Implementation of General Linear Methods for

Stiff Ordinary Differential Equations

Shirley Jun Ying Huang

A thesis submitted for the degree of

Doctor of Philosophy

Department of Mathematics
The University of Auckland

2005

i

Abstract

A new type of general linear method for the numerical solution of stiff differen-
tial equations has been discovered recently. These methods are characterised by a
property known as “inherent Runge-Kutta stability”. This property implies that
the stability matrix has only a single non-zero eigenvalue and that this eigenvalue
is a rational approximation to the exponential function. This rational approxima-
tion is just like the stability function of a Runge-Kutta method. The theoretical
properties of the new methods, such as stability and order, are surveyed. Also
constructing practical general linear methods of this type for stiff problems is

discussed.

The emphasis of the thesis is on implementation and numerical experiments.
We have investigated several implementation questions such as starting methods,
prediction of the stage values, an efficient iteration scheme, truncation error es-
timation and stepsize control. For each of these questions, numerical tests have

been carried out.

To investigate a fixed order general linear method, a starting method is needed
to provide the first incoming approximations. It is to be expected that a good
prediction of the initial iteration in the Newton method calculations will reduce
the number of iterations required. Since the LU factorizations are expensive, we
have designed an efficient iteration scheme to reduce the computational cost. A
reliable error estimator gives an optimal stepsize sequence. These implementation

issues are addressed in detail.

il

Three general linear methods of order 2, 3 and 4 are selected as a basis for the
numerical experiments. The numerical results provide evidence that the new
type of general linear method is feasible as the basis for an efficient solver of stiff

ordinary differential equations.

v

Acknowledgements

I would like to thank all the people who have helped me make this thesis possible.

It is not possible to name all here but I will name just a few.

Firstly, T wish to express the most sincere thanks to my supervisor, Prof. John
Butcher, for introducing me to this fascinating and challenging area of research,
for his guidance throughout my doctoral study, for his patience, encouragement,
understanding, friendship and many other aspects. I have benefited not only
from his academic knowledge but also his attitude toward the meaning of life. I

suspect I will never be able to repay him for what he has done for me.

Secondly, I would like to thank my advisor Dr. Robert Chan for his continual

encouragement, friendship and many helpful discussions.

I would also like to record my gratitude to Dr. Allison Heard, Dr. Will Wright,
Dr. Helmut Podhaisky, Mrs Nicolette Rattenbury and Ms Angela Tsai. They
were always there whenever I needed to rehearse for my presentations, discuss
my research and proof-read my thesis. They helped me to improve my English

and gave me numerous useful comments at various stages of writing this thesis.

I am also grateful to Dr. David Chen, Dr. Tina Chan, Dr. Alona Ben-Tal,
Mr. Steffen Schulz, Ms. Jane Lee and Ms. Priscilla Tse for their friendship and
encouragement. I would especially like to acknowledge Dr. Philip Sharp for the

discussions about Fortran programming.

The weekly workshop in numerical analysis at the University of Auckland has

been extremely helpful for me in understanding many important concepts, im-

proving my presentation skills and building my confidence.

It is my pleasure to thank the University of Auckland for offering me a PhD schol-
arship in the first three years of my study, the University of Auckland Research
Office for financial support towards my overseas conference travel, Prof. John
Butcher’s Marsden Fund project funded by the Royal Society of New Zealand
for supporting my overseas conference travel and the New Zealand Institute of
Mathematics & its Applications (NZIMA) Numerical Analysis program for finan-
cial support in the last year of my study and the Mathematics department PhD

student fund for helping me attending New Zealand conferences.

Finally, I express my deep appreciation to my family. I thank my parents, who
have sacrificed so much for my education and have encouraged me towards doc-
toral study. Without their emotional support, I am sure I would not have been
able to finish my study. I would like to especially thank my husband, Dr. Jun Yu,
for his understanding, encouragement and discussions. Finally, I want to express
my heartful thanks to my dear daughter Jessica for giving me the happiness,

encouragement, love and precious time to complete this thesis.

vi

Contents

1 Introduction 1
1.1 Euler method oL 3
1.1.1 Convergence and order 3
1.1.2 Stability 5

1.2 Runge-Kutta methods 7
1.2.1 Stability 10

1.3 Linear multistep methods 14
1.3.1 Consistency, stability and convergence 15

1.4 General linear methods oL 18
1.4.1 Consistency, stability and convergence 21
1.4.2 Orderofaccuracy 23

1.5 Stiff problems 26
1.6 Solving stiff problemso oo L 30

vii

CONTENTS

3

1.7 The cost of using implicit methods 32
A new type of general linear method for stiff problems 35
2.1 DIMSIMs e 36
2.2 A new type of general linear method 40

2.2.1 Choices of coefficients 40

2.2.2 Stabilityo 44

2.2.3 Order conditions L. 45

2.2.4 Inherent Runge-Kutta stability 49
2.3 The choiceof Avalues 53
2.4 Finding coefficients of A, U, B,and V' 57
2.5 Examples of the new type of methods 59
Implementation 67
3.1 TIteration scheme. 0oL 69
3.2 Stage predictorso 78
3.3 Error estimationo Lo Lo 85
3.4 Stepsize control 88
3.5 Starting methods o000l 92
3.6 Interpolation Lo Lo oL 104

CONTENTS

3.7 Test problems

Numerical experiments

4.1 Constant stepsize
4.2 Variable stepsizeo
4.2.1 Effect of the initial stepsize

4.2.2 Effect of € and Tolerance

4.2.3 Testing methods with the Robertson problem

4.3 Performance of the iteration scheme
4.3.1 Effect of the initial stepsize
4.3.2 Effect of € and Tolerance

4.4 Performance of stage predictors

4.5 Performance of interpolations

4.6 Performance of certain methods with Hires problem

4.7 Conclusions

Method coefficients and Fortran programs

5.1 Coefficients of the methods
5.2 Fortrancode.

5.2.1 Main program and problem function

X

CONTENTS

5.2.2 Method 149
5.2.3 Newton iteration 166
Bibliography 170

List of Figures

1.1

1.2

1.3

14

1.5

2.1

3.1

3.2

3.3

3.4

Stability region of explicit Euler method (shaded area). 6
Stability region of implicit Euler method (unshaded area). 6
Stability regions of explicit Runge-Kutta methods. 12
Order of accuracy. 25
Global error. 25
The error constant C' = % — %/\ + 3X%2 — A% and the interval of

A-stability for p=2. o 56
The scheme for convergence testing 74
Scheme for controlling updates. 76
Variable stepsize o 88
An output point between z,, and z,q. 104

xi

LIST OF FIGURES

xii

List of Tables

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

Four types of DIMSIMs 39
Error constants for different orders. 54
The possible values of A for different orders. 56

Taylor expansion predictors for order 2, order 3 and order 4 meth-

ods (0>1). .« .o oo 79

The Newton interpolation predictor for an order 3 method with

c=10,%, 2 1]F. . 82

13930

The Newton interpolation predictor for an order 4 method with

c=1[0,4, 2,3 1) L 82

The Hermite interpolation predictor for an order 3 method with
c=100,5,2,1]" .. 84

The Hermite interpolation predictor for an order 4 method with

LIST OF TABLES

3.6

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Error estimators for order 2, order 3 and order 4 methods with

c=10,5,1",¢=[0,%2,1]" and ¢ = [0, 1, 5, 2, 1]" respectively. . . 87
The errors versus stepsizes for an order 2 method. 112
The errors versus stepsizes for an order 3 method. 113
The errors versus stepsizes for an order 4 method. 113
The effects of initial stepsize, hg, for an order 2 method. 115
The effects of initial stepsize, hg, for an order 3 method. 116
The effects of initial stepsize, hg, for an order 4 method. 117

The stepsize changing for 0,,;, = 0.5 with Tolerance = 10~1° and
ho=0.001. 118

The stepsize changing for 0,,;, = 0.25 with Tolerance = 1071° and

ho=0.001. e 119
Numerical results of € = %O‘mce and € = W for an order 2
method. 120
Numerical results of € = %&"m and € = W for an order 3
method.o Lo 121
Numerical results of € = %&mce and € = T"lf“‘”ce for an order 4
method. L 121

Solving Robertson problem using an order 2 method where hy =

107* and e = Tolerance 122

xiv

LIST OF TABLES

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

Solving Robertson problem using an order 3 method where hy =

107* and e = Teferance 123

Solving Robertson problem using an order 4 method where hy =

107* and ¢ = Tolerance L 123

The effects of initial stepsize, hg, for an order 2 method on the

Hires problem. 125

The effects of initial stepsize, hy, for an order 3 method on the

Hires problem. o 126

The effects of initial stepsize, hgy, for an order 4 method on the

Hires problem. 127

Tolerance yorgyg ¢ = Lolerance £ an order 2 method. 128

Results of € = T T00

Results of € = %&‘"ce versus € = W for an order 3 method. 129

Results of ¢ = Telerance yergyg ¢ = Tolerance for an order 4 method. 129

100
Results with Tolerance = 10~ for an order 3 method. 131
Results with Tolerance = 10”7 for an order 3 method. 131
Results with Tolerance = 1071° for an order 3 method. 131
Results with Tolerance = 10~* for an order 4 method. 132
Results with Tolerance = 107 for an order 4 method. 132
Results with Tolerance = 10~ for an order 4 method. 132

XV

LIST OF TABLES

4.27

4.28

4.29

4.30

Numerical result: Interpolations for the output point with the

order 4 method. The scdl represents the results from the first

approach and scd2 represents the results from the second approach.

The numerical results for the order 2 method.

The numerical results for the order 3 method.

The numerical results for the order 4 method.

xXvi

Chapter 1

Introduction

In science, social science and engineering, differential equations often have to be
solved. Although in some cases they can be solved analytically, unfortunately, the
majority of differential equations are too complicated to have analytic solutions.
Even when analytic solutions can be found, they are not always useful in practice

since the computational cost involved is too great.
For example, it can be shown that the following problem:

y’(l’) = 1_2(1“ya (S [OaT]a
y(0) =0,

has the analytic solution:
y(x) = e“2/ e’ dt. (1.1)
0

If y is evaluated at several values of x, one has to do numerical integration that
could be computationally intensive. Another example is to solve a linear ordinary

differential equation analytically. We often have to find roots of the corresponding

CHAPTER 1. INTRODUCTION

characteristic equation. This requires one to solve high degree algebraic equations

and hence can be difficult.

The above examples show that solving ordinary differential equations analytically
is not always feasible. On the other hand, quite often the analytical solution is
not required. In many cases one only needs to approximate the solutions at
some discrete points or approximate the analytical solution. As a consequence,
numerical methods for solving ordinary differential equations are very useful and
practical. However, different problems need different methods. In this thesis, we
study some numerical methods for ordinary differential equations with a given

initial condition, yg, the so-called initial value problems (IVP),

(@) = f@@y(@), f:RxRYSRY

Yo = y(ﬂﬁo)

Without loss of generality, by defining z;(z) = y;(z) (i =1,2,---N) and z, 1 () =

x, we can express the problem in autonomous form

Z(x) = g(z(z)), g:RVFTt 5 RV

20 = z(xzg).

In this thesis we only discuss autonomous IVP.

In this chapter, we will first survey some well known numerical methods for
ordinary differential equations, such as the Euler method, Runge-Kutta methods,
linear multistep methods and general linear methods. We then discuss a special

group of problems called stiff problems.

1.1. EULER METHOD

1.1 Euler method

Numerical methods for the solution of ordinary differential equations have been
developed over one hundred years. Butcher published a survey paper in 2000 [4].
A classical way of solving initial value problems numerically is by the method of

Euler [19]. To solve the differential equation

y'(z) = fly@), yo=ylzo) (1.2)
and output a solution at a particular point Z, firstly, we divide the interval [z, 7]
into a sequence of grid points, z,,n =1,2,..., N where z, = x,,_1 + h,, and h,, is
called the stepsize. The Euler method computes ¥, as an approximation to y(z,)
at x, where y(z,) represents the exact solution. The Euler method generates

approximations using the following formula

Yn = Yn—1 + hnf(ynfl): n= la 2, Tty Na Yo = y(xO) (13)

This is the explicit Euler method. The next formula is referred to as the implicit

Euler method when the equation system is nonlinear,

yn:yn—1+hnf(yn)a n:1a27aNa yO:y(xo) (14)

Note that the imlicit Euler method requires the solution of a nonlinear equation

system which will cause the high computational cost.

We now review questions of convergence and stability for the Euler method.

1.1.1 Convergence and order

For any point z, in a fixed interval, let Y denote the approximation of y(z,)

and H denote the stepsize. By using the Euler method, we obtain a sequence of

3

CHAPTER 1. INTRODUCTION

solutions, (Y3,Ys,...) and a corresponding sequence of step sizes, (Hy, Ho,...).

For the convergence of Euler method, we then have the following theorem.

Theorem 1.1 /5] If H, — 0 as k — oo and Yi(xo) — y(zo) as k — oo, then Y

converges uniformly to y as k — oo.

For simplicity, we suppose h,, is a constant h and consider the solution only at
a fixed point Z. Let Y (Z) represent the numerical solution and y(Z) represent
the exact solution. There are two numerical errors need to be considered: the
local error and the global error. The local error is the error introduced in a single
step of the integration, while the global error is the overall error caused by many
integration steps. Since global error is accumulated by local error, we consider
local error. At a particular step, we could get two type of errors, the round-off
error and the truncation error. The round-off error is due to the limitation of a
computer, while the truncation error is presented because of the infinite Taylor
series. In this thesis we only talk about the truncation error. For a point z,,
we assume that the numerical solution is the same as exact solution, that is

Y (z,) = y(zn), then at point x,, we define the local truncation error as

E(zni1) = Y(@n+1) — y(Tnt1) (1.5)

Theorem 1.1 shows that ||Y (Z) —y(Z)||/h is bounded as h — 0. For some positive
integer p, if we have ||Y(Z) — y(Z)||/h? bounded, then we would define “the
numerical solution to be of order p”. If p is the highest value such that ||Y(z) —
y(Z)||/h* is bounded, we would define “the order of the numerical solution to be

77

p”. By comparing the Euler solution Y (Z) with the Taylor series of the exact

4

1.1. EULER METHOD

solution at T given by

_ S hE
y(@) = Z Z.—,C‘J()(33 — h)
i=0

= y(Z —h) + hy'(Z — h) + O(h?),

we get

Y(z) —y(z) = O(K?). (1.6)

This gives the order of the Euler method as at least 1.

1.1.2 Stability

Applying the explicit Euler method to a linear differential equation given by
y'(z) = Ly(z),
where L can be complex, then we have
Yn = (L +hL)Yyn—1 =+ = (1 + hL)"yo.

We write z = hL. The numerical solution y, is bounded if and only if |1+ 2| < 1.

The region, |1 + z| < 1, called the stability region, is shown in Figure 1.1.

For the implicit Euler method, we have

_ 1 . _ 1 "

Therefore, the stability region is |1 — z| > 1. Figure 1.2 shows the stability region

for the implicit Euler method.

The Euler method is regarded as an object of theoretical study but its suitabil-

ity for practical computation is limited by the need for an unreasonably small

5

CHAPTER 1. INTRODUCTION

Figure 1.1: Stability region of explicit Euler method (shaded area).

Figure 1.2: Stability region of implicit Euler method (unshaded area).

stepsize to reach a satisfactory accuracy. Some generalizations in various direc-
tions have been studied. Traditional higher order methods mainly lie in two
large classes: multistep methods and multistage methods. Multistage methods
involve calculating the derivative of f several times inside each step, and the

most important multistage methods are Runge-Kutta methods. Multistep meth-

6

1.2. RUNGE-KUTTA METHODS

ods advance the solution approximation by using a linear combination of the
information generated in past steps. For stiff problems, the most important of
the multistep methods are the backward differentiation formula (BDF) methods.

We now review these two classes of methods separately.

1.2 Runge-Kutta methods

The first important generalization of the Euler method is the use of Runge-
Kutta methods. Runge [35] proposed the idea of extending the Euler method
by allowing for a multiplicity of evaluations of function f within one step, then
using the information obtained to match a Taylor series expansion up to some
higher order. Later, Heun [27] and Kutta [29] made further contributions in this
area. Kutta [29] completely characterized the order 4 Runge-Kutta methods and

proposed the methods of order 5.

For an ordinary differential equation system 3" = f(y), a general Runge-Kutta

method is of the form

}/;' = yn—1+hza1]f(}/])7 izla"'asa (17)
7j=1
i=1
where the quantities Yi, Ys, ..., Y, are called stage values. They are approx-

imations to solution values y(x,_1 + ¢;h) at points x,_1 + c;h. The integer s
is the number of stages of the method. The ¢; represents the position of the
internal stages within one step. The Runge-Kutta formula can be conveniently

represented by the following “Butcher tableau” [5],

7

CHAPTER 1. INTRODUCTION

",

where A = {a;;}, b" = {b;} and ¢ = {¢;}. The set of numbers a;; are the
coefficients used to find the internal stages using linear combinations of the stage
derivatives. The components of the vector b’ are coefficients which represent
how the numerical solution at this step depends on the derivatives of the internal

stages. The vector ¢ = [c1, ¢o, -+, ¢,]7 is called the abscissae.

There are two main kinds of Runge-Kutta methods, implicit and explicit. If
matrix A is strictly lower triangular, i.e., the internal stages can be calculated
without depending on later stages, then the method is called an explicit method.
Otherwise the internal stages depend not only on the previous stages but also
on the current stage and later stages, and then the method is called an implicit
method. The implicit method involves Newton iterations to evaluate the stage
values. Those methods for which the matrix A is lower triangular are called
diagonally implicit methods. The methods are known as “fully implicit” if the
matrix A is not lower triangular. The following are some examples of Runge-
Kutta methods. In the section we will review some important properties of the

Runge-Kutta methods.

1.2. RUNGE-KUTTA METHODS

e A three stage order three explicit Runge-Kutta method,

0|0
1
HIEK
E

e A three stage order four implicit Runge-Kutta method (Lobatto IIIC),

1 1 1
015 =3 %
11 05 1
216 12 12

T2 1
Lls 3 5§

121

6 3 6

e A two stage order two diagonally implicit Runge-Kutta method,

CHAPTER 1. INTRODUCTION

1.2.1 Stability

The stability properties of numerical methods are important for achieving a good
approximation to the true solution. When a numerical method is used, then at
each mesh point, there are differences between the exact solution and the numer-
ical solution. That is the local truncation error. Sometimes the accumulation
of errors will cause instability and the numerical solution will no longer follow
the path of the ‘true’ solution. Therefore, a method must satisfy the stability
condition so that the numerical solution converges to the exact solution. We now

review the stability of Runge-Kutta methods.

Consider the standard linear test problem

y'(z) = Ly(a), (1.9)
Yo = 15
where L is a complex number. Applying an s-stage Runge-Kutta method, we

use the matrix form to present the internal stages and the approximation to the

solution as

Y = y,_1e+ hLAY, (1.10)
Yn = Yn-1+hb'LY, (1.11)
where e = [1,1,---,1]T and Y = [V}, Y5, - -+, Y;]T. We write z = hL and calculate

Y from the first equation then insert Y into the the second equation. The equation

becomes
Yn = Yn_1+2bT(I — 2A) ty,_se
= (142071 — z4)7'€) Yo

= R(Z)yn—l

10

1.2. RUNGE-KUTTA METHODS

where R(z) =1+ 207 (I — 2A) e is a function of z.

Definition 1.2 [26] R(z) = 1 + 2bT (I — zA) e is the stability function of the
method. The set
S={z€C:|R(z)| <1}

1s called the stability region of the method.

For an explicit method, the coefficients of A, a;; = 0 for j > ¢. In this case, we

have

R(Z) =1 -1-2ij -I-zQijajk +Zszbjajkakl + -
J Jik

okl

where the degree of R(z) is less than or equal to s. Since the exact solution of

the test problem (1.9) is exp(z), y1 = R(z)yo must satisfy
exp(z) — R(z) = O(h"*) = O(2"")

to the order of p for an order p method. This proves the following theorem.

Theorem 1.3 [26] If an explicit Runge-Kutta method is of order p, then

2

p
R(z):1+z+%+---+2—'+0(zp+1).
! p!

Therefore, all explicit Runge-Kutta methods with p = s have the stability func-

tion
22 25
— e — (1.12)

Rz) =1+z+5 s

11

CHAPTER 1. INTRODUCTION

p=4

Figure 1.3: Stability regions of explicit Runge-Kutta methods.

Figure 1.3 shows the stability regions of order p =1, 2, 3, and 4 explicit Runge-
Kutta methods. It can be seen that explicit Runge-Kutta methods corresponding

to (1.12) have bounded stability regions.

For an s-stage implicit Runge-Kutta method, we have the following theorem.

Theorem 1.4 [26] The stability function of an implicit Runge-Kutta method is

given by

R(z) = det(I — zA + zeb?)
T T det(I — 24)

Proof. Rewrite the equations (1.10) and (1.11) of Runge-Kutta method as a

12

1.2. RUNGE-KUTTA METHODS

linear system

I—zA 0 Y e

—zbt 1 Un 1
By applying Cramer’s rule and simplifying, we obtain

_det (I + z(ed” — A))
R = — T =2

For the implicit Runge-Kutta methods, we write R(z) as a rational function with
the degree of the numerator and denominator less than or equal to s. It has the

form
P(z)
Q(z)

For an order p implicit Runge-Kutta method we have

R(z) =

exp(z) — R(z) = C2P™ + O(2P12)
where constant C is called the error constant.

In Figure 1.3 we can see that the stability regions of explicit Runge-Kutta meth-
ods are bounded. Very often when approximating the solutions of some special
problems such as stiff problems a larger stability region is required to ensure
an efficient computation. Therefore, a special property of some Runge-Kutta
methods is introduced. The following definition of A-stability characterizes the

stability of certain Runge-Kutta methods.

Definition 1.5 A Runge-Kutta method is said to be “A-stable” if its stability

region contains the non-positive half plane (Re(z) < 0).

13

CHAPTER 1. INTRODUCTION

A-stability allows a Runge-Kutta method to have an unbounded stability region.
This is a great advantage for some problems with a large negative value of z
(= hL), especially for stiff problems. A related concept is L-stability. L-stability
was first studied by Ehle [18] and is defined as follows.

Definition 1.6 A method is called L-stable if it is A-stable and the stability

function satisfies

lim‘z‘_)oo|R(Z)| =0.

Runge-Kutta methods have been widely studied. There are some advantages
and disadvantages of Runge-Kutta methods. One disadvantage of using implicit
Runge-Kutta methods lies in its high implementation costs as we need to use
Newton’s method to calculate the stage values at each step. It is also expensive
to estimate the local error. Advantages of Runge-Kutta methods include higher
accuracy and ease of changing stepsize and order. Furthermore, “A-stable” Runge
-Kutta methods with any order can be found. This property of “A-stability” is

required for solving stiff ordinary differential equations which we will discuss later.

1.3 Linear multistep methods

The second important generalization of the Euler method is the use of linear
multistep methods. In 1883, Bashforth and Adams [1] proposed the idea of
extending the Euler method by using several previous solutions and derivative

values in computing the updated solution. The general form of a linear k-step

14

1.3. LINEAR MULTISTEP METHODS

method for an ODE ¢’ = f(y) is

Yn = Q1Yn-1+ Q2Yn 2+ -+ Yn &
+h[Bof Yn) + Brf (Yn—1) + - - - + Bef (Yn—i)];

(1.13)

where ¥, is the numerical approximation to the exact solution at the point z,

and oy, s, ..., ag, By, B1, - .., Bk are fixed numbers. The values of aq, ao, ..., a4,
Bo, B1, --., B are chosen to obtain the highest possible order and characterize
a method. If ¢y = 1and o, = 0,7 = 2, ..., kK and By = 0, the methods are

known as the Adams-Bashforth methods. If 5 is not 0, the methods are known
as Adams-Moulton methods [31]. If 5y #0 and 8; =0,¢ =1, - -, k, the methods
are known as Backward-Difference Formulae (BDF). Here are some examples of

linear multistep methods.

e Adams-Bashforth methods (order 2)
Yn = Y1 + 1 (3 Wn-1) = 3£ (Un—2))
e Adams-Moulton methods (order 2)
Yn = Yn-1+ 5 (FWn) + f (Y1)
e Backward-Difference Formulae (order 3)

Yn = %ynfl - 1%%172 + %ynf{i + h%f(yn)

1.3.1 Consistency, stability and convergence

If a method is used to solve an ordinary differential equation at the point z,_1,

and the numerical solution tends to the exact solution as the stepsize h tends

15

CHAPTER 1. INTRODUCTION

to zero at point x,, which is z,_; + h, the method is said to be consistent.
This condition guarantees the local accuracy of the numerical method. However
this condition does not guarantee convergence since the difference between the
numerical approximation and exact solution, the local truncation error (say at
Tn), may accumulate as n increases and overflow. Therefore the method must

satisfy the stability conditions.

To obtain consistency conditions a pair of polynomials have been introduced [17].

The polynomials are defined as follows

a(z) = 1—aiz—apz® — - — o2, (1.14)

B(z) = Po+biz+ Pz’ + -+ Brd". (1.15)

Using a linear multistep method to solve the simple differential equation y'(z) = 0

with exact solution y(x) = 1, we have
o+ g+ -+ o= 1,

which is equivalent to «(1) = 0. This property is named “pre-consistency”.

We then apply a pre-consistent method to another trivial differential equation

y'(z) = 1 with y(0) = 0. For step number n, it is found that

k k k
=1 =0 i=1

As the method is pre-consistent the left hand side equals to 0, and the right hand

side can be written as 3(1) — &/(1). This leads to the following definition.

Definition 1.7 A linear multistep method is consistent if the coefficients of the

16

1.3. LINEAR MULTISTEP METHODS

method satisfy

k
o =1, (1.16)
=1

k k
25 =) i (1.17)
i=0 i=1

The stability condition of a linear multistep method is given by the following

definition.

Definition 1.8 [5] A linear multistep method is stable if all solutions to the

difference equation

Yn = Q1Yp—1+ QYp o2+ -+ QpYp i

are bounded as n — oo.
The following theorem characterizes convergence of a linear multistep method.

Theorem 1.9 [16] A linear multistep method is convergent if and only if it is

stable and consistent.

As for Runge-Kutta methods, linear multistep methods have both advantages and
disadvantages. Linear multistep methods have low implementation costs because
only one function evaluation per step is needed, and the error estimation also has a
low cost. Disadvantages include that changing stepsize is a complicated procedure
and variable order implementation can be inefficient because only methods of low

orders (< 3) can be A-stable [17].

17

CHAPTER 1. INTRODUCTION

1.4 General linear methods

The two classes of traditional numerical methods for ordinary differential equa-
tions have been reviewed separately. Both of these classes have well known advan-
tages and disadvantages. The linear multistep methods have advantages in terms
of computational cost, but difficult questions are associated with the stability
of the approximations and obtaining a high degree of accuracy. The multistage
methods (such as Runge-Kutta methods) have high computational costs and
complicated accuracy questions, but they have good stability. To combine the
multivalue nature of linear multistep methods and the multistage nature of the
Runge-Kutta methods, many generalizations can be found. For example, Hybrid
methods are generalized multistep methods allowing some evaluations of f in
each step [21]. Rosenbrock type methods are generalized Runge-Kutta methods
that linearize the nonlinear systems of the implicit Runge-Kutta methods in or-
der to reduce the computational cost. General linear methods were introduced
by Butcher [6] as a unifying framework for the traditional methods. General
linear methods combine many essential features of linear multistep methods and

multistage methods. In this section we give an introduction.

The formulation of general linear methods used in this thesis follows Burrage and
Butcher [2]. They used a partitioned (s+7) x (s+r) matrix to represent a general
linear method. This matrix contains four matrices, A, B, U and V', and has the

form

ASXS USXT

B'I'XS ‘/'I"XT‘

18

1.4. GENERAL LINEAR METHODS

The coefficients of these matrices indicate the relationships among various nu-
merical quantities that arise in the computation. The structure of the leading
coefficient matrix A determines the implementation costs of these methods. For
an N-dimensional differential equation system (1.2), a general linear method can

be defined by the following equations
Y; = Zaz]hf(yvj)_}_zuljy][nil}a 7;:112’"'555
j=1 j=1
yz[n] = mehf(}/]) +Zvijy]['n_1]’ 1= 1’23"'3Ta
7j=1 7j=1

where Y; is the internal stage value as in a Runge-Kutta method, f(Y;) is the
[n]

i

[n—1]

corresponding stage derivative, y; is the incoming approximation, and y; - is

the outgoing approximation in step number n.

For convenience, the above equations can be represented in the following matrix

form,
Y hF;
Y ARI ‘ U1l hF
yE’” B®lI ‘ Vel y&"‘”
i y7[nn}] i y7[ﬂn—1] |
or
Y = (AQI)hF + (U Iy, (1.18)
y" = (B I)hF+ (Ve Iy, (1.19)

19

CHAPTER 1. INTRODUCTION

where Y = [}/11}/21"'51/;‘],11’ F = [FI;FQa"'aps]Ta B = f(}/;) for 7 = 17"'787
T T

yir = |yt gty and gl = yE"],yQ"],---,yL"]] . Note tha in

equation (1.18), (1.19) and through out the thesis, we have used a simplified

notation. For example, AhF' represents A @ hF'.

We use four integers to characterize a general linear method. They are p, ¢, r

and s.

e s: the number of stages as in Runge-Kutta methods.

e 7: the number of quantities passed between steps. r and s are used to

measure the complexity of the method.

e p: the order of the method. It is a measure of the accuracy of the method.
It means that the method approximates the solution to the order of p. If

y(Z,) denotes the exact solution, then we have
Y(@n) = y(an) + O(KP*).

e ¢: the stage order. This is a measure of the accuracy of the intermediate
stages. It means that stage value Y; approximates the solution at x,,_1 +c;h

to the order of ¢ where ¢ = [c;, ¢y, -+, ¢,|T is the abscissae vector. That is

Y; = y(x,_1 + c;h) + O(RT).

In this thesis, we are looking for the methods that are easy to implement and
interpret. Like many high order Runge-Kutta methods, we consider methods
with ¢ = p. One of the advantages is that it is easy to obtain a local error
estimate with ¢ = p. This assumption also helps to avoid order reduction [33].

In Chapter 2 we will discuss how to find practical general linear methods.

20

1.4. GENERAL LINEAR METHODS

1.4.1 Consistency, stability and convergence

We first apply a general linear method to the trivial differential equation y'(z) = 0
with initial condition y(z) = yo. We know that the solution should be exact at

both the beginning and end of each step. This suggests the following definition.

Definition 1.10 [7/ A general linear method is “pre-consistent” if there exists a

vector u such that

where vector u is the “pre-consistency vector”.

Secondly, we apply the general linear method to another differential equation
y'(z) = 1 with solution y = x — xy. Again the numerical solution should be exact

at both the beginning and end of each step. This gives the consistency definition.

Definition 1.11 /7] A general linear method is “consistent” if it is pre-consistent

with pre-consistency vector u and there exists a vector v such that
Be+Vv=u+w.

As for linear multistep methods, a concept of stability is necessary. We define

the stability of a matrix.

Definition 1.12 The matrix V s stable if there exists a constant T' such that
VMoo T foralln=1,2, ...

21

CHAPTER 1. INTRODUCTION

When we apply a general linear method to the problem 3’ = 0, we want the

solution to be bounded. We have the output approximations

This leads to the following definition.

Definition 1.13 A general linear method is stable if V is a stable matriz (power-

bounded).

The convergence we discuss here means the ability of a method to represent the
exact solution of a differential equation as the number of steps tends to infinity.

We have the following definition.

Definition 1.14 A general linear method is “convergent” if for any initial value

problem

y'(z) = fly(@), vlzo) =10,
subject to the Lipschitz condition ||f(y) — f(2)|| < L||ly — z||, there ezists a non-
zero vector u, such that if yz[o] = uy(zo) + O(h), with i = 1, 2, ..., r, then
yz[n] = uwy(zg + nh) + O(h), for all n subject to bounded nh.

This condition guarantees that we can obtain accurate numerical solutions at any
fixed point by taking h sufficiently small, for given sufficiently accurate initial

approximations.

Stability and consistency are together necessary and sufficient for convergence.

This result can be expressed by the following theorem.

22

1.4. GENERAL LINEAR METHODS

Theorem 1.15 [16] A general linear method is convergent only if it is stable and

consistent.

As we know, Runge-Kutta methods can achieve an arbitrarily high order and
still be A-stable. We would like to obtain general linear methods with the same
stability regions as the Runge-Kutta methods. In this thesis, we will use a class of
general linear methods for a special group of problems, stiff problems. This new
type of general linear method is characterized by the property known as “inherent
Runge-Kutta stability” (IRKS). We will discuss this “IRKS” in Chapter 2 in

detail.

1.4.2 Order of accuracy

For a general linear method, there are r quantities passed between steps. A
starting procedure is required to obtain the incoming approximation, %, from
the given initial value y(zo). We write the internal stage values of the starting
method as Y7, Vs, ..., Y; and the derivatives of these stages as f(V1), f(Y2), ...,
f(Ys) where 5 is the number of stages for the starting method. This 5 may or
may not be equal to s, the number of stages of the method. A starting method

can be represented by the following partitioned (5 + r) x (5§ + 7) matrix

Su | Stz
S21 822

where 7 is the number of approximations which are required for y° and 7 is the

number of the given initial conditions.

23

CHAPTER 1. INTRODUCTION

The starting method is given by

Y = hSuF + S, (1.20)
Y = hSyF + Sy, (1.21)
where
Y f)
_ Y: _ Y;
v=| |, F= f¥2) (1.22)
R | F(Y5) |

To have the pre-consistency condition, we choose Sy = u and S5 = €.

Denote S as the starting method, M as the method and £ as the exact solution
from zy to x1. A method starting with method S and completing with a step of
method M can be expressed by MS. Order of accuracy can now be defined rela-
tive to S as the greatest p for which (MS)y, — (SE)y, = O(h?™'). Furthermore,
(MS)yo — (SE)yo is considered as the local error. This procedure is illustrated
in Figure 1.4.

Generally speaking, if the general linear method in this thesis has order of p, then

each of the r quantities of y/” is accurate to order p.

The local truncation error can be worked out using Figure 1.4. With this type of
local truncation error, we can present the global error approximation by repeating
the diagram as many times as the method takes steps. Figure 1.5 shows the global

error estimate.

24

1.4. GENERAL LINEAR METHODS

y [
M

y [0 O(hP)

SA A S

y(X 0) E y(xl)

Figure 1.4: Order of accuracy.

y [l
y[z]” ’,/"’
v]
M
y[O] 7777777777777777
S A S S A S S
Y(X o) E y(x,) E y(xy,) Y(Xp1) E y(X,)

Figure 1.5: Global error.

25

CHAPTER 1. INTRODUCTION

In order to recover the final answer, a finishing method is needed to undo the
work of starting method S. This finishing method is denoted by F'. If we apply
F to y[" then we should get y(z,) + O(hP*') as long as nh is bounded. For the
methods in this thesis, however, one component of y!™ directly approximates the

solution at z,. In this case, we can save the cost of using a finishing method.

General linear methods make up a class of numerical methods for ODEs. In
attempting to find some practical new methods from this large class of methods,
certain assumptions have been made to fit our requirements. In Chapter 2 we

will discuss how to construct this new type of general linear method.

1.5 Stiff problems

Among ordinary differential equations, there is a special group of problems called
stiff problems which require some special methods to solve them efficiently. One
may ask, what is a stiff problem? In this section, we give the definition of stiffness
and some examples of stiff problems. Furthermore we will discuss the difficulties

involved in solving stiff problems.

It is well known that many real problems can be formulated using ordinary dif-
ferential equations. Some of these problems contain both slowly and rapidly
decaying transients in the solution. Therefore the corresponding variables in the
ODE system also vary at widely different rates. In order to obtain the ‘true’
solution one must use a sufficiently small stepsize for the fast decaying variable.
This group of problems is called “stiff” while other problems are referred to as

“non-stiff”.

26

1.5. STIFF PROBLEMS

we can look at a simple example which is given by Gear [22],

y'(z) = L(y(x) - f(2)) + f'(z) ,L <0 (1.23)

where f(x) is a smooth, slowly varying function. For this ODE, we have the
solution

y = (y(wo) — f(z0))e™ + f(2). (1.24)
Note that the two components in the solution, for large x, (y(xq) — f(z0))el® will
be insignificant comparing to f(z). Therefore, this example is considered as a

stiff problem.

To understand the stiff problems better, we Consider the following linear problem

y'(z) = My(), (1.25)

where M is an N x N matrix which has distinct eigenvalues \; (j = 1,..., N).

The solution of the above equation is of the form
y(z) = [v1, -+, 0] [CreM D, - - Oy, (1.26)

where the v; are the eigenvectors and the C; are constants which depend on the
initial conditions. If Re(\;) < 0forj =1, -, N, then C;e®i®) — 0 when z — oo.
Consider the case where these eigenvalues are very different, for example, one of
the eigenvalues has a very negative real part relative to the others. This means

that

_ Max|Re)|

R = finlRen,|

>1, Re()\)<0, j=1,---,N. (1.27)

Denote Max|Re\;| by Aq. Hence the exponential function exp(Aoz) decays to

zero much more rapidly than that based on the eigenvalue, Min|Re);|. Such

27

CHAPTER 1. INTRODUCTION

behaviour leads to great difficulties in obtaining an accurate numerical solution.
The property which makes numerical computation complicated and difficult is
referred to as “stiffness”. The ratio R is called the “stiffness ratio” which provides

a measure of stiffness.

The above discussion is based on the linear system, it is useful to generalize the
stiffness ratio for nonlinear systems. For nonlinear systems the Jacobian is used
to determine the stiffness. If the eigenvalues of Jacobian J = g—g satisfy the same
condition as in (1.27), then the problem is a stiff problem. However, even for
linear systems, sometimes the stiffness ratio is not a good measure of stiffness.
For example, if only one of the eigenvalues was non-zero one would not be able
to calculate the stiffness ratio. As a result, we cannot tell whether or not the
problem is stiff even if the negative part of the non-zero eigenvalue is reasonably

big. To be more general, there is a generic definition which applies to both linear

and nonlinear problems.

Definition 1.16 If a numerical method is forced to use, in an interval of integra-
tion, a stepsize 1s forced to be excessively small relative to dominant time-scale of
the solution to get a smooth approximation of the exact solution in that interval,

then the problem is said to be stiff in that interval.

A paper by Garfinkel and Marbach [20] gives a good review of stiff differential
equations. There are many well known stiff problems in the literature. An

example is Robertson’s problem. Robertson’s problem is a three dimensional

28

1.5. STIFF PROBLEMS

chemical reaction system,

A X B

3x107
—

B+ B C+B

4
B+C 5% A+C
where A, B and C are three species. In mathematics we use ¥y, 12 and y3 to

denote the concentrations of A, B and C|, respectively. This chemical process can

be represented by the following differential equations [34],

Y = —0.0dy; + 10%y0ys,
vy, = 0.04y; — 10*yoys — 3 x 10743,
ys = 3x107y3,

with initial values,

»(0) = 1,
y2(0) = 07

Since this problem is a nonlinear problem, we look at the Jacobian of the problem.

The Jacobian is

—0.04 104y, 104y,
JW)=1 004 —10%;—6x 107y, —10%s
0 6 x 107y, 0

When z = 0, the Jacobian has eigenvalues of —0.04, 0 and 0, and hence stiffness
does not occur. It has been observed that the second component, 1, reaches
Yo ~ 3.65 x 107° in a very short time, and then goes back very slowly to zero

again. A very short period of time is represented by a very small stepsize in a

29

CHAPTER 1. INTRODUCTION

numerical solution. At point (y; = 1,5, = 3.65 X 107°,y3 = 0) the eigenvalues
become 0, —0.0405, and —2189.6. We can see that the stiffness ratio R > 1.
This makes the system of equations stiff. In Chapter 4, we will use this system

to test our new methods designed for solving stiff problems.

1.6 Solving stiff problems

According to Definition 1.16, in order to get a smooth approximation of the
solution we need to use very small stepsize for stiff problems. In practice we
want, to use large stepsizes to reduce computational costs. To understand why
stiff problems are difficult to solve and how to solve them, we use the following

example as an illustration.

Example 1.1 Consider the linear problem

v = —8yi + Ty,

Yy = 42y; — 43yo

with
The coefficient matriz has two eigenvalues, \y = —1 and Ay = —50. The stiffness

ratio R = 50. This is a mildly stiff problem. The exact solution of the problem is

y1 = 2exp(—x) — exp(—50z),

yo = 2exp(—z)+ 6exp(—50x).

30

1.6. SOLVING STIFF PROBLEMS

If we use an order two explicit Runge-Kutta method to solve this problem, the

stepsize needs to satisfy the following condition
|hAmaz| < 2

for the method to be stable. The stability region requires h < 0.04. If we
choose h = 0.04, when z = 0.4, the fast component exp(—50 x 0.4) = exp(—20)
contributes almost nothing to the solution compared with the slow component
exp(—1 x 0.4) = exp(—0.4). On the other hand, we need 100 steps to reach
x = 4 with stepsize h = 0.04. This means that on the one hand a bigger stepsize
1s needed for efficient calculation, but on the other hand, a smaller stepsize is
needed to ensure stability. The erxample shows that to solve stiff problems the
stability of a good method should impose no limitation on the stepsize, and hence

it requires a large stability region.

As discussed in the previous sections, an ‘A-stable’ method has the stability
region which contains the non-positive half plane. As a result, ‘A-stability’ is a
desirable property when solving stiff problems. To illustrate this, consider the
following implicit Euler method,

Ynt1 = Yn + hy;7,+1-

Applying it to the linear problem

y' = Ly,

where L < 0 is a constant. We get

_
Yntt = TR

31

CHAPTER 1. INTRODUCTION

We find that as h — 00, y,+1 — 0, which means the method is absolutely stable
for any z = Lh in the left half plane. (Fig 1.2). It has been proved that A-stable
methods must be implicit methods by Dahlquist [17].

In this thesis we only consider the implicit methods since we are concerned only
with stiff problems. Implicit Runge-Kutta methods (multistage methods) and
BDF methods (multistep methods) have been widely used for solving stiff prob-
lems. A new type of general linear method consisting of implicit methods designed

for solving stiff problems will be introduced in Chapter 2.

1.7 The cost of using implicit methods

For an implicit method, when we calculate the stage values, we need to solve the

system of equations,
Y, = v+¥(Y,Y,,---,Y), i=1,2,...,s,

where ¥ is a function depending on the method and ¢ presents some known
values. To illustrate, we consider an implicit Runge-Kutta method to solve an
N dimensional differential equation system. When we calculate the stage values,

we need to solve the following equation system,
S
Yi = yart+ Y aghf(V;) i=12...,s (1.28)
j=1

Using the Newton method we need to go through the following steps to get the

stage values:

e give a ‘predicted’ value of the stage value, Y;,

32

1.7. THE COST OF USING IMPLICIT METHODS

e calculate a sequence of iterations Y;[HH, which approximates Y; using the
formula
Y;[k+1} _ Yi[k] _ eEk}
with

(I,® Iy — hA® J)el = ¢;,

where J is the Jacobian matrix with the form of

oh 8h .. Ofr
dy1 Oy2 yn
Ofs 8f .. Ofr
1o - 1o
J — Y1 Y2 YN ,
Ofn Ofn .., Ofn
L 9y1 Oye dyn

and
S

Gi =Y — Yp_1 — Zaz’jhf(yj)a

J=1

e test convergence: when to stop the Newton iteration.

From these three steps we can see that the cost of the stage evaluation comes

from the following calculations,

e evaluation of Jacobian,
e LU factorization for the matrix I, ® Iy — hA® J,

e solving linear systems, LU egk} = ¢;.

The iteration matrix I, ® Iy — hA ® J is very complicated, especially when

the matrix A is a full matrix and s and N are large. For an s stage method

33

CHAPTER 1. INTRODUCTION

on an N dimensional problem we have sN unknowns, therefore the cost of LU
factorization requires s3N® operations and the back substitution for solving the
linear system is s> N? operations. The total cost would be C;(s3N3) + Cy(s2N?)
operations where C; and C, are constants. To lower the computational cost
in the evaluation of the stage values, we consider methods which have a lower
triangular structure with equal diagonal elements. With this special structure of
matrix A, the total cost is reduced to C3(N®s) + C4(N?s) operations where Cs
and Cy are constants. Another possibility is to keep the Jacobian matrix and LU
factorization unchanged over several iterations, several stages and even several

steps. We will discuss the technical details in Chapter 3.

34

Chapter 2

A new type of general linear

method for stiff problems

General linear methods were originally proposed by Butcher [6] in 1966 as a
framework for studying stability, consistency and convergence for the traditional
methods. However, very few methods which are significantly different from tra-
ditional methods have been developed in this group. As we mentioned in the
introduction, the two traditional classes of methods for stiff ordinary differential
equations are implicit Runge-Kutta methods and backward differentiation formu-
las (BDF) methods. They both have advantages and disadvantages. To take the
advantages and overcome the disadvantages, a new class of general linear meth-
ods for stiff problem has been discovered recently [13]. These methods are not
only multistep, but also multistage methods. In this chapter we first review some
known general linear methods in Section 1, and then construct this new group
of general linear methods for stiff problems in subsequent sections. These new

methods have a special property known as the Inherent Runge-Kutta stability.

35

CHAPTER 2. A NEW TYPE OF GENERAL LINEAR METHOD FOR
STIFF PROBLEMS

2.1 DIMSIMs

Recall that general linear methods are characterized by four matrices A, U, B
and V. As for Runge-Kutta methods, the structure of the leading coefficient
matrix A determines the implementation cost of these methods. Therefore the
phrases such as ‘diagonally-implicit’ and ‘singly-implicit’ can be directly borrowed
from the Runge-Kutta terminology. To lower the cost of implementation, the
matrix A is restricted to being of lower triangular form as for an explicit or a
diagonally implicit Runge-Kutta method. If the matrix A is lower triangular with
its diagonal elements all equal, then we can calculate Y7, Y5, ..., Y; separately and
sequentially by a modified Newton iteration scheme. Furthermore, we can use the
same matrix of partial derivatives for every stage. In 1993 Butcher [8] introduced
a class of methods known as Diagonally Implicit Multistage Integration Methods
(DIMSIMSs) which have considerable potential for efficient implementation. The
aim of these methods is to overcome some of the disadvantages of Runge-Kutta
methods, linear multistep methods and other successful known methods. These
disadvantages include the high implementation costs for implicit Runge-Kutta
methods and the lack of high order A-stable linear multistep methods. A further

advantage of DIMSIMs is that parallelism is available and achievable.

Due to various considerations, such as the need for efficient implementation and
easy error estimation, certain restrictions on the four matrices are required. These

methods are characterized by the following requirements:

e The matrix A has lower triangular form with all diagonal elements equal

to a constant value so as to lower implementation costs.

36

2.1. DIMSIMS

e The stage order should be close or equal to the order of the method to avoid

order reduction.

e The matrix V should be power bounded for convergence. A stronger re-
quirement is that V' has only one non zero eigenvalue which guarantees zero

stability (that is, stability in the sense of Dahlquist [16]).

e Low cost of implementation, effective local error estimation and high order

interpolatory output should be available.

e The incoming and outgoing quantities should be related to the exact solu-

tion by weighted Taylor series.

e Modified methods should exist for changing stepsizes.

A method from the DIMSIMs group can then be defined by
Y, =) aghf(¥;)+ Zuz’jyj[-"_l], i=1,2,...,s,

yz[n] = szjhf(Yj)Jerijyﬁ"_”, i=1,2,...,m,
i=1 j=1

where

Y; = y(xn_1 + c;h) + O(RTTY),
and the incoming quantities and outgoing quantities are expressed by the weighted
Taylor series,

p
w' = D auy®(@a)hF + OB,
k=0

P
g = Z apy® (z,)h* + O (AP,
k=0

37

CHAPTER 2. A NEW TYPE OF GENERAL LINEAR METHOD FOR
STIFF PROBLEMS

According to the structure of the leading matrix A, DIMSIM methods can be

divided into the following four sub-families known as types:

e Type 1. Matrix A is required to be of lower triangular form and to have
zero on its diagonal. These methods are intended for nonstiff problems on

a sequential computer.

e Type 2. Matrix A is assumed to be of lower triangular form with a constant
on the diagonal. These methods are for stiff problems on a sequential

computer.

e Type 3. Matrix A is required to be the zero matrix. These methods are for

nonstiff problems in a parallel environment.

e Type 4. Matrix A is required to be a diagonal matrix. These methods are

for stiff problems on a parallel computer.

The four types of DIMSIMs are shown in Table 2.1.

Several derivations of DIMSIMs have been presented in papers, [8] and [11]. Fur-
thermore, Butcher and Jackiewicz have discussed some implementation questions
of these methods for non-stiff problems in their paper [12]. Singh [38] has im-
plemented parallel DIMSIMs in her PhD thesis. It has been found that these
DIMSIM methods perform well for a wide range of problems [10] [39].

38

2.1. DIMSIMS
Type Structure of A Problem | Computation
0 0 0
G921 0 0
type 1 nonstiff | Sequential
G an o 0
A0 0
Q921 A 0
type 2 stiff Sequential
G G e A
00 ---0
00 -0
type 3 nonstiff Parallel
[00 0 |
A0 0
0 X - 0
type 4 stiff Parallel
[00 A

Table 2.1: Four types of DIMSIMs

39

CHAPTER 2. A NEW TYPE OF GENERAL LINEAR METHOD FOR
STIFF PROBLEMS

2.2 A new type of general linear method

Among these four types of DIMSIMs, we are mostly interested in type 2 methods
since we are working on stiff problems. In this Chapter, we introduce a new
type of general linear method which has the structure of DIMSIM type 2 and
possesses a special property called Inherent Runge-Kutta stability. This means
the stability region is exactly the same as for a Runge-Kutta method. This
group of general linear methods is designed to solve stiff differential equations

with efficient implementation.

2.2.1 Choices of coefficients

As we introduced in Chapter 1, p and g are the order and stage order of a general
linear method respectively. High stage order is an important property that we
need to consider. One advantage of high stage order is that it is easier to obtain
a local error estimate. High stage order also helps to avoid order reduction. In
this thesis, we consider methods with ¢ = p. Therefore, the internal stage values

satisfy

Y;' = y(mn_l + Czh) + O(hp+1).

The other two integers, s and r, are the number of internal stages and the number
of incoming and outgoing approximations respectively. We specifically consider
methods for which » = s = p + 1. In this case, the quantities passed from step

to step have the form

p
yz[nil] = Z aiky(k) (xn—l)h]c + O(hp+1)’
k=0

40

2.2. A NEW TYPE OF GENERAL LINEAR METHOD

P
g = Zaiky(k)(xn)hk—i-O(hp“).

k=0
The choice of s = p 4+ 1 makes it possible to obtain a balance between the
stability requirements and acceptable error constants. The advantage of the
choice of r = p+ 1 is that we can interpret the method in such a way that the
quantities passed between steps represent Nordsieck vectors. Nordsieck vectors
were introduced by Nordsieck in 1962 [32] for ease of changing the stepsize in
Adams methods. Later Gear [23] promoted and used the Nordsieck vector in the
code DIFSUB. The same technique can be applied to this new type of general

linear method [9].

A Nordsieck vector has the form

Y(7n)
hy,(xn)

| hpy(p)(xn) |
Using a transformation matrix 7', we have
y[n—l] — Tg[n—l]

yr = gl

where

Qo GQy1 - Qpp

Qg Q21 -+ Qg

CHAPTER 2. A NEW TYPE OF GENERAL LINEAR METHOD FOR
STIFF PROBLEMS

The method becomes

Y = ARF +UT{H"™ Y,

Ty" = BhF+VTyr1
This leads to

Y = AhF+ Uy Y,

gl = BRrF + Vg,

where U = UT, B = T7'B and V = T-'VT. This transformation matrix will
bring the method into the Nordsieck form. Without loss of any generality we use
the Nordsieck form directly in our methods and still use B, U and V' to present

our methods from now on.

To find a suitable method, the following simplifying assumptions are required:

e Since our aim is to find methods for stiff problems, we restrict A to being
a lower triangular form as for a diagonally implicit Runge-Kutta method
to lower the cost of implementation. The diagonal elements of A are all
equal to a positive constant A as for the DIMSIMs type 2. This type of
method can be used in a sequential environment for solving stiff problems.

For these methods, matrix A has the form

A0 0
921 A 0

A=
| aq ag o A

42

2.2. A NEW TYPE OF GENERAL LINEAR METHOD

e In Chapter 1, we showed that if matrix V' is a stable matrix then we have a
stable general linear method. Furthermore, if matrix V' is of rank one then
zero stability is guaranteed. To satisfy these requirements we choose the
matrix, V, to have a simple structure. Let the first column of V equal the
basis vector e;, that is Ve; = e;. Furthermore, matrix V is also required
to have only one non-zero eigenvalue, which means the matrix V, formed
by deleting the first row and first column of the matrix V', has all the

eigenvalues equal to zero. That is

I vig -+ vy I vig -+ vy
0 voo -+ Vo 0
V = =
v
0 Ur2 Uy 0

where p(V) = 0.

e High stage order is preferred for stiff problems to avoid order reduction.
Our choice is to consider methods with stage order equal to the order of
the method, that is ¢ = p. This choice is convenient for calculating the
local error and at the same time, allows an easier interpolation which will

be shown in Chapter 3.

e The quantities passed from step to step represent the exact solution by a
weighted Taylor series. Since we are looking for methods which are com-
petitive with other well known methods, we will consider variable stepsize
implementations. Nordsieck form is used here since it will make some as-

pects of implementation, such as changing stepsize, easy and efficient. In

43

CHAPTER 2. A NEW TYPE OF GENERAL LINEAR METHOD FOR
STIFF PROBLEMS

Nordsieck form, the components of y/™, namely y&”], ygn], ---, and y][fil

approximate y(z,,), hy'(z,), - - -, and hPy® (z,) respectively. That is

[n]

Y1 Y(7n)
v | | (@)
| QE:L i | hpy(p)(xn)]

2.2.2 Stability

We now discuss the stability property of the new type of general linear methods
for stiff problems. Recall that a general linear method can be written in matrix

form as follows

Y = AhF 4 Uy, (2.1)

y" = BhF 4 Vyr=l, (2.2)

The linear stability behaviour of the methods is defined by applying the method
to the standard linear test problem gy’ = Ly, where L is a possibly complex
number. Substituting the problem into the first equation and writing z = Lh, we
get

Y = (I —2A) Uy Y,
where I — zA is nonsingular. Then substituting Y into the second equation, we
have

where M(z) =V + 2B(I — zA)™'U. M(Z) is called the stability matrix of the

general linear method. If we apply the method to stiff problems, in order to get

44

2.2. A NEW TYPE OF GENERAL LINEAR METHOD

a smooth solution, we may need to use an excessively small stepsize since the
real part of L is very negative for a stiff problem. This leads to the following

definition.

Definition 2.1 A general linear method is A-stable if I — zA is nonsingular and

the stability matriz M(z) is a stable matriz for all z € C~.
As for Runge-Kutta methods, we are able to define L-stability.

Definition 2.2 A general linear method is L-stable if it is A-stable and p(M (o)) =
0.

2.2.3 Order conditions

We present the order conditions of this new type of general linear method by
using a step from z,_; to x, with stepsize h. For the new type of general linear
methods, we consider that all the output approximations have the same order.
The other assumption on these methods is that the stage order ¢ equals to the

order of the method, p.

To express these requirements a theorem has been presented using functions of
a complex variable [8]. The following theorem is equivalent to the theorem in

paper [8] but it is for methods in Nordsieck form [40].

Theorem 2.3 A general linear method with coefficient matrices A, U, B and V'

in Nordsieck form, has stage order q equal to the order of the method p iff
exp(cz) = zAexp(cz) +UZ + O(2F1), (2.3)

45

CHAPTER 2. A NEW TYPE OF GENERAL LINEAR METHOD FOR
STIFF PROBLEMS

exp(2)Z = zBexp(cz) +VZ+ O, (2.4)

where exp(cz) denotes the vector for which the ith component is equal to exp(c;z).

It has the form

exp(c12)

exp(cz) = exp(e2)

| exp(csz) |

Proof. To satisfy the required order of p for the stages, the stage values which are
the approximations to the solution at points z, 1 + hc;, 1 = 1, 2, ---, s, should
have the form

Y; = y(zn_1 + he;) + O(RPT). (2.5)

Using Taylor series expansions about point z, ; we get

(cih)? (

Y; = y(ﬂ?n_l) + c,-hy'(xn_l) + -+ Ty p)(.’lfn_l) + O(hp-l—l)' (26)

[n—1]

Since the incoming approximation y is in Nordsieck form, we present the

above equation in vector form and in terms of y®~!. Equation (2.6) becomes
Y = Cy™ U 4 O(nrtY), (2.7)

where C is a Vandermonde matrix given by

_) & -
4 1
1 (&1 or E
c2 b
I o 3 =
C = 2! p!
c2 &

| e 5 FA

2.2. A NEW TYPE OF GENERAL LINEAR METHOD

For each corresponding stage derivative we have

hf(Y:) = hy'(xn_1 + he;) + O(hPH?)
p+1 01?,1

= > o ekt o)

p
= > Oy BB+ O, (23)
Again, the above equation can be represented in vector form as
hF = CKy"=U 4 O(hPt), (2.9)

where K is a shifting matrix given by

0010 -0 0 0 |
00 1 -0 0 0
K =
00 0 -0 0 1
0 0 0 ---0 0 0

For an order p method the outgoing approximation at this step has the form
yM = Ry (z,_ +)+ ORPTY), i=1,...,p (2.10)
while the incoming approximation has the form
g = B (g)+ O, i=1,...,p. (2.11)
We do the Taylor series expansion about z,_; for the outgoing approximation
and present it in terms of y~!1. We then get

Y7 = Byl 4 O(hr Y, (2.12)

47

CHAPTER 2. A NEW TYPE OF GENERAL LINEAR METHOD FOR
STIFF PROBLEMS

where F is a Toeplitz matrix given by

L5 oo »
1 1
0 1 1 (p—1)!
E = : : : : = exp(K).
0 0 O L
0 0 O 1

Substituting equations (2.7), (2.9) and (2.12) into the general linear method

equations (2.1) and (2.2), we get the following order conditions

ny[n—l] — ACKy["_I]—{—Uy["_l]+O(h”+1),

By = BCKy" U+ vyl=tU4 O,

We define a basis vector Z by

2P

Let h*y®)(x,_,) be identified with z*. Then the Nordsieck vector y™~! can be

represented by vector Z. Therefore the order conditions become

CZ = ACKZ+UZ+ O(z), (2.13)

EZ = BCKZ+VZ+O0(2™). (2.14)
Note that the matrices K, C' and E have the following special properties,
KZ = 2Z+40(z*),

48

2.2. A NEW TYPE OF GENERAL LINEAR METHOD

CZ = exp(cz)+ O™,

EZ = exp(2)Z+ O(z"M).

Substitute these properties into the order condition equations (2.13) and (2.14)

and the result follows.

2.2.4 Inherent Runge-Kutta stability

Inherent Runge-Kutta stability is the key property of these new methods. Recall
that the stability matrix of a general linear method has the form M(z) =V +
zB(I — zA)7'U. The stability region can be defined as

R ={z € C,3K :such that ||[M(2)||" < K,Vn > 1}.

This means that all the eigenvalues, w, of M(z) must satisfy |w| < 1. The
characteristic polynomial, which is known as the stability function of M(z), can

be written as

P(w) = det(wl — M(z)) (2.15)

= w + P (w44 P(2),

where the degrees of the complex functions P (z), ---, P,(z) are at most s. The-
oretically speaking, if we solve P(w) = 0, we could find the stability region for
general linear methods as for Runge-Kutta methods. However, P(w) is a very
complicated function when the order of the method is large. It is difficult to
obtain suitable conditions for these methods. As we know Runge-Kutta methods
have very good stability properties for stiff problems. To take advantage of these

nice properties, a stability condition called “inherent Runge-Kutta stability” [40]

49

CHAPTER 2. A NEW TYPE OF GENERAL LINEAR METHOD FOR
STIFF PROBLEMS

is imposed for this new type of general linear method. The idea is that these
methods have the same stability region as the equivalent Runge-Kutta method.

This leads to the following definition.

Definition 2.4 A general linear method is said to possess Runge-Kutta stability

iof the stability function has the form
P(w) = det(wl — M(z2)) = w™*(w — R(2)),

where R(z) is a rational function which has the same significance as the stability

function of a Runge-Kutta method.

To ensure a general linear method has Runge-Kutta stability, we need to find
sufficient conditions on the methods. Some work has been done in this area [13]
[41]. As we mentioned earlier, we assume that the first column of V' satisfies

Ve, = ey for this new type of method. First we define another shifting matrix J,

which is
- o 0 o0 -~ 0 0 O -
1 0 0 -0 0 0
J = :
0 0 O 1 0 0
0 0 O 0 1 0

and then define “inherent Runge-Kutta stability” in the following way.

Definition 2.5 A general linear method satisfying Ve, = e; has the property of

inherent Runge-Kutta stability if
det(twl = V) = (w—1)w" 1 (2.16)

20

2.2. A NEW TYPE OF GENERAL LINEAR METHOD

BA = JB, (2.17)

BU = JV-VJ, (2.18)

where the notation = denotes equality of two matrices, except for the first row.

In the definition we note that matrix V, which is a matrix formed by deleting
the first row and first column of matrix V, has all the eigenvalues in the open
unit disc. This condition on the matrix V' guarantees the method is stable. We
now have the following theorem [13] that gives inherent Runge-Kutta stability a

practical significance.

Theorem 2.6 If a general linear method has the property of inherent Runge-
Kutta stability, then the characteristic polynomial of the stability matriz, M(z) =
V + 2B(I — zA)7'U has the form

P(w) = (w— R(2))w"™".

Proof. Instead of considering the characteristic equation of stability matrix M,
we consider a matrix which is similar to M (z).
M ~ (I—z2J)M(I —2J)7!
= (I—2J)[V+2B(I-zA)"'U)(I—-2J)!
Substituting equations (2.17) and (2.18) into right hand side, we have
(I—20) VI —2zJ) ' +2(I—2J)B(I—zA)'U({I —2J)!

= ([—-z) VI —2J) ' +2(B—2JB)(I—zA)'U{I —2J)!

= (I—2/) VI —2J) ' +2B(I —2A)I — zA)7'UI — 2J)~!

= (I-2)V+2(JV=VI))I—-2J)"

= VW

o1

CHAPTER 2. A NEW TYPE OF GENERAL LINEAR METHOD FOR
STIFF PROBLEMS

This means that (I — 2J)M (I — 2J)! is identical to V except for the first row.
By assumption matrix V' has only one non zero eigenvalue, therefore, M(z) has
only one non zero eigenvalue, which is R(z). The aim of having the stability

region for the method to be the same as for a Runge-Kutta method is achieved.

Recently, the shifting matrix J has been generalized to a matrix called a doubly

companion matrix [14] which has the form

—Qp —Qg —OQ3 - —0p-1 —O0p —Qpy] — /Bp-{—l
1 0 0 0 0 -5y
0 1 0 0 0 —Bp-1
X = ;
0 0 0 0 0 —0s
0 0 o --- 1 0 —Bs
0 0 o - 0 1 -5

where «; and (3; are coefficients. The following theorem shows that J is a special

case of X [40].

Theorem 2.7 Given a general linear method in Nordsieck form with ¢ = p, the

most general matriz W satisfying

BA = WB,

BU

wv —-VWw,

15 the doubly companion matriz X, that is W = X.

92

2.3. THE CHOICE OF A VALUES

2.3 The choice of)\ values

In the previous section, we have introduced the property of inherent Runge-
Kutta stability for this new type of method. The inherent Runge-Kutta stability
property guarantees that the stability function of these methods is the same as
for diagonally implicit Runge-Kutta methods. Therefore, for an order p method,
the stability function is of the form

N(z)

R(z) = m,

where the numerator, N(z), is a polynomial. The degree of N(z) is p + 1 in
general and reduced to p here to make sure the method is L-stable. The N(z) is

chosen so that

R(2) = exp(z) + C2PT! + O(2#12),

where the coefficient C' is the error constant. This leads to

N(z) = exp(2)(1 = A2)PT + 0P (2.19)
= (1+z+%+---+§;> (1= X2)P 4 O(2Fh).

By calculating N(z) we can find the error constants for different orders as shown

in Table 2.3 (up to order 5).

Since we wish to construct this type of general linear method for stiff problems,
we aim for A-stable methods. To satisfy the requirement of A-stability, as for a

Runge-Kutta method, the stability function needs to satisfy
[R(z)| <1,

93

CHAPTER 2. A NEW TYPE OF GENERAL LINEAR METHOD FOR
STIFF PROBLEMS

D C

1 53— 224+ N

2 F—3IA+3N2 =N

3 57— A 3N — 4N 4+ N

4 95— AT IAT =53+ 5A = N®

5| 75 — 5 A+ 2AT — A3+ DAt —6A5 + \S

Table 2.2: Error constants for different orders.

for all the z in the left half complex plane. If we let z = iy, then |R(z)| < 1 is

equivalent to the E-polynomial being greater than or equal to zero, where

E = |- Xy~ |N(iy)*

= (1= Xig)P*H (1 + Xiy)P ™ — N(iy) N (—iy).

The following example illustrates how to find the value of .

Example 2.1 Let p = 2. From equation (2.19) we get
N(z) =1+ (1=3Nz+ (3 —3A+3)X2)22 + O(2%).
Substituting N(z) into the E-polynomial, we have
(1+y222)% — ([1 — P =3+ 3]+ (1 3)\)23/2) > 0.
Rearranging the equation we obtain
(3/\4 - (% — 3\ + 3,\2)2> y* 4+ X% >0,
which is equivalent to

1
3N — (5 —-3)2+3)%)2>0.

54

2.3. THE CHOICE OF A VALUES

Rearranging the inequality, we obtain
A € [0.18042530, 2.18560009).

We should choose X\ in this interval for order 2 methods so that the method has

inherent Runge-Kutta stability and A-stability.

Table 2.3 shows the possible values for an order p method to have A-stability (up
to order 5) [40].

The X values that we use in this thesis are chosen from this table. In Table 2.3
we also note that the error constant is a function of A\. To obtain a suitable
method we want the error constants to be reasonably small. Figure 2.1 shows
the relationship between the error constant and the interval of A for the order 2
method. The range of X-axis is the interval of A\. The solid line shows how the
error constant C changes in this interval. For example, we choose A = i, then

_ 2 . .
C = —155, Which is reasonably small.

95

CHAPTER 2. A NEW TYPE OF GENERAL LINEAR METHOD FOR
STIFF PROBLEMS

P interval for A

11[0.29289321, 1.70710678|
2 | [0.18042530, 2.18560009]
31 [0.22364780, 0.57281606]

4110.24799464, 0.67604239]

5 |[0.18391465, 0.33414236]

Table 2.3: The possible values of A for different orders.

1.2 14

1.0

0.8

0.6

0.4

<o Acstable B PP PP

0.2

0.0
1

T T T T T T T T T
018 04 0.6 0.8 1.0 12 1.4 16 18 2.0 2.1856

lambda

Figure 2.1: The error constant C' = - — g/\+3)\2—)\3 and the interval of A-stability

1
6
for p = 2.

26

2.4. FINDING COEFFICIENTS OF A, U, B, ANDV

2.4 Finding coefficients of A, U, B, and V

From previous sections, we know that there are some assumptions on this new
type of method. Furthermore, these new methods need to satisfy order and stage
order conditions. We now illustrate how to find the coefficients of matrices A, U,

B and V step by step.

Theorem 2.3 in Section 2 has shown that for a general linear method to have the
stage order equal to the order of the method, equations (2.13) and (2.14) must

hold. By equating the coefficients of powers of z, we get

= (C - ACK,

V. = E - BCK.

This means that if we find suitable matrices A and B, then U and V can be

found easily.

We know that these methods must also satisfy the inherent Runge-Kutta stability
conditions. Therefore for a given doubly companion matrix X, we have the

following conditions,

BA = XB

p(V) = 0.

We note that if we are able to find matrix B, then A is found by using the above

conditions.

As we have mentioned before, we consider methods with p(A) = A. Using some

57

CHAPTER 2. A NEW TYPE OF GENERAL LINEAR METHOD FOR
STIFF PROBLEMS

special properties of the doubly companion matrix X [40] we have the following

theorem on the first inherent Runge-Kutta stability condition.

Theorem 2.8 Given the coefficients 51, Ba, ..., the coefficients oy, g, ..., py1,

are chosen so that the characteristic polynomial of X is of the form
det(wl — X) = (w — \)P*

Then BA = X B implies
BA = XB. (2.20)

This theorem proved in [40] indicates that once we know matrix B we know matrix
A (assuming that B is nonsingular). Another result is that the o; actually depend

on the ;. Therefore only the (; are free parameters.

In order to find the coefficients of matrix B, some useful properties of the doubly
companion matrices together with our assumptions on the methods and inherent
Runge-Kutta stability conditions have been used. Wright [40] has given a detailed
approach to finding the coefficients of matrix B in his PhD thesis. A Maple
program is available in [40]. This approach of finding the coefficients of four

matrices is called Wright’s approach.

There is another earlier approach which is introduced by Butcher [13]. We call
this Butcher’s approach. In the paper, the author used the order conditions and
the inherent Runge-Kutta stability condition to find the coefficients of matrix
A, then B, U and V. In this approach, the method needs to be converted into
Nordsieck form with a transformation matrix. These two approaches can be
transformed into each other [40]. In the thesis, we select example methods from

both approaches.

o8

2.5. EXAMPLES OF THE NEW TYPE OF METHODS

2.5 Examples of the new type of methods

To obtain these specially designed methods for stiff problems, we need to choose

some parameters. The parameters are listed below.

e Order of the methods, p. The p value can be 1, 2, 3, 4 and 5. In this thesis,

we only test methods up to order 4.

e The value of A. For a given order method, the A value can only be chosen

from Table 2.3 to ensure A-stability for stiff problems.

e The absicissae vector c. The ¢; represent the positions of the internal stages.
We prefer ¢; € [0,1]. Practically ¢; = 0 and ¢; = 1 have been chosen to

lower implementation costs.

e The vector 8 in the doubly companion matrix X if the first approach is

used.
Some examples of new methods are presented below.

Example 2.2 An order 1 method with 2 stages. The absicissae vector is chosen
to be c = [%, 1]7. We choose \ to be 13—0 which satisfies all the requirements of A-

stability and makes the error constant (C =) reasonably small. The method

L
100

1s presented as follows.

TN
HREEIE:
B‘V 2 301 L

[0 1]0 0

99

CHAPTER 2. A NEW TYPE OF GENERAL LINEAR METHOD FOR
STIFF PROBLEMS

Example 2.3 s = 3, p = 2 with ¢ = [0

LT, We choose A =

’ 9

1
17

therefore

L. Wright’s approach is used here to find this method. The method is

T 192

1 0 01 —3 0
T 1 0/1 0 o0
RN L
2 "5 2|l 5 T
po-h 10 0]
0 -2 20 0 0

Example 2.4 An order 3 and 4 stage method with ¢ = [0
C=—:

13330

1 2

17, A=

555- We use Butcher’s approach. This method 1s presented by
1 1
i 0 0 0 |1 i 0 0
) 1 _3 _1 _ 5
6 4 0 0 |1 4 36 648
109057 1701 1 0 |1 _2ms7 _ 4008 _ 17509
33000 2200 4 5500 19800 356400
368999 21071 11 10| _24319 _ 3357 22171
154000 30800 56 4 9625 30800 554400
11410277 _ 824833 5303 827 |1 _ 341047 _ 116611 _ 619133
5832000 1166400 23328 3888 162000 1166400 20995200
529 _17 _35 4 13 13 91
1620 162 162 36 90 324 5832
677 _ 197 _23 19 19 _13 13 _9
225 45 18 6 25 90 1620
6 -9 0 3 10 0 0 0

60

1

1 and

2.5. EXAMPLES OF THE NEW TYPE OF METHODS

To verify that these methods have order ¢ = p and the property of inherent

Runge-Kutta stability, we use the order 2 method as an example.

Example 2.5 Considering a step with stepsize h, we have

-Yl--i001—i0--hF1-
Yy T 1 0[1 0 0 hF,
e 5 1 1|1 0 3 hFy
(@) AR B A U VY
hy () L-bafo o L hy(aan)
th”(xn) |0 -2 2/0 0 0 | _h2y”(xn_1)_

Then, for stage 1 with ¢c; = 0, we have
1 1,
Yi = 2hf() +y(ens) = hy (@) (2.21)
According to the definition of the method, the left hand side of equation (2.21) is
Vi =y(z, 1+ c1h) + O(R?) = y(x, 1) + O(h®).
Ezpanding f(Y1) in Taylor series, the right hand side of equation (2.21) is

= LhFOR) (e) — Sy ()

1 ! n 1 !
= 3 (Y (Tn-1) + c1h*Y" (Tn=1) + O(K®)) + y(zpe1) — Zhy (Tp_1)

= y(@n1) +O(R%)
This means that stage 1 has stage order 2. For stage 2 with ¢y = %, we have
1 1
Y, = (hF(¥) + hf(%) + y(an) (222)

61

CHAPTER 2. A NEW TYPE OF GENERAL LINEAR METHOD FOR
STIFF PROBLEMS

The left hand side of (2.22) is

Yy = y(xn_1+c2h) +O(R?)

by (Tn 1) 3
P o)

1 1
= Y@ 1)+ 5hY (@0 1) + SR (@0 1) + O(R).

= y(xnfl) + %hy,(mnl) + (

The right hand side of (2.22) is

hy'(acnfl) + cthy"(:vn,l) + O(h3))

+ el
~—~

NG

(hy (zn-1) + 2By (20 1) + O(B®)) + y(zn-1)

= y(z, 1)+ §hy'(xn,1) + gth"(xn,l) + O(h*).
This verifies that stage 2 has stage order 2.

For stage 3 with c3 = 1, we have
1 1 1 1.,
Yy = ShI(V) + {hI (V) + {hI(G) + () + ShY (@) (229
The left hand side of (2.23) is
2
Yy = y(@n + csh) + O(F°) = y(wnr) + hy'(za1) + 579" (wn1) + O(R?)

and the right hand side of (2.23) is

hy'(wn-1) + e1h*y" (2-1) + O(h?))

+ o=
—~

I N N

(hy/ (zn=1) + 2h*Y" (Tn1) + O(R?))
+ (MY (2n-1) + €30y (20-1) + O(h?))

—|—y(mn_1) + ghzy”(xn—l)

1
= y(@n) + ' (T0) + 5079 (@) + O(F).

62

2.5. EXAMPLES OF THE NEW TYPE OF METHODS

This verifies that stage 3 has stage order 2.

For the first quantity passed between steps, we have

1
_thII(xnil).

1 1 1 1
¥(wa) = 1S (V1) = GhF(V2) + Shf (V) + ylan) + ghy/ @n 1) + 1o

8
The left hand side is

h2
y(@n) = y(@n1+) = y(20 1) + 2y (@0 1) + 59" (201) + O(F),
and the right hand side is

hy' (xn-1) + c1h*y" (T 1)

Il
DN —
—~

(hyl Tp— 1 +02h Yy (xn 1)
(

+= (hy'(@n-1) + csh?y" (xno1) + O(B)

l\Dli—‘Ooll—‘

1
+y (1) + ghyl(xn—l) + Eh?y"(xn—l)
2

I
= Y(@n) + hy (Ta) + Y (@0 1) + O(RY).

For the second quantity passed between steps, we have
Y (on) = ShIVE) = ShF(V2) + hF (V) + 5H2 (2 o).
The left hand side is
By () = b (Fns + B) = By (@n_1) + B2y (20 1) + O(B?),
and the right hand side is

(hy (Tn-1) + c1h*Y" (Tn1)

DN | =
—t

—= (hy'(zpo1) + 2By (T01)

V]

1
+ (hy' (zn—1) + c3h®y" (wn1)) + O(R®) + Zh2y"(:vn_1)
= hy'(za_1) + B2y (T0e1) + O(RP).

63

CHAPTER 2. A NEW TYPE OF GENERAL LINEAR METHOD FOR
STIFF PROBLEMS

For the third quantity passed between steps, we have
h*y"(wn) = —2hf(Y2) + 2h [(Y3).
The left hand side is
Ry (x4) = h*Y" (Tt + h) = B2y (xn-1) + O(R?),
and the right hand side is

= =2 (hy(zn1) + c2h*Y" (Tn1))
+2 (hy (zn-1) + csh®y" (xn-1)) + O(h?)
= Ry (z,_1) + O(R®).
Recall that the method has inherent Runge-Kutta stability. This means the sta-

bility matriz, M, should have only one non zero eigenvalue and the non zero

ergenvalue should have the form

1=+ 2422+ 0 1432 1522+ O(R®)
R(z) = (1—Xz)3 B (1—32)° '

Now we calculate the stability matrixz of the method. Substituting A, U, B and V
into M =V + 2B(I — zA)™'U, we then get

23-622-82-64 23-8224562—-32 __ 3z+4
(z—4)3 4(z—4)3 16(z—4)
M = 22(2%—42—32) 2z(z+4) 244
(2—4)3 (z—4)3 4(z—4)
822(2—8) 822 1
(z2—4)3 (z—4)3 z2—4

The eigenvalues of M are

A4(2* — 4z — 16)
T 23 — 1222 4482 — 64

0,0

64

2.5. EXAMPLES OF THE NEW TYPE OF METHODS

The only non zero eigenvalue is the same as R(z). This verifies that the method

has inherent Runge-Kutta stability.

65

CHAPTER 2. A NEW TYPE OF GENERAL LINEAR METHOD FOR
STIFF PROBLEMS

66

Chapter 3

Implementation

In Chapter 2, we reviewed the theoretical properties of the new type of general
linear method for stiff problems, such as stability and order. We have also dis-
cussed how to construct practical methods. In this chapter, we concentrate on
the implementation issues for these new general linear methods designed in the
previous chapter. These methods are quite new in the literature and this is the
first time they have been submitted to extensive numerical testing. Theoretically,
these methods have several advantages such as inherent Runge-Kutta stability
and high stage order, over the traditional methods. Understanding the perfor-
mance of these methods is desirable from practical point of view. Our aim is to
explore the implementation questions and carry out numerical experiments on
these new methods. To implement the methods in an efficient way, we need to

consider several important questions.

e Iteration scheme: since these methods are implicit methods, we need to

evaluate the stage values using some variant of Newton iteration. In Section

67

CHAPTER 3. IMPLEMENTATION

3.1 we will explain how we do the Newton iterations and develop an iteration

scheme for our experiments.

e Stage predictors: in the Newton iteration process an estimated initial it-
eration value is needed. A good estimate will reduce the total number of
iterations. In Section 3.2, three different predictors will be presented and

compared.

e Error estimation: we estimate the local truncation error to ensure the out-

put result is of acceptable accuracy.

e Stepsize control: we change the stepsize to control the local truncation error

for efficient solution.

e Starting method: due to the multivalue nature of these methods, a starting
method is required. We design a starting method to provide the value of

the initial Nordsieck vector.

e Interpolation: in Section 3.6 we show how to use interpolation to calculate

an output value at a specific point.

e Test problems: we review the test problems used here for assessing the
performance on various aspects of the new methods. These problems are

listed in Section 3.7.

The rest of this chapter will be concerned with these questions.

68

3.1. ITERATION SCHEME

3.1 Iteration scheme

In Chapter 1 we noted that the non-linear equations defining the stage values
have to be solved by an iterative procedure, such as a Newton-type method.
We call it as modified Newton procedure. To be simple, we still use the name,
Newton procedure in the thesis. In this section, we give details of the Newton

iteration process.

Consider an s stage new type of general linear method for an ordinary differential
equation which is an N dimensional system. The stages can be expressed by the

following equation,
Zawhf +Zumyf U'ooi=1,2,...,s, (3.1)

with a; = A and a;; = 0 for 7 < j. ThlS is equivalent to

Y; — Ahf (Y Z%hf +Zu”y]n1, i=1,2,...,s. (3.2)

Note that the right hand s1de of equatlon (3.2) contains information from the
previous step and from the stages which are already evaluated. Letting rhs denote

the right hand side of equation (3.2), we have
Yi— Af(Y;) = rhs; i=1,2,...,s. (3.3)

Introduce a variable, n, and write equation (3.3) as

#(n) =n — Ahf(n) —rhs; = 0.

Then the problem becomes to solve ¢(n) = 0. Applying the Newton method

here, we then solve a linear system with the iteration matrix
I —h)\J =1LU,

69

CHAPTER 3. IMPLEMENTATION

where the matrices L and U are the LU factorization and J is the Jacobian

matrix.

The cost of the stage evaluation of a full Newton iteration scheme includes the

following:

e evaluation of the Jacobian. It is typically expensive to compute numerically.

e LU factorization. The cost is C;N3s® operations because there are sN

unknowns.

e solving linear systems. The back substitution cost is CoN%s? operations.

These C; and (5 are constants.

Implementations of all three items are costly. Our aim is to minimize the total
computational cost to achieve an efficient code. In Chapter 2, we have shown
that the A matrix is chosen to have a lower triangular form for the reason of
lower implementation cost. This choice allows us to solve the nonlinear system
stage by stage, separately and sequentially. We also choose all the diagonal
elements of the matrix A equal to A\. The advantage of this choice is that only one
Jacobian evaluation and matrix factorization is needed for the Newton iteration.
This special structure of matrix A reduces the total cost to C;(N3) + Cy(N?s)

operations.

To illustrate how the stages are evaluated, we use stage 1 as an example.

Example 3.1 For stage 1, we have the following equation,

Yi=Ahf(V) + > uy .
j=1

70

3.1. ITERATION SCHEME

Therefore function ¢ s
¢(n) =n — Ahf(n) — rhs,

where
T
rhs = Zuljy][-nfl].
j=1

The problem is then equivalent to finding the root of ¢(n) = 0. The following

procedure is designed to use Newton iteration to calculate the stage values.

carryon = true
while carryon
Evaluate e by solving (I — M\hJ)e = ¢(nl)
77[j+1] — n[j] —e
carryon=|le|| > €
end while
Y, = pbtl
where € is the error tolerance for terminating the Newton iterations and nl! is

the j-th Newton update. This € depends on the tolerance used in the stepsize

controller. nU+Y s the approzimation to Y, when the convergence condition is
satisfied. Other stages, because of the special triangular form of matriz A, satisfy

sitmilar equations, and the same procedures are used.

In the Newton method, the criterion for stopping the iterations is
1774~ ¥;]| < Tol,

71

CHAPTER 3. IMPLEMENTATION

where Y; is the exact solution and Tol is the tolerance for accuracy of stage
approximations. In practice this Y; value is not known yet. We need to modify

the criterion. Defining a convergence rate at the jth iteration by U/, we have
Hn[j-l-l] _ nU]H

- Hn[j] — 77[3'*1]“'

We assume that the upper bound of 7! is » and that » < 1. After a large number

Ll

of iterations, say N iterations, n ™) converges to Y;, we then have
|70 =il = [P = U2 gl —]
< [T = A [— gl g N -
o]2 4]

= r(1+7+-- Vel

1—rN
= e

r .
St

where ell = nli+1 — pll. For a given tolerance e, if

r
1—r

llel|| < Tol

then
|In¥ Y = Yj|| < Tol.

In practice the upper bound r is not known either. To derive a criterion for

stopping iterations, we assume that

< 10
1—r ’

which gives 7 < 10/11, and guarantees that the iterations converge, otherwise we

reject this step. Then if
Tol

Ul « ———
<

72

3.1. ITERATION SCHEME

it follows that ||n+1 — Y;|| < Tol holds, and we accept nl/*! as Y;. Therefore,

we let € = %.

Using the convergence rate, we can generalize the criterion for stopping iterations.
Assuming that we have approximately the same convergence rate for several

iterations, then at the nth iteration

e+ Tlet]]
et et 4]

If ||el*+1]| < € holds at the n + 1th iteration, then at the nth iteration, we can

relax the convergence condition to
[lel™|2 < el el 1]l

If the ratio, Il

TRl at the n 4 1th iteration is too big, say K = 2, we consider

the iteration to have diverged and we then reject this iteration. Figure 3.1 shows

the procedure for testing the convergence.

In Section 3, we will use the stage derivatives to calculate the error estimator.
The stage derivatives are one order higher than the stages. In order to achieve
the goal that the error estimator is comparable to Tolerance which is provided
by users, we need to carry out Newton iterations to a higher degree of accuracy.
This means that we should choose a smaller tolerance for the accuracy of the
stage approximations than the given tolerance, T'olerance, of the method. Since
Tol, the tolerance for accuracy of stage approximations, does not appear in the
computer codes, we only use €. The results of numerical experiments with € =
Tolerance/10, € = Tolerance/100 and € = Tolerance/1000 will be presented in
Chapter 4.

73

CHAPTER 3. IMPLEMENTATION

[teration

i

Yes

1 No

Iteration - Accept

i

le . ll<€ or

le,. lI2<elle,ll | V€S

Yes

» Reect

A

Figure 3.1: The scheme for convergence testing

74

3.1. ITERATION SCHEME

The most costly step in the procedure is the LU factorization of I — Ah.J and the
back substitutions. The operational cost is N3s® for doing the LU factorization
for I — hAJ. The back substitution takes N?s? operations. These computational
costs are very high, especially when the dimension of the system, IV, is large and
the Jacobian matrix is dense or a method with more stages is used. In order
to reduce these costs, we wish to use the same LU and .J as much as possible
provided that the convergence is achieved. This strategy is adopted by many
solvers to reduce the computational costs. In this thesis, the “old” J and LU
which might have been calculated in previous steps is used to do the Newton
iterations. However, if we keep the “old” J and LU too long, it may cause slow
convergence or divergence. Therefore an iteration scheme is needed to determine
when and how often we should evaluate a new Jacobian or do an LU factorization
and how to deal with convergence failure. In this thesis, we present the following

algorithm to obtain better efficiency.

In this scheme, for a stage Y;, attempt the Newton iteration with “old” J and
LU from previous steps. If it is convergent, move to the next stage or step; if not,
we carry out an LU factorization of I — hAJ with current h. With the updated
LU factorization we then redo the Newton iterations. If the Newton process is
convergent, move to the next stage or step and keep this update for next stage or
step to use; if it is not convergent, update the J and redo the LU factorization of
I — hAJ. We use the most recently updated LU factorization to do the iteration
again; if it is convergent, move to the next stage or step and keep the most recent
update for next stages or steps to use, otherwise we need to lower h to % and

redo this step from the beginning. Figure 3.2 shows the algorithm for Newton

1teration.

75

CHAPTER 3. IMPLEMENTATION

Y 1
Newton
Iteration \
Converge? Yes
No
Refactorize with
current h
Newton
Iteration \
Converge? Yes
No
Recompute J
Refactorize
Newton
Iteration
Converg> Yes
No
Reduce h

Figure 3.2: Scheme for controlling updates.

76

3.1. ITERATION SCHEME

In this thesis, the Lapack routines DGETRF and DGETRS [42] were used for

the LU or PLU factorization and back substitution.

To produce an efficient solver, we are also concerned with the evaluation of the
stage derivatives. After the Newton iterations, we have accepted a converged
value as the stage value Y;. We now need to compute the stage derivative value
f(Y:). A natural way is substituting z,, + hc; and Y; in the function f, and then
we use these F; (1 =1,2,...,s) values to estimate the error. Since we are solving
stiff problems, if we calculated F' in this way, the error would be increased [37].

It is therefore necessary to evaluate the F; values using the following formula

Y; — I‘hSi

Fv) =0

77

CHAPTER 3. IMPLEMENTATION

3.2 Stage predictors

In the Newton iteration process, we need a starting value 1/ as an approximation
to 1. The convergence of the Newton iteration is sensitive to the starting values
of the stages. A better starting value gives better efficiency. If this first approxi-
mation is very close to the solution value, the number of Newton iterations may
be reduced. As a result, the total cost is reduced. Another advantage of a good
prediction is that actual convergence is more likely to be successful. Therefore,
we get fewer rejections. For the methods introduced in this thesis, we consider

step number n — 1 being accepted, and then have the Nordsieck vector y»—1,

ygn_l] y(xn—l)
~1
1) = | @)
y:[’,nil] h*y" (xn—1)

Our aim is to use this known information to calculate the first approximation of
7. In this thesis we propose three different stage predictors to estimate the value
of nl%. They are a Taylor expansion predictor, a Newton interpolation predictor

and an Hermite interpolation predictor.

Taylor expansion predictor

For the Taylor expansion, we use the known values from the previous step without
any additional computational cost. We choose special values for the elements
of the abscissae vector ¢, namely ¢; = 0 and ¢, = 1. As a result, we have

Ys = y(xn—1 + csh) = y(z,,) for step number n — 1, and Y} = y(z, + c1h) = y(x,)

78

3.2. STAGE PREDICTORS

for step number n. Therefore, the first approximation for Y; of step number n
can be the last stage value, Y, from step number n — 1. For other stages, we use
the Taylor expansion since we know higher order derivatives from the Nordsieck

n—1]

vector y! of the previous step. Therefore, for stage i (i > 1), we have

Y, = y(xn 116)+O(h’p+1)

= y(Tn +Z ~ 0y (@) + O

j= 1

p .
c?
= Z] y]+1 + O(hp+1)

7=0

0
\'M-a
|
&
'3

The Taylor expansion predictors for order 2, order 3 and order 4 methods are

presented in Table 3.1.

order | Taylor expansion predictor

2 |V =y eyl Gl

3|V =yl el gl gl

4 [V =y gl Gl 4 Sl

Table 3.1: Taylor expansion predictors for order 2, order 3 and order 4 methods
(¢ >1).

79

CHAPTER 3. IMPLEMENTATION

Newton interpolation predictor

To improve the accuracy of the prediction, the second stage predictor uses Newton

interpolation to find values of 77[0}

3

. It has been noticed that the later stages require
more iterations to converge than the first stage. Therefore, we wish to use the

information from the previous stages to improve the quality of the predictor.

Newton interpolation has the following general formula

¢(t) = ¢(t1) + (t = 11)(tr, t2) + (t = 1)(t = 2)P(t1, 12, Is), (3.4)

where
bt 1) ¢(ti) - f(tl)
2— 10
~ ¢I(t1) when to — 11
and

B(ta, t3) — d(t1,12)
t3 — 1

¢(t1)t2: t3) =

¢"(t1)
21

when t3,to — 1.

To illustrate how we use this technique, we present an example below.

Example 3.2 Consider an s = 4, p = 3 method with abscissae vector ¢ =

[0, %, %, 1|7, After step number n — 1 is completed, the Nordsieck vector yln=1 s

known. At step number n, the Newton procedure is used to calculate stage values.
We know that Y1 =~ y(xp_1 + c1h) = y(xn—1), therefore we use Yl[o] =y Y as
the prediction of Y1. Then we do the Newton procedure to obtain the values of Yy
and f(Y}).

80

3.2. STAGE PREDICTORS

For YQ[O], we use the Taylor expansion predictor which gives

1
v = y(xn—1+§h)+0(h”“)
n—1 -1
~ o+ el]+2,y£ U 2y
[n—1] [n—1]
_) Loy 1oy 159,
R S TR S

This YQ[O] is used in the Newton procedure to calculate Yo and hf(Ys).

For Yg[(”, we know Yy, Yo and hf(Y3) from the previous two stages. This means

that we can find ¢(2) with given ¢(0), ¢(3) and ¢'(3). Letting t = 2, t; = 3,
ty = % and t3 = 0, and then using the formula in equation (3.4), we have
2 1 2 1 11 2 1* (11
o(3) = o (3)+(G-3)2(33) = (G-3) o (3:39)
(L1 1,2(5.0) -4 (55)
= ¢<§)+§¢ (g)+(§) 0_%
B 2 (1
— 60)+39 (3)
This leads to
2
Yy = Vi 4 Shi(Ya). (3.5)

For Y;[O], similarly to stage 3, we have ¢(3), ¢(2) and ¢'(2) available and wish to

find p(1). Witht =1, t; = %, to = % nd t3 = %, we use the formula in equation

(3.4) to get
sw=0(3)+3¢(3)- (3.6)

Hence we have

CHAPTER 3. IMPLEMENTATION

For other methods with different ¢ vectors we use the same formulae to estimate

the Y”! values. Tables 3.2 and 3.3 list the Newton interpolation predictors for

1

the order 3 and order 4 methods respectively.

Stage Predictor

Y'I[O] Y;l[n—l}

0 . 4 [n—1] (n—1]
B et () + ()

vy Y+ 2hf(Ys)

v Yo + 2hf(Y3)

Table 3.2: The Newton interpolation predictor for an order 3 method with ¢ =

[O’ %7 %’ 1]T'

Stage Predictor

YYI[O} Y:r’[n—l}

n— n— [n—1] [n—1] [n—1]
}/'2[0} yg 1] + iyg 1] + (i)?y:’,m + (i)3y43! + (i)4y54!

vy Yi + Lhf ()
v Ys + Lf(Y3)
v Ys + Shf(Ya)

Table 3.3: The Newton interpolation predictor for an order 4 method with ¢ =

11 3 T
[OaZaﬁaZal] .

82

3.2. STAGE PREDICTORS

Hermite interpolation predictor

The third stage predictor uses an Hermite interpolation formula. It is based on
information from the previous two stages. In this predictor, we use Y;_o, hf(Yi_2),
Y; 1 and Af(Y;—1) (i > 2) to predict the value of Y-[O]. For the first two stages,

o] _ , [n—

we use Y} = 3" and " = ¢

+ ch£" 4 + ;2; y;ﬁ" 1] ---. For stage 3 and

up, let

Y = aYi_p + bhf(Yio) + Yiey + dhf(Viey) (3.8)

where a, b, c and d are coefficients to be determined. For simplicity we only show
i = 3 as an example. By expanding both sides of equation (3.8) in a Taylor series

around x,, we obtain

! C2 n 3 n
y(@n) + shy'(zn) + 5; By (20) + 3?;h3 (za) + O(hY)
! 02 n 3 n
= ol + el 0) + I w) + o o)

9
+ bh [y'(a:n) + crhy" (z,) + %th"'(xn)}

2 3
+ ¢ [y(xn) + ey () + %/ﬁy"(n) + 32'h3 y" (x n)]

2

b b Y o) + caty (o) + 0%)| + O,

Equating the two sides we get

at+c = 1,

aci +b+ceo+d = ¢z,

2 2 Cg
aa—i-bcl +C§+d62 = a,
3 2 3 2 2
%1 G _ G

ag b e +d2 = 2

83

CHAPTER 3. IMPLEMENTATION

There are 4 equations and 4 unknown variables. The coefficients can be obtained

by solving this equation system.

Example 3.3 As before, we consider the s = 4 and p = 3 method with ¢ =

[0,5,2,1]". For stage 1, we let V% = yI"U For stage 2 we use Yi* = "7V +

Cngn_l] + ;—g!y:[),n_l] + g—%ygn_l]. For stage 3, we use Y1, hf(Y1) and Y3, hf(Y3).
Substituting c1, co and c3 values to the above equation system, we get
Vi = 8Yit Shi(Vi) — Ve + Shi(Ye).

For stage 4, we carry out the same procedure as for the stage 3 and obtain

2 4
Vi = 5Yat ghf(Yz) = AYs+ Shf(Ya).

Tables 3.4 and 3.5 present the Hermite interpolation predictors for order 3 and

order 4 methods.

Stage Predictor

0 n—1
v ylr

o | =1, 1 -1 c1yed Y iysyl !
or lyr Ay (3) 1+ (3)°H
Yy BY: + 2hf (Y1) — 4Ys + Shf(Ya)
v, 5Ys + 2hf(Ys) — 4Y3 + Lhf(V3)

Table 3.4: The Hermite interpolation predictor for an order 3 method with ¢ =

[07 %7 %7 1]T

The numerical experiments for these three predictors will be presented in Chapter

4. Tt is possible to use higher order formula for later stages.

84

3.3. ERROR ESTIMATION

Stage Predictor
YI[O} ygn—l]
YQ[O} ygn—ﬂ + iygn—l] + (1) yé’;!_l] + (1) yﬂ’;” + () ygzl]
Yy BY1 + 3hf (Y1) — 4z + hf (Y2)
v 5Ya + 5hf(Ya) — 4Ys + hf(Ys)
v 5Ys + $hf(Ys) — 4Ys + hf(Ya)

Table 3.5: The Hermite interpolation predictor for an order 4 method with ¢ =

1 1 3 T
[OaZaﬁaZal] .

3.3 Error estimation

In order to implement variable stepsize, we need to estimate the local truncation
error, a measure of the accuracy of the approximation at each step. Our goal
is to estimate the local error and then develop a stepsize controller. In Chapter
1, we have discussed the local truncation error for general linear methods. The
local truncation error is defined as the difference between the computed numerical
result and the exact solution of the problem. Figure 1.4 in Chapter 1 illustrates

the local error, which is defined as follows,
E, = ChPtiyrtD) (zn) + O(RPT2).

The higher order term O(h?*?) is ignored for the stepsize control.

In step number n, we have the Nordsieck vector, y™, and the values of hF;
available. We prefer using the hF; only. The reason is that each component of

the Nordsieck vector contains an error of O(hP*™). But hF; has error of O(h?*?)

85

CHAPTER 3. IMPLEMENTATION

since Y; has error of O(h?*!). We then estimate the error E, by taking a linear
combination of the known stage derivatives, hf(Y;) i =1,2,...,s. The principal

term of E,, h?*'y®+Y can be represented by
PPy s dihf[y(2n1 + c1h)] + ... + dshf[y(zn_1 + csh)] (3.9)

where dy, ..., ds are coefficients which can be found for a particular method
by expanding f[y(x,_1 + ¢;h)] in a Taylor series around z,,_;. We now use an

example to illustrate the idea.

Example 3.4 . Apply a p = 3, s = 4 method with c = [0,%,2,1]7, A = 1 and

:353a

error constant C' = 256 to the ODE problem y' = f(x,y). At step number n, Yl,
Y, Vs, Yu, hf(Y1), hf(Ys), hf(Ys) and hf(Y,) have been estimated through the
Newton procedure. According to the order conditions for this type of method in

Chapter 2, we have
hf(Y;) = hf(y(@a-1+cih)) + O(h°)
= (@) e (@) R) + SO)+ O(R).
Substituting the hf(Y;) into equation (3.9) we have
Wy® = dihy (2, 4)

1
+ dy (hy'(mn_l) + §h2y"(xn_1) +

|—=

(%)th m (3)3h4 (4)
o 1Y (xn_1)+? Y (Tn-1)
(3)?

+ ds (hyl(mn—l) + §h2y”(xnl) ()

1 1
- @Qmu%a+mw@%o+5mwuwn+§mww%qﬂ+omv

3.3. ERROR ESTIMATION

4
<

4 3

This is a linear system with 4 unknown variables and 4 equations. Solve this

equation system and we get
dl = —27, d2 = 81, d3 = —81, d4 = 27.
Therefore, we have the following error estimator for this particular method,

En ~ C[-27hf(Y1) + 81hf(Y2) — 81hf(Ys) + 27hf(Ya)].

The formula for the error estimator depends on the individual method. Each
method has its own error estimator based on the error constant and the abscissae
vector of the method. Table 3.6 presents the error estimators for the selected

order 2, order 3 and order 4 methods.

order | A | Error estimator
2 | ;| —f(hf(Y1) — 2hf(Y2) + hf(Y3))
3| 1| —oe(—hf (V1) + 3hf(Ya) — 3hf(Y3) + hf(Y2))
4| 1| —g(hf(Y1) — 4hf(Y2) + 6hf(Ys) — 4hf(Ya) + hf(Y5))

Table 3.6: Error estimators for order 2, order 3 and order 4 methods with ¢ =

[O: %7 1]T7 c= [07 %’ %’ 1]T and c= [O’ i’ %’ %’ 1]T respectively.

87

CHAPTER 3. IMPLEMENTATION

3.4 Stepsize control

Using a constant stepsize may not be efficient for some problems since the numer-
ical behaviour of these problems changes over the region of integration. Excep-
tionally, some problems change stiffness over the integration interval. Variable
stepsize has been considered for these general linear methods. In order to control
the stepsize, we need to estimate the error for each step. In the previous section
we have presented how we estimate the local truncation error, E,,. The stepsize
controller used in this thesis is a traditional stepsize controller which has been

used by many numerical codes. It has the form
hn—H = énhna

where h,, is the stepsize for step n, h,.1 is the stepsize expected in the following

step n + 1 and 0, is a coefficient.

Figure 3.3: Variable stepsize

It has been mentioned that if one step is accepted the truncation error needs to

satisfy

||En|| < Tolerance,

38

3.4. STEPSIZE CONTROL

where Tolerance is the tolerance for the method provided by the user. The main
idea of stepsize control is that we wish the stepsize for the next step to be optimal.
One way to achieve that is to choose the new stepsize to make the local error
approximately the same as the given tolerance. For an order p method, at step

n we have the local error
Ey = CH 'y (@) = iy (1),
where 1, = Ch2*'. At step n + 1 we should have
Yny1 = Chf:kll

and
Eny1 = Chﬁiy(pﬂ)(ﬂ?nﬂ) = ¢n+1y(p+1) (Tnt1).

To have the optimal stepsize, we want the norm of the local error approximately

equal to the given Tolerance. This condition gives

Tolerance _ (Pt) P
|| En]| ha ’

which is equivalent to
Tol b+
olerance \ rt+!
hss = (7) .
|| Enl|

We now introduce a safety factor . The purpose of this safety factor is to reduce
the risk of rejecting the next step. Normally v is a value between 0 and 1. In

this thesis, we choose v = 0.9. Therefore, we have

i — y (Tolemnce) BT
" || En]] '

89

CHAPTER 3. IMPLEMENTATION

To change the stepsize smoothly and reduce the risk of unstable behaviour in
the numerical solution, we need to increase or decrease the stepsize gradually. If
the new stepsize is chosen too big then a larger error will result in rejection. If
the new stepsize is chosen too small then it will take more steps to reach zg,q-
Furthermore, since our theorems of stability and order conditions are based on
constant stepsize, the changes in stepsize should be reasonably small. As a result,

we set a limit on the value of 6,. At step number n, we have

6, = Min (2, Max(én, %)))

where the two numbers, % and 2, are typical choices and based on the experi-
mentation. The numerical results using the traditional stepsize controller will be
presented in Chapter 4. Recently, there has been an emphasis on using sound
control theory principles [25] to control stepsize. In this thesis, we only use the

traditional controller.

Recall that the Nordsieck vector y!™ at step number n consists of the output

approximations which are calculated in terms of h,, i.e.,

y(zn)
hny' (25)

yﬁﬁ]t ~

i h{;y(p) (z,) |

For the following step number n + 1, we will use the new stepsize h,.1 = énhn.

Therefore the corresponding input approximations in terms of h,; are needed.

90

3.4. STEPSIZE CONTROL

The new incoming approximations should have the form of

n+1] b1y ()

in ~

hﬁ+1y(p) (Tn) i

[n] [n+1]

To rescale the quantity y,,; to y;, ', we introduce a transformation matrix D(f).

It has the form

10 0 0
06, 0 0
DO)=|0 0 62 0
0 0 0 o

We then have

Yin™ " & D(O)yom,

in out"

Zero stability with variable stepsize

Applying a new type of general linear method to the test problem y'(z) = 0, from

step number n to step number n + 1 we have
y™H = D@)Vyl.

Note that we have D(6)V in the equation compared with V' for constant stepsize.

Therefore we need to consider the effect of repeatedly multiplying by a matrix

91

CHAPTER 3. IMPLEMENTATION

D(0) to matrix V in the integration interval. In the thesis, we do not carry
out this analysis in full but consider only the question of repeatedly increasing
the stepsize to the maximum value allowed in our code. This means that we
need to consider the possible power-boundedness of D(6)V. We use the following

example to illustrate the analysis.

Example 3.5 Consider matriz V' in the order 3 method given as an example in

Chapter 2. Matrix V' has the form

] 341047 _ 116611 _ 619133
162000 1166400 20995200
! 13 _ 91
V= 90 324 5832
0 1 13 _ 91
25 90 1620
0 0 0 0

We calculate the four eigenvalues of D(0)V. They are 1, 0, 0 and %0(0 -1). If

%9(9 —1) < 1, that is 8 < 3.18, then all the eigenvalues are less than or equal to

1 and the zero stability is satisfied. Therefore, 0, = 2 is a safe choice.

3.5 Starting methods

Recall that when we construct these general linear methods we use Nordsieck
form for the quantities passed between steps. For an order p method, the first

incoming approximation is

92

3.5. STARTING METHODS

y(fﬂo)

hoy'(wo)

| hlhy® (xo)

The problems that we wish to work on are initial value problems. There is only
one initial value, which is y(z) = yo, available. There are two ways to implement
these methods. One way is variable order. In variable order implementation, we
can start with order 1 or order 2 methods which require only this known initial
value. The alternative approach is to use a fixed order implementation. Due to
the complexity in the implementation of variable order and our aim of performing
experiments on these methods, therefore, we mainly concentrate on implementing
fixed order general linear methods in this thesis. In this case, to produce these
first incoming approximation values using the given initial value, for each order,

we need to construct a starting method which has the form

AU

o)t
<0

The starting method may also advance the solution through one single step. This
step can take the solution to xy+ hy or approximate the solution at xy depending
on the design of the starting method. In this thesis, the modified singly implicit
Runge-Kutta methods with p + 1 outputs are used as the starting methods.
The idea of Runge-Kutta methods with multiple outputs was suggested by Gear

[24]. In our case, the starting method should use the same A value as the main

93

CHAPTER 3. IMPLEMENTATION

method. Since we have only y, available, the matrices, U and V need to be

chosen as U = [1,1,---,1]" and V = [1,0,-- -, 0]".

The following example illustrates how to construct a starting method.

Example 3.6 We want to build a four stage starting method for a four stage
order 3 general linear method which is regarded as the main method. The)\ value

for the main method is i. Consider matriz A which has the form

A 0 0 O
as; A 0 0

(41 Q42 Qaz3 A

]T

and the abscissae vector ¢ = [¢1, 9, C3,¢4]" . To provide an order 3 first approxi-

mation for the main method, the stage orders of the starting method are chosen

to be 1, 2, 2 and 2 respectively. According to the order conditions we have:

e for stage 1, the stage order is 1, and we have
61 =)\;

e for stage 2, the stage order is 2, and we have

Qo1 + A = &y,
1
&21)\ +)\62 = 563,

e for stage 3, the stage order is 2, and we have

31 +az +A = Cs,
oA R 1,
G31C1 + Q39Cy + \C3 = 503;

94

3.5. STARTING METHODS

e for stage 4, the stage order is 2, we have

Qa1 + Qa2 + Qa3 + X = Ca,
A A A A A . 1,
a41C1 —+ A 42Co + a43C3 +)\64 = 564.

Since there are 7 equations and 10 unknowns, we have three free parameters.

Solving the first three equations we get ¢ = i, Co = % — % and as; =

~$

1
4

For the free parameters, we choose ¢3 = %, ¢y =1 and a49 = 0 for simplicity and

convinence, hence we have a3, = —%ﬁ, Q39 = % and Q43 = %. As a result,
¢ of the starting method is [i, % - %, %, 1" and matriz A is
1
i 0 0 0
1 V2 1
i—7 1 00
CA4TV2 THTV2 1 0
36 36 1
0 0o 32 1

The next step is to decide the coefficients of B. As in the main method, y! is

calculated by the following equation,
y® = Bhf(Y) + V.

We wish the elements of 4% to be accurate to at least order 3. Therefore, the
information from the first stage is not to be used since stage 1 only has the order

of 1. As a result, the matrix B is of the form

0 812 613 b14
0 622 1323 b24

&
I

0 bsy bss by

0 842 643 b44

95

CHAPTER 3. IMPLEMENTATION

By calculating the first component of the output value, ygo], we have

?JEO] =y(zo+rh) = 512hf(Y2) + 813hf(y3) + 614hf(Y4) + Yo-

Note that this formula gives an approximation for variable r. For example, if
r = 0, the output values will be on the original point zy and if r = 1, the output

values will be on the first point x; = z¢ + h.

Using the order conditions, and expanding each f(Y;) in Taylor series, we equate

both sides and get

1=2

4

A 7"2
E biici = 5;
i=2
4 «

. e r3
D bug = g
i=2

For the second component of the output value, yg)], we have

uy! = hy'(w0) = baoh f(Y2) + bash f(Y) + bash f (Va).

As for the first component, we have following equations

4
ZBQZ' = 1a

1=2
4
E bauc; = T,
i=2
4 «
A cf r?
bice = o
2! 2!
i=2

For the third and fourth components, y:[%o] and yz[f], we have

4
> b =0,
1=2

96

3.5.

STARTING METHODS

4
E b3iC;
i=2
4 &2
E bgi—-

2!
i=2
and
4
E bai
i=2
4
E baiC;
i=2

4

db

=2

~2
i
4y 2!

1.

There are 12 equations and 12 unknowns, so we can solve the linear equation

system to get the elements of B. If 7 = 0, the elements of B are

0 0
8 16v2
U L e
Uy 2 ey
7 7
48 | 96v2
| 0 -7 +5—
Ifr=1, B is
0 0
. 0 0
Br:lz /3
16 32v2
0 -7+
48 | 96V2
|0 -7+

B~

0

45 182

14

7

36 542

7

7

11

2_2\/5
12 — 6v/2

Example 3.7 The starting method for the five stage order four main method.

The X\ value is i for the main method. To have order 4 first approrimations,

97

CHAPTER 3. IMPLEMENTATION

Yl we wish to build up the order stage by stage. Therefore, we choose the stage
orders of the starting method to be 1, 2, 2, 3, 3, 3 and 3 respectively. Note that

for stage 4, we have
Yy = anhf (Y1) + Gaohf(Y2) + aashf(Ys) + Ahf(Ya) + yo.

We know that the error in hf (Y1) depends on O(h?) since the error in Yy is O(h?).
We wish Yy to have stage order 3, which means that the error in Y, should be
O(h?). To reach this goal, we do not want to use information from Y. In this
case, G417 = 0. The same principle can be applied to stages 5, 6 and 7, that is

as1 =0, ag1 = 0 and a71 = 0. Under these assumptions, matrix A has the form

as; azx A 0 0 0 O

0 a2 Ge3 Gesa Ggs A 0

0 arp Gr3 Qs Grs Gre A

A—_[a A A A aoa AT
and ¢ = [61,02,03,04,05,06,07] .

Using the order conditions we have

e for stage 1, the stage order is 1, and we have

61:)\,

98

3.5. STARTING METHODS

e for stage 2, the stage order is 2, and we have

ag1 + A = ¢,
1
&21/\ +)\62 = 56%,

e for stage 3, the stage order is 2, and we have

az1 +az +A = s,
A A A A R 1,
a31C1 + a39Co +)\03 = 503,
e for stage 4, the stage order is 3, and we have
Ggo + Qu3 + A = Ca,
i A a s . 1,
A42Co + G43C3 + ACy = 5
G l2 A Gl A2 = L.
CL4QC2 -+ 0,4303 -+ C4 = 504,
e for stage 5, the stage order is 3, and we have
A A A A A A . L,
a52Co + a53C3 + a54C4 + /\C5 = 565,
A A2 A A2 A A2 ~2 1 ~3.
Ga52Co + a53Cs + a54Cy +)\05 = 305,
e for stage 6, the stage order is 3, and we have
gy + Q53 + Ggs + Ggs + A = Cg,
A A A A A A A . 1,
gaCo + (3C3 + GpaCq + (g5C5 + ACg = 5%
Aot A Geal? 4 Gl 4 Gl 4 N2 = ey
A2Co + a63Cq + AgaCy + Ae5Cx + Cg = 566’

99

CHAPTER 3. IMPLEMENTATION

e for stage 7, the stage order is 3, and we have

Q7o + Q73 + Qs + Q75 + Q76 + A = Cr,
I A I R 1,
a79Co + ar3C3 + QA74Cy + Q75Cx + a76Cq +)\67 = 567,
A A2 A A2 A A2 A A2 A A2 2 14
(72C5 + Q73C3 + Q74Cy + G75C5 + Q7eCg + A7 = 307.

Solving the equations from stage 1 and stage 2, we get ¢, and Go1. We choose

i, and solve equations from stage 3 and stage 4 to get a3y, a3z, C3, 49 and

¢y =
G43. Let ¢5 = %, and solve equations from stage 5 to get ase, Gs3 and ass. For the
equations from stage 6, we have two free parameters. Let ¢g = % and ago = 0 and

solve the equations to get ag3, ags and ags. For stage 7, let ¢; = 1, a9 = 0 and

a73 = 0, and solve the equations to get ary, Q75 and azg. Therefore, ¢ is

o[t veve 1113]
£2 474 642477
and A is of the form

: 0 0 0 0 0 0
12 1 0 0 0 0 0
A SO 0 0 00
R = K
0 %0 B3R —wiSe 1 0
0 0 0 B 5 i

As we did for the order 3 method, we wish the elements of y!% to be accurate to

100

3.5. STARTING METHODS

at least order 4. In this case, the matrix B is of the form

oy

1314
524
834
1344

bs4

615
bos
635
645

b55

616
bos
636
646

b56

617
bar
bar
647

bsz

As for the starting method for order 3 method, we obtain the following equations

for B using the order conditions.

[0] _

For the first component of the output vector, y; y(xo + rh), and we have

= ’r‘,

=4
T) .2
Zbucz‘ = o1

i=4
lz_' - _,:
— 2! 3
ligy = o1
— 3! 4

For the second component of the output vector, yg)] = hy'(zo + rh), and we have

7
D by = 1,

i=4

7
Zb%éi = T

i=4
L r?
Zsz_ = 7
2! 2!

i=4

CHAPTER 3. IMPLEMENTATION

T
; o r3
E 2%a7 = a1
l !
ot

For the third component of the output vector, y:[,)O] = h*y"(zg + rh), and we have

7
Zi)?n' = 0,

=4

7

E bsic; = 1,
1=4

T pe

E bsig- = 71

' 7

— 2!
& r?
E sz_Z = a7
— 3l 2!
1=

For the fourth component of the output vector, ygo] = h3y"(x¢+rh), and we have
7
D b =0,
i=4
7
D bue = 0,
i=4
7 2
s 6
D bugy =1,
i=4
7 ~3
ZZMZ% = T.
i=4)
For the fifth component of the output vector, ygo] = h*y® (29 + rh), and we have
7
beii = Oa
i=4
7
D bt = 0,
i=4

102

3.5. STARTING METHODS

000 0 0 0 0

000 4 -6 4 -1
By=|000 -2 38 -—28 2

000 48 —128 112 —32

000 —64 192 —192 64

Ifr=1,
2 1 2

000 2 -1 2z g

000 0 0 0 1
Boi=|000 -4 6 -12 2

0 00 —64 192 —-192 64

For each main method, we can find a matching starting method. When building
a starting method for a higher order method, we need to use increasingly many

stages to build up the desired order for the output Nordsieck vector.

103

CHAPTER 3. IMPLEMENTATION

3.6 Interpolation

One may need an output value at a specific point x. Since we use variable stepsize,
we cannot calculate the values exactly at that point unless the next stepsize, h,
is forced to fit in the distance between z, and x. One way to calculate the
output value at point z is that a successful step from z, to z,,; is achieved
and zx lies between x, and x,.;, and then force h = x — z,, and do one more
step. The disadvantages of doing so are (a) if we need a lot of output points it
becomes inefficient to force steps to fit in for output values; (b) as we need to
take steps based on long time performance, forcing steps will interfere with this
main aim. Therefore, interpolation is desirable to approximate the values for the
output values. We assume that the solutions at z,, and x,,1, which are y(z,)
and y(x,.1), have already been approximated using stepsize h, and point x lies

between x,, and x, ;. Let
hi=x—x,, ho=xp1 — .

We use Figure 3.4 to present the three points, x, x, and x,.

Figure 3.4: An output point between z,, and 1.

In order to estimate the solution at point z, we use the information collected at

104

3.6. INTERPOLATION

z, and z,,,. The Nordsieck vectors yl™ and y[™+! have been calculated for the

points z, and x,.;. Note that we need to transform the Nordsieck vector yln!
[n]

into y;, with current stepsize h, which was discussed in the section of stepsize
control. One natural way to achieve this is that we can use Taylor expansions of
y(x) = y(x, + hy) or y(x) = y(zrn41 — ho) to approximate the solution at point
x. However, this approach only uses the information at one point to calculate
y(z). In order to obtain a good continuity (for example, continuity of y' at step

points), we consider using y(z,), hy'(z,), y(zn+1) and hy'(x,41). Let

y(x) = ay(z,) + by(xni1) + chy'(z,) + dhy' (Tn41),

where a, b, c and d are coefficients to be determined. By expanding y(x,,), hy'(z,),

Y(Zny1) and hy'(z,41) in a Taylor series around z, we then have

W) = o) — /@) +) -)] (3.10)

2
! h% n hg "
+ b |ulo) + har'(@) + 2y@) + " o)
2

+ ch [y'(x) — hyy"(z) + %y”’(w)]

h2
b dn [y (o) + hay/ (@) + o) | + O
Introducing a variable ¢t = (z — x,)/(Zny1 —), Which leads to h; = th and
ho = (1 — t)h, we have the following equation system by equating both sides of
equation (3.10),

a+b = 1,

—t+b+c+d = 0,
2 1—2t
z T 1— =
2+b 5 ct+d(l—-1) 0,
—atd? +b(1—1)% ct?+d(1 —1)?
3! * 2

105

CHAPTER 3. IMPLEMENTATION

Solving the above equations we get

a = 2°—3t2+1,

b = 3t 263
c = t(1-1)?
d = t*(t—1).

This interpolation scheme will be referred to as the first approach and can be

used with any method.

In this thesis, we also try another approach which depends on the order of the
methods. For an order 1 method, use y(x,) and y(x,41) to approximate y(x).
For order 2 and order 3 methods, use y(x,), hy'(z,), y(zny1) and hy'(z,11) to
approximate y(z). For order 4 and order 5 methods, use y(z,,), hy'(x,), h*y" (z,),
Y(Tny1), hy'(Tny1) and h2y"(x,,1) to approximate y(x) and so on. This approach
is called the second approach. Both approaches are actually based on Hermite
interpolation formulae. Now we give an example to illustrate the second approach

for an order 4 method.

Example 3.8 Consider an order 4 method. Let v = x,, +th wheret € (0,1) and

t = (2 —) /(Tpy1 — x,). We use the following formula
y(z) = co(th)y(wn) + cL(th)hy'(za) + ca(th)h*y" ()
+ do(th)y(zns1) + di(th)hy' (war1) + da(th)R?Y" (zn4),

where ¢; and d;, 1 = 0,1,2 are functions to be determined. Without loss of

generality, we can set h =1, x, =0 and x,+1 = 1, and then have

y(@) = a®)y(zs) +)y (zn) + c2(t)y” (za) (3.11)

106

3.6. INTERPOLATION

+ do()y(@ny1) + di(B)Y (Tni1) + do(D)y" (Tn11),

where y(t) is a polynomial of degree 5. Therefore, functions, y(x) =1, y(z) = z,
y(z) = 22, y(r) = 22, y(x) = 2* and y(x) = 2° satisfy equation (3.11). This

leads to

co+dy = 1,
ci+do+d = t,

2cy +do +2dy +2dy = 1%,
do +3dy +6dy, = t3,

do + 4dy +12dy = t,

do + 5dy +20dy = t°.

Solving this linear equation system, we have

co = 1—108+15t* — 615,

a1 = t—6t3+8t* — 317,
R [e
Cy = 2 ;

dy = 10t — 15¢* + 6t°,

di = -4+ 7" - 30,
13— 2t + 10
dg == %

Numerical experiments on the two different interpolations will be presented in

Chapter 4.

107

CHAPTER 3. IMPLEMENTATION

3.7 Test problems

Because this type of general linear method we introduced in the thesis is new,

how well they perform in practice is still unknown. It is worthwhile to test them

with some well known standard problems. Here we test the methods with the

following three stiff problems.

e A stiff problem proposed by Prothero and Robinson [33], has the form

y'(z) = Ly — ¢(2)) + ¢'(z), yo = y(xo) = d(20),

where Re(L) < 0. In our experiments we choose L = —10° and ¢(z) =

sin(x).

e The Robertson problem introduced in Chapter 1.

e The Hires problem which was proposed by Schafer in 1975 [36]. It is known

as ‘High irradiance response’. The detailed description of this problem

can be found in the reference paper. In mathematical language, the Hires

problem is a stiff system of 8 dimensions. The problem is of the form

Y1
Y2
Ys
Ya
Ys
Yo

Y

—1.71y; + 0.43y, + 8.32y3 + 0.00007,

1.71y; — 8.75y5o,

—10.03y5 + 0.43y, + 0.035ys,

8.32y, + 0.171y3 — 1.12y4,

—1.745y5 + 0.43ys + 0.43y7,

—280ysys + 0.69y4 + 1.71ys — 0.43ys + 0.69y-,

280y6y8 — 181y7,

108

3.7. TEST PROBLEMS

ys = —280yeys + 1.81ys,

with 0 < z < 321.8122. The initial value is given by y, = [1, 0, 0,0, 0,0, 0,0.0057]7.
The reference solution at the end of the integration interval (Zenq = 321.8122)
is from [30]. In [30], the solution is calculated by using RADAU5 with very

small tolerance. The reference solution is

Yena(1) = 7.371312573325668 x 107,
Yend(2) = 1.442485726316185 x 10 *,
Yend(3) = 5.888729740967575 x 107°,
Yena(4) = 1.175651343283149 x 1073,
Yena(5) = 2.386356198831331 x 1073,
Yena(6) = 6.238968252742796 x 1073,
Yena(7) = 2.849998395185769 x 102,
Yena(8) = 2.850001604814231 x 1073,

The numerical results will be presented in Chapter 4.

109

CHAPTER 3. IMPLEMENTATION

110

Chapter 4

Numerical experiments

In Chapter 2, we discussed the properties of the new type of general linear meth-
ods and presented the construction of these new methods. In Chapter 3, we
discussed details of the implementation scheme and designed strategies for these
methods. The focus of this Chapter is to experiment with implementation tech-
niques using three standard test problems and we hope to draw conclusions about

the practical performance of this type of general linear method for stiff problems.

4.1 Constant stepsize

To understand how these new general linear methods perform, we first use con-
stant stepsize. With constant stepsize we are able to verify the accuracy and
order of the methods. The test problem used here is the Prothero and Robinson
problem [33]. It has the form of

Y(z) = Ly — () + ¢'(), o = y(x0) = ¢(x0),

111

CHAPTER 4. NUMERICAL EXPERIMENTS

where Re(L) < 0. It has the exact solution y(z) = ¢(z). We choose ¢(z) = sin(z)
and L = —10°, which makes the problem stiff. The global error is calculated at
the end point by comparing the numerical solution with the exact solution. Tables

4.1, 4.2 and 4.3 show the global errors versus the stepsizes at z.,q = 10.

Full Newton iteration is used here since our aim of using a fixed stepsize is to
verify the order of a method. The Prothero and Robinson problem is used to
test the order reduction which occurs when we use some Runge-Kutta methods.
Recall that £ = ChPT1y®+Y) 1 O(AP*?). In the following tables, we report error
divided by A” in the third column. For each method, the numbers in third column
have the same order. This verifies the order of the method is as excepted. As
we discussed in Chapter 2, for this type of method, in order to avoid the order
reduction we choose the stage order equal to the order of the method. Our

numerical results confirm that there is no order reduction.

h global error | global error/h?
1 4.5 x 1077 4.5 x 1077
0.1 2.5 x 107° 2.5 x 1077

0.01 2.5 x 10711 2.5 % 1077
0.001 | 2.4x 10713 2.4 x 1077

0.0001 | 2.2 x 10715 2.2 x 1077

Table 4.1: The errors versus stepsizes for an order 2 method.

112

4.2. VARIABLE STEPSIZE

h global error | global error/h?

1 3.2x10°% 3.2x10°8
0.1 | 2.7x1071 2.7x 1078

0.01 | 3.1 x107" 3.1x1078

Table 4.2: The errors versus stepsizes for an order 3 method.

h global error | global error/h*

1 3x 1078 3.0x 1078
0.1 4 x 10712 4.0x 1078

0.01 | 3.3 x 10716 3.3x 1078

Table 4.3: The errors versus stepsizes for an order 4 method.

4.2 Variable stepsize

Variable stepsizes are required for solving most ordinary differential equations
for an efficient computation unless a specific problem requires a fixed stepsize.
Variable stepsizes allow a solver to choose the most appropriate stepsize at a
particular point for a given problem. In Chapter 3 we discussed how to change
stepsize. To test the stepsize controller and the effects of other techniques we
use these methods to solve the Robertson problem (Chapter 1). For this stiff
problem, due to the physical nature of the problem, the three components have

non-negative values and tend to 0, 0, 1, respectively as £ — oo. In the following

113

CHAPTER 4. NUMERICAL EXPERIMENTS

sections, we will use this problem to perform some experiments. Note that the
parameters, such as the ratio of ¢ and Tolerance, 6,,;, and 0,,,,, are usually

critically dependent on the test problem.

4.2.1 Effect of the initial stepsize

An initial stepsize, hg, is needed when we use the stepsize controller. The choice of
the initial stepsize will affect the total number of steps required for the integration
interval. Too large an initial stepsize will cause too many rejected steps at the
start of the integration while the solver tries to find a suitable stepsize, whereas
if the initial stepsize is chosen to be too small then the total steps required to
complete the integration interval will increase. The initial stepsize is problem
dependent. Furthermore, a suitable initial stepsize depends not only on the
tolerance used by the methods but also on the order of the methods. We perform
the experiments on the Robertson problem to investigate the effects of the initial
stepsize. For the Robertson problem, the stiffness occurs in a very short period of
time. Therefore, most rejected steps lie in the first few steps. In our experiments,
we investigate the first 20 steps. The numerical results are presented in the Tables

4.4, 4.5 and 4.6 for methods with different orders.

It is seen that for the Robertson problem, the initial stepsize should be small
enough to avoid the rejections at the beginning for all three methods. Further-
more, for larger Tolerance the initial stepsize can be bigger without too many
rejected steps; for smaller T'olerance we need to use a smaller initial stepsize to
avoid rejected steps. To reduce the number of rejected steps, for the Robert-

son problem, we choose hy = 10~* as the initial stepsize for loose tolerance and

114

4.2. VARIABLE STEPSIZE

ho = 107 for tight tolerance with methods of the order 2, 3 and 4.

Tolerance | hy | Rejected steps
1072 4
107 1073 1
1074 0
107° 0
10°¢ 0
102 7
107 103 3
1074 1
107° 1
10°¢ 0
1072 9
107" |10°° 6
10~* 2
10°° 0
1076 0

Table 4.4: The effects of initial stepsize, hg, for an order 2 method.

115

CHAPTER 4. NUMERICAL EXPERIMENTS

Tolerance | hy | Rejected steps
1072 7
106 103 2
1074 0
1073 0
10°¢ 0
1072 9
1077 103 3
1074 1
10°° 0
107° 0
102 13
10-% | 1073 9
1074 1
107° 0
107° 0

Table 4.5: The effects of initial stepsize, hg, for an order 3 method.

116

4.2. VARIABLE STEPSIZE

Tolerance | hy | Rejected steps
102 13
106 103 1
1074 0
1073 0
10°¢ 0
102 15
107 103 6
1074 1
109 1
107° 0
102 20
10-% | 1073 10
1074 4
107° 0
107° 0

Table 4.6: The effects of initial stepsize, hg, for an order 4 method.

117

CHAPTER 4. NUMERICAL EXPERIMENTS

To understand more about the effect of the initial stepsize, we check the stepsize
for the first 20 steps. Using the order 2 method as an example, Table 4.7 shows
how the stepsizes increase or decrease during the first 20 steps where T'olerance =

10719 and hy = 0.001.

step h 0

1 0.001 0.5
2 0.0005 0.5
3 0.00025 0.5
4 0.000125 0.5
) 0.0000625 0.5
6 | 0.00003125 | 0.7879
7 1 0.00002461 | 0.9989

Table 4.7: The stepsize changing for 6,,;,, = 0.5 with Tolerance = 10~!° and
ho = 0.001.

The numerical results shows that for the first 6 rejected steps, the next stepsize
is half of the current stepsize since we set the 6,,;,, = 0.5. It may be a feasible
idea that we set a different limit of € for the beginning of the calculation. Table

4.8 shows the result if we set 6,,;, = 0.25 for first 5 steps.

We can see that the number of rejected steps has been reduced to 3. Therefore,
for the case of having too big an initial stepsize, the value of 6,,;, can be chosen to

be smaller than 0.5 for the first several steps. For the case of having too small an

118

4.2. VARIABLE STEPSIZE

step h 0

1 0.001 0.25
2 0.00025 0.25
3 0.0000625 | 0.25
4 | 0.000015625 | 1.571
) 0.00002455 | 0.999

Table 4.8: The stepsize changing for 6,,;, = 0.25 with Tolerance = 107!° and
ho = 0.001.

initial stepsize, we do not want to set a different 6,,,, here since this 6,,,, affects
stability of the method as we discussed in Chapter 3. If the initial stepsize is too
small, the 6,,,, could be set to larger for some methods and some problems. The
values of 6,,;, and 6,,,, are quite problem dependent. For a different problem,

one needs to do some preliminary tests to find the optimal values of 6,,;, and

emaz .

119

CHAPTER 4. NUMERICAL EXPERIMENTS

4.2.2 Effect of ¢ and Tolerance

In Chapter 3, we introduced an error tolerance, ¢, for the Newton procedure.
This tolerance depends on the tolerance of the method, T'olerance, which is used
in the stepsize controller. To increase the efficiency of the solver we try to find
an optimal €. Tables 4.9, 4.10 and 4.11 show the numerical results with various

rates between € and Tolerance for methods with different orders.

For the Robertson problem, the results show that for the order 2 method and

the order 3 method, there is almost no difference between ¢ = %&mce and

__ Tolerance . __ Tolerance ; : __ Tolerance
€ = =15 for order 4 method, € = #7557 is slightly better than e = ~>7=<=

in terms of rejected steps. Therefore, for the Robertson problem, we choose

€ = %&mce, € = % and € = % for the methods with order of 2, 3

and 4 respectively.

€ Tolerance | Total steps | Rejected steps
1077 1076 328 0
107° 10-8 1428 1
1074 1010 6544 4
10-8 1076 361 0
10710 1078 1428 1
10~12 1010 6544 4

Table 4.9: Numerical results of ¢ = Toerance 414 ¢ = Tolerance £y a1y order 2

10 100
method.

120

4.2. VARIABLE STEPSIZE

Table 4.10: Numerical results of € =
method.

€ Tolerance | Total steps | Rejected steps
1077 10°¢ 154 4
107° 1078 382 3
10~ 10710 1134 1
10-8 1076 153 3
1010 10-8 382 3
10712 10710 1134 1

Tolerance and e = Lolerance for an order 3

€ Tolerance | Total steps | Rejected steps
1077 107° 224 7
1079 1078 383 63
1071 10710 673 27
1078 1076 221 4
10710 1078 323 52
1012 10710 675 24

Table 4.11: Numerical results of ¢ = ZLoerance 5nq ¢ = ZLolerance £, an order 4

method.

10

121

100

CHAPTER 4. NUMERICAL EXPERIMENTS

4.2.3 Testing methods with the Robertson problem

There are always some limitations on a numerical method solver. Typical limi-
tations include truncation errors from the method and rounding errors from the
computer computation. For the Robertson problem, it is difficult to prevent the
numerical results becoming negative when the end point of integration z.,q be-
comes very large. We use this problem to test how large the z.,4 value can be
before the values of y.,q become negative with these solvers. Full Newton iter-
ation is used in the experiments. The results are presented in Tables 4.12, 4.13
and 4.14. “zjine” represents the final x value where at least one element of y.nq

values turns negative; “steps” represents how many steps used to reach z finq.

It is seen that these new methods are very accurate and the stepsize controller

works very well.

Tolerance | Steps Z final
1076 358 | 4.3 x 10"
10-8 1530 | 5.1 x 10'3
10710 6958 | 4.3 x 10%°
10712 32131 | 1.9 x 10*®

Table 4.12: Solving Robertson problem using an order 2 method where hy = 10~*

Tolerance

and € = o

122

4.2. VARIABLE STEPSIZE

Tolerance | Steps Z final

106 179 | 1.3 x 10°
108 448 | 1.4 x 102
1010 1275 | 8.7 x 10'®

10712 3961 | 1.9 x 106

Table 4.13: Solving Robertson problem using an order 3 method where hy = 104

__ Tolerance
and e = =R

Tolerance | Steps Z final

106 225 | 2.9 x 10°
10~8 337 | 2.9 x 10!
10710 676 | 1.8 x 103

10~12 1510 | 4.0 x 10%

Table 4.14: Solving Robertson problem using an order 4 method where hy = 104

__ Tolerance
and € = ~{RE.

123

CHAPTER 4. NUMERICAL EXPERIMENTS

4.3 Performance of the iteration scheme

In Chapter 3, we designed an iteration scheme for the Newton process to reduce
the computational cost. Some experiments have been done to test this iteration
scheme. The problem we use here is a more demanding problem, namely the

Hires problem. We have introduced the Hires problem in Chapter 3.

In the following subsections, we will test the effect of the initial stepsize and the
effect of € and Tolerance for this problem. Furthermore, we will test different

predictors and interpolators.

To characterize a solver, we list the following details in the tables:

ho: the initial stepsize.

steps: the total number of steps taken by the solver to reach z.,q4-

rejected steps: the total number of rejected steps.

#LU: the number of LU-decompositions.

e #J: the number of evaluations of the Jacobian.

e #f: the number of evaluations of the derivative functions.

e scd: the scd values which represent the minimum number of significant

correct digits in the numerical solution at x4, i-e.

sed = —logyg(||relative error at Zengl|oo)-

124

4.3. PERFORMANCE OF THE ITERATION SCHEME

4.3.1 Effect of the initial stepsize

In the previous sections when we investigated the effect of the initial stepsize
on the Robertson problem we used full Newton iteration. In this subsection, we
apply the iteration scheme to the solvers, and then test the effect of the initial
stepsize on the Hires problem. The numerical results are shown in Tables 4.15,

4.16 and 4.17.

Tolerance | hgy | total steps | Rejected steps | #LU | #J | #f scd
1072 66 6 38 8 718 | 1.56

1074 1073 69 6 37 | 11| 741 |1.63
1074 72 6 39 | 11 | 727 | 1.57

1072 488 5 57 5 | 3726 | 3.41

1077 1073 490 2 43 5 | 3647 | 3.41
1074 493 2 47 5 | 3683 | 3.40

107° 496 2 49 5 | 3702 | 3.41

1072 4766 8 51 5 131090 | 5.47

10710 1073 4799 4 56 3 | 31348 | 5.46
1074 4799 1 54 4 | 31616 | 5.46

10°¢ 4807 2 32 4 130798 | 5.46

Table 4.15: The effects of initial stepsize, hg, for an order 2 method on the Hires

problem.

125

CHAPTER 4. NUMERICAL EXPERIMENTS

Tolerance | hy | total steps | Rejected steps | #LU | #J | #f scd
1072 259 82 118 | 46 | 3747 | 24

1074 1073 86 23 58 | 32 | 1310 | 2.89
104 64 5 45 | 20 | 924 | 1.77

10-3 244 54 91 | 45 | 3498 | 4.60

1077 1074 230 39 81 | 27 | 3291 | 5.10
1075 238 46 92 | 41 | 3304 | 5.00

1073 1004 122 222 | 78 | 12675 | 6.86

10710 1074 1055 139 233 | 86 | 13342 | 6.90
10-¢ 1043 134 230 | 81 | 13238 | 6.90

Table 4.16: The effects of initial stepsize, hg, for an order 3 method on the Hires

problem.

126

4.3. PERFORMANCE OF THE ITERATION SCHEME

Tolerance | hy | total steps | Rejected steps | #LU | #J | #f | scd
102 171 45 109 | 58 | 3429 | 1.80

1074 103 86 14 71 | 35 | 1784 | 1.16
1074 107 21 77 | 38 | 2205 | 2.59

1073 189 44 122 | 63 | 3796 | 5.60

1077 1074 238 65 137 | 76 | 4748 | 6.07
1079 246 69 141 | 79 | 4784 | 5.24

10-3 423 40 304 | 55 | 8946 | 7.42

1010 104 472 65 261 | 78 | 9527 | 7.60
107 430 39 248 | 52 | 8714 | 7.84

Table 4.17: The effects of initial stepsize, hgy, for an order 4 method on the Hires

problem.

It is seen that the smaller the tolerance is, the smaller the initial stepsize should
be with less rejected steps and less LU decompositions. Therefore, we choose a
slightly larger initial stepsize for bigger tolerance. We also note that, for the Hires
problem, we need to make the initial stepsize smaller for higher order methods.
In this case, we set hy = 1072 for tolerance 10~* and 10~7, hy = 10~ for tolerance
1071% with order 2 method; hy = 10~* for tolerance 10~* and 10~7, hy = 1075 for

tolerance 107!° with order 3 and order 4 methods for the Hires problem.

127

CHAPTER 4. NUMERICAL EXPERIMENTS

4.3.2 Effect of ¢ and Tolerance

In this subsection we test the effect of ¢ and Tolerance on the Hires problem.

Results of numerical experiments are shown in Tables 4.18, 4.19 and 4.20.

The results show that for the order 2 method, it uses fewer LU factorizations and

J evaluations with W than with %. For the order 3 method, it has

fewer total steps and rejected steps with T€rance thay with 1olerance however,

for smaller tolerance (10719), it has less LU factorizations and J evaluations

Tolerance it

with %&mce than with Telerance For the order 4 method, only with 150

100

has slightly fewer total steps, rejected steps, LU factorizations and J evaluations,

with other tolerance,

We then set € to be

Tolerance

107 100

1000

L and

respectively for Hires problem.

1
1000

gives smaller numbers in terms of all the characters.

of Tolerance for order 2, 3 and 4 methods

€ Tolerance | Total steps | Rejected steps | #LU | #J #f scd
107° 1074 73 6 55 | 24 | 635 | 1.61
1078 1077 530 0 76 8 | 3479 | 3.44
1071 10710 5232 3 192 | 5 | 32805 | 5.48
10°¢ 1074 73 7 71 | 36| 716 | 1.61
107° 1077 531 0 125 | 34 | 4407 | 3.46
10712 10710 5239 3 372 | 15 | 34427 | 5.49

Table 4.18: Results of ¢ = Loerance yorgyg ¢ = Lolerance 1 an order 2 method.

10

128

100

4.3. PERFORMANCE OF THE ITERATION SCHEME

€ Tolerance | Total steps | Rejected steps | #LU | #J #f scd
1075 104 197 49 58 | 16 | 2225 | 2.59
1078 1077 550 158 159 | 46 | 6479 | 5.02
10~ 1010 1196 172 210 | 81 | 12425 | 6.93
1076 1074 99 31 67 | 30 | 1530 | 2.32
107° 1077 239 40 89 | 34 | 3316 | 5.09
10712 1010 1142 155 257 | 106 | 13754 | 6.96

Table 4.19: Results of € = %&mce versus € = W for an order 3 method.

€ Tolerance | Total steps | Rejected steps | #LU | #J #f scd
1076 1074 1245 409 254 | 65 | 19045 | 3.15
10-° 107 267 72 121 | 57 | 4927 | 5.42
10712 10710 968 239 426 | 191 | 17250 | 7.58
1077 1074 106 22 73 33 | 2158 | 2.61
10710 1077 278 78 186 | 101 | 5696 | 5.49
10-13 10710 472 56 359 | 155 | 10397 | 7.49

Table 4.20: Results of € = % versus € = W for an order 4 method.

129

CHAPTER 4. NUMERICAL EXPERIMENTS

4.4 Performance of stage predictors

In Chapter 3, we proposed three predictors. To reduce the effect from the Newton
iteration scheme, we test these predictors with full Newton iterations. For an
order 2 method, we only have three stages, Taylor expansion predictor is good
enough. For the order 3 and order 4 methods, we try all three predictors. The
numerical results are reported in Tables 4.21, 4.22, 4.23, 4.24, 4.25 and 4.26. The
details in the tables include: the total number of steps to reach x.,4, the number
of rejected steps, the scd values and the number of evaluations of the derivative
functions. Since we use full Newton iteration, the number of LU-decompositions
and the number of evaluations of the Jacobian are the same as the number of

evaluations of the derivative functions.

It is seen that when the Tolerance is bigger, the second predictor performs slightly
better than the other two predictors in terms of the number of function evalua-
tions for the order 3 and order 4 method. When the Tolerance is small, the third
predictor performs better with less rejected steps and fewer function evaluations
compared to the other two predictors for both methods. By considering the num-
ber of function evaluations, rejected steps and scd values we pick the Hermite

interpolation predictor for our solver.

130

4.4. PERFORMANCE OF STAGE PREDICTORS

Predictor Total steps | Reject steps | #f | scd
Taylor expansion 123 30 974 1 1.99
Newton interpolation 64 6 500 | 1.96
Hermite interpolation 65 8 515 | 2.03

Table 4.21: Results with Tolerance = 10~* for an order 3 method.

Predictor Total steps | Reject steps | #f | scd
Taylor expansion 260 58 2104 | 5.22
Newton interpolation 248 51 2006 | 5.09
Hermite interpolation 250 51 2011 | 5.28

Table 4.22: Results with Tolerance = 10~7 for an order 3 method.

Predictor Total steps | Reject steps | #f | scd
Taylor expansion 1106 154 8910 | 6.80
Newton interpolation 1084 148 8749 | 6.81
Hermite interpolation 1071 142 8622 | 6.78

Table 4.23: Results with Tolerance = 10710 for an order 3 method.

131

CHAPTER 4. NUMERICAL EXPERIMENTS

Predictor Total steps | Reject steps | #f | scd
Taylor expansion 75 10 824 | 2.28
Newton interpolation 75 10 785 | 2.28
Hermite interpolation 75 10 793 | 2.28

Table 4.24: Results with Tolerance = 10~* for an order 4 method.

Predictor Total steps | Reject steps | #f | scd
Taylor expansion 224 43 2493 | 5.40
Newton interpolation 209 51 2163 | 5.51
Hermite interpolation 197 44 2036 | 5.25

Table 4.25: Results with Tolerance = 10~7 for an order 4 method.

Predictor Total steps | Reject steps | #f | scd
Taylor expansion 431 41 5243 | 7.52
Newton interpolation 434 45 4439 | 7.56
Hermite interpolation 423 35 4332 | 7.72

Table 4.26: Results with Tolerance = 10719 for an order 4 method.

132

4.5. PERFORMANCE OF INTERPOLATIONS

4.5 Performance of interpolations

Two interpolation approaches for an output point, z, have been introduced in
Chapter 3. In this section, we test these two approaches with the order 4 method.
The scd values are listed in Table 4.27. The scdl represents the result from the

first approach and scd2 represents the result from the second approach.

Tolerance | scdl | scd2

10~* 1.16 | 0.96
1077 5.60 | 5.33
10710 7.42 | 7.49

10712 8.89 | 9.19

Table 4.27: Numerical result: Interpolations for the output point with the order
4 method. The scdl represents the results from the first approach and scd2

represents the results from the second approach.

Numerical experiments show that both approaches are very similar. It can be
seen that for tight tolerances, the first approach gives a better approximation; for
loose tolerance, the second approach gives a better approximation. For the order

4 method, the second approach has higher accuracy than the first approach.

133

CHAPTER 4. NUMERICAL EXPERIMENTS

4.6 Performance of certain methods with Hires

problem

Comparison of the performance of alternative numerical methods is complicated.
There are many factors which can affect the numerical performance of a method.
These factors include the choices of initial stepsize, the stepsize controller, the
predictor for the Newton iteration procedure. Tables 4.28, 4.29 and 4.30 list

the numerical results found by applying three selected methods to the HIRES

problem.

Note that these new general linear methods can solve the Hires problem accu-

rately and efficiently in a reasonable way.

Tolerance | hy | Total steps | Rejected steps | #LU | #J #£ scd
1073 1073 44 1 31 12 | 480 | 0.98
1074 1073 69 6 37 | 11 | 741 | 1.63
10°° 1073 130 14 43 | 11 | 1215 | 2.13
107° 1073 242 10 45 | 6 | 2006 | 2.72
1077 1074 493 2 47 5 | 3683 | 3.40
108 104 1045 2 46 | 3 | 7264 | 4.11
10°° 10°° 2236 1 46 3 | 15077 | 4.78
10710 107° 4807 2 32 4 130798 | 5.46

Table 4.28: The numerical results for the order 2 method.

134

4.6. PERFORMANCE OF CERTAIN METHODS WITH HIRES PROBLEM

Tolerance | hg | Total steps | Rejected steps | #LU | #J | #f scd
1073 1073 82 14 59 | 27 | 1215 | 2.34
1074 1073 86 23 58 | 32 | 1310 | 2.89
107° 1074 120 27 68 | 36 | 1730 | 3.04
10°¢ 104 150 30 74 | 34 | 2210 | 3.87
1077 1074 230 39 81 27 | 3291 | 5.10
1078 104 386 63 120 | 41 | 5317 | 5.35
107° 10°° 592 71 126 | 44 | 7605 | 6.10
1010 1076 1043 134 230 | 81 | 13238 | 6.90

Table 4.29: The numerical results for the order 3 method.

Tolerance | hy | Total steps | Rejected steps | #LU | #J | #f | scd

1073 1073 82 18 59 | 31 | 1630 | 1.24
1074 107° 86 14 71 | 35 | 1784 | 1.16
107° 1073 122 20 75 | 39 | 2545 | 3.64
10=6 10-3 171 45 105 | 62 | 3404 | 4.50
1077 1073 189 44 122 | 63 | 3796 | 5.60
10-8 104 232 42 133 | 55 | 4611 | 5.73
107° 1073 306 43 162 | 51 | 6166 | 6.88
10710 10-¢ 430 39 248 | 52 | 8714 | 7.84

Table 4.30: The numerical results for the order 4 method.

135

CHAPTER 4. NUMERICAL EXPERIMENTS

4.7 Conclusions

The primary goal of this thesis is to implement a new type of general linear
method and to carry out numerical experiments on the designed implementa-
tion strategies with three standard test problems. In the thesis, we select three
new general linear methods with order 2, 3 and 4 respectively for the numerical
experiments. The implementation of the new general linear methods has been
addressed in detail. The implementation questions include: iteration scheme,
prediction, error estimation, stepsize control, starting methods and interpola-
tion. The implementation strategies have been designed carefully. We then carry
out numerical experiments with these methods using the designed implementa-
tion strategies. Numerical results show that these methods are very promising
and the implementation is reasonably efficient for these methods. We interpret

the numerical experiments as follows:

e Prothero Robinson problem. This problem is used to test the order reduc-
tion of a method. The numerical results show no sign of order reduction

occuring for the new methods.

e Robertson problem. The numerical results show the positive influence of
Inherent Runge-Kutta stability. The stepsize controller works well and

T finas can go as high as 10'8 if the tolerance is low enough.

e Hires problem. This is a more demanding problem, but the numerical
results show the new methods are very good in terms of accuracy. Further-
more, the iteration scheme works well in terms of reducing computational

cost.

136

4.7. CONCLUSIONS

Overall, our numerical results show that the new type of general linear method
is capable of solving the standard stiff problems accurately and the designed
implementation strategies make the methods optimal in a reasonable way for
these standard test problems. We have performed some experiments with other
solvers. However, in the thesis, we avoid strict comparison with other well known
solvers since our experiments are only done with methods of order up to 4. Some
experiments have indicated that there is excellent scaling for large problems for
our method. In the thesis, we have produced Fortran code based on the techniques
described in Chapter 3 for the fixed order implementation. These code can be
modified to test other methods in this special group of general linear methods
and other stiff test problems. For comparison with these results, where only fixed
order is used, note that a variable order implementation of the closely related

DIMSIM methods is presented in [28].

Future development

Our work has shown that the new type of general linear method is feasible for
production code. The numerical results encourage further investigations such as
variable order [28], other stepsize controllers and other more demanding differen-

tial equations.

For variable order, one can remove the starting method and start with an order 1
method. In this case, the error estimator needs to be modified to fit a higher order
requirement and rescaling the Nordsieck vector will be more complicated. For the
stepsize controller, the proportional integral (PI) controller [25] is another option.

For the iteration process, to improve the efficiency of the iteration scheme, it is

137

CHAPTER 4. NUMERICAL EXPERIMENTS

possible to consider using relaxation [3]. Note that in the iteration scheme, we

use the following formula to do the Newton process.
(I = ART) (P = b+ = g(n17), (4.1)
with
¢(n7) = 07 — Ahf (n7)) — rhs,
where & is the present stepsize and A is the stepsize used when the most recent LU

factorization was carried out. To correct the error from the different stepsizes, a

possible way is using the following formula,
(I = ARJ) (V! — b1y = we (), (4.2)

where w is called the relaxation factor. Let e/l = 5l — Y be the error in the ith

iteration where Y is the final solution. First we assume the approximation

f7) = f(¥) = IV = Y). (4.3)

Then we substitute nl/l = el 4+ Y and equation (4.3) into equation (4.2), we find
that

et — el
where
M =1—w(I—MhJ) (I —\hJ)

We want this to converge as rapidly as possible for nonstiff components (eigen-
values close to zero) and also for stiff components (eigenvalues very large). For

small eigenvalues, the corresponding eigenvalue of M is

138

4.7. CONCLUSIONS

1—w,

and for large eigenvalues

3
1—w.
Y

For example, if w = 1, which means no relaxation, we always get perfect conver-
gence at zero and worst possible convergence (eigenvalue 1 — h/h) at infinity. To
get the best compromise overall, we want to choose w so that the eigenvalues at

zero and infinity are equal and opposite. That is,

h
l—w=—(1-w-
w=—(1-wy)
which gives
w= 2 (4.4)
h+h

Note that if we choose w too small or too large, we can get faster convergence
at either 0 or oo but the other becomes worse (slower convergence). However,
the factor given by (4.4) can often lead to acceptable convergence overall. With
this relaxation factor, one can design a different iteration scheme for the Newton

procedure.

These methods can also be extended to other differential equations, such as dif-
ferential algebraic equations (DAEs). Furthermore, one can develop a similar

implementation for non-stiff problems.

139

CHAPTER 4. NUMERICAL EXPERIMENTS

140

Chapter 5

Method coefficients and Fortran

programs

In this Chapter, we list the coefficients of the methods and corresponding starting
methods as well as the Fortran code used to carry out the numerical experiments.
The program code is designed in such a way that a user can input his (her) own
methods or problems to do experiments. In the thesis, only the code for order
4 method is presented. The code for order 2 and order 3 are very similar to the

order 4 and can be easily modified.

5.1 Coefficients of the methods

We list the coefficients of the methods that we have performed the numerical

experiments with as follows.
Order 2 main method with 3 stages: ¢ = [0, 3,1]7,

141

CHAPTER 5. METHOD COEFFICIENTS AND FORTRAN PROGRAMS

§001—§0
T 1 0(1 0 0
2 1 4|l 0
2 5 2|l 5 T
5 —3 110 0 3
|0 -2 20 0 0

Starting method for order 2 method: é = [1,1]7,

I 01
1 5|
I
0 1|0

142

5.1. COEFFICIENTS OF THE METHODS

Order 3 main method: ¢ = [0, 1, 2,1]7,
1 1
L 0 0 o0 |1 -1 0 0
5 1 _3 _1 _ 5
6 1 0 0 |1 1 36 648
109057 1701 1 0 |1 —20s7 _ 4003 17509
33000 2200 1 5500 19800 356400
368999 21071 11 1|q _24319 3357 22171
154000 30800 56 1 9625 30800 554400
11419277 _ 824833 5303 827 |1 _ 341047 _ 116611 _ 619133
5832000 1166400 23328 3888 162000 1166400 20995200
529 _ 17 _35 4l _13 13 _ 91
1620 162 162 36 90 324 5832
677 319 | _13 13 _ 91
225 45 8 6 25 90 1620
6 -9 0 3 10 0 0 0
Starting method for order 3 method: ¢ = [i,% — TQ, %, 17,
: 0 0 0 1
4
- oo |
- 4472 T+7vV2 1 0 1
36 36 1
3 1
0 0 3 Lo
3 1
0 0 3 Lo
0 0 0 1 0
—16 | 32v2 45 18V2 11
0 7 T 57 14 7 2 2v2 |0
0 7?8 + 96’;/5 _% _ 54;/5 12 — 6\/5 0

143

CHAPTER 5. METHOD COEFFICIENTS AND FORTRAN PROGRAMS

Order 4 main method: ¢= [0, 1, 3, 2,1]7,

—

—

144

i 0 0 0 0
47 1
7) 0 0 0
24197 678 1
14476 3619 4 0 0
7102302807 987465 10395 1 0
1544183872 24127873 26668 1
117251104 _ 27818059 7255 59 1
55207845 55207845 6102 135 4 |
825449 1889207 19919 59 1
430191 860382 9153 162 6
1422203 528694 4249 118 5
1433970 716985 3051 135 6
_ 37397426 61340224 _ 199780 1888 4
716985 716985 3051 135
__ 584578572 880353408 _ 2670168 22656 |9
2150955 2150955 9153 405
332267376 477708864 1397184 11328 qq
716985 716985 3051 135 i
1
i 0 0 0
_ AT _1 _ 1 __3
64 32 192 6144
11645 339 5653 4297
7238 7238 347424 1389696
6995320711 85994121 57910455 1871076171
1544183872 772091936 1158137904 148241651712
579853229 12065149 9336821 15415373
220831380 110415690 294441840 2119981248

5.1. COEFFICIENTS OF THE METHODS

1 _ 603461 116111 __ 40393 19249
860382 1720764 2294352 165193344
0 _ 748481 33116 _ 21913 ___ 90679
716985 1433970 1911960 13766112
V= | 5085197 1532237 276353 _ 14840
1433970 716985 477990 1720764
(185577168 _ 22399584 703186 134986
2150955 2150955 238995 1720764
O ll1261984 _ 11852112 384128 34232
716985 716985 79665 143397
Starting method for order 4 method: é= [, — %2, % -5 551" r=1,
i 0 0 0 0 0 0 |1
12 1 0 0 0 0 0 |1
31, 17V/2 4 22 1
367736 9 9 1 0 0 0 011
3,.9v2 3 9v2 1
0 8132 8 32 4 0 0 01
_9_3v/2 129 4 45v2 13 _ 6V2 1
0 8 4 56 T 28 - 7 1 0 01
_ 261 _ 351v/2 25, 9v2 _ 35 _ 9v2 1
0 0 1288 ~ 2576 28 T 56 a3 1 O |1
5 5 11
0 0 0 12 12 5 o1 |1
1 7 1 1
0 0 0 2 2 3 ~a |l
0 0 0 1 -1 1 010
0 0 0 18 10 -8 o
3 3
0 0 0 16 —32 16 0 |0

145

CHAPTER 5. METHOD COEFFICIENTS AND FORTRAN PROGRAMS

5.2 Fortran code

The computer code is programmed in the Fortran language. To solve an IVP,
program files include main (such as mainhires.f90), problem function (such as
hires.f90), and several subroutines. In this section, we present the following

programs:

e main program and problem function. These code can be modified to fit the

requirements.

e method. The code is for the order 4 method and includes the coefficients
of the method, starting method, calculating stage values, error estimator,

rescaling Nordsieck vector and interpolation.

e Newton iteration. This code does the Newton iterations using the iteration

scheme in Chapter 3.

5.2.1 Main program and problem function

!this is a main code for Hires problem
program mainhires

implicit none

external f, jex

integer :: dim

double precision::tol, tolerance,h0O,xend

dim=8

write(*,%) ’tolerance="’
read (*,*)tolerance
write(*,*) ’h0="

read (*,*)h0

146

5.2. FORTRAN CODE

xend=321.8122d0
call nglm(dim,tolerance,h0,xend)

end program mainhires

IHires problem. can be replaced by other problems

subroutine f(dim,x,y,ydot)

implicit none

::dim

double precision ::x

double precision, dimension(dim)::y,ydot

integer

ydot (1)
ydot (2)
ydot (3)
ydot (4)
ydot (5)
ydot (6)

ydot (7)
ydot (8)

-1.71d0*y (1) +0.43d0*y (2)+8.32d0*y(3)+0.0007d0

1.71d0*y (1)-8.75d0*y (2)

-10.03d0*y (3)+0.43d0*y (4)+0.035d0%*y (5)

8.32d0*y (2)+1.71d0*y(3)-1.12d0*y (4)

-1.745d0*y (5)+0.43d0*(y (6)+y (7))

-280.d0*y (6) *y(8)+0.69d0*y (4)+1.71d0*y (5)-0.43d0*y (6) +&
0.69d0*y(7)

280.d0*y (6) *y(8)-1.81d0*y(7)

-ydot (7)

end subroutine f

Ithe Jacbian matrix
subroutine jex(dim,x,y,pd)

implicit none

::dim

double precision :: x

double precision, dimension(dim)::y
double precision, dimension(dim,dim)::pd

integer

pd=0.40
pd(1,1)
pd(1,2)
pd(1,3)
pd(2,1)
pd(2,2)

-1.7140
0.434d0

= 8.32d0

1.71d40
-8.75d0

147

CHAPTER 5. METHOD COEFFICIENTS AND FORTRAN PROGRAMS

pd(3,3) = -10.03d0
pd(3,4) = 0.43d0
pd(3,5) = 0.035d0
pd(4,2) = 8.32d0
pd(4,3) = 1.71d0
pd(4,4) = -1.12d0
pd(5,5) = -1.745d0
pd(5,6) = 0.43d0
pd(5,7) = 0.43d0
pd(6,4) = 0.69d0
pd(6,5) = 1.71d0
pd(6,6) = -280.d0*y(8)-0.43d0
pd(6,7) = 0.69d0
pd(6,8) = -280.d0%y(6)
pd(7,6) = 280.d0*y(8)
pd(7,7) = -1.81d0
pd(7,8) = 280.d0*y(6)
pd(8,6) = -280.d0*y(8)
pd(8,7) = 1.81d0
pd(8,8) = -280.d0xy(6)

end subroutine jex

Ithe initial values
subroutine init(dim,x,y0)

implicit none

integer ::dim

double precision ::x

double precision, dimension(dim)::yO

yo(1) = 1.d0
y0(2) = 0.d0
y0(3) = 0.d0
y0(4) = 0.d0
y0(5) = 0.d0
yo(6) = 0.d0
yo(7) = 0.d0
y0(8) = 0.0057d0

148

5.2. FORTRAN CODE

end subroutine init

Ireference solution at endpoint
subroutine endpoint(dim,xend,yend)

implicit none

integer ::dim

double precision ::xend

double precision, dimension(dim)::yend

xend=321.812240

yend (1)=7.371312573325668d-4
yend(2)=1.442485726316185d-4
yend (3)=5.888729740967575d-5
yend(4)=1.1756513432831494-3
yend(5)=2.386356198831331d-3
yend (6)=6.238968252742796d-3
yend (7)=2.849998395185769d-3
yend (8)=2.850001604814231d-3

end subroutine endpoint

5.2.2 Method

I'this subroutine solve problems with order 4 method
subroutine nglm(dim,tolerance,h0,xend)

implicit none

external f, jex

integer :: dim, step,flag,order,count,exitstage,nreject,naccept
integer :: njumpout,k,nredo,njex,ncallf,nfactorize,i

integer, dimension(dim)::ipiv

double precision, dimension(dim) :: y0,yl,y2,y3,y4,yb

double precision, dimension(dim) :: f1,f2,£f3,f4,f5

double precision, dimension(dim) :: yl_pre,y2_pre,y3_pre
double precision, dimension(dim) :: y4_pre,y5_pre
double precision, dimension(dim) :: yl_stage,y2_stage,y3_stage

149

CHAPTER 5. METHOD COEFFICIENTS AND FORTRAN PROGRAMS

double precision,
double precision,
double precision,
double precision,
double precision,

double precision ::

double precision,

order=4
count=0
call init(dim,x,y

call endpoint(dim,

coefficient=1.d0
step=0

nreject=0
naccept=0
njumpout=0
nredo=0
nfactorize=0
njex=0

ncallf=0
exitstage=0
x=0.d0

h=h0

h_pre=h
tol=tolerance/100
jumpout=.false.
justfactorize=.fa
redo=.false.
xpoint=xend

dimension(dim)
dimension(dim)
dimension(dim)
dimension(dim)
dimension(dim)

:: y4_stage,y5_stage

:: f1_pre,f2_pre,f3_pre

:: f4_pre,f5_pre

:: ypoint,y_value,error,error_pre
: yend,enderror,y_pre
tol,x,h,x_pre, delta xpoint,tolerance, hO,&

h_pre,coefficient,h_lastfactorize,lambda,xend,&

errormax,scd

dimension(dim,dim) :
logical ::jumpout, justfactorize,redo

0)
xend,yend)

0.d0

1se.

:matrix,pd

call nosieckstart4(f,dim,x,yl,y2,y3,y4,y5,y0,y_value, &
jex,h,tol,f1,£2,£3,f4,f5,matrix,pd,ipiv)
call errorestimate(dim,f1,f2,f3,f4,f5,h,error)

h_lastfactorize=h
do
justfactorize=.

y1_pre=yl

false.

150

5.2. FORTRAN CODE

y2_pre=y2
y3_pre=y3
y4_pre=y4
y5_pre=yb
X_pre=x
y_pre=y_value
f1_pre=£f1
f2_pre=£f2
£f3_pre=£f3
f4_pre=f4
£5_pre=£f5
h_prepre=h_pre
do
step=step+1
jumpout=.false.
delta=coefficient
!rescale the Nordsieck vector
call varistep(dim,yl,y2,y3,y4,y5,delta)
call nordsieck4(f,dim,x,xpoint,yl,y2,y3,y4,y5,y_value,&
jex,h,tol,f1,f2,£3,f4,f5,exitstage,h_lastfactorize,&
matrix, jumpout, justfactorize,step,ipiv,pd,njex, &
ncallf ,nfactorize,redo)
if (jumpout)then
X=X_pre
yl=yl_pre
y2=y2_pre
y3=y3_pre
y4=y4_pre
yb=y5_pre
h=0.5d0*h
coefficient=0.5d0*coefficient
njumpout=njumpout+1
else
call errorestimate(dim,f1,f2,f3,f4,f5,h,error)
call stepsize(dim,error,order,tolerance,h,coefficient,redo)
if (redo)then
nreject=nreject+1
X=X_pre
yl=yl_pre
y2=y2_pre

151

CHAPTER 5. METHOD COEFFICIENTS AND FORTRAN PROGRAMS

y3=y3_pre
y4=y4_pre
y5=y5_pre
coefficient=h/h_pre

else
naccept=naccept+1
exit

end if

end if

end do
h_pre=h/coefficient
linterpolation
if (xpoint<x.and.xpoint>x_pre)then
call point(dim,xpoint,ypoint,y_pre,y_value,x_pre,x, &
h_pre,f5_pre,f5)
enderror=abs (ypoint-yend) /ypoint
errormax=enderror (1)
do i=2,dim
if (enderror(i).ge.errormax)then
errormax=enderror (i)

end if
end do
scd=-(log(errormax))/log(10.d0)
print *,’nfactorize=’, nfactorize, ’ njex=’,njex,’ ncallf=’,ncallf
print *, ’scd=’,scd
exit
end if
end do
print *,’njumpout=’,njumpout,’ nreject=’,nreject, ’ totalstep=’,step

end subroutine nglm

The following Module provides the coefficients for order 4 method.

MODULE matrix_abuv_order4d
implicit none
double precision, parameter :: all=1.d0/4.d0,&
a21=47.d0/64.40, &

152

5.2. FORTRAN CODE

a22=1.d0/4.d0, &
a31=24197.d0/14476.40, &
a32=678.d0/3619.d0, &
a33=1.d0/4.d0, &
a41=7102302807.d0/1544183872.d0, &
a42=987465.d0/24127873.40, &
a43=10395.d0/26668.d0, &
a44=1.d0/4.40, &
ab1=-117251104.d0/55207845.d0, &
a52=-27818059.d0/55207845.4d0, &
ab3=7255.d0/6102.d0, &
ab4=-59.d0/135.d0, &
ab5=1.d0/4.d0, &

ul1=1.d0, &

u12=-1.d0/4.40,

113=0.4d0,

u14=0.4d0,

u15=0.4d0,

u21=1.d0,

u22=-47.40/64.40,

u23=-1.d0/16.40,

u24=-1.d0/32.40,

u25=-3.d0/256.40,

u31=1.d0,

u32=-11645.d0/7238.d0,

u33=-339.d0/3619.40,

u34=-5653.d0/57904.d0,

u35=-4297.d0/57904.d0,

u41=1.d0,

142=-6995320711.d0/1544183872.4d0,

u43=-85994121.d0/386045968.d0,

144=-57910455.d0/193022984 .40,

u45=-1871076171.d0/6176735488.d0,

u51=1.0d0,

152=579853229 .d0/220831380.d0,

153=12065149 .d0/55207845.4d0,

u54=9336821.d0/49073640.d0,

u55=15415373.d0/88332552.4d0,

b11=825449.d0/430191 .40, &

b12=-1889207.d0/860382.4d0, &

RN AR R R R R

153

CHAPTER 5. METHOD COEFFICIENTS AND FORTRAN PROGRAMS

b13=19916.d0/9153.4d0,
b14=-59.d0/162.40,
b15=1.d0/6.4d0,
b21=1422203.d40/1433970.40,
b22=528694.d0/716985.40,
b23=-4249.d0/3051.40,
b24=118.d0/135.40,
b25=5.d0/6.4d0,
b31=-18698713.40/716985.d0,
b32=30670112.d0/716985.4d0,
b33=-99890.d0/3051.d0,
b34=944.40/135.d0,
b35=2.4d0,
b41=-97429762.d0/2150955.40,
b42=146725568.d0/2150955.4d0,
b43=-445028.40/9153.4d0,
b44=3776.d0/405.4d0,
b45=2.4d0,
b51=-13844474.40/716985.4d0,
b52=19904536.d0/716985.4d0,
b53=-58216.d0/3051.4d0,
b54=472.d0/135.d0,
b55=2.40/3.4d0,
v11=1.4d0, &
v12=-603461.40/860382.d0, &
v13=116111.40/860382.40, &
v14=-40393.40/382392.d0, &
v15=-19249.d40/6883056 .40, &
v21=0.0d0, &
v22=-748481.d0/716985.4d0, &
v23=33116.d0/716985.4d0, &
v24=-21913.40/318660.d0, &
&
&
&
&
&
&
&
&

PRI RN R R R R

v25=-90679.d0/573588.d0,
v31=0.0d0,
v32=5055197.d0/716985.4d0,
v33=-1532237.d40/716985.4d0,
v34=276353.d0/159330.40,
v35=-14840.40/143397.d0,
v41=0.0d0,
v42=30929528.d0/2150955.d0,

154

5.2. FORTRAN CODE

v43=-7466528.d0/2150955.d0,
v44=703186.d0/238995.4d0,
v45=134986.d0/430191.d0,
vbl=
v52=4635916.d40/716985.4d0,
vb3=-987676.d0/716985.4d0,
v54=96032.d0/79665.d0,
v55=34232.40/143397.d0,

0.4d0,

c1=0.d0,
c2=1.40/4.40,
c3=1.40/2.4d0,
c4=3.d0/4.40,
¢b=1.d40

Frrrereeeeer

&

&
&
&

END MODULE matrix_abuv_order4

The following subroutine calculates the stage values for the order 4 method.

subroutine nordsieck4(f,dim,x,xpoint,yl,y2,y3,y4,y5,y_value,&
jex,h,tol,f1,f2,£3,f4,f5,exitstage,h_lastfactorize,&
matrix, jumpout, justfactorize,step,ipiv,pd,njex, &

ncallf ,nfactorize,redo)

use matrix_abuv_orderd
implicit none
external f, jex,iter
integer ::dim, maxstep,k,exitstage,nfactorize,njex,step,stage
integer ::ncallf,ii

integer,dimension(dim):: ipiv

double
double
double
double
double
double
double
double
double
double

precision,
precision,
precision,
precision,
precision,
precision,
precision,
precision,
precision,
precision,

dimension(dim) :
dimension(dim) :
dimension(dim) :
dimension(dim) :
dimension(dim) :
dimension(dim) :
dimension(dim) :
dimension(dim) :
dimension(dim) :
dimension(dim) :

155

:yend,rerror
:partl,part2,part3,partd,partb
:yl_stage,y2_stage,y3_stage
:y4_stage,yb_stage

:yl,y2,y3,y4,y5

:f1,£2,£3,f4,£5
:y0,y_value,ydot,phi,y_old,&
:y_new,ypoint
:ydotl,ydot2,ydot3,ydot4,ydotb
:yl_new,y2_new,y3_new,y4_new,y5_new

CHAPTER 5. METHOD COEFFICIENTS AND FORTRAN PROGRAMS

double precision, dimension(dim,dim)::matrix,pd

double precision::x,xpoint,x1,x2,x3,x4,x5,x_o0ld,x_new,sumsum
double precision::hlam,h,lambda,tol,sum,h_lastfactorize,r,scd
logical ::converge,justfactorize, jumpout,redo

lambda=1.d0/4.40
! calculate stage 1
partil=ull*xyl+ul2*xy2+ul3*y3+uld*xy4+ulb*xyb
| predictor for stage 1
yl_stage=y_value
x1=x+cl*h
hlam=h*xall
stage=1
INewton iteration
call iter(dim,x1,yl_stage,partl,f,jex,lambda,f1,&
tol,r,h,pd,matrix, justfactorize,&
h_lastfactorize,converge,ipiv,nfactorize,&
njex,step,stage,ncallf)
if (converge) then
I calculate stage 2
part2=a21lxh*fl+u2l*yl+u22*y2+u23*y3+u24*y4+u25*y5
! predictor for stage 2
y2_stage=yl+c2*y2+c2*xc2/2.d0*y3+c2*c2%c2/6.d0*y4 &
+Cc2%c2xc2%c2/24 .d0*y5
x2=x+h%*c2
hlam=a22x*h
stage=2
call iter(dim,x2,y2_stage,part2,f,jex,lambda,f2,&
tol,r,h,pd,matrix, justfactorize,&
h_lastfactorize,converge,ipiv,nfactorize,&
njex,step,stage,ncallf)
if (converge) then
! calculate stage 3
part3=a31lxhxf1+a32xh*xf2+ul31*yl+ul32*y2+u33*y3 &
+u34*y4+u3b*y5
! predictor for stage 3
y3_stage= 5.d0*yl_stage+1.d0/2.d0xh*f1-4.d0*y2_stage+h*f2
x3=x+c3*h
hlam=a33*h
stage=3

156

5.2. FORTRAN CODE

call iter(dim,x3,y3_stage,part3,f,jex,lambda,f3,&
tol,r,h,pd,matrix, justfactorize, &
h_lastfactorize,converge,ipiv,nfactorize,&
njex,step,stage,ncallf)
if (converge) then
! calculate stage 4
parté4=adilxhxfl+ad2xh*xf2+ad3*xh*xf3 &
+udlxyl+ud2xy2+ud3*y3+udd*y4+udbxyb
! predictor for stage 4
y4_stage=5.d0*y2_stage+1.d0/2.d0xh*f2-4.d0*y3_stage+h*f3
x4=x+c4*h
hlam=a44xh
stage=4
call iter(dim,x4,y4_stage,part4,f,jex,lambda,f4,&
tol,r,h,pd,matrix, justfactorize,&
h_lastfactorize,converge,ipiv,nfactorize,&
njex,step,stage,ncallf)
if (converge) then
! calculate stage 5
partb5=ablxhxf1+ab2xhxf2+ab3*h*f3+ab4*h*f4 &
+ub1*y1+ub2*y2+ub3*y3+ub4*y4+ubb*xyb
! predictor for stage 5
y5_stage= 5.d0*y3_stage+1.d0/2.d0*h*f3-4.d0*y4_stage+h*f4
xb5=x+cb*h
hlam=ab55%*h
stage=b
call iter(dim,x5,y5_stage,part5,f, jex,lambda,f5,&
tol,r,h,pd,matrix, justfactorize, &
h_lastfactorize,converge,ipiv,nfactorize,&
njex,step,stage,ncallf)
if (converge)then
jumpout=.false.
exitstage=0

x=x5

y_value=yb5_stage

y1l_new=bl1xh*f1+b12xh*f2+b13*h*f3+b14*h*f4 &
+b15xh*f5+v11xyl+vi2xy2+v13*y3+v14d*xy4+v15xyb

y2_new=b21*h*f1+b22*¥h*f2+b23*h*f3+b24*h*f4 &
+b25xh*f5+v21xy1+v22xy2+v23*y3+v24*xy4+v25*yb

y3_new=b31*h*f1+b32*¥h*f2+b33*h*f3+b34*h*f4 &

157

CHAPTER 5. METHOD COEFFICIENTS AND FORTRAN PROGRAMS

+b35*h*f5+v31*y1+v32*y2+v33*y3+v34*xyd+v3b*yb

y4_new=b41xh*f1+b42*¥h*f2+b43*h*f3+b44*xh*f4 &
+b45xh*f5+v41xy1+vA42xy2+v43+y3+vad*xy4+v45xyb
y5_new=b51*h*f1+b52*¥h*f2+b53*h*f3+b54*h*f4 &

+b55xh*f5+vE1xy1+vE2xy2+v53*y3+vb4d*xy4+vE5*yb

yl=yl_new
y2=y2_new
y3=y3_new
y4=y4_new
yb5=yb_new
else
jumpout=.true.
exitstage=5
end if
else
jumpout=.true.
exitstage=4
end if
else
jumpout=.true.
exitstage=3
end if
else
jumpout=.true.
exitstage=2
end if
else
jumpout=.true.
exitstage=1
end if

end subroutine nordsieck4

The following codes are the starting method for the order 4 method.

subroutine nosieckstart4(f,dim,x,y1,y2,y3,y4,y5,y0, &
y_value,jex,h,tol,fl,f2,f3,f4,f5,matrix,pd,ipiv)
implicit none

158

5.2. FORTRAN CODE

external f,jex,iter
integer ::dim,stage
integer, dimension(dim)::ipiv

double
double
double
double
double
double
double
double
double
double
double
double

aal1=1.d40/4.4d0

precision,
precision,
precision,
precision,
precision,
precision,
precision,
precision,
precision,
precision,

precision ::
precision ::

dimension(dim):: y0,y1,y2,y3,y4,y5
dimension(dim):: yl_stage,y2_stage,y3_stage
dimension(dim):: y4_stage,y5_stage,y6_stage,y7_stage
dimension(dim):: ydotl,ydot2,ydot3,ydot4
dimension(dim) :: ydot5,ydot6,ydot7
dimension(dim) :: partl,part2,part3,part4
dimension(dim) : : partb,part6,part?
dimension(dim):: f1,f2,f3,f4,f5,f6,f7
dimension(dim) :: ydot,phi,y_value
dimension(dim,dim):: matrix,pd
x,x1,x2,x3,x4,x5,x6,x7,hlam,tol,sum,lambda,h
aall,aa21,aa22,aa31,aa32,aa33,aad4l1,aad42,aad3,&
aad4,aabl,aab2,aab3,aab4,aab5,aa61,aa62,aa63,&
aab4,aab65,aab6,aa7l1,aa72,aa73,aa74,aa75,aa76,&
aa77,bbl1,bb12,bb13,bb14,bb15,bb16,bbl7,&
bb21,bb22,bb23,bb24,bb25,bb26,bb27,&
bb31,bb32,bb33,bb34,bb35,bb36,bb37,&
bb41,bb42,bb43,bb44,bb45,bbd6,bbl7,&
bbb51,bb52,bb53,bb54,bb55,bb56,bb57 ,&
uull,uu21,uu3l,uudl,uudbl,uubl,uu71,&
vvll,vv2l,vv31l,vv4l,vvbl,&
ccl,cc2,cc3,cc4,cch,ccb,cc7

aa21=1.d0/4.d0-dsqrt(2.d0)/4.d0

aa22=1.d0/4.d0

aa31=-31.d0/36.d0+17.d0*dsqrt (2.d0)/36.d0
aa32=4.d0/9.d0-2.d0*dsqrt (2.40)/9.d0

aa33=1.d0/4.40

aa41=0.d0
aa42=3.d40/8.d0+9.d0*dsqrt (2.40)/32.d0
aa43=-3.d0/8.d0-9.d0*dsqrt (2.d0)/32.40

aa44=1.d0/4.d0

aab1=0.d0
aab2=-9.d0/8.d0-3.d0*dsqrt(2.d0)/4.d0
aab3=129.d0/56.d0+45.d0*dsqrt (2.d0)/28.d0
aab4=-13.d0/14.d0-6.d0*dsqrt (2.40)/7.40

aab5=1.d0/4.d0

159

CHAPTER 5. METHOD COEFFICIENTS AND FORTRAN PROGRAMS

aa61=0.d0
2a62=0.d0
aa63=-261.d0/1288.d0-351.d0*dsqrt (2.d0) /2576.d0
aa64=25.d0/28.d0+9.d0*dsqrt (2.d0)/56.d0
aa65=-35.d0/184.d40-9.d0*dsqrt (2.d0)/368.d0
aa66=1.d0/4.d0
aa71=0.d0
aa72=0.d0
aa73=0.d0
aa74=5.d40/12.d0
aa75=5.d40/12.d0
aa76=-1.d40/12.40
aa77=1.d0/4.d0
uulil=1.0d0
uu21=1.0d0
uu31=1.0d40
uu41=1.0d0
uub1=1.0d0
uu61=1.0d40
uu71=1.0d0
bb11=0.0d0
bb12=0.0d0
bb13=0.0d0
bb14=2.d0/3.d0
bb15=-1.d0/3.40
bb16=2.d0/3.40
bb17=0.d0
bb21=0.0d0
bb22=0.0d0
bb23=0.0d0
bb24=0.0d0
bb25=0.0d0
bb26=0.0d0
bb27=1.0d0
bb31=0.0d0
bb32=0.0d0
bb33=0.0d0
bb34=-4.d0/3.d0
bb35=6.d0
bb36=-12.d0

160

5.2.

FORTRAN CODE

bb37=22.d0/3.d0
bb41=0.0d0
bb42=0.0d0
bb43=0.0d0
bb44=-16.d0
bb45=64.d0
bb46=-80.d0
bb47=32.d0
bb51=0.d0
bb52=0.d0
bb53=0.d0
bbb54=-64.d0
bb55=192.d0
bb56=-192.d0
bbb57=64.d0
vv1i1=1.40
vv21=0.d0
vv31=0.d0
vv41=0.d0
vv51=0.d0
cc1=1.40/4.40
cc2=1.d0/2.d0-dsqrt(2.40)/4.40
cc3=dsqrt(2.d0)/4.d0-1.d40/6.d0
cc4=1.d0/4.40
ccb=1.40/2.40
cc6=3.d40/4.40
cc7=1.d0
parti=uullxy0
y1l_stage=y0
x1=x+cclx*h
hlam=aallx*h
stage=1

call iter1(dim,x1,yl_stage,partl,f,jex,hlam,fl,&

tol,matrix,ipiv,stage,pd)
part2=uu2lx*xy0+aa21xhxf1l
y2_stage=yl_stage+cc2xhxfl
x2=x+cc2*h
hlam=h*aa22
stage=2

call iter1(dim,x2,y2_stage,part2,f,jex,hlam,f2,&

161

CHAPTER 5. METHOD COEFFICIENTS AND FORTRAN PROGRAMS

tol,matrix,ipiv,stage,pd)
part3=y0O*xuuldil+aal3lxh*xfl+aa32*h*f2
y3_stage=yl_stage+cc3xhxf2
x3=x+cc3*h
hlam=h*aa33
stage=3
call iter1(dim,x3,y3_stage,part3,f,jex,hlam,f3,&
tol,matrix,ipiv,stage,pd)
part4=yOxuudl+aadlxhxfl+aad2xhxf2+aa43*xh*f3
y4_stage=yl_stage+cc4xhxf3
x4=x+cc4xh
hlam=aa44xh
stage=4
call iter1(dim,x4,y4_stage,part4,f,jex,hlam,f4,&
tol,matrix,ipiv,stage,pd)
partb=yOxuubl+aablxhxfl+aab2xh*f2+aab3*h*f3 &
+aab4xhxf4
y5_stage=yl_stage+cc5xhxf4
x5=x+ccb*xh
hlam=aab5%*h
stage=b
call iter1(dim,x5,y5_stage,part5,f,jex,hlam,f5,&
tol,matrix,ipiv,stage,pd)
part6=yOxuu6l+aab6lxhxfl+aa62xh*xf2+aa63*xh*f3 &
+aa64xh*f4+aab65*h*fb
y6_stage=yl_stage+cc6xh*xfb
x6=x+cc6*h
hlam=aa66%*h
stage=6
call iter1(dim,x6,y6_stage,part6,f,jex,hlam,f6,&
tol,matrix,ipiv,stage,pd)
part7=yO*xuu71l+aa71xhxfil+aa72xh*f2+aa73*h*f3 &
+aa74xh*f4+aa75*h*xfb+aa76*xh*xf6
y7_stage=yl_stage+cc7*xh*xf6
x7=x+cc7*h
hlam=aa77*h
stage=7
call iter1(dim,x7,y7_stage,part7,f,jex,hlam,f7,&
tol,matrix,ipiv,stage,pd)
x=x7

162

5.2. FORTRAN CODE

y_value=y7_stage

y1=bbl1xh*f1+bb12*h*f2+bb13*h*f3 &
+bb14xh*f4+bb15*h*f5+bb16*h*f6 &
+bb17xh*f7+vv11i*xy0

y2=bb21xh*f1+bb22*h*f2+bb23*h*f3 &
+bb24xh*f4+bb25*h*f5+bb26*h*f6 &
+bb27xh*f7+vv21*y0

y3=bb31xh*f1+bb32*h*f2+bb33*h*f3 &
+bb34xh*f4+bb35*h*f5+bb36*h*f6 &
+bb37*xh*f7+vv31*y0

y4=bb41xh*f1+bb42xh*f2+bb43*h*f3 &
+bb44xh*f4+bb45xh*f5+bb46xh*f6 &
+bb4d7xh*f7+vvd1xy0

y5=bb51*xh*f1+bb52*h*f2+bb53*h*f3 &
+bb54*h*f4+bb55xh*f5+bb56*h*f6 &
+bb57xh*f7+vvb1*xy0

end subroutine nosieckstart4

Ithis is a full newton iteration for the starting method
I a simple version
subroutine iter1(dim,x,y0,rhs,f,jex,hlam,fstage,tol,matrix,&
ipiv,stage,pd)

implicit none

external f, jex

integer ::dim, maxstep,stepp,info,i,stage

integer, dimension(dim)::ipiv

double precision, dimension(dim):: yO0,ystage,ydot

double precision, dimension(dim):: phi,fstage,rhs

double precision, dimension(dim,dim)::matrix,pd,identy

double precision ::x,hlam,tol,sum

maxstep=6

ystage=y0

stepp=0

identy=0.d0

do i=1,dim
identy(i,i)=1.0d0

end do

do
sum=0.d0
stepp=stepp+1

163

CHAPTER 5. METHOD COEFFICIENTS AND FORTRAN PROGRAMS

call jex(dim,x,ystage,pd)
pd=hlam*pd
matrix=identy-pd
call f(dim,x,ystage,ydot)
phi=ystage-hlam*ydot-rhs
call DGETRF(dim,dim,matrix,dim,ipiv,info)
call DGETRS(’N’,dim,1,matrix,dim,ipiv,phi,dim,info)
ystage=ystage-phi
do i=1,dim
sum=sum+ (phi(i))*(phi(i))
end do
sum=sqrt (sum)
if (sum<tol.or.stepp>=maxstep) then
fstage=(ystage-rhs)/hlam
yO=ystage
exit
end if
end do

end subroutine iteril

The following subroutines are error estimator, stepsize controller, interpolation
and rescaling Nordsieck vector.

lcalculate the error

subroutine errorestimate(dim,f1,f2,f3,f4,f5,h,error)
implicit none

integer ::dim

double precision:: h

double precision, dimension(dim)::f1,f2,f3,f4,f5,error
error=13.d0/60.d0* (h*xf1-4.d0*h*f2+6.d0*h*f3-4.d0*h*f4 &

+h*f5)

end subroutine errorestimate

! stepsize controller
subroutine stepsize(dim,error,order, &
tolerance,h,coefficient,redo)
implicit none
integer ::dim,flag,order,1i, j

164

5.2. FORTRAN CODE

double precision ::h,sum,coefficient,tolerance,power
double precision ::safefactor,max
double precision, dimension(dim):: error,y_value
logical ::redo
max=0.d0
safefactor=0.9d0
max=abs (error (1))
do i=2,dim
if (max<abs (error(i)))then
max=abs (error(i))
end if
end do
sum=max
coefficient=(tolerance/sum)**(1.d40/5.40)
if (coefficient.le.0.5d0)then
coefficient=0.5d0
else if (coefficient.ge.2.d0) then
coefficient=2.d0
else
coefficient=coefficient*0.9d0
end if
h=coefficient*h
if (tolerance.ge.sum) then
redo=.false.
else
redo=.true.
end if
end subroutine stepsize

! interpolation
subroutine point(dim,xpoint,ypoint,y_old,y_new, &
x_old,x_new,h,f_old,f_new)
implicit none
integer :: dim
double precision:: xpoint,x_old,x_new,si,h
double precision,dimension(dim):: ypoint,y_old,y_new
double precision,dimension(dim):: f_old,f_new
si=(xpoint-x_old)/(x_new-x_old)
ypoint=(si-1.d0) **2x(2.d0*si+1.d0)*y_old &
+(3.d0-2.d0*s1i) *si**2xy_new &

165

CHAPTER 5. METHOD COEFFICIENTS AND FORTRAN PROGRAMS

+si*(1.d0-s1) **2xh*f_old &
+si**2x (si-1.d0) *h*f_new
end subroutine point

Irescale the Nordsieck vector

subroutine varistep(dim,y1,y2,y3,y4,y5,delta)
implicit none

integer:: dim

double precision ::delta

double precision, dimension(dim):: y1,y2,y3,y4,yb
yl=y1

y2=deltaxy2

y3=(delta**2)*y3

y4=(delta**3)*y4

y5=(delta**4)*y5
end subroutine varistep

5.2.3 Newton iteration

!Newton iteration
subroutine iter(dim,x,y0,rhs,f,jex,lambda,fstage,&
tol,r,h,pd,matrix, justfactorize, &
h_lastfactorize,converge,ipiv, &
nfactorize,njex,step,stage,ncallf)

implicit none

external f, jex

integer ::dim, maxstep,stepp,info,i

integer ::stage,step,ncallf,count, j

integer, dimension(dim)::ipiv

double precision, dimension(dim):: y0,ystage,ydot
double precision, dimension(dim):: phi,fstage,rhs
double precision, dimension(dim,dim)::pd,identy
double precision ::x,lambda,tol,r,h

double precision ::sum, sum_old

double precision, dimension(dim,dim)::matrix
logical ::justfactorize,recomputej,converge,notconverge,full

166

5.2. FORTRAN CODE

double precision ::h_lastfactorize
integer ::nfactorize,njex

maxstep=6
sum_old=1.d0
identy=0.d0
do i=1,dim
identy(i,i)=1.0d0
end do
ystage=y0
stepp=0
full=.false.
if (full)then
do i=1,maxstep
call jex(dim,x,ystage,pd)
pd=h*lambda*pd
matrix=identy-pd
call f(dim,x,ystage,ydot)
ncallf=ncallf+1
phi=ystage-hxlambdaxydot-rhs
call DGETRF(dim,dim,matrix,dim,ipiv,info)
call DGETRS(’N’,dim,1,matrix,dim,ipiv,phi,dim,info)
ystage=ystage-phi
nfactorize=nfactorize+1
njex=njex+1
sum=0.d0
do j=1,dim
sum=sum+ (phi(j))*(phi(j))
end do
sum=dsqrt (sum)
if (sum<tol)then
converge=.true.
exit
end if
end do
fstage=(ystage-rhs)/(h*lambda)
yO=ystage
else
recomputej=.false.
sum=1.d0

167

CHAPTER 5. METHOD COEFFICIENTS AND FORTRAN PROGRAMS

converge=.false.
recomputej=.false.
do
stepp=stepp+1
do i=1,maxstep
sum_old=sum
call f(dim,x,ystage,ydot)
ncallf=ncallf+1
phi=ystage-h*xlambdaxydot-rhs
call DGETRS(’N’,dim,1,matrix,dim,ipiv,phi,dim,info)
ystage=ystage-phi
sum=0.d0
do j=1,dim
sum=sum+ (phi (j))*(phi(j))
end do
sum=dsqrt (sum)
I'check convergence
if (sum<tol) then
converge=.true.
exit
else
if (sum>(sum_o01d*2.d0)) then
exit
end if
end if
end do
if (sum<tol) then
fstage=(ystage-rhs)/(h*lambda)
yO=ystage
converge=.true.
exit
else
if (justfactorize.and.recomputej)then
converge=.false.
exit
end if
Iif factorization has been done, recompute J
if (justfactorize)then
recomputej=.true.
call jex(dim,x,ystage,pd)

168

5.2. FORTRAN CODE

njex=njex+1
end if
!do factorization with current h

matrix=identy-h*xlambda*pd
call DGETRF(dim,dim,matrix,dim,ipiv,info)
nfactorize=nfactorize+l
h_lastfactorize=h
justfactorize=.true.

end if

end do

end if

end subroutine iter

169

CHAPTER 5. METHOD COEFFICIENTS AND FORTRAN PROGRAMS

170

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

F. Bashforth & J. C. Adams, An attempt to test the theories of capillary
action by comparing the theoretical and measured forms of drops of fluid,
with an explanation of method of integration employed in constructing the
tables which give the theoretical forms of such drops, Cambridge University
Press, 1883.

K. Burrage & J. C. Butcher, Non-linear stability for a general class of dif-
ferential equation methods, BIT, 20, 185-203, 1980.

K. Burrage, J. C. Butcher & F. H. Chipman, An implementation of singly-
implicit Runge-Kutta methods, BIT, 20, 326-340, 1980.

J. C. Butcher, Numerical methods for ordinary differential equations in the
20th century, J. Comput. Appl. Math., 125, 1-29, 2000.

J. C. Butcher, The numerical analysis of ordinary differential equations,
John Wiley & Sons, 1987.

J. C. Butcher, On the convergence of numerical solutions to ordinary differ-
ential equations, Math. Comp, 20, 1-10, 1966.

J. C. Butcher, Numerical methods for ordinary differential equations, John
Wiley & Sons, 2003.

J. C. Butcher, Diagonally-implicit multi-stage integration methods, Appl.
Numer. Math. 11, 347-363, 1993.

J. C. Butcher, P. Chartier and Z. Jackiewicz, Nordsieck representation of
DIMSIMs, Numer. Alg. 16, 209-230, 1997.

J. C. Butcher, P. Chartier and Z. Jackiewicz, Ezperiments with a variable-
order type 1 DIMSIM code, Numer. Alg. 22, 237-261, 1997.

171

BIBLIOGRAPHY

[11] J. C. Butcher and Z. Jackiewicz, Construction of diagonally implicit general
linear methods of type 1 and 2 for ordinary differential equations, Appl.
Numer. Math. 21 385-415, 1996.

[12] J. C. Butcher and Z. Jackiewicz, Implementation of diagonally implicit multi-
stage integration methods for ordinary differential equations, SIAM J. Nu-
mer. Anal. 34, 2119-2141, 1997.

[13] J. C. Butcher, General linear methods for stiff differential equations, BIT,
41, 240-264, 2001.

[14] J. C. Butcher and W. M. Wright, The construction of practical general linear
methods, BIT, 43, 695-721, 2003.

[15] C. W. Cryer, On the instability of high order backward-difference multistep
methods, BIT, 12, 17-25, 1972.

[16] G. Dahlquist, Convergence and stability in the numerical integration of or-
dinary differential equations Math. Scand. 4, 33-53, 1956.

[17] G. Dahlquist, A special stability problem for linear multistep methods, BIT,
3, 27-43, 1963.

(18] B. L. Ehle, On Pédde approzimations to the exponential function and A-stable
methods for the numerical solution of initial value problems, Report 2010,
University of Waterloo, 1969.

[19] L. Euler, Institutions calculi integralis Volumen Primum, Opera Omnia XI,
G. Teubneri, Lipsiae et Berolini MCMXIII, 1768.

[20] D. Garfinkel and C. B. Marbach, Stiff differential equations, Ann. Rev. Bio-
phys. Bioeng, 6, 525-542, 1977.

[21] C. W. Gear, Hybrid methods for initial value problems in ordinary differential
equations, STAM J. Numer. Anal., 2, 69-86, 1965.

[22] C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equa-
tions, Prentice Hall, 1971.

(23] C. W. Gear, DIFSUB for solution of ordinary differential equations, Comm.
ACM. 14, 69-86, 1971.

[24] C. W. Gear Runge-Kutta starters for multistep methods, ACM Trans. Math.
Software, 6, No. 3, 263-279, 1980.

172

BIBLIOGRAPHY

[25] K. Gustafsson, M. Lundh and G. Séderlind, A PI stepsize controller for the
numerical integration of ordinary differential equations, BIT, 28, 270-287,
1988.

[26] E. Hairer and G. Wanner, Solving ordinary differential equations II: Stiff
and differential-algebraic problems, Springer-Verlag, Berlin, 1991.

[27] K. Heun, Neue Methode zur approximativen Integration der Differential-
gleichungen einer unabhdngigen Verdnderlichen, Math. Phys. 45, 23-38,
1900.

(28] Z. Jackiewicz, Implementation of DIMSIMs for stiff differential systems,
Appl. Numer. Math. 42, 251-267, 2002.

[29] W. Kutta, Beitrag zur ndherungswenisen Integration totaler Differential-
gleichungen, Math. Phys. 46, 435-453, 1901.

[30] W. M. Lioen and J. J. B. de Swart, Test set for initial value problem solvers,
CWI test set, 1999.
http://pitagora.dm.uniba.it/ testset/index.htm

[31] F. R. Moulton, New methods in exterior ballistics, University of Chicago
Press, 1926.

[32] A. Nordsieck, On numerical integration of ordinary differential equations,
Math. Comp. 16, 22-49, 1962.

[33] A. Prothero and A. Robinson, On the stability and accuracy of one-step
methods for solving stiff systems of ordinary differential equations, Math.
Comp., 28, 145-162, 1974.

[34] H. H. Robertson, The solution of a set of reaction rate equations In J. Wal-
shed. Numer. Anal., an Introduction, Academic Press, 178-182, 1966.

[35] C. Runge, Uber die numerische Auflosung von Differentialgleichungen,
Math. Ann. 46, 167-178, 1895.

[36] E. Schafer, A new approach to explain the ‘high irradiance responses’ of
photomorphogenesis on the basis of phytochrome, J. of Math. Biology, 2,
41-56, 1975.

[37] L. F. Shampine, Implementation of implicit formulas for the solution of
ODFEs, SIAM Journal of Scientific and Statistical Computing, 1, 103-118,
1980.

173

BIBLIOGRAPHY

[38] A. D. Singh, Parallel diagonally implicit multistage integration methods for
stiff ordinary differential equations, PhD thesis, The University of Auckland,
1998.

[39] W. M. Wright, Practical general linear methods, MSc thesis, The University
of Auckland, 1998.

[40] W. M. Wright, General linear methods with inherent Runge-Kutta stability,
PhD thesis, The University of Auckland, 2003.

[41] W. M. Wright, Ezplicit general linear methods with inherent Runge-Kutta
stability, Numer. Alg., 31, 381-399, 2002.

[42] http://www.netlib.org/lapack.

174

