+5) A

2(—6A2 +16A — 1) 1(6A2 —20A+5) A

where A = 0.4358665215, and

101

4 4

3] 1 1

4 2 4

nlowr 1 1

20 50 25 4

1| 371 137 15 1

2 1360 2720 544 4

1] 2 _4 12 _s 1
24 48 16 12 4
25 49 125 _8 1
24 48 16 12 4

The problems used for this comparison are the Oregonator problem, Prothero-Robinson problem
and the HIRES problem. Readers unfamiliar with these problems are referred to A.2. The results
from these experiments are presented in Figure 6.8.

There is little difference between the performances of the ARK and DIRK methods for the
Oregonator and HIRES problems. However, for the Prothero-Robinson problem we see a definite
order reduction for all methods. The Prothero-Robinson problem is very stiff. Due to this the
order of the method has decreased to the stage order. This gives the ARK methods a big
advantage. The DIRK methods are only giving order 1 performance, but the ARK methods are

giving order 2 performance. This can be seen from the slope of the graphs. For small stepsizes

134 Numerical Experiments

HIRES Problem

Prothero-Robinson Problem

bz 107 T
x A
7z I3
107 R
e i
. __--Q
x7 9 o .
. p _- %
e Sl /"/e T RN
s < o 7 . N
. . _ - %~ N
g g - -
= X 2 -8 --° x=="
H 8 . . = 10°%F_-- o
g 107 e e 8 i x=7
S} L7 7 5 -
. /
x i
g .
. .
P .
. g
. .
1070+ <7 o
. g
g .
.7 e 107 b
. .
. P
X L@
10427»*# I L I I L
1072 h 107 1071 107 h 1070% 10°
Oregontator Problem
1072

107

llerrorll

107

Figure 6.8: Comparison between DIARK3 (---), DIARK4 (—), DIRK3 (x) and DIRK4 (o) on

a selection of stiff problems.

this particularly makes a big difference. This order reduction reinforces our original motivation

to explore only low order diagonally implicit ARK methods.

CHAPTER 7

Conclusions

A Mathematician is a machine for turning coffee into theorems.

PauL ErRDOS

ARK methods are a special class of general linear methods which retain many of the prop-
erties of traditional Runge-Kutta methods, but with some advantages. The main aim of this
thesis was to explore ARK methods and to see how these methods compare with traditional
Runge-Kutta methods.

The multi-value nature of ARK methods allows a stage order of 2. The advantage of this
is that we are able to interpolate or obtain an error estimate at little extra cost. For higher
orders, this also means we are able to obtain methods with less stages than for a traditional
Runge-Kutta method. The details of third and fourth order methods have been extensively
explored. The majority of these ideas will carry forward naturally to higher orders.

A special class of ‘fifth’ order methods has been explored. This special class of methods is
fourth order with five stages, but have had their free parameters chosen in such a way to ensure
we have zero error coefficients for the fifth order trees. Although the method exhibits fifth order
behaviour for fixed stepsize, the method experiences a reduction in order for variable h, as the
fifth order annihilation conditions have not been satisfied. We have shown it is possible, by
implementing the method in the correct way, to retain order five behaviour, even for variable h.
Numerical optimisation has led to a specific choice of the free parameters which gives competitive
performance.

Low order ARK methods for solving stiff problems have been considered. We have chosen

to consider only methods which are diagonally implicit to ensure computational costs are kept

136 Conclusions

as low as possible. We have also restricted ourselves to low order methods as it is likely they
will suffer from some order reduction. Methods of order 3 and 4 have been explored, along with
the corresponding starting methods.

In general, the results from our numerical experiments are promising. Our special ‘fifth’
order methods have retained their order for both fixed and variable stepsize. We have also seen
that the deterioration in the error when changing stepsize is much better than theoretically
predicted. For fixed stepsize, the special ARK method compares well against Dormand and
Prince. Unfortunately this is not the case for variable stepsize. This is possibly owing, in part,
to the manner in which the error estimator for the ARK method was implemented. The stepsize
was kept constant over two steps, and then the error estimated at the end of two steps. This
has two disadvantages. First, if the error is too large in a step, two steps need to be repeated.
Also, it is possible that keeping the stepsize constant over two steps is restricting the growth
rate of the stepsize, meaning it requires more steps to finish the integration.

Unfortunately our fourth order method did not compare as favourably for the fixed stepsize
experiments. Although it gave good results, the performance of the fourth order, five stage
Runge-Kutta method was better on most problems. The ARK method was chosen for its simple
coefficients. It is hoped that if these experiments were repeated with an optimised method the
results might be more competitive.

As expected, the ARK methods performed very well on DDEs. It was expected that the
higher stage order, and hence ability to interpolate cheaply, would make these methods particu-
larly suited for solving this type of problem. When our ‘fifth’ order ARK method was compared
with Dormand and Prince, the ARK method gave better performance on the large majority of
problems used for testing. Using an interpolator which has an order less than that of the method
does not appear to have adversely affected its performance.

Our diagonally implicit ARK methods also compared very favourably with traditional DIRK
methods. For moderately stiff problems there is little difference between the performance of
ARK and DIRK methods. For very stiff problems the ARK methods perform much better. As
is expected, on very stiff problems we experience an order reduction to the stage order of the
method. This means the DIRK methods only give order 1 performance, but the ARK methods
give order 2 performance.

There are still many ideas we would like to explore. The most obvious of these is the extension
of explicit ARK methods to higher orders. A stage order of 2 means we can find ARK methods

with less stages than a traditional Runge-Kutta method of the same order.

6.2 Stiff methods 137

There are still many improvements that could be made to the code developed for this thesis.
One possible change is the way in which the error is estimated. It is probable that estimating
the error after each step, rather than every two steps, will lead to more efficient code. The
stepsize controller we have implemented is the traditional dead-beat controller. Although we
have implemented this in such a way as to try and limit the number of unnecessary rejections, it
is thought that the proportional integral controller, which has been successfully used by Runge-
Kutta methods, will lead to more stable stepsize control. Given how successful our results were
for DDEs, we would like to extend the code written to solve DDEs to work for problems with
variable delay and state dependent delays. We would like to extend the code developed for

solving stiff differential equations to allow variable stepsize.

APPENDIX A

Test Problems

The mathematician may be compared to a designer of garments, who is utterly
oblivious of the creatures whom his garments may fit. To be sure, his art originated
in the necessity for clothing such creatures, but this was long ago; to this day a shape
will occasionally appear which will fit into the garment as if the garment had been
made for it. Then there is no end of surprise and delight.

DANTZIG

The test problems used in this thesis are well known problems used for testing initial value
problem solvers. These have been divided into non-stiff and stiff problems. The non-stiff prob-
lems come from the DETest problem set [42]. The stiff problems come from a variety of sources.

A selection of DDE problems are also included. These come from [57].

A.1 DETest problems

Class A: Single equations

A1: (the negative exponential).

140

Test Problems

A2: (a special case of the Riccati equation).

(solution: y =1/vz +C,C =1)
A3: (an oscillatory problem).
y' = ycosux, y(0) =1
(solution: y = Ces"® C = 1)

A4: (alogistic curve).

v=q(-5) o=

20
20
solution: y = ————,C =1
(solution: ¥ = 4= ge)
A5: (a spiral curve).
r_Yy—z
= 5 0 - 4
v=7o YO

(solution in polar co-ordinates: 7 = Ce™?, C' = 4¢™/?)

Class B: Small systems

B1: (the growth of two conflicting populations).

vi = 2(y1 — y1y2), y1(0) =1,
vy = —(y2—y1y2), y2(0) = 3.
B2: (a linear chemical reaction).
o= -+ oy, y1(0) = 2,
vy = Y1 —2y2+ys, y2(0) = 0,
Yy = Y2 — Y3, y3(0) =1
B3: (a nonlinear chemical reaction).
Yy = 1, y1(0) =1,
¥y = Y1, y2(0) = 0,
Yy = Y3, y3(0) = 0.

(A.2)

(A.3)

(A4)

(A.6)

(A7)

A.1 DETest problems

141

B4: (the integral surface of a torus).

B5: (Euler equations of motion for a rigid body without external forces).

Class C: Moderate systems

C1: (a radioactive decay chain).

Y
Yh

Yo

/
L Y10

Y1ys

C2: (another radioactive decay chain).

i -1
Yh 1
v |

Yo

yio 0

= —yp— ———,
VUi + 3
_ Y1 — Y2y3
VUi + U3
_ 5
VUi + 3
Yi = Y2u3,
Yy = —y1ys,
ys = —.5lyiys,
1 0]
1 -1
1 -1
0 10
0
9
2 -3
8 -9
9 0

C3: (derived from a parabolic differential equation).

i
Yh

Y9

Y10

1 0
-2 1

1 -2 1

1 -2

y1(0) =3,
y2(0) =0,
y3(0) =0

y1(0)
y2(0)
y3(0)

Y2
Y3

Y9

Y10

Y1
Y2

Y9

Y10

0

I
—_

1.

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

142 Test Problems

C4: The same as C3 except with 51 equations.
C5: (The five body problem).

The five body problem models the motion of the 5 outer planets around the sun, assumed
in this model to contain the four inner planets. The 3 spatial coordinates of the jth body are

Y15, Y25, Y3; where j = 1,2,...,5. Each satisfy the second order differential equation

5
Yii Yik — Yii "
yi; = ko | —(mo +mj)—g + ka [71 3 o _%3] , (A.14)
r? ds T

J k=1 ik k
k#j

where
3

3
7”]2- = nyj and d%j = Z(y”‘? — yij)2, k,j=1,..,5.
i=1 i=1

and the physical constants are

ko = 2.95912208286
mg = 1.00000597682

(gravitational constant)

(mass of the sun and the 4 inner planets)
mi1 = 0.00095478610 (Jupiter)
mg = 0.00028558373 (Saturn)
mg = 0.00004372731 (

(
(

my = 0.00005177591

Uranus)
Neptune)

ms = 0.00000277777 (Pluto).

When this system of equations is rewritten using first order differential equations the dependent

vector has 30 components with initial values

yin = 34294741518, yy = 3.3538695971, w3 = 1.3549401715,
), = —0.5571605704, yh, = 0.5056967832, yh, = 0.2305785439,

y12 = 6.6414554255, ysy = 5.9715695787, y3» = 2.1823149972,
)y = —0.4155707763, yhy = 0.3656827228, yh, = 0.1691432132,
yis = 112630437207, yp3 = 14.6952576794, ys3 = 6.2796052506,
Yy = —0.3253256691, yhy = 0.1897060219, yhs = 0.0877265322,

y14 =—30.1552268759, yoa = 1.6569996640, Y34 = 1.4378575272,
Y1, = —0.0240476254, yhy =—0.2876595326, ys, =—0.1172195431,

y15 =—21.1238353380, yo5 = 28.4465098142, Y35 = 15.3882659679,
yis = —0.1768607531, yhs =—0.2163934530, yss =—0.0148647893.

A.1 DETest problems 143
Class D: Orbit equations
yi = Y3, yl(o) =1- €,
Yo = Ya, y2(0) =0,
(A.15)
Y1
?/:,), =, a3 y3(0) =0,
(i +u3)2
—Y2 1+e€
yfx TN y4(0) = 1
(yi + y3)2 €
D1: Equation (A.15) with e = .1.
D2: Equation (A.15) with e = .3.
D3: Equation (A.15) with € = .5.
D4: Equation (A.15) with e = .7.
D5: Equation (A.15) with e = .9.

Class E: Higher order equations

E1: (derived from Bessel’s equation of order

% with the origin shifted one unit to the left)

Yy = Y2, y1(0) = J%(l) = .6713967071418030,
1 (A.16)
vy o= g [— 1) = 2 45(0) = J4 (1) = .09540051444747446.
4(x +1)2 z+1 2
E2: (derived from Van der Pol’s equation).
1=) 0) =2,
v Y2 y1(0) (A17)
vy = (L—y)y2— w1, y2(0) = 0.
E3: (derived from Duffing’s equation)
no= e y1(0) =0,
y? (A.18)
Yy = El — 1 + 25in(2.78535z), y2(0) =0
E4: (derived from the falling body equation)
A 0) = 30,
Y Y2 41(0) (A.19)
vy, = 032 dg3, y2(0) = 0.
E5: (derived from a linear pursuit equation)
yll = Y2, Y1 (O) - 07
(A.20)
V143
vy = o= y2(0) =0

(25 —x)’

144 Test Problems

A.2 Stiff problems

A.2.1 Oregonator

The ‘Oregantor’ is the chemical reaction between H BrOy, Br~ and Ce(IV) [34]. The system

of equations is

Y o= T7.27(yo 4+ y1(1 — 8.375 x 10701 — 1)),
b= (s — (L)

V2. = g\ yv);

ys = 0.161(y1 — ya),

with initial condition y(0) = (1,2, 3).

A.2.2 HIRES

This problem was first proposed by Schéfer [62] in 1975. It originates from plant physiology
and describes how light is involved in morphogenesis. More specifically, it explains the ‘High
Irradiance Responses’ (HIRES) of photomorphogenesis on the basis of phytochrome, by means
of a chemical reaction involving eight reactants.

The initial value problem is given by

% =fly) y(0) = yo,

where

—1.71y; 4 0.43y9 + 8.32y3 + 0.0007
1.71y; — 8.75yq

—10.03y3 + 0.43y4 + 0.035ys

) = 8.32ys + 1.71ys — 1.12y, (A21)

—1.745y5 + 0.43ygs + 0.43y7

—280ysys + 0.69y4 + 1.71ys — 0.43yg + 0.69y7

280y6y8 -1 .81y7

—280y6ys + 1.81y7
and

yo = (1,0,0,0,0,0,0,0.0057)7 .

A.3 Delay differential equation problems 145

A.2.3 Prothero-Robinson problem

The Prothero and Robinson problem [58] takes the form

y'(z) = Ly — ¢(2)) + ¢'(z), yo = y(z0) = d(0),
where Re(L) < 0. It has the exact solution y(x) = ¢(x). We choose ¢(x) = sin(z) and L = —10°,

which makes the problem stiff.

A.3 Delay differential equation problems

These problems have been taken from [57]. The numbering of the equations is the same as in

this paper.

A.3.1 Equation 1.1.6

y(t) = —yt-1)+y(t—2) -yt -3)yt—4), t>0,
Y(it) = 1, t <0, (A.22)
Y(0) = o.

—t, 0<t<,
2 —t— 1 1<t<2,
y(t) =9 -3+ 12 -1, 2<t<3,
St — 23— 2+t — B 3<t <4,
—agtt At -+ A — 24 + 2 4 <t <5

This problem originally comes from [56]. It has a zeroth-order discontinuity at ¢ = 0 and an
n-th order discontinuity at ¢t = {4n — 3,4n — 2,4n — 1,4n} for n > 1. The equation is linear up

to ¢ = 4 and non-linear beyond.

A.3.2 Equation 1.1.10

y(t) = yt—my), t>0,
0 t< -3,

(A.23)
Y(t) = _2 _%§t<07

—1 t=

146 Test Problems

The analytical solution is

_17 0 <t< %7

—exp(m — 2t), F<t<m,

y(t) = .
—exp(—t), T <t< S,

| —exp (=37 + L(exp(3m —2t) — 1)), 3 <t<6.

This problem originally comes from [64]. There is an n-th order discontinuity at ¢ = { (Qngl)ﬂ , mr} .

The problem also has a discontinuous initial function.

A.3.3 Equation 1.1.12

y't) = y(t)+ylt-1), t>0,

0, 1<t < -4, (A.24)
Y(t) = N °

1, —3<t<0.

The analytical solution is

2
exp(t), 0<t<3,
crexp(t) — 1, % <t<1,
_ 5
y(t) = texp(t — 1)+ caexp(t), 1<t <3,
1+ citexp(t — 1) + czexp(?), 2<t<2,
{ (%t2 —t)exp(t —2) 4+ cotexp(t — 1) + cgexp(t), 2 <t < %,
where ¢; =1+ exp(—2), co=c1—2¢ ', cs=2e (1 —c1)+co—exp(—32) and cs = e 2 + ¢35+

2(c; — ca)e™ L.
This problem originally comes from [45]. It is a version of the linear stability DDE test
equation, but with a discontinuous initial function. It has an (n + 1)-st order discontinuity at

tzn,n—l—%.

A.3.4 Equation 1.4.1

yi(t) = yl(t - 1) + yQ(t)v t >0,
L) = t)—y(t—1), t>0,
Ya(t) yit) -yt -1), t= (A.25)
Yl (t) = eta t S 5
Y2(0) = 1—¢!
The analytical solution is
Y1 (t) = eta t >0,

yo(t) = e —exp(t—1), t>0

A.3 Delay differential equation problems 147

This problem originally comes from [56]. This system is equivalent to solving a scalar integro-

differential equation.

A.3.5 Equation 1.4.6

i) = wa(t), t>0,
yo(t) = —n() —w(t—1), t>0, (A.26)
Y(t) = [0,sin(27t)]7T, t<0

The analytical solution is

L (si — <t<
n(t) = — (sin(27t) — 27 sin(t)), 0<t<1,
2 (3(t+ 1) sin(t — 1) — sin(t) + ;=4 (cos(2mt) — cos(t — 1))), 1<t <2,
" (2 cos(mt)? — cos(t) — 1), 0<t<1,
y2(t) = (s 2 sin(t—1)—4n sin(2nt)
f—(sin(t — 1) + (t + 1) cos(t — 1) — 2cos(t) + v), 1<t<2.

This system is equivalent to the second-order scalar DDE which appears in [2]. It has a first
order discontinuity at ¢ = 0 and a (n + 2)-nd order discontinuity at t = n in y;(¢) for n > 1. It
also has a first-order discontinuity at ¢ = 0 and a (n + 1)-st order discontinuity at ¢ = n in ya(t)

for n > 1.

A.3.6 Equation 1.4.9

n(t) = ys(t), t>0,
ya(t) = wa(t), t >0,
ys(t) = —2mya(t) + (1 +m?)(=1)"p(t —), t=0,
GO = =) + (1)) (=), 120, o)
Yi(t) = sin(t)cos(mt), t <0,
Yo(t) = cos(t)sin(mt), t<0,
Y3(t) = cos(t)cos(mt) — msin(t) sin(mt), t <0,
Yi(t) = mecos(t)cos(mt) — sin(t) sin(mt), t <0,
where we have chosen m = 2. The analytical solution is
y1(t) = sin(t) cos(mt), t>0,
y2(t) = cos(t)sin(mt), t >0,
ys(t) = cos(t)cos(mt) — msin(t)sin(mt), t >0,
ya(t) = mecos(t) cos(mt) — sin(t) sin(mt), t > 0.

This system of equations originally appears in [45]. The analytical solution is a continuation of

the initial function.

References

1]

The simplest schoolboy is now familiar with facts for which Archimedes
would have sacrificed his life.

ERNEST RENAN

F. Bashforth and J. C. Adams, An attempt to Test the Theories of Capillary Action
by Comparing the Theoretical and Measured Forms of Drops of Fluid, with an Fx-
planation of the Method of Integration Employed in Constructing the Tables which

Give the Theoretical Forms of Such Drops, Cambridge University Press, Cambridge
(1883).

H. T. Banks and F. Kappel, Spline Approximations for Functional Diff. Eqns., J.
Differential Equations 34 (1979), 496-522.

J. C. Butcher, Coefficients for the study of Runge—Kutta integration processes, J.
Aust. Math. Soc. 3 (1963), 185-201.

J. C. Butcher, On the convergence of numerical solutions of ordinary differential

equations, Math. Comp. 20 (1966), 1-10.

J. C. Butcher, An algebraic theory of integration methods, Math. Comp. 26 (1972),
79-106.

J. C. Butcher, The numerical analysis of ordinary differential equations: Runge—

Kutta and general linear methods, John Wiley & Sons, Chichester, New York, 1987.

150

References

[7]

[15]

[16]

[17]

[20]

J. C. Butcher, Diagonally implicit multistage integration methods, Appl. Numer.
Math. 11 (1993), 347-363.

J. C. Butcher, An introduction to DIMSIMs, Comput. Appl. Math. 14 (1995), 59-72.
J. C. Butcher, On fifth order Runge—Kutta methods, BIT 35, (1995), 202-209.

J. C. Butcher, An introduction to “Almost Runge—Kutta” methods, Appl. Numer.
Math., 24 (1997), 331-342.

J. C. Butcher, ARK methods up to order five, Numer. Algorithms, 17 (1998), 193—
221.

J. C. Butcher, Order and effective order, Appl. Numer. Math., 28 (1998), 179-191.

J. C. Butcher, Numerical Methods for Ordinary Differential Equations, J. Wiley,
Chichester, 2003.

J. C. Butcher and T. M. H. Chan, Multi-step zero approximations for stepsize control,
Appl. Numer. Math., 34 (2000), 167-177.

J. C. Butcher and D. J. L. Chen, ESIRK methods and variable stepsize, Appl. Numer.
Math., 28 (1998), 193-207.

J. C. Butcher and M. Diamantakis, DESIRE: diagonally extended singly implicit
Runge—Kutta effective order methods, Numer. Algorithms 17 (1998), 121-145.

J. C. Butcher and N. Moir, FEzperiments with a new fifth order method, Numer.
Algorithms, 33 (2003), 137-151.

J. C. Butcher and Z. Jackiewicz, Diagonally implicit general linear methods for or-

dinary differential equations, BIT 33 (1993), 452-472.

J. C. Butcher and Z. Jackiewicz, Construction of diagonally implicit general linear
methods of type 1 and 2 for ordinary differential equations, Appl. Numer. Math., 21
(1996), 385-415.

J. C. Butcher and N. Rattenbury, ARK methods for stiff problems, Appl. Numer.
Math., 53 (2005), 165-181.

References 151

[21]

22]

[27]

[28]

J. C. Butcher and G. Wanner, Runge—Kutta methods: some historical notes, Appl.
Numer. Math. 22 (1996), 113-151.

J. C. Butcher and W. M. Wright, A transformation relating explicit and diagonally-
implicit general linear methods, Appl. Numer. Math. 44 (2003), 313-327.

J. C. Butcher and W. M. Wright, The construction of practical general linear meth-
ods, BIT 43 (2003), 695-721.

G. D. Byrne and R. J. Lambert, Pseudo Runge—Kutta methods involving two points,
J. Assoc. Comput. Mach. 13 (1966), 114-123.

T. M. Chan, Algebraic structures for the analysis of numerical methods, Ph.D thesis,
The University of Auckland, Department of Mathematics, 1998.

P. Chartier, The Potential of Parallel Multi-Value Methods for the Simulation of
Large Real-life Problems, CWI Quart., 11(1) (1998), 7-32.

C. F. Curtiss and J. O. Hirschfelder, Integration of stiff equations, Proc. Nat. Acad.
Sci., 38 (1952), 235-243.

G. Dahlquist, Convergence and stability in the numerical integration of ordinary

differential equations, Math. Scand., 4 (1956), 33-53.

J. R. Dormand and P. J. Prince, A family of embedded Runge—Kutta formulae, J.
Comput. Appl. Math., 6 (1980), 19-26.

R. D. Driver, Ordinary and Delay Differential Equations, Springer-Verlag, New York
(1977).

L. Euler, De integratione aequationum differentialium per approximationem, In
Opera Omnia, 1st series, Vol. 11, Institutiones Calculi Integralis, Teubner, Leipzig

and Berlin, 424-434, (1913).

E. Fehlberg, Classical fifth, sixzth, seventh and eighth order Runge—Kutta formulas
with stepsize control, NASA TR R-287, (1968).

E. Fehlberg, Klassiche Runge—Kutta-Formeln finfter und siebenter Ordnung mit
Schrittweiten-Kontrolle, Computing, 4 (1969), 93-106.

152

References

[34]

[39]

[40]

[41]

[44]

[45]

[46]

J. R. Field and R. M. Noyes, Oscillations in chemical systems. IV. Limit cycle
behaviour in a model of a real chemical reaction, J. Chem. Physics, 60 (1974), 1877-
1884.

C. W. Gear, Numerical initial value problems in ordinary differential equations,

Prentice-Hall, (1971).

C. W. Gear, The Automatic Integration of Ordinary Differential Equations, Com-
mun. of ACM, 14 (1971), 176-179.

C. W. Gear, Runge—Kutta starters for multistep methods, ACM. Trans. Math. Soft-
ware, 6 (1980), 263-279.

E. Hairer, S. P. Ngrsett and G. Wanner, Solving Ordinary Differential Equations I:
Non-stiff problems, Springer-Verlag, (2000).

E. Hairer and G. Wanner, Solving Ordinary Differential Equations I1I: Stiff and Dif-

ferential Algebraic Equations, Springer-Verlag, (1991).

K. Heun, Neue Methoden zur approximativen Integration der Differentialgleichungen

einer unabhdngigen Verdnderlichen, Z. Math. Phys., 45 (1900), 23-38.

R. Hiigel, Numerischer Vergleich von Programmen zur Losung von Delay Gleichun-

gen, 5/85 N, Westfalische Wilhelms-Universitat, Miinxter, West Germany (1985).

T. E. Hull, W. H. Enright, B. M. Fellen and A. E. Sedgwick, Comparing numerical
methods for ordinary differential equations, STAM J. Numer. Anal, 9 (1972), 603-637.

A. Huta, Une amélioration de la méthode de RungeKutta-Nystrom pour la résolution
numérique des équations différentielles du premier ordre, Acta. Fac. Nat. Univ.

Comenian. Math., 1 (1956), 201-224.

A. Huta, Contribution ¢ la formule de siziéme ordre dans la méthode de Runge—

Kutta-Nystrom, Acta Fac. Nat. Univ. Comenian. Math., 2 (1957), 21-24.

K. Ito, H. T. Tran and A. Manitius, A Fully-Discrete Spectral Method for Delay Diff.
Eqgns., STAM J. Numer. Anal. 28 (1991), 1121-1140.

Z. Jackiewicz, R. Renaut and A. Feldstein, Two-step Runge—Kutta methods, STAM
J. Numer. Anal. 28 (1991), 1165-1182.

References 153

[47]

[53]

[54]

[59]

U. Kirchgraber, Multistep Methods are Essentially One-step Methods, Numer. Math.,
48 (1986), 85-90.

W. Kutta, Beitrag zur naherungsweisen Integration totaler Differentialgleichungen,

Z. Math. Phys., 46 (1901), 435-453.

R. H. Merson, An operational method for the study of integration processes, Proc.

Symp. Data Processing, (1957), 1-25.

W. E. Milne, A note on the numerical integration of differential equations, J. Res.

Nat. Bur. Stand., 43 (1949), 537-542.

N. Moir, ARK methods: some recent developments, J. Comput. Appl. Math., to

appear.

F. R. Moulton, New Methods in FExterior Ballistics, University of Chicago Press
(1926).

A. Nordseick, On numerical integration of ordinary differential equations, Math.

Comp., 16 (1962), 22-49.

E. J. Nystrom, Uber die numerische Integration von Differentialgleichungen, Acta

Coc. Sci. Fenn., 50 (1925), 1-54.

B. Owren and M. Zennaro, Derivation of efficient, continuous, explicit Runge—Kutta

methods, STAM J. Sci. Statist. Comput., 13 (1992), 1488-1501.

C. A. H. Paul, Concerning Fxplicit Runge—Kutta Techniques for Delay Diff. Eqns.,
MSc Thesis, Math. Dept., Manchester University (1989).

C. A. H. Paul, A Test Set of Functional Differential Equations, Numerical Analysis
Report No. 243, The University of Manchester (1994).

A. Prothero and A. Robinson, On the stability and accuracy of one-step methods
for solving stiff systems of ordinary differential equations, Math. Comp., 28 (1974),
145-162.

L. F. Richardson, The deferred approach to the limit, Philos. Trans. Roy. Soc. London,
Ser. A, 299-361 (1927).

154

References

[60]

[61]

[62]

[63]

[64]

H. H. Robertson, The solution of a set of reaction rate equations, In Numerical

Analysis, An Introduction, J. Walsh (Ed.), Academ. Press, (1966), 178-182.

C. Runge, Uber die numerische Auflosung von Differentialgleichungen, Math. Ann.,
46 (1895), 167-178.

E. Schéfer, A new approach to explain the ‘high irradiance responses’ of photomor-

phogenesis on the basis of phytochrome, J. Math. Biol., 2 (1975), 41-56.

D. Stoffer, General linear methods: connection to one step methods and invariant

curves, Numer. Math., 64 (1993), 395-407.

L. Tavernini, CTMS User Guide, Math. Div., Comp. Sci. and Systems Design, Univ.
of Texas at San Antonio, Texas (1987).

B. van der Pol, On relazation-oscillations, Philos. Mag. Ser. 7, 2 (1926), 978-992.

J. H. Verner, Explicit Runge—Kutta methods with estimates of the local truncation

error, STAM J. Numer. Anal., 15 (1978), 772-790.

W. M. Wright, General linear methods with inherent Runge—Kutta stability, PhD
thesis, The University of Auckland, Department of Mathematics, 2002.

W. M. Wright, Ezplicit general linear methods with inherent Runge—Kutta stability,
Numer. Algorithms, 31 (2002), 381-399.

Index

A-stability, 13
Adams methods, 6, 24
Anglin, W. S.; 1

annihilation conditions, 36, 37

BDF methods, 6, 25
Butcher, J. C., 29

C(2) condition, 36

composition of elementary weight functions,
21

consistency, 11

convergence, 12

D(1) condition, 36

Dantzig, 133

DDEs, see delay differential equations

delay differential equations, 5, 125

density of a tree, 14

derivation of methods, 43, 51, 60, 67, 100,
103

derivative operator, 21

DETest, 109, 117, 123, 133

DIMSIMs, 26

Dormand and Prince, 111, 123, 125

FE-polynomial, 98, 101
elementary differentials, 18
elementary weights, 19

Erdos, P., 129

155

error estimators, 7, 82
Euler’s method, 6

existence and uniqueness, 2

general linear methods, 9

generating functions, 22, 37

Hermite interpolation, 47

HIRES, 138

Inherent Runge-Kutta stability, 29

initial value problem, 2

interpolation, 39, 46, 57, 63, 70, 81, 125
Hermite, 47

IRKS methods, 29

L-stability, 13

linear multistep methods, 6
Adams methods, 6, 24
as general linear methods, 23
BDF methods, 6, 25

Lipschitz condition, 2

one-sided, 4

optimisation, 83

order, 16

order conditions, 36, 43, 49, 60, 66, 99, 103
order of a tree, 14

ordinary differential equations, 2

Oregonator, 138

156 Index

Plato, 9

Polya, G., 73
population growth, 5
preconsistency, 10

Prothero-Robinson problem, 139

Renan, Ernest, 143
RK stability, 38, 39, 58
Runge-Kutta methods, 7

as general linear methods, 23

simplifying assumptions, 36
stability, 11
A-stability, 13
L-stability, 13
stability function, 12
stability matrix, 12
stability region, 12
starting procedures, 16, 35, 105
stiff ARK methods, 93
stiff differential equations, 3, 93

symmetry of a tree, 16

trees, 14
density, 14
elementary differentials, 18
elementary weights, 19
order, 14

symmetry, 16
variable stepsize, 36, 80, 123

Watson, Thomas, 109
Wright, W. M., 29

