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Abstract

Numerical methods have made enormous progress alongside the rapid development
of computers. For finding solutions of ordinary differential equations, numerical
methods are a valuable tool, since finding an analytic solution is often very difficult

or impossible.

The earliest numerical method for ordinary differential equations is the famous Euler
method which evaluates the driving function once in each step and uses an approx-
imated solution from the previous step to update a solution. The early extensions
of this methods are the two well-known and most commonly used methods, Runge-
Kutta methods and linear multistep methods. A Runge-Kutta method uses a result
given at the end of the previous step while evaluating functions at the one or more
off-step points. A linear multistep method uses already approximated solutions and
evaluated function values from several previous steps but only evaluates the func-
tion once in each step. The unifying framework for these two traditional methods
is known as general linear methods which are multistage like Runge-Kutta methods

and multivalue like linear multistep methods.

Mainly in this thesis, the important fundamental properties of these numerical meth-
ods for ordinary differential equations are investigated. This involves the formulation
for these methods, order and stability conditions and other basic concepts that are
required to understand the methods. Furthermore, some numerical experiments
on general linear methods are presented. This includes comparions between the

different methods and investigations on predictors.
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Chapter 1

Introduction

Mathematical modelling has been used more and more in many areas such as in
science, engineering, medicine, economics and social science. Differential equations
are one of the important and widely used techniques in mathematical modelling.
However, not many differential equations have an analytic solution and even if there
is one, usually it is extremely difficult to obtain and it is not very practical. Thus,
numerical methods are truly a crucial part of solving differential equations which
cannot be neglected. Since the late 18" century, numerical methods for solving
differential equations have been developed continuously by many mathematicians.
Later on in the 20" century, this subject made great improvements in the context

of modern computers.

In this chapter, an introduction to ordinary differential equations and a review
of the earliest numerical approach to solving ordinary differential equations, Euler
methods, are covered followed by a brief discussion of stiffness. Also, an outline of

the rest of this thesis is included at the end.

1.1 Ordinary Differential Equations

Among the models using differential equations (DE), ordinary differential equations
are frequently used to describe various physical problems, for example, motions of

the planet in a gravity field like the Kepler problem, the simple pendulum, electrical

1



2 CHAPTER 1. INTRODUCTION

circuits and chemical kinetics problems.

An ordinary differential equation (ODE) has the form
y'(z) = f(z,y(2)) (1.1)

where x is the independent variable which often refers to time in a physical problem
and the dependent variable, y(z), is the solution. Moreover, since y(x) could be
an N dimensional vector valued function, the domain and range of the differential

equation, f and the solution, y are given by
f:RxRY 5 RV,

y:R—- RN,

The above equation (1.1) where f is a function of both z and y is called ‘non-
autonomous’. However, by simply introducing an extra variable which is always
exactly equal to z, it can be easily rewritten in an equivalent ‘autonomous’ form

below where f is a function of y only.
y'(z) = f (y(z)) - (1.2)

Even though many problems are naturally expressed in the non-autonomous form,
the autonomous form of differential equation (1.2) is preferred for most of the the-
oretical investigations. Furthermore, the autonomous form has some advantages in
numerical analysis since it gives a greater possibility that a numerical methods can

solve the differential equation exactly.

The differential equation by itself is not enough to find a unique solution. Hence,
some other additional information is needed. If extra information is given at several
values of z i.e. ‘boundary conditions’ then the differential equation is known as a
‘boundary value problem (BVP)’. However, if all components of y are given at a
certain value of z i.e. ‘initial conditions’ then the differential equation is called as
an ‘initial value problem (IVP)’ which is closely and naturally involved with physical

modelling.
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An initial value problem with the given initial condition y(z¢) = yo has the structure

Y(z)=f(z,y(=),  ylw) =1 (1.3)

In non-autonomous form and
y'(@) = f(y(@),  yl@) =1 (1.4)

in autonomous form.

1.1.1 Existence and Uniqueness of Solutions

From a practical point of view of scientific modelling, it is very important to examine
whether there exists a solution to an initial value problem and if it exists, whether
it is unique. In addition, how sensitive the solution is to small perturbations to the
initial conditions, given a unique solution exists, must be considered. These matters

can be explained using a Lipschitz condition defined as follows.

Definition 1.1. Butcher [7] The function f : [a,b] x RY — RN is said to satisfy a
‘Lipschitz condition’ if there exists a ‘Lipschitz constant’ L, such that for all x € [a, b]

and all y,z € RY,
1f(z,y) = f(z,9)|| < Llly — |-

This definition allows us to deduce the following theorem which ensures the existence

and uniqueness of solutions to an initial value problem.

Theorem 1.2. Butcher [7] Consider an initial value problem

Y (z)=f(z,y(),  yla) =1

where f : [a, b)) x RY — RN is continuous in its first variable and satisfies a Lipschitz

condition in its second variable. Then there exists a unique solution to this problem.

Furthermore, the existing and unique solution should not be too sensitive to the
initial condition. If y and z each satisfy Theorem 1.2 with the initial conditions

y(a) = yo and z(a) = zo, respectively then
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d
lly(@) = 2@l < Lily(z) — 2(2)].
x
Multiply both sides by exp(—Lz) then,

exp(~La) 1 ly(z) — 2(@)]| < Lexp(~La)y(a) — =(a)]|
xp(—La) o ly(z) — 2(z)| — Lexp(~La)ly(z) — =(z)]| < 0

d

o (exp(=La)lly(z) — z(2)]]) < 0.

This implies that exp(—Lx)||y(z) — z(z)|| is non-increasing. Hence,

exp(—Lz)|ly(z) — z(z)|| < exp(—La)ly(a) — z(a)l
ly(z) — 2(2)|| < exp(L(z —a))llyo — 2oll-
This limitation on the growth rate of initial perturbations could seem to be hopeless

in some senses. However, it can be improved by the one-sided Lipschitz condition

defined in the next section.

In this thesis, only an initial value problem in autonomous form which satisfies
Definition 1.1 and Theorem 1.2 will be considered to make sure the solution exists

and unique.

1.2 FEuler Method

The famous Euler method was introduced by Euler in 1768. This simplest of all
methods became the stepping-stone of numerical methods for solving ordinary dif-

ferential equations.
Recall the initial value problem,
y'(z) = f(z,y(2)),  y(zo) = %.

Let zn be an end point of a solution where N is the number of steps required to
approximate the solution at xy. Hence, the interval of integration is [z¢, zy] and the

stepsize h is (xy—zo)/N. The Euler method generates the numerical approximation,
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Yn, to the exact solution, y(z,), at x, = o + hn (n = 1,2,..., N) by the following

scheme.
Yn :yn—1+hf($n—layn—l)a n = 132a"'aN' (15)

This original formula of Euler which detemines y,, directly from y,_; is an ‘explicit’
method. However, if y,, itself is involved in the approximation, then it is an ‘implicit

Euler’ method. The implicit form of Euler method can be written as

yn = ynfl + hf(xn’ yn)i n= ]" 2’ ) N' (1'6)

1.2.1 Order of Convergence

The order of the Euler method can be determined by comparing the Taylor series
expansion of the exact solution with the computed solution. If the exact solution
y(xn) = y(zrn_1+ h) at x,, where x,, = z,,_1 + h, is expanded using the Taylor series

about x,_1, then
? h3 m
y(@n) = y(@n-1) + by (@) + 570" (@nr) + 59" (@na) +-- 0 (LT)
The numerical solution ¥, by the Euler method is given by
Yn = Yn—1 + hf(xn—la yn—l)- (18)
Substract equation (1.8) from (1.7) and obtain

Y(2n) — yo = O(R?). (1.9)

Hence, the order of the Euler method is 1.

1.2.2 Stability and A-Stability

For an analysis of the stability of a numerical method, the standard linear test
problem 3’ = Ay proposed by Dahlquist [26] is used, where the solution is y =
exp(Ay) and A is a complex parameter. Using the Euler method for this test problem
y' = Ay gives,

Yn = Yn—1+ hf(l'n—la yn—l)

= Yn-1 + hAYn_1.



6 CHAPTER 1. INTRODUCTION

1 1
g g
S 0 S 0
] ]
E E
-1 -1
-2 -1 0 1 2 -2 -1 0 1 2
Real Real
Figure 1.1: Stability Region for Figure 1.2: Stability Region for
Explicit Euler method Implicit Euler method

Letting z = hA gives,

Yn = Yn—1 + ZYn—1-
Rearrange to get

Yo = (1 + 2)Yn—1-
The method is said to be stable if and only if |1 + z| < 1, where |1 + 2| = 1 is the
unit disc with center -1 and radius 1 in the complex plane. For the explicit Euler
method, the stability region is the bounded region by the unit disc. This is shown
as the unshaded part of Figure 1.1.

The ratio y,,/y,—1 is known as ‘stability function’, R(z), hence, the stability function

R(z) of the explicit Euler method is given by,

Yo _ 14,
—— (1+ 2). (1.10)

Simliarly, the stability region and function of implicit Euler method can be deduced.

R(z) =

Yn = Yn—1+ hf(Zn, yn)
= Yn = Yn—1 + hAy,
= Yn = Yn—1 1 2Yn
=

(1 - Z)yn = Yn-1-
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Hence, the stability function R(z) of the implicit Euler method is given by,

Yn 1
R(z) = = . 1.11
(Z) Yn—1 1 4 ( )

For the stability region, |R(z)| < 1 is required, that is |1 —z| > 1, where |1 —z| =1
is the unit disc with center 1 and radius 1 in the complex plane. As clearly shown in
Figure 1.2, the stability region, the unshaded part, for implicit method is unbounded

and includes whole left half plane.

A numerical method for which the stability region includes all of the left half plan
like the implicit Euler method is called an ‘A-stable’ method. An A-stable method
ensures that the numerical approximation is bounded in cases when the exact solu-

tion is bounded.

Definition 1.3. A numerical method is A-stable if and only if
[R(z)] <1

for all z € C such that Re(z) < 0.

It is commonly known that A-stability is a desired property for a numerical method
to be able to solve the special type of problem called a ‘stiff problem’ which is

discussed in further detail in the next section.

1.3 Stiff Problems

Even if there exists the numerical solution to a differential equation, certain types
of differential equations are difficult to solve, in fact, they need certain types of
numerical methods. This phenomenon knowns as ‘stiffness’ was first recognised by
Curtiss and Hirschfelder [24] in 1952. Stiffness occurs when some components of the
solution decay much more rapidly than others. These problems have highly stable
exact solutions but have highly unstable numerical solutions. There are several ways
of characterising ‘stiffness’ and one way of understanding is looking at the Lipschitz
constant. Stiff problems typically have a large Lipschitz constant; however, many

of them have a more moderate size one-sided Lipschitz constant.
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Definition 1.4. Butcher [7] The function f : [a,b] x RN — RY is said to satisfy a
‘one-sided Lipschitz condition’ if there exists a ‘one-sided Lipschitz constant’ [, such

that for all x € [a,b] and all y,z € RY,

(flzy) = f(z,2),y — 2) < Ully — 2|

where the norm is defined by ||yl|> = (y,y) assuming that there ewists an inner-

product on RY .

Therefore, the Lipschitz constant could be large while the one-sided Lipschitz con-
stant could be small, or even negative. This theorem leads us to deduce the following

result.

Theorem 1.5. Butcher [7] If f satisfies a one-sided Lipschitz condition with one-
sided Lipschitz constant |, and y and z are solutions of y'(z) = f (z,y(x)), then for

all x > xy,
ly(z) — 2(z)|| < exp(l(z — o))y (z0) — 2(z0)-

Notice from this result that the distance between any two solutions will not increase
rapidly or may even decrease if the equation has an adequate one-sided Lipschitz
constant. Since stiffness is closely related to the behaviour of perturbations to a
given solution, it is important to find out the effect of small perturbations with a

one-sided Lipschitz condition.

Consider

y'(z) = flz,y(x)) (1.12)
with y(z), a solution, and €Y (z), a small perturbation to the given solution. Replace
y(z) in the equation (1.12) by y(z) + €Y (z) and expand the solution in a series in

powers of € up to the second order, then get

v (z) +eY'(z) = f(z,y(z)) + G%Y(.’E). (1.13)

Subtract the equation (1.12) from (1.13) and simplify it, then finally obtain the

equation which controls the behaviour of the perturbation,
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Y'(z) = g—;Y(x)

= J(z)Y (z)

where J(z) is the Jacobian matrix of f(z,y(x)). We can use the spectrum of eigen-
values of J(x) to characterise stiffness. The eigenvalues of J(z) determine the growth
rate of the perturbation with a moderate change in the value of the solution and a
very small change in J(x) in a time interval Az. The existence of one or more large
and negative values of A where A € o(J(z)) where z € Ax indicates that stiffness is

present.

1.3.1 Examples of Stiff Problem

Stiffness can be understood by the practical difficulty found in numerical calculation
as well. The stiff problems are impossible or very difficult to solve by explicit
methods, mainly because the small bounded stability region of explicit methods
forces the numerical method to take very small stepsizes for the smooth solution.
Two examples of stiff problems are given here to observe how explicit and implicit

methods work for these problems.

Example 1. Stiff linear problem
Consider the stiff system of three linear ordinary diffrential equations with corre-

sponding initial conditions.

y1(z) 0 1 0 y1(z) y1(0) 0
yp(z) | = -1 0 0 yoz) | > | 92(0) | =] 1
y3(z) -L 1 L || ysl2) y3(0) €

where L = —25 and € = 2.

The analytic solution is

y1(z) sin(x)

yo(z) | = cos(x) ;
ys3 () sin(z) + eexp(Lx)
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which is drawn in Figure 1.5.

Exact solutions on [0,1]

05F Y3 ]

O0 0.2 0.4 0.6 0.8 1

X

Figure 1.3: Analytic solution of Ezample 1, stiff linear problem

The results of using the explicit and implicit Euler methods for solving this stiff
problem on the interval of [0, 1] are presented in Figure 1.5 and Figure 1.6. The
first figure shows that the explicit method definitely seems to have difficulty ap-
proximating y3 while y; and y, are computed without difficulties. Especially the
approximations with n = 10 and n = 15 are hopeless. However, the implicit method

performs perfectly well even for n as low as 4 as shown in Figure 1.6.

Example 2. Stiff nonlinear problem (The Kaps problem)
Consider the stiff system of two dimensional Kaps problem with corresponding initial

conditions.

v (z) —1002y; (x) + 1000y, (z)? y1(0) 1
v () n(@) —p@A+mw@) | | w0) 1

Analytic solution is
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y1(x) exp(—2x)
Y2(7) exp(—1)

which is drawn in Figure 1.4.

Exact solutions on [0,10]

6 8 10

Figure 1.4: Analytic solution of Ezample 2, stiff nonlinear problem

In Figure 1.7 and Figure 1.8, the computed solutions of this problem using the
explicit and implicit Euler method on the interval of [0,10] are displayed. Even
using a large number of steps, the explicit method performs poorly. However the

implicit method easily gives a good approximation.

From these two examples, it is clearly confirmed that the explicit method is not

suitable but the implicit method is appropriate for stiff problems.
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Figure 1.5: Numerical solutions of Ezample 1, stiff linear problem, by
explicit Euler method with various numbers of steps.
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Figure 1.6: Numerical solutions of Example 1, stiff linear problem, by
implicit Euler method with various numbers of steps.
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Figure 1.7: Numerical solutions of Example 2, stiff nonlinear problem,

by explicit Euler method with various numbers of steps.
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Figure 1.8: Numerical solutions of Ezxample 2, stiff nonlinear problem,
by implicit Euler method with various numbers of steps.
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1.4 Framework of Thesis

[Euler Methods]

single calculation per step,
single use of past value

O

[Runge-Kutta Methods] [Linear Multistep Methods]
multiple calculations per step, single calculation per step,
single use of past value multiple use of past values

~

[General Linear Methods]

multiple calculations per step,
multiple use of past values

Figure 1.9: Types of numerical methods

The Euler method is simple. It uses only one piece of information from the past and
evaluates the driving function only once per step. However, the Euler method is not
very practical for computational purposes since considerable computational effort
is required to improve accuracy. In spite of its limitaions, the Euler method is the
fundamental building block for the higher accuracy methods which can be gener-
alised to two main classes of the traditional methods, the multistage (Runge-Kutta)
methods and the multistep (linear multistep) methods. Runge-Kutta methods al-
low more function evaluations per step while linear multistep methods use more
information from past steps to obtain higher accuracy. These two methods provided
a momentum for advancing numerical methods for ordinary differential equations.

About thirty years ago, general linear methods were introduced to combine these
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two traditional classes of methods. In Figure 1.9 the relation between the different

types of methods is shown in a schematic diagram.

In the rest of this thesis, some of the important fundamental properties of the three
numerical methods, extended from the Euler method, for ordinary differential equa-
tions are investigated. This includes the formulation for these methods, order and
stability conditions and other basic concepts of methods. Chapter 2 covers Runge-
Kutta methods with the order conditions using rooted trees. Chapters 3 and 4 are
the discussion on linear multistep methods and general linear methods respectively.
In Chapter 5, some numerical experiments on IRKS methods, which are one family
of general linear methods, are presented. To begin with, the results of comparing
the IRKS methods of order 1, 2 and 3 on the three test problems are presented.
Then the predictors for the IRKS methods are investigated in detail to compare the
performance of the predictors. Finally, a comparison between IRKS methods and

two MATLAB built-in solvers, ode15s and ode23s are presented.






Chapter 2

Runge-Kutta Methods

Runge-Kutta methods compute the first derivative, f several times per step. This
extension to the Euler method was first proposed by Runge [35] in 1895 and a little
later, Heun [30] and Kutta [31] contributed to further early developement in this

area.

Runge-Kutta methods have both advantages and disadvantages. Runge-Kutta meth-
ods are stable and easy to adapt for variable stepsize and order. However, they have

difficulties in achieving high accuracy at reasonable cost.

In this chapter, a general introduction to Runge-Kutta methods is given. This in-
cludes the formulation of the methods and a discussion of different types of methods
in this family. Then, order and stability conditions of Runge-Kutta methods are

discussed.

2.1 Formulations

A Runge-Kutta method with s-stages is defined by

s
Y'i = yn,1+hzaijf($n,1+h0j,Y'), 1=1,2,...s

Jj=1

; (2.1)
Yn = Yn—1t+h Z b]f (-Tn_1 + hC]’, Y) .
—~

J

In this general formula, Y; represnts the internal stage values and vy, is the update

19
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at the n'* step, that is the numerical approximation to the solution y(z) at = = z,,.
Naturally, ~ denotes the stepsize, x, —x,—1, and a;j, b; and c; are the constant coef-
ficients which can be constructed so that v, is a good approximation to the solution
y(z,) = y(xn—1 + h). For convenience, the stage derivatives f (z,_1 + hc;,Y;) are

often written as Fj.

A Runge-Kutta method needs to be consistent to be a suitable for solving problems.
In other words, when a method is used to integrate an ordinary differential equation
at x,_1, the difference between the exact and the numerical solution at x,_1 + h
should tend to zero as h tends to zero. To ensure consistency, the following condition

is required. ,
D bi=1. (2.2)
j=1

Further to that, another condition,
S
dai=c =125 (2.3)
i=1
is necessary to guarantee that the correct value is obtained at each of the stages.

The method can be characterised using the s x s matrix A and the s x 1 vectors b

and c,
aip -+ Qg by C1

Qg1 = Qgs bs Cs

which can be conveniently presented using a Butcher tableau,

c|l A 54

o (2.4)
The components of the A matrix are the coefficients used to find the internal stages
using linear combinations of the stage derivatives, b is the vector of weights indicating
how the approximation to the solution depends on the derivatives of the internal

stages and c is the vector of abscissae representing the position of the approximations

in the step.
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Runge-Kutta methods can be divided into two main types according to the style of
the matrix A. If the A matrix is strictly lower triangular then the method is called
‘explicit’; otherwise, the method is called ‘implicit’. Implicit methods can be divided
into several sub-categories, for example, ‘fully implicit’ if A is not lower triangular,
‘semi-implicit’ if A is lower triangular with at least one non-zero diagonal element,
‘diagonally implicit’ if A is lower triangular with all the diagonal elements equal and

non-zero and ‘singly implicit’ if A is a non-singular matrix with a single eigenvalue.

2.1.1 Explicit Methods

Explicit methods are easy to implement and have cheap implementation costs be-
cause the internal stages can be calculated one after another without depending on
later stages. However, explicit methods have poor stability, compared with implicit
methods, which makes the methods unsuitable for stiff problems. The following is

an example of an explicit method displayed in a Butcher tableau.

Example 1. Order 3 explicit method with 3 stages

0

1] 1

2| 2

11-1 2
1 2 1
6 3 6

Note that the upper triangular components of A are left blank indicating that their
values are zero. This tableau gives the following scheme. The stage values at the

n'* step are calculated as

}/1 = Yn-1,
Yv2 = Yn—1 + h(%)Fla

Y3 = yn1 + h(=1)F1 + h(2)F;

with the stage derivatives,
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Fy = f(zn_1 + h(0), Y1),
Fy = f(xn-1 + h(3),Y2),
Fy = f(zn—1 + h(1),Y3).

The approximation to the solution at the n'” step is

Yn = Yn—1 + h(%)ﬂ + h(%)F2 + h(é)F?,-

2.1.2 Implicit Methods

Implicit methods are expensive and difficult to implement since the stage-by-stage
scheme is no longer available but a simultaneous computation is needed for the
evaluation of stage values. However, the methods have some advantages compared
with explicit methods, such as fewer stages for the same order and better stability
which suits stiff problems. The following is the example of an implicit method

displayed in a Butcher tableau.

Example 2. Order 4 implicit method with 2 stages (Gauss method)

1_ V3 1 1_ V3
2 6 4 4 6
1, V3|1, V3 1
2+6 4+6 4
1 1
2 2

Note that the matrix A is not a lower triangular matrix, hence it is a fully implicit
method. In addition, it has higer order than the explicit case, Ezample 1, with
fewer stages. Here, the stage values Y; and Y, at the n'® step need to be evaluated

simultaneously, for example, using a full Newton scheme.

Yi = goa +h(HF +h(E - B)F,

Yo = Yot + h(E + 2VF + h(1)F,

where the stage derivatives are

Fi = f(zn1 +h(E -2, 1)),
Fy = f(zpo1 + h(E +¥2),Y5).
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The approximation to the solution at the n* step is

Yn = Yn—1 + h(%)F1 + h(%)FQ-

2.2 Order Conditions

In the investigation on numerical methods, it is very important to assess the quality
of the numerical solutions obtained by the method from various points of view and
one desirable property is good accuracy. One way of examining accuracy is to
consider the rate at which the numerical solution converges to the exact solution,
the order of the method. As the order gets higher, the requirements for a method to
maintain a particular order become increasingly complicated. However, these order

conditions of Runge-Kutta methods can be expressed using trees.

2.2.1 Trees

Let t denote a rooted tree and T denote the set of all rooted trees. Any ¢t € T can
be defined recursively by removing the root of t and denoting the subtrees trees as
t1, ta, ..., t;, where m is the number of disconnected trees from the root of ¢t. Then,
this relationship between ¢ and t1, to, ..., t,, is written as ¢t = [t1ty - - - t,,,]. Recursive

notations of the first 8 trees up to order 4 are shown in Table 2.1.

To be able to use these trees for constructing the order conditions, some special

properties of rooted trees need to be discussed.

Definition 2.1. Butcher [3] Let 7 : T — R and then the order of the tree t, r(t) is

defined by
1 ift=r,

r(t) =

L+7r(t)+---+7(tm) if t = [tita- - -t
Note that the order r(t) represents the number of vertices of the tree ¢.

Definition 2.2. Butcher [3] Let 0 : T — R and then the symmetry of the tree t,
o(t) is defined by
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Table 2.1: Notation for trees and various functions on

trees up to order 4

r(t) t Notation o(t) (@) at) B(2)
1 ) T 1 1 1 1
2 ! [7] 12 1 2
s |V A= 2 3 1 3

3 > [[7]]

4 .\I/ [1,7,7] = [77]

—_
D
—_
D

D
W
—_
W

4 Y ([r, 7]l = [[7*]]
1 % [[[7]]

V]

12 1 12

—_

24 1 24
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1 ift=r,
o(t) =

nl!ngl s nmla(tl)"lo(tg)m s O'(tm)nm ift = [t?ltgz s t?nm]
Note that the symmetry function o(¢) is the order of the automorphism group of ¢
and it is assumed that ¢y, to, ..., t,, are all distinct for the tree ¢ = [t7'¢5* - - - t]'m].

Here is an example of finding the symmetry of the tree.

2!

3 3!
>\ O\

For this tree with nine vertices, the symmetry function o(¢) is o(t) = 3!x3!x2! = 72.

All values of o(t) for the trees up to order 4 are given in Table 2.1.

Definition 2.3. Butcher [3] Let v : T — R and then the density of the tree t, y(t)
s defined by

1 ift=r,
(t) =
r@)y(t)y(t2) -y (@) ()™ i = [7 - ]
Note that the density function 7(t) is the product of all the densities of the subtrees.

For example,

the density function () of the tree with seven vertices is y(¢) =1 x1x1x2x 1 x

3 x 7=42. See Table 2.1 for v(t) of the trees up to order 4.

Furthermore, the labelling of a tree by numbers needs to be considered under three
conditions. First, each vertex can have only one label, second, symmetry is not
taken into account and third, label of each vertex must have a lower number than

the other vertices which are connected to it. When all three conditions are applied,



26 CHAPTER 2. RUNGE-KUTTA METHODS

the number of distinct ways of labelling the given tree ¢ is denoted by «(t). However,
the third condition does not need to be applied for finding 3(t), the total number of
ways of labelling. The values of a(t) and S(t) for the trees up to order 4 is shown
in Table 2.1 as well. Here is an example of finding the function «(t). There are four
acceptable labellings, that is a = 4, for this tree with five vertices. Notice that the
root is labelled with 1 only, since the third condition is applied.

4 5 4 5 3 5 3 4
NAEN SN N
1 1 1 1

Another example, the same number of vertices but with different shape, is given for
finding the function 3(¢). The third condition is not applied in this case. Hence,

there exist five possible labellings.
2 3 4 5 1 3 4 5 1 2 4 5 1 2 3 5 1 2 3 4

1 2 3 4 3
The functions «(t) and B(t) can be formulated using the functions r(¢), o(t) and

v(t) by the following theorem.

Theorem 2.4. Butcher [7] For allt € T,

2.2.2 Elementary Differentials

The error in carrying out a single step of a Runge-Kutta method can be investigated
by comparing the successive terms in the Taylor series expansions of the exact and
the approximated solutions. In order to express as a Taylor series the exact solution,

y(x), of the autonomous differential equation,
y'(z) = f (y(z)), (2.5)

the derivatives of y(z) are required. By introducing the new notation f called the
‘elementary differential F'(¢)(y(x))’ for f(y(x)), the first three derivatives y'(z), y"(z)

and y"(x) can be represented as follows.
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= f'(y(@)(f(y(2))),
= f'f,
y"(@) = " (y(@)(y' (@), f(y(2)) + £ (@) (' (y(2) (Y ())),
= f"(y(@))(f(y(2)), f(y(2))) + f'(y(@)) (f (y(2))(f (y(2)))),
= £'(f,f) + 'f''.

Note that the third derivative of y(z) is the linear combination of two elementary
differentials. In fact, any derivative of y(x) can be defined by a linear combination

of elementry differentials.

It seems that elementary differentials are complicated to derive. However, there is an
excellent way to determine elementary differentials using rooted trees. All terminal

vertices represent f and all other vertices which have n numbers of branches represent

f". For example, the following tree with ten vertices,

f f f

has the elementary differential F'(¢)(y(x)) = " (£ (f'f, f, ), £'”(f, f)) which appears
in the Taylor series expansion of y1%(z). The elementary differentials for trees with
order up to 4 are given in Table 2.2. The Taylor series expansion for y*)(x) consists
of the linear combination of four elementary differentials obtained from order 4
trees shown in the table. In the following definition, the elementary differentials are

defined more formally.

Definition 2.5. Butcher [3] For all y € RY and a function f : RN — RY, the

elementary differential, F(t)(y(z)) corresponding to t € T is recursively defined by
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fy(@), if t =,

Fy (@) (F () (@), F ) (y(@), -, Ft) (y(2), it =[tits - ).

Ft)(y) =

Furthermore, the derivative of y of a particular order can be represented by com-

bining all the elementary differentials of this order.

Theorem 2.6. Butcher [3] If f : RN — RY is differentiable k — 1 times at y(z) and

y'(z) = f(y(x)), then y is differentiable n times at x and
r(t)=k

2.2.3 Elementary Weights

Recall the general formula of a Runge-Kutta method shown in equation (2.1). A
polynomial expression using the coefficients of the method with a particular order,
called the ‘elementary weight ®(¢)’, can be derived from each tree ¢ for all t € T up
to the particular order. Here is an example of obtaining elementary weights from a

tree with ten vertices.

First of all, starting from the root, label vertices which have outward branches as
i, J, ..., except terminal vertices. Then, name the root as b; and other vertices,
except terminal vertices, as a,, where the first subscript is the label attached to the
parent vertex and the second subscript is the label of the current vertex. Finally,
name all terminal vertices as ¢, where * is the label attached to the parent vertex.
The elementary weight is the sum of all possible choices of their product. For this

example, the elementary weight is

S S

_ E : _ 2
@(t) = biaijajkckckciailalmcmcl = E biaijajkckciailalmcmcl-
iyj,k=1 iyj,k=1

In a more formal context, the elementary weights can be defined recursively.
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Table 2.2: Elementrary differentials and elementary

weights for trees up to order 4

rit)| t  F(t) d(t) =

y(t)
1 L] f Z;?:l bz == 1
2 It Yoy bic = 3

3 |V s Y b -

Wl

3 > f'f'f > i j=1 biaijc = 3

f”, (f, f, f) Z;:l bici 3 =

PN

f’f”(f, f) Zs biaijcj 2 =

1,j=1

ool

4 Q f”(f, flf) Z;,j:l biCZ’CLi]’Cj = %

1e1 01 s _ 1
fet't Zz’,j,k:l biagapcr, = 5
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Definition 2.7. Butcher [7] For an s stage Runge-Kutta method, the elementary
weights, ®(t), are defined by

Zbi, ift:T,
®(t) = ¢3!

1

=1

where ®;(t) is elementary stage weight for the i stage and is defined by

> Gij = Cj, ift =7,
o;(t) =<7,

Z a:ijq)j(tl)q)j(tz)...q)j (tm), ift = [t1t2 .. tm]

j=1

The elementary weights for trees with order up to 4 are shown in 7able 2.2.

2.2.4 Conditions for Order

To derive conditions for a Runge-Kutta method to have a specific order p, the Taylor
series expansion of the approximated solution needs to be compared with the exact
solution. The exact solution at z,, y(z,) = y(x,_1 + h), to order p is represented
by the Taylor series expansion
h? h?
Y(xn 1 +h) = y(@n 1) + by (2, 1) + Ey”(mnfl) +---t El/(p) (#n-1) + O(RP™)

P ik
h

= y(eas) + Y 7P (@a) + O,
k=1

This can be expressed using Theorem 2.6 and Theorem 2.4,

p h,k
Y(@n-1+ h) = y(za-1) + Z %
k=1

T

S o)) (y(zar)) + O()

(t)=k

)+ S b (e + O
)2 X s 0

=yl )+ YYD mm)(y(%l)) + O,

k=1 r(t)=k

Forallt €T,

Y(@n1+h) = y(za 1)+ ) WO : F(t)(y(zn-1)) + O(W"*). (2.6)

2" ()
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The approximated solution at z, produced after one step of a Runge-Kutta method,
Yn, can be determined using the elementary weights over all ¢ € T.

= ot + ISR (y(z0mr)) + O, (2.7)

t
teT

Compare the expressions, (2.6) and (2.7) and deduce the fact that the Taylor series
expansion of the exact solution and the Runge-Kutta approximation are equal up
to hP term, if

(2.8)

for r(t) < p. The order conditions for a Runge-Kutta method corresponding to trees

with order up to 4 are displayed in Table 2.2.

By applying the order conditions together with the two consistency conditions, (2.2)
and (2.3), a Runge-Kutta method of order p can be constructed so that the computed

solution ¥, is a good approximation to the exact solution y(z,,).

2.3 Stability

The Runge-Kutta tableau given below is for the order 3 explicit method with 3

stages.
0
1|1
2| 2
11-1 2
12 1
6 3 6

Consider the standard test problem y' = Ay where A is a complex number. The
exact solution of this linear test problem, ' = Ay is bounded, if Re(\) < 0. If the
Runge-Kutta method is applied to this test problem, then the ‘Stability Function’,
R(z) is defined by

R(z)=1+2b"(I —zA) "1 (2.9)

However, to derive the stability function, let z = hA. Then,
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Yo = g + 5H = (1+ %y
Ys = yo — hFY + 2hF, = (1—2422(142))ye = (142 + 22y,

where

Fi = Ay

F, = )‘(1 + %)yo

Fy = Ml4+z+2%)y
Hence,

1 2 1
= WF +°F +-F
Y1 Yo + (6 1+32+63)

1 2 1
= Yo+ R + gz(l + g)yo + 62(1 + 2+ 2°)yo
u+1+2+1ﬂj-ﬂ2+1%
= =z —Z —Z =z =z =z
N R e N N

1 1
— 1 ~ 2 -3
Yo a2t g2 +6z)

Note that 142+ 42%+42® is the stability function, R(z), which is the first 4 terms of
exp(z) series. This illustrates that the stability function for an explicit Runge-Kutta

method with s-stage and order s is
22 23 P
mgzﬂw+§+§+m+g
For example, if o = 1, then

h2)\2 h3/\3 hs)\s
o1 + 3l + ...+ ol

y(zo + h) = exp(hA) =1+ hA + + O(R*th).

The ‘Stability Region’ is the part of the complex plane such that
IR()] < 1.

These are the stability functions up to order 4.

R(z) = 1+z, s=p=1
R(z) = 14z+ 327 s=p=2
R(z) = 142+ 3%+ 375, s=p=3
R(z) = 1+z+ 52+ 128+ 524, s=p=4.
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The plots of the boundaries of the stability regions defined by above functions are
shown in Figure 2.1, where the unshaded part represents the stable region. In each
case, the stability region is the bounded set enclosed by the curves. To find the
boundaries, that is find the values of z for which |R(z) = 1], let 1+ 2+ ZQ—? +..+5 =
exp(i276) and find the roots of the polynomial. For example, when p = 3

2 3

z z 12700
ltz+ 5+ =€
2! 3!
1276 1 2 1 3
(1—e“"")+2+ 2"+ 2" = 0.
2 6
Runge-Kutta : p=2 Runge-Kutta : p=3
3 3
2 2
1 1
> >
g g
> 0 > 0
© ©
E E
-1 -1
-2 -2
-3 -3
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Real Real
Runge-Kutta : p=4 Runge-Kutta : p=5
3 3
2 2
1 1
> >
g g
> 0 > 0
© ©
E E
-1 -1
-2 -2
-3 -3
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Real Real

Figure 2.1: Stability Regions for explicit Runge-Kutta methods






Chapter 3

Linear Multistep Methods

Another extension to the Euler method is linear multistep methods. Unlike the
Runge-Kutta methods, linear multistep methods use several values of the function
and its derivative from previous steps. In 1883, Adams and Bashforth [1] intro-
duced the explicit types of method, well-known as Adams-Bashforth methods. Later,
Moulton [33] developed the idea of Adams and Bashforth further and proposed the

implicit type of method, Adams-Moulton method.

Linear multistep methods, as for Runge-Kutta methods, have both advantages and
disadvantages. Implementation cost is low compared with the Runge-Kutta method
due to fewer function evaluations per step. However, adapting variable stepsize and
order and the stability questions are more complicated and difficult than for Runge-

Kutta methods.

A brief discussion of linear multistep methods are given in this chapter including the
property of consistency, stability and convergence. Moreover, the order and stability

conditions of three main types linear multistep methods are covered.

3.1 Formulation

A general form of a linear multistep method that depends on £ previous steps is

given by

35
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k k

where y, is the numerical approximation to the exact value, y(z,) at the point x,,.
The method can be characterised by the values of o and 8 which can be written as
[, B]. In addition, the polynomials a(x) and §(z) are defined by 1 — ayx — apz? —
azx® — - — ogx®, and By + Bix + Pox? + Bsxd + - - - + BraF respectively.

The method can be classified as two groups, explicit and implicit. The method is
explicit if 5y = 0, that is y,, depends only on past values. The first linear multistep
methods, Adams-Bashforth methods are explicit. The order k& Adams-Bashforth
method has the form

Yn = Yn—1 T h(ﬁlf(xn—la ym) + BZf(xn—Qa ynQ) +oeet ﬁkf(xn—k’ ynk))

If By # 0 then the method is called implicit. A typical example of an implicit
method, the Adams-Moulton method with order £ + 1 has the general form

Yn = Yn—1 + h(BOf(xna yn) + Blf(xn—la ynl) +e 4 ﬂkf(xn—ka ynk))

Linear multistep methods are suitable for predictor-corrector schemes. The value of
the function is first estimated by the predictor, Adams-Bashforth, and then used by
the corrector, Adams-Moulton, to improve the calculated solution. This approach is
known as ‘Predict-Evaluate-Correct’” (PEC) methods, where the derivative is eval-
uated only after the predictor step, or ‘Predict-Evaluate-Correct-Evaluate’ (PECE)
methods, where the derivative is re-evaluated after the corrector step. Further-
more, the PECE methods can be extended to P(EC)™E methods where a number

of correction steps and derivative evaluations are used.

3.2 Consistency, Stability and Convergence

As with Runge-Kutta methods, linear multistep methods need to be consistent in
order for the numerical solution to converge to the exact solution as the stepsize

h tends to zero. Consider the numerical solution computed by the equation (3.1),
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a linear multistep method is consistent if it is able to solve exactly two simple
differential equations, y'(x) = 0 with the initial condition y(z¢) = 1, and ¢'(z) = 1
with the initial condition y(z) = 0.

First, assume that the exact solutions at x,_x,Zn_g+1,.--,Tn—1 are known so that

yi=1fori=n—k,n—k+1,...,n—1. The approximated solution at z,, is therefore,

Yn = 1 + g + - + o, (32)

which can give the correct solution if, and only if
l=op+ag+ -+ . (3.3)
A method which satisfies equation (3.3) is said to be ‘preconsistent’.

The second equation is y'(z) = 1 with the initial condition y(zo) = 0 which has
the exact solution at each step given by y; = hi. Again assume that the solution is

known exactly for the previous k points, then the correct solution at ¥, is given by
hn=o1(n—1h+as(n—2)h+---+ax(n—k)h+h(Bo+F1+---+ 8- (3.4)

If a factor of h from both sides is cancelled and the equation (3.3) multipled by n is

subtracted, the following equation can be derived.
C¥1+2C¥2+3C¥3+"'+k0&k:ﬁo+ﬁ1+"'+5k (35)

A linear multistep method is said to be consistent if it satisfies the conditions of

equations (3.3) and (3.5).

Consistency condition ensures the local accuracy of the method. However, this
condition is not sufficient to guarantee convergence. Because the error introduced
in step s may accumulate over the integration process and affect the solution of
later steps as these depend on the values of y; and on hy, = hf(xs,ys). Ignore the
error propagation due to the derivatives to make the analysis of the growth of these
errors simpler. Then, for a method to be stable, the difference between the exact

and the approximated solutions given by the differential equation y'(z) = 0 with
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the initial condition y(zy) = 0 need be bounded as h tends to zero. Hence, simpler

corresponding difference equation is obtained.
Yn = Q1Yp—1 + Q2Yp—2 + - - + QYn—k- (36)
Definition 3.1. Butcher [7] A linear multistep method [c, B] is stable if the differ-

ence equation (3.6) has only bounded solutions.

The following theorem characterises convergence of methods related to consistency

and stability.

Theorem 3.2. Dahlquist [26] A linear multistep method is convergent if and only

if it is stable and consistent.

Furthermore, three supporting theorems state that stability and consistency are nec-
cessary for convergence using the same simple problem introduced in the beginning

of the section.

Theorem 3.3. Butcher [7] A convergent linear multistep method is stable.

Proof. For a stable method all solutions to y, = 1Yn_1+ QYp_o~+ - -+ QpYn_i are

bounded, hence, an unstable method must have an unbounded solution to
Zn = Q12Zp—1+ Qo2p_o + -+ Qpzn_k.
Define the sequence ¢ by
Cn = m%X‘ZZL
=0

then ( converges monotonically to infinity. Consider the differential equation

with the solution computed at xeng = 1. Take n steps of size h = % then the starting

values given by y; = g—i, i=0,1,....k — 1 satisfy our condition that y; — y(xo) as

h — 0 since (, — o0 as n — oo. The numerical approzimation computed for y(1)

S 2—" Because ( is unbounded, there are an infinite number of n for which
n

G| > thiax|z].
1=0
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For such n, z, = (, and hence z—" =1 so the sequence n —» z—" cannot converge to
n n

zero and hence an unstable method cannot be convergent. O
Theorem 3.4. Butcher [7] A convergent linear multistep method is preconsistent.

Proof. Consider the fact that a convergent method is stable. Define z as the solution

to the difference equation
Zn = O Zp_1 + OpZp_9 + ** + O Zp_k (3.7)

with the initial values given by z; = 1,1 =20,1,2,...,k— 1. Consider the differential
equation

yl(x) =0, y(O) =1, Tend = 1.

The solution computed after n steps is given by vy, = z,. Since the method is
convergent, Yy, — 1 as n — oo and it follows that there exists N large enough such
thatVn > N |y; — 1| <€, e >0 fori=n—k,n—k+1,...,n. Hence the equation

(8.7) can be rearranged as follows

0= 2, —12p-1 — Q9Zp—9 — * -+ — QpZp—k
=z —1)+1—a(zp1— 1) —
—o(zpo—1)—ag— - —ag(znr — 1) —
= l-a—ay——ap = (1—2,) +a1(2n-1 — 1)
tas(zno—1)+ -+ aplznr — 1)
= l-—ar—a = —a| < [1—zf+|enl[(z0-1 — 1)
Flaoll(zn—2 = )| + - + la|[(zn—r — 1)

< e+ |ole+ -+ |agle
k

< (1+Z\ai|)
=1

Because 1 —a1 —ag—---—ap — 0 ase — 0 hence g — g —---— g = 1 and the

method is preconsistent. O
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Theorem 3.5. Butcher [7] A convergent linear multistep method is consistent.

Proof. Consider the fact that a convergent method is stable. Hence, note that aq +

209 + « -+ + kay # 0 or the method would not be stable. Define the sequence

k
_ Bo+ B+ + B p:pZi:oﬁi
a1+ 200 + - - + kay, Z?leaj’

=0,1,2,...

P

Consider the numerical solution to the differential equation

with the solution computed al Teng = 1 using n steps of stepsize h = % Choose

starting approximations as
fori=0,1,2,....k—1 so that these values converge to zero asn — co. The computed

solution for alli = k,k + 1,...,n can be given by (3.8). It follows that the solution

atx =1 1s
Bo+ B+ + B
a1+2a2+---—|—kak

which s independent of n. The fact that the method is convergent means that we

also have y(1) = 1 and hence we conclude that
o+ B+ -+ Pk =a1+2a+ -+ kay

and hence the method s consistent. O

3.3 Order Conditions

In order to find out the conditions on [, §] which give a method with local error,

Y(Tn) = yn of O (RPT),
y (zn) — Z oy (Tn_i) — h Z By (n—i) = O (hP*1) (3.9)

must be satisfied provided that vy, =y (2, %) + O (h?™!) for the k previous steps.
Assume that the problem being solved, y' = f(y), is CP*!, that is the derivatives up



3.3. ORDER CONDITIONS 41

to p+ 1 are continuous. Then the equation (3.9) can be expanded as a Taylor series

about the point z,, with the general form
Coy(n) + Crhy' () + Coh®y" (2,) + - - - 4+ CohPy® (2,) + Cp i APy () 4+

Hence, the right hand side of equation (3.9) become

y(zn) = Y [oziy(xn) + (—th)ouy' (zn) + %y"(mn) + Ty (Tn)+-- }

=1

k P PR
-2h [ﬁiy'(%‘) 4By (z) + Py o B e ]
1=0 -

Therefore, the coefficient of the y(z,) term is 1 —Zle «;, and for higher order terms
the coefficient C; of y@, (j > 1), is

k

C;hi = _Za — _ZM

(—ih)
i=1 7! i=0 j=1!
kai—ij, kﬁi—ijl
=0 = SRRy

! .
1=1

k

(3.10)

1=0
Also, look at the Taylor expansion of a(exp(—z)) — 20 (exp(—z)),

k [e's) .- k %) N
=y
ZO‘ZZ ]! _Z;ﬁi; f 7

i=1 j=0 J

where the first term of the expression is 1 — Zle a; and that the coefficient of the
term 27 for j > 1 is given by
k k
—Z Zﬁé _Z1 (3.11)
i=1 i=0
Since equations (3.10) and (3.11) are identical it is the case that equation (3.9) must
hold when
alexp(—z)) — 2 (exp(—z)) = O (|z'*"). (3.12)

This leads to the following theorem.

Theorem 3.6. Butcher [7] A multistep method |, B8] has at least order p if and

only if
alexp(2)) + B (exp(2)) = O (J2*)
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Substitute
exp(z) = (1+2)"' = z=—In(1+2)

into the equation (3.12) then it becomes
a(l+2)")—In(1+2)B(1+2)"") =0(=F), (3.13)

where z € C : |z| < 1 so In(1 + 2z) can be defined using the power series z — % +

3 4

Z — % +---. Note that since (1) = 0, both a(1 + 2) and In(1 + 2) vanish when

z = 0. Rearrange equation (3.13) as follows.

a((l—l—z)—l)—z<1—§+%2_...>5((1+z)—1) _ O(\z|p+1)
a((l+2)7) 1y O (|2
—ln((1+z))+ﬁ((1+z) ) = (1242 —..)
a((1+2)) N o
(11 TAEFAT) = 0(P).

The order of the method must be asymptotically correct, that is as A — 0. Since
z represents the quantity hy', 27 = 'LJ]L,(]) and (1+2)™' — (1 —2) as h — 0, the
following equation which holds for |z| < 1, can be obtained.
z  al+2)
In(1+ 2)

Y B(1+2)=0(2P). (3.14)

Equation (3.14) shows the relationship between the coefficients of the polynomials
« and [ such that the method [«, 8] has the required order. There are several free
variables in determining the values of these coefficients which should be chosen such

that the resulting method has additional properties.

3.3.1 Adams-Bashforth Methods

Adams-Bashforth, AB methods, are explicit methods and hence have 5, = 0. To
calculate the coefficients in this case, define 3(z) as 8(z) = z53(z), hence, when 5(z)
is a polynomial of degree k, 3(z) is of degree k — 1. This gives the following form
for equation (3.14).

(1+Z)1Z11(1+z)a(12+2) +B\(1+z) =0(z").
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Put a(z) =1 -2 = a(l+ z) = —z, and obtain,

=~ z 1
1+2)= +0() = + O(2*
Bl ) (14 2)In(1 + 2) (%) (I+2)(1-Ltz+422—128+---) )
for which the Taylor expansion about z = 0 is given
~ 1 5 3 251
Bl+2)=1—zz2+ =22 -2+ _—2*—-... (3.15)

2 12 8 720

Substitue z = (z—1) to get a method of order k with & stages and truncate equation

(3.15) at the term zF~!. Thus deduce the following expression where the the values

of B1, B, ..., Bk are given by the coefficients of 20, 2%, 22, ..., 2F7L.
-~ 1 ) 3 251
— 1 -_ —_ ]_ —_— - ]_ 2 - - - ]_ 3 —_ - 1 4 - .
B =1- b=+ 2= - 2= 1)+ i)

For example, the third order AB method has ; = %, Bo = —%, and (3 = 15—2

3.3.2 Adams-Moulton Methods

Adams-Moulton, AM methods, have a(z) = 1 — 2. Use this with equation (3.14) to
obtain
1—(1+2)
ivs-ge)

+ B0+ Bl +2)+Ba(1+2)2+Bs(1+2)* +---=0(2F)

1
I=3+5-5+)

= Bo+Bi(l+2)+B(1+2)>2+B(1+2)>+ = + O(2")

Using the Taylor expansion of the right hand side about z = 0 gives

1 1 1 19
ﬁ(1+z):1+§z——z2+— St

127 TorF Tt T

This can be rewritten by substituting z = z — 1.
1 1

B(z)=14+=(z—1) — —=(z—1)*+

. - Lo Doy

24
Expanding this expression and truncating after the term z* will give the 3 coefficients
for a method with an error of O(2**1). For example, the fourth order case with k = 3:

1 1 1

= 14+=(z—-1)— —=(z—1+ —(2—1)3
B(z) +2(Z ) 12(z )+24(Z )
0319 5 ., 1,
Bl) = g+orr~wF tar?

This gives Sy = 3, f1 = 32, B2 = —3 and f3 = 5.
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3.3.3 Backward-Difference Methods

Backward-difference methods, BDF methods, use several previous values of y but
only one evaluation of y'(z,) per step. They therefore have § = [y so equation
(3.14) becomes (1 + z) + BoIn(1 + z) = O(2P*™!). The following condition can be
obtained by replacing z by z — 1 and expanding the In(1 + z) term.

a(2) = —fo [(2_1)_(z—21)2+(z—31)3

] o

We choose By such that «(0) = 1 as required for consistency. For example, when

p =k =3 we have

z—1)? z—1)3
o) = - |c-p-EGE L EZ
11 322 22
— _ __3 -
a(z) 60[6 z+ 5 3}
Hence By = 16—1, o = %, Qy = —% and a3 = %

3.4 Errors and Accuracy

We have seen that we are able to develop a linear multistep method which is asymp-
totically correct up to an order of our choice. It is also possible to estimate the
size of the asymptotically correct truncation error that occurs in a single step of a
particular method. Knowing the estimated error in a single step allows us to either
correct for that error or to use the error as a criterion for when we should change the
stepsize or the order of a scheme. To confirm that the error, and hence the order,
of a method is what we would expect we can employ numerical experiments where

we can study the behaviour of a method with respect to a particular problem.

3.4.1 Truncation Error

Linear multistep methods seek to approximate the solution to a differential equa-
tion by its Taylor series which is constructed from estimates of previous function

values and derivative values. This means that as each step depends on only a finite
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number of previous function evaluations we have an error due to the truncation of
the approximating Taylor series. If we compare the Taylor series for the terms that
make up our linear multistep method with the Taylor series for the solution at the
point of interest, we are able to calculate the difference between the two expressions
and hence to estimate the truncation error of the method. As an example we will
calculate the truncation error of the second order AB method of order 2. This is

given by vy, = yp_1 + h (%yg_l — %%—2) hence the error in the method is

() = y(0) ~ Shy/(0) + 2/ (~h). (3.16)

We can then write down the Taylor series about zero for each term in equation (3.16)

as follows.
y(h) = () +hyf(0) + L H%"(0) + Py (0) +
—-y(0) = —y(0)

1 1 _ 1 ! _12// 13///
Shv/(=h) = Shy(0) = Sh%y"(0) + Jh*y"(0) +

This gives Table 3.1.

y(0) hy'(0) h*y"(0) h*y"(0)
y(h) 1 1 5 ;
—y(0) | -1 0 0 0
“shy'(0) | 0 -3 0 0
thy'(=h) | 0 3 -3 i
0 0 0 5

Table 3.1: Error coefficients of the order 2 Adams-
Bashforth method

We are able to see that the error in the solution for y after one step is 2 h3y" (z,1).
In this way it is possible to calculate an error term for any linear multistep method.
Tables of the error coefficients corresponding to AB and AM methods of different

orders are in [7].
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3.4.2 FError Estimation and Correction

y(0) hy'(0) h*y"(0) hy"(0)

y(h) 1 1 5 §

—y(0) | -1 0 0 0
gy 0y
thy/(0)| 0 -1 0 0

0 0 0 Y

Table 3.2: Error coefficients of the order 2 Adams-
Moulton method

As a comparison to the AB method we will also look at the truncation error of the
second order AM method. This has the form y, =y, 1 + % (y,’1 + C‘J;L—1) and hence

the Taylor expansion for each of its terms gives Table 3.2

Since we now know the truncation error for the second order AM method is — 5 h3y" (2,,-1)
it is possible to estimate the actual error in the value of y,. If y, is evaluated using
both the second order AB and AM with the same step size for each then we can
estimate the value of y"'(z,_1) from the difference between the results of the two
methods. This technique is known as the ‘Milne Device’ [32]. The estimate of the
truncation error can either be used to correct the calculated value of y, or as the

error estimate for a stepsize control scheme.

3.5 Stability

Consider the standard test problem y’ = Ay where A is a constant parameter which

need not be real. To be able to solve this linear test problem it is necessary that
k k
Yn = Z OiYn—i + qh Z ﬂiyn—i (317)
i=1 i=0

be bounded as n — oo. If we make the substitution z = A\ then we can rearrange

equation (3.17) to get the difference equation associated with the linear test problem.



3.5. STABILITY 47

(1= 2B0)yn — (1 + 2B1)Yn—1— - -~ — (a + 2Bk)Yn—r = 0. (3.18)

We therefore want to find the values of z such that solutions are bounded as n — oo,
or we can require the slightly stronger condition, that the solutions converge as n —
oo. These conditions are equivalent to requiring that the characteristic polynomial

for the difference equation has all its roots in the open unit disc.

We can see that equation (3.18) has a characteristic equation given by:
(1 — zB)w* — (o + 2B1)w* ™t — -« — (a + 28) = 0. (3.19)

We then rearrange equation (3.19) to get

wh — bt — okt — o — oy,

= . 3.20
° 7 BowF £ Bk T Bk T £ 1 B (3:20)

For w on the boundary of the unit disc, w=!

also lies on the boundary of the unit
disc so for such w we may re-write equation(3.20) as

_ o(w)
= 3" (3.21)

We are interested in the values of z that satisfy equation (3.21) such that the corre-
sponding values for w lies in the open unit disc. If we take w = exp(if), 6 € [0, 27]
then equation (3.21) maps the boundary of the unit circle to a closed curve in the
complex plane, known as the ‘Boundary Locus Curve’. The region of z values that
will give bounded solutions as n — oo is that portion of the region enclosed by
the boundary locus curve that lies to the left of the curve when beginning from the

origin.
For example, the method AB with order 2 is given by
3 1
Yn = Yn—1+h (5%—1 - 51/:1_2)

with the characteristic equation

After substituting w = exp(if) we have
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_ exp(2i6) — exp(if) _ 2 exp(10) (exp(i6) — 1)

3 exp(if) — 3exp(if) — 1

The stability regions for Adams-Bashforth, Adams-Moluton and BDF methods are
shown in Figure 3.1, Figure 3.2 and Figure 3.3. The unshaded region of the complex
plane corresponds to the region to the left of the boundary as the value of w moves
around the unit circle from 0 to 27, and represents the values of z which will give
convergent, solutions. By applying the same treatment to higher order methods it
is possible to plot their stability regions too. In these we can see that the size
of the stability regions of the methods decreases as order increases and that the
implicit AM methods have larger stability regions than the explicit AB methods of
comparable order. It is worth noting that for the fourth order AB method, the loops
attached to the stability region are not part of the stability region.

The AM method of order two with £ = 1 is given by

1 1
n — Yn— h(=y, —y .
Y Y 1+ (2yn+2yn—l)
The characteristic polynomial for this method is therefore w —1 — Z(w 4+ 1) = 0

2(w—1)
w—+1

which gives z = . Putting w = x + 1y we get

22 =1+ 2ty +y?)
22+ 2z +1+y?

Since we are interested in the values of z for w on the unit circle, 22 +4% = 1. Hence,
after changing to polar coordinates we have
- 2isin 6
cos(f) + 1’
so z — +o0o as # — +7. Hence the boundary of the stability region for the method
order 2 AM is given by the imaginary axis and the method is therefore A-stable.

However, we can notice from Figure 3.2 that the stability region decreases as the

order increases.

The backward difference methods have the general form

k
Yn = Z Yn—i + hﬁoy;p
=1
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Adams-Bashforth : k=2, p=2 Adams-Bashforth : k=3, p=3

Imaginary
Imaginary

0 0
Real Real

Adams-Bashforth : k=4, p=4 Adams-Bashforth : k=5, p=5

Imaginary
Imaginary

Real Real

Figure 3.1: Stability Regions for Adams-Bashforth methods

hence the boundary of the stability region for such methods is given by

k 7.
wlc _ Zi:l oziwk 1
ﬁowk

For the second order backward difference method with oy =

4 1 2
3. Qo = —3, fo = 5 the

boundary locus curve is given by
3w’ — 4w+ 1

z
2uw?

The stability region for this method is the unbounded region outside the shaded

area shown in Figure 3.3. If we make the substitution w = cos(f) + isin(f) it is
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Adams—Moulton : k=1, p=2 Adams—Moulton : k=2, p=3

3 3

2 2

1 1
> >
g g

> 0 > 0
© ©
E E

-1 -1

-2 -2

-3 -3

-5 -4 -3 -2 -1 0 -5 -4 -3 -2 -1 0
Real Real
Adams—Moulton : k=3, p=4 Adams—Moulton : k=4, p=5

3 3

2 2

1 1
> >
g g

> 0 > 0
© ©
E E

-1 -1

-2 -2

-3 -3

-5 -4 -3 -2 -1 0 -5 -4 -3 -2 -1 0
Real Real

Figure 3.2: Stability Regions for Adams-Moulton methods

possible to show analytically that Re(z) = cos?() — 2cos(f) + 1 > 0 for all # when

w is on the unit circle, hence we can see that this method is A-stable.

The third order backward difference method is y, = 2y, 1— > Yn—o+ ZYn—s+h v,

and has a boundary locus given by
1w — 18w? + 9w — 2
z =
6w3

The stability region corresponding to this method is given in Figure 3.3 where we
can see that although the method has a large unbounded stability region it does not

cover the entire left half-plane and hence the method is not A-stable. This method
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BDF : p=2 BDF : p=3

10 10

Imaginary
=)
Imaginary
o

_5 -5
-10 -10
-5 0 5 10 15 -5 0 5 10 15
Real Real
BDF : p=4 BDF : p=5
10 10
5 5
2 2
g g
> 0 > 0
© ©
E E
_5 -5
-10 -10
-5 0 5 10 15 -5 0 5 10 15
Real Real

Figure 3.3: Stability Regions for BDF methods

does however have a property close to A-stability. A method is said to be A(«)
stable if there exists o € [0, %) such that the method is stable for all z = z + iy,
where z < 0 and tan(f) = % < tan(a). For practical purposes it may be desirable
to use a method that has A(a)-stability for a close to § so as to make available
methods of higher order. A(«)-stability is also desirable for problems which we
know to have eigenvalues with only small imaginary parts. Suitable methods for

solving such problems are those with stability regions that include as much of the

negative half-plane as possible. The third order backward difference method is A(«)-
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stable with a ~ 86.0324 degrees while the BDF methods with orders four and five
have similarly shaped stability regions and are A(«a)-stable with a values of 73.3518.
and 51.8410 degrees respectively. We can close look at the A(«)-stability region of
BDF order 3 and 4 in Figure 3.4.

BDF : p=3 BDF : p=4
2 3 ‘ ‘
2,
l,
l,
o ~ 86° Q ~73°
0 oF
_l,
_l,
_2,
-2 -3
-2 -1 0 1 2 -3 -2 -1 0 1 2 3

Figure 3.4: A(«)-stability regions for the order 3 and 4 BDF methods



Chapter 4

General Linear Methods

The two traditional methods, Runge-Kutta methods and linear multistep meth-
ods for ordinary differential equations have been studied separately. General linear
methods were introduced to provide a unifying framework for both multistage and
multivalue methods about thirty years ago. The notation was introduced in [2].
There is a hope that we can find some nicely balanced methods between accuracy
and stability with low cost. Some methods showing clear advantages over the tra-

ditional methods have already been discovered.

In this chapter, a brief investigation on general linear methods is presented. This
includes a formulation, consistency, stability and convergence conditions and order

of accuracy. Furthermore, order and stability conditions are discussed.

4.1 Formulation

General linear methods (GLMs) are characterized by four matrices A,U, B and V

which make up a partitioned (s +7) X (s + r) matrix.

93
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Yl[n} hf (Yl[n})
v A ‘ U || hfvi
" B ‘ v Y
i yLn] - - yLn—l] -

Each notation represents the followings.

° Yl[”], ..., Y™ are the s internal stage values computed in the n* step.

o f (YI["]) yonr f <Y5[n}) are the s corresponding stage derivatives.

. ygn_l], . yL"_l] are the r input values for the n'* step.
° ygn], e yL"] are the r corresponding output approximations.

In addition, p is the order of the method and ¢ is the stage order. General linear
methods can be defined in terms of the elements of A,U, B and V by the following

equations with the stepsize h.

V= et () S =12,
Jj= J=

i = Dbkt 007 + R ogp ™ =12
J= J=



4.1. FORMULATION
4.1.1 Examples
The order 2 Runge-Kutta method

1
Yo} =Yn1 + 5Py

Yn=Yn—1+ hy;_%

can be rewritten as A, U, B,V formulation

Yn—1 00 1 hyjl,
y 1| = % 0 1 hy.
TL*E n_§
| Yn i 0 1 1 | Yn—1 |

Similarly, the order 2 Adams-Bashforth method
3 1
Yn=Yn-1+ Shyn_1 = Shyn_s

can be rewritten as A, U, B,V formulation

Yn—1 0 1 0 hy! 4
Yn - % 1 _% Yn—1
hyp 1 1 0 0 hyp s

This is an example of oder 3 GLM.

1

3
Yn-y =Yn1+ gAYy = Jhyy s
7 1 1
Yn=Yn-1+ éh»y;_% - ghy;z—l + éhy;l_g
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Rewrite this as A, U, B,V formulation then,

— Yn—1 |1 0 0] 1 0 11 hyn_ —
ey || 3 0] 1 hy, .
Yn -3 | 1 || yua

N Y

4.2 Consistency, Stability and Convergence

Consistency, stability and convergence conditions for GLMs are a little more com-
plicated than for traditional methods. However, the well-known classical result from

Dahlquist [26] shown below can be generalised to apply to GLMs.
Consistency, Stability <=  Convergence

The preconsistency and consistency conditions are determined by ensuring that the
trivial one-dimensional differential equation y'(x) = 0 and the equation ¢'(z) = 1
can be solved exactly. If e denotes the s dimensional vector with each component
equal to 1, then the preconsistency and consistency conditions for GLMs are given
by

Vu=wu, Uu=e, Be+Vu=u-+v.

Stability is defined as a generalisation of the definition for linear multistep methods.
The method is stable if the matrix V' is power-bounded, that is, ||V"| < k for all

n =1,2,... where k is a constant.

Convergence is the ability of a numerical method to produce approximations which
converge to the exact solution as the stepsize goes to zero. The equivalence of

convergence to consistency plus stability can be established for GLM.
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4.3 Order of Accuracy

Since GLMs are multivalue methods, we need some kind of starting procedure to
obtain the initial input values before carrying out the first step of GLM. If a GLM
has order p then each of the r components of the initial approximation is accurate
to order p. Hence, a starting procedure should have order at least p to maintain this
accuracy. The order of accuracy of the method, O (h?*!) can be defined relative to

a starting procedure.

Figure 4.1: Local truncation error

y(z0) E y(z1)

We apply a starting procedure and get the initial input vector, y[%, then use the
GLM to compute the first step and get the output, y'/, which we will use as the
input vector for the next step. Assume that we know the exact solution at the first
step. If we apply the starting procedure to this exact solution at the first step and
compare the result with the computed output y!* then there will be a difference of

O(hP*1). This is a local truncation error at each step as shown in Figure 4.1.

This concept of local truncation error guides us to an approximation of the global
error shown in Figure 4.2. If we repeat the numerical approximation for n steps
to the end then there will be a difference of O(h?) between the final approximation
and the result from applying the starting procedure to the exact solution at the end

point.
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Figure 4.2: Global truncation error

N1

O(h?)

y(z0) E y(e1) E y(z2) y(en—1) E y(zN)

4.4 Order Conditions

Construction and implementation of GLMs is difficult. In order to have any chance
of constructing practical methods with simple implementation, two main simplifying

assumptions will be required.

First, the stage order ¢ should be equal to the order of the method p. Therefore,

the stage values satisfy

Y(Tn_1 + c1h)
Tp_1+ Ccoh
yil & | Vel |G ey

Y(Tp_1 + csh)

Second, the quantities passed from step to step should have a simple form to over-
come the difficulty of changing the stepsize. Therefore, the input and output quan-

tities are in Nordsieck form.
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Y(Tn)

n] ~ hyl(_xn) +0 (hp—f—l)

i hPy®) (z,) |
Recall the formula of a GLM for a single step,
Y= Anf(YI") 4 Uyln1l
y[n] =Bhf(Y["]) + Vy[n—l]
To satisfy order conditions based on the simplifying assumptions, it is necessary and
sufficient that
exp(cz) =zAexp(cz) + UZ + O (K1)

exp(z)Z=zBexp(cz) + VZ + O (1)

where - - - -
exp(c12) 1
exp(caz z
exp(cz) = p(‘ 27) : Z =
exp(cs2) zP

4.5 Runge-Kutta Stability

The stability behaviour of GLMs is defined using the standard linear problem ' =
Ay, where A is a complex parameter. If the GLM is applied to this test problem,
then the stability matrix M (z) is defined by

M(z) =V +2zB(I — 2zA)™'U
where z = h\.

If the characteristic polynomial of M (z) has the special form below, then the method
is said to have Runge-Kutta stability.

det (wl — M(2)) = w" (w — R(2))

Note that R(z) = trace (M(z)).
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4.6 Inherent Runge-Kutta Stability

It is very hard to determine the conditions on the method in order to satisfy RK
stability. However, it is possible to find the some relationships among the A, U, B
and V matrices which will ensure the method has RK stability. These relationships
are known as inherent Runge-Kutta stability, [7][38], which are sufficient but not

necessary to ensure a GLM has RK stability.

Consider methods for which Ve; = e; and where V' has its remaining p eigenvalues

equal to 0. In this case, a GLM has inherent Runge-Kutta stability if

BA=XB
BU=XV - VX

for some matrix X where = denotes the left hand side and the right hand side are
identical except for the first row.
The methods which have this inherent Runge-Kutta stability (IRKS) property will

be used for the numerical experiments in next chapter.



Chapter 5

Numerical Experiments

The main purpose of this chapter is to describe some numerical experiments per-
formed with a preliminary implementation of IRKS methods in MATLAB. For these
experiments, a set of diagonally implicit methods with the IRKS property up to or-
der 3 and three well known test problems [25], the van der Pol equation (VDPOL),
the Oregonator equation (OREGO) and HIRES are used. The IRKS methods and

a description of the test problems are given in the appendix.

In this chapter, the experiments on comparing the IRK methods are presented fol-
lowed by a discussion of different predictors. Finally, we compare the order 3 TRKS
methods with the MATLAB’s built-in ODE solvers ode15s and ode23s based on

BDF and Runge-Kutta methods respectively.

5.1 Comparison between IRKS Methods

In this section, performance of the IRKS methods are investigated. The integration
scheme starts with the exact Nordsieck vector instead of using a starting method

and involves a variable stepsize.

Figure 5.1 compares the four different order 1 methods, ‘s2ola’; ‘s201b’, ‘s2013’ and
‘s201d’, and Figure 5.2 compares the five different order 2 methods, ‘s302a’, ‘s302b’,
‘s302’, ‘s302d’ and ‘s302e¢’. Finally, Figure 5.3 compares the five different order 3

61
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VDPOL : ||Error|| vs No. of accepted steps
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VDPOL : ||Error|| vs No. of function evaluations
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OREGO : ||Error]|| vs No. of function evaluations
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\ —£— s2o0lc

s201d

Figure 5.1: Comparing accuracy against no. of accepted steps and no.
of function evaluations of order 1 IRKS methods on VDPOL, OREGO

and HIRES problem.
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VDPOL : ||Error|| vs No. of accepted steps

OREGO : ||Error]|| vs No. of accepted steps
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HIRES : ||Error]|| vs No. of accepted steps
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COMPARISON BETWEEN IRKS METHODS

||[Error|| vs No. of function evaluations
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Figure 5.2: Comparing accuracy against no. of accepted steps and no.
of function evaluations of order 2 IRKS methods on VDPOL, OREGO

and HIRES problem.
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VDPOL : ||Error|| vs No. of accepted steps VDPOL : ||Error|| vs No. of function evaluations

10 10

HIRES : ||Error]|| vs No. of function evaluations

10° ¢ 10°
107t 107t
107 107
10} 10}
162 163 -

Figure 5.3: Comparing accuracy against no. of accepted steps and no.
of function evaluations of order 3 IRKS methods on VDPOL, OREGO
and HIRES problem.



5.2. COMPARISON BETWEEN PREDICTORS 65

methods, ‘s4o3a’; ‘s4o3b’, ‘s403’, ‘s403d’ and ‘s4o3e’. In each figure, there are six
plots in log — log scale. Three rows represent the three different test problems, VD-
POL, OREGO and HIRES in order. The plots of the global error at the end of the
integration step against the number of the accepted steps are shown in the left col-
umn and the plots of the global error against the number of function evaluations are
in the right column. The global errors are calculated using the reference solutions

given for the problem in [25].

Among the order 1 methods, the last method, ‘s201d’ performs well, although the
comparison varies from problem to problem. Overall we do not observe any unex-
pected or critical behaviours from the results and we can see by looking at the slope

that the methods are following their orders well.

5.2 Comparison between Predictors

When we implement a diagonally implicit general linear method,

AU
BV

with a; = A, we have to find the solutions to the nonlinear stage equations,
YW =) b, i=1,..0,s, (5.1)

where w; = Z;;ll aijhf (Yj["]) + D5 uijy][-nfl] is known. It is not difficult to write
down Newton’s method for (5.1) but we need to be cautious since f evaluations of
perturbed values may have large errors due to the stiffness. In order to avoid this
problem, it is customary to compute the derivative approximations K; ~ hF(&;)
of the iterates & ~ YZ-["] not by evaluating the right hand side of the ordinary dif-
ferential equations but by using the linear relation given by the method, that is
K; = (& — w;)/A. Tt is known that this small change can have a great effect on the

numerical efficiency of the approximate process, despite the fact that either gives

the same solutions if we iterate until convergence.
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There are two questions connected to the numerical solution of the stages, (5.1).
First, what kind of predictor represented by two matrices A and U with the rela-
tionship,

i1
Y;["] Z a;iihf(Y;) + Z uwyj ) (5.2)
7j=1

shall we use, and second, how many Newton iterations shall we perform.

Before the detailed description of the specific predictors, some general remarks on

the predictor A and U are made.

e Matrix A must be strictly lower triangular to make the predictor explicit. But

[7 can be a full matrix.

e The order ¢ of the predictor is defined similarly to the stage order, that is,
exp(cz) = zAexp(cz) + UZ + O(zH). (5.3)

If we have order ¢ = p, our approximate method will always have order p,
even if we perform only one Newton step. Conversely, if the predictor is of low
order, we expect to need more than one Newton step to observe order p of the

IRKS method.

e Provided that the predictor has full order ¢ = p, U can be obtained from (5.3)
whatever we choose for ;4\, since the equation is a linear relationship between
Aand U.

Now, four different predictors used in the experiment are discussed in detail.

e The trivial predictor uses the approximation to the solution in the last output

point as an initial value for the stages. It has order 0 only and corresponds

to setting A=0and U is zero except for the first column with ones. In our

diagrams, we will denote this predictor with [P100 |
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e A predictor of order 1 is obtained by using the explicit Euler method. We

have again A= 0, and U is of the form

where we use s = 4 as an example.

this predictor in the figures.

=)
|

&1
Co
C3

1

o o o O
o o o O

We will use the symbol to label

e Continuing this construction, we can add more and more columns to U until

our predictor has the full order ¢ = p with

This predictor is denoted by .

)

1

1
1
1

1 1 1

e To take advantage of the already computed stages Y, j = 1,...,4— 1, we

shall use A # 0 in our predictor. This gives us some freedom even if we want

to have full order ¢ = p. Since it seems reasonable to minimize the influence

from the past, we want to minimize U in some sense. In the first row of U, we

have no choice but using the Taylor series since no stages are at our disposal,

but, on the other hand, for the last stage we can set ef[/j = el since we have

s — 1 stage values Y} to fulfil the order condition with the last row of A alone.

To keep it simple, we propose to put zeros in the bottom right triangle of U )

that is,

)t

* ok
*OO’
OOO_
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and to solve the order condition for the stars and the elements in A. In the
experiments, we denote this predictor by . The values for the values
“ are computed together with A from the linear relation (5.3), line by line.
Note, that each line has the same number of unknowns, the elements of lower
triangular matrix A and the stars in U. The solution of this linear system

corresponds exactly to the MATLAB code

case ’P4op’

dU=zeros(s,s);

rhs=C-dU;

op=eye(s,s);

for i=1:s
ii=s+1-i;
op(ii+l:s,:)=CK(1:i-1,:);
u=rhs(i,:)/op;
Uhat(i,1:ii)=u(l:ii);
Ahat(i,1:i-1)=u(ii+1:8);

end

in predictors.m. We can use the function to compute Aand U. The example

of finding A and U for order 2 and 3 using the function is given.

[ahat,uhat]=predictors([1/3,2/3,1], ’P4op’)

ahat =
0 0
2/3 0
1/2 1/2
uhat =
1 1/3 1/18
1 0 0
1 0 0

[ahat,uhat]=predictors([1/4,1/2,3/4,1],’P4op’)
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ahat =
0 0 0
2/3 0 0
0 9/16 0
2/3 -1/3 2/3 0
uvhat =
1 1/4 1/32 1/384
1 -1/6 -1/24 0
1 3/16 0 0
1 0 0 0

We now investigate how the various predictors perform by looking at how close the
predictor is to the exact convergence after each Newton iteration. We present the
results for one sample problem, since similar results are found for the other two test
problems. Because the predictor might perform differently at different states of the
solution, we have chosen two different time points, ¢t = 14 and ¢t = 20. At ¢t = 20,

the behaviour of three components of solution is more dynamic than at ¢t = 14.

Figure 5.4, Figure 5.5 and Figure 5.6 correspond to orders 1, 2 and 3 respectively.
The first column in the figure shows the convergence of predictor at ¢ = 14 and
the second column shows the convergence at t = 20. The plots on the first row
represent the overall performance of the predictor, and the convergence at each
stages is plotted below in increasing order. For the first row, vertical axis represents
log of norm of all the stage errors and for the rest of rows, vertical axis is log of norm
of idividual stage errors. The horizontal axis are the number of Newton iterations.
Notice that only three predictors are compared for order 1 case since the predictor

‘P201’ and ‘P3op’ are the same in this case.

We can clearly observe that the higher order predictors perform better for order 1, 2
and 3. The rate of convergence is expected to be linear since the integration scheme
uses modified Newton iteration. Although the convergence rate of the predictors
is the same for each case, the higer order ones predict more accurately from the

beginning, hence, reach the exact convergence with less iterations. We can also
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notice that the accuracies are much better at ¢ = 14 than at ¢ = 20 overall. Since
the behaviour of the solutions at ¢ = 14 is less dynamical, the predictors can give
the better predictions. For example, in Figure 5.6, the predictor ‘P4op’ converges to
even less than the machine accuracy after only 3 iterations. There certainly exists
a good choice of predictor. Even if it is only a small effect on each stage and per
step, a good choice of a predictor will certainly improve the performance of the

integration.

5.3 Comparison with odel5s and oode23s

Finally, the five third order IRKS methods is compared with MATLAB built-in
integrators, ode15s and ode23s which are fixed to be order 3 as well. Figure 5.7
shows the results on VDPOL, Figure 5.8 shows the results on OREGO and Figure
5.9 shows the result on HIRES problem. As marked in the figures, the five rows
represent the five different order 3 IRKS methods. The left column contains the
plots of the global error versus the number of accepted steps and the right column
displays the plots of the global error versus the number of function evaluations both

in log — log scale.

Overall the IRKS methods perform well for all three test problems. The acccuracy
of the IRKS methods is definitely better per step. In terms of function evaluations
which is directly related to the cost of implementation, the IRKS methods are not
as successful as in terms of per step. However, for all three test problems, we clearly
see that the IRKS methods have advantage for higher order.

In fact, it has been shown that some high order IRKS methods have advantages
over the current popular integrators [37]. These results are very promissing for the
IRKS methods and encourage further investigation. The TRKS methods certainly
have the potential to be competitive solvers for stiff ordinary equations if further

improvements are made to their implementation.
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Figure 5.7: Comparing the order 3 IRKS methods with two MATLAB
built-in stiff IVP solvers, ode15s and ode23s on the VDPOL problem.
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Figure 5.9: Comparing the order 3 IRKS methods with two MATLAB
built-in stiff IVP solvers, ode15s and ode23s on the HIRES problem.




Appendix A

Test Problems

Three well known test problems, the van der Pol’s equation (VDPOL), the Oregona-
tor reaction (OREGO) and the High Irradiance Responses of photomorphogenesis
(HIRES) are chosen as test problems.

A.1 VDPOL

The famous test problem, van der Pol’s equation [25] describes the behaviour of
oscillator circuits. Originally, the problem had the form of a second order differential
equation,

y'+uly* - 1)y +y =0,
where the parameter p is set to be a large constant, 10® in this case, to make the
nonlinear part of the equation more interesting, that is stiff. This can be equivalently

written as a coupled system of two first order ordinary differential equations,

!

Y1 = Y2
Yy = p(1 = yD)y — y1.

Rescale it for easier tracking of the solution on a small interval and obtain the

following with the initial conditions.

yi = Yo, ?11(0)

2
yp = ((1— yf)yQ —11)/€, y2(0) =0

7
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Figure A.1: Solution of VDPOL
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where € = 1079,
The reference solutions at the end of the integration interval, [0, 2] are

y1 = 0.1706167732170483 x 10,

y2 = 0.8928097010247975.

The van der Pol equation has two periodic solutions, the constant solution which is
unstable and the nontrivial periodic solution called a ‘limit cycle’. The behaviour of
the two components, y; and y,, and a plot of the limit cycle are displayed in Figure

A.1 at the end of this appendix.

A.2 OREGO

The Oregonator model [25] originates from the Belousov-Zhabotinskii reaction. It
describes the chemical reaction of bromous acid, bromide ion and cerium ion which
oscillates with changes in colour and structure. The chemical reaction can be mod-
elled by a stiff system of 3 nonlinear ordinary differential equations with correspond-

ing initial conditions,

yi = 7727(y2 + yl(l — 8.375 x 1076y1 — yg)), yl(O) =1
vy = = (ys — (L4 y1)y2), y2(0) =2
yy = 0.161(y1 — y3), y3(0) = 3.

The reference solutions at the end of the integration interval, [0, 360] are

y1 = 0.1000814870318523 x 10,
yo = 0.1228178521549917 x 10%,

Yo = 0.1320554942846706 x 103.

The behaviour of the solutions of each component over the integration period, [0, 360]

are presented in Figure A.2.
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Figure A.2: Solution of OREGO
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A.3 HIRES

The ‘High Irradiance Responses’ (HIRES) [25] problem consists of a stiff system of
8 nonlinear ordinary differential equations which originates from plant physiology
and describes how light is involved in morphogenesis. It explains the high irradi-
ance responses of photomorphogenesis on the basis of phytochrome, by means of a
chemical reaction involving eight reactants. The problem is decribed below in the

form of an initial value problem.

y, = —L.71y; + 0.43y, + 8.32y; + 0.0007, y(0) =1
yh = 1.71y; — 8.75ys, y2(0) =0
Yy = —10.03ys + 0.43y, + 0.035ys, y3(0) =0
yh = 8.32ys + 1.71ys — 1.12y,, ya(0) =0
yh = —1.745y5 + 0.43ys + 0.43yr, y5(0) = 0
yh = —280ysys + 0.69y, + 1.71ys — 0.43ys + 0.69y7, 6(0) = 0
yr = 280ysys — 1.81y7, y7(0) =0
P ys(0) = 0.0057.

The reference solutions at the end of the integration interval, [0, 321.8122] are

y1 = 0.7371312573325668 x 102,
y» = 0.1442485726316185 x 10 °,
y3 = 0.5888729740967575 x 1074,
ya = 0.1175651343283149 x 1072,
ys = 0.2386356198831331 x 1077,
ys = 0.6238968252742796 x 1072,
yr = 0.2849998395185769 x 1072,

ys = 0.2850001604814231 x 10 2.

The behaviour of each of the eight components is shown in Figure A.3. Note that,
for some components only, the first short period of the solution is plotted for better

observation of the behaviour.
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Figure A.3: Solution of HIRES
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Appendix B

IRKS Methods

B.1 Order 1 methods

s2ola: ¢ = {3,1}

[ 1 1
g 0 s
4 1 2
E 9
4 1 2
5 3 5
0 1 0
s201b: ¢ ={2,1}
1 1
5 0 3
1 1 1
e 3
1 1 1
3 03 3
0 1 0
s2olc: ¢ ={1,1}
1 2
5 0 3
2 1 4
E 9
2 1 4
5 3 5
0 1 0

83
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s20ld: ¢ = {3,1}

3 1
10 0 1 5
21 3 1
50 10 25
21 3 1
50 10 25
0 1 0 0

B.2 Order 2 methods

s302a: ¢ = {3,3,1}

1 1 1
) 0 O 1 5 -3
1 1 1 1
4 i 0 L5 36

9 9 1 1 2 -1

32 32 4 16 32

9 9 1 1 32 -1

32 32 4 16 32

s302b: ¢ = {3,%,1}

1 1
1 0 0 10 —&
RN
1 1 1 1
0 3 13 5%
1 1 1 1
0 3 1L 3 5%
0 0 1 00 0
3 3
-3 -5 3 05 0 |



B.2. ORDER 2 METHODS

s302c: ¢ ={2,1,1}

7

s302d: ¢ = {3, 3,1}

s302e: ¢ ={3,%,1}

85

1 8 3
5 0 0 1 35 490
1372 1 0 1 248 13
2025 5 2025 1350
2107 9 1 1 22 T
4500 100 5 1125 750
2107 9 1 1 22 T
4500 100 5 1125 750
0 0 1 0 0 0
_19 _9 4
12 4 5 0 3 0
1 1 1
2 0 0 6 9
1 1 1
6 2 0 0 6
5 _2 1 1 _1
3 3 2 2 9
5 _2 1 1 _1
3 3 2 2 9
0 0 1 0 0
_3 3
30 2 0 0
3 1 2
5 0 0 I i
9 3 1 et 107
400 10 1200 3600
987 12 3 1 L 89
2000 25 10 2000 2000
987 12 3 1 L 89
2000 25 10 2000 2000
0 0 1 0 0 0
3 3 5 5
rE S 0 — 0
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B.3 Order 3 methods

sdo3a: ¢ = {%, %, 1,1}

1 1 1 7
2 0 0 0 1 6 9 324
_3 1 5 7 T
2 2 0 O 1 3 18 324
99 9 1 97 27 1
14 14 2 0 1 14 14 6
9 o 1 1 { o  _u  _z
2 8 8 2 4 8 48
9 o 1 1 1 o  _u  _z
2 8 8 2 4 8 48
0 0 0 1 0 0 0 0
0o _ 7 _
9 9 I 2 0 -1 0 0
36 —45 14 4 0 -9 0 0
s403b: ¢ = {%, 1, %, 1}
1 1 3
L 0 0 0 ! 3 0
49 1 0 0 857 1T 1
351 4 1404 117 416
2563 39 1 0 11941 1523 1
4914 140 4 49140 18720 455
1% _131 _5 1 ur 5 _ 3
1512 336 24 4 3024 144 896
1% 11 _5 1 5 _ 3
1512 336 24 4 3024 144 896
0 0 0 1 0 0 0
178 53 10 29 1
Eil 51 3 4 3 0 5%
112 16 80 32
| 5 3 3 16 35 0 0
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sd4o3c: ¢ = {i, %, %, 1}

1 1 1
i 0 0 0 1 0 3 o3
28 1 97 7 11
T i 0 0 I =% 5 160
273 45 1 0 1 1639 _TAT 321
80 128 4 640 1280 5120
0 _21 1 1 1 83 21 43
16 3 4 48 32 384
0 _21 1 1 1 83 21 43
16 3 4 48 32 384
0 0 0 1 0 0 0 0
27 _16 95 5 _5
—28 2 3 4 0 6 4 16
-112 78 12 16 0o & 5 -3
| 3 3 4 i
. _ 1 1 3
S403d. CcC = {Z’ 291 1}
9 1 _ 1 _ 7
40 0 0 0 1 40 40 3840
646797 9 0 0 1 __ 287951 __ 633907 __ 2120851
257800 40 128900 1031200 24748800
2037663381 __ 11601 9 O 1 _ 1717514451 _ 1677800361 29168331
467391400 72520 40 467391400 1869565600 267080800
_ 4617 _ 138537 1323 9 1 529183 1502041 5662643
92500 148000 4000 40 370000 2960000 71040000
_ 4617 _ 138537 1323 9 1 529183 1502041 5662643
92500 148000 4000 40 370000 2960000 71040000
0 0 0 1 0 0 0 0
8926 7684 98 40 0 2784 137 411
333 555 15 9 185 111 1480
394336 102320 1568 1600 0 67408 5480 137
| 2997 999 27 81 999 999 111
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sdo3e: ¢ = {i, %, %, 1}

1 1 1
1 0 0 0 1 0 35 To3
49 1 171 49 43
25 4 0 0 1 100 100 600
123 225 1 0 1 1363 13941 5379
1225 392 4 1400 39200 78400
e 59 71 1 ® 31 37
84 84 36 4 18 42 336
_o 5 71 1 ® 31 37
84 84 36 4 18 42 336
0 0 0 1 0 0 0 0
_268 8 _2 4 g 1 o _s
21 21 9 9 21 21
32 88 224 56 20 10
| o a1 5 60 7 21 a1
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