
MATHEMATICAL MINIATURE 16

Mike Hendy on Catalan Numbers and Evolutionary Trees

Mike Hendy of Massey University, Palmerston North, recently reminded
me that we each solved a problem brought to New Zealand by a visiting
mathematician, Kenneth Stolarsky. Consider the table on the right, where
each element in S1 is the lowest positive integer which has not appeared in
a previous row of S1 ∪ S2 ∪ S3 ∪ S4 ∪ · · ·, and each element in S2 is formed
by multiplying the S1 element on the same row by the “Golden Ratio” 1

2 (1+
√

5)

S0 S1 S2 S3 S4 S5 · · ·
1 1 2 3 5 8 · · ·
2 4 6 10 16 26 · · ·
4 7 11 18 29 47 · · ·

and finding the closest integer. The elements in S3, S4 etc are formed using the Fibonacci difference equation
un = un−1 + un−2. The elements in S0 are the differences of those in S1 and S2. Prove that every positive
integer occurs once and only once in S1 ∪ S2 ∪ S3 ∪ S4 ∪ · · ·, and that S0 = S1 ∪ S2.

Mike has sent me the following dissertation on Catalan Numbers and Evolutionary Trees. I am using this
unchanged except that I have replaced his figures written in LATEX picture environment by my own versions
written using the package PSTricks because I think this package should be better known. This is where you
take over, Mike.

In his most recent visit to New Zealand, Douglas Rogers spent five days in Palmerston North. At my invita-
tion he delivered three guest lectures on Generating Functions to my Honours Course in Discrete Mathematics.
The first talk concerned pictorial derivations of generating functions, illustrated by an application of Catalan
numbers. Amongst other things, the Catalan number cn is the number of rooted planar trees with n edges.
(The reader may be familiar with the number of legal bracket pairs such as occur when discussing associativity,
where cn is the number of different pairings that can be made in a product of n symbols.)

Douglas’ pictorial derivation of the recurrence relation was based on the diagram at the
right. For n = 0 edges, there is just the trivial tree of one vertex, so c0 = 1. For n > 0 let
T1 and T2 be the subtrees incident to the leftmost edge from the root. If T1 has k edges,
then T2 has n− k − 1 edges. Thus cn =

∑
k ckcn−k−1 (n ≥ 1; c0 = 1).
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T1

(If we use the device of setting cn = 0, for all negative n, then we do not need to set limits to this sum.)
Hence the ordinary generating function C(x) =

∑
n cnxn satisfies the equation C(x) = 1 + xC2(x).

This presentation reminded me of my construction of a generating function for the sequence bn of rooted
binary evolutionary trees labelled by [n] = {1, 2, · · · , n}. (These are rooted trees, with the leaves labelled by [n],
and the other (internal) vertices are each of degree 3. I will refer to these here as n−trees.) It is easily seen that
b1 = 1 counts the tree of one edge, which joins the root to the leaf 1. We find each (n+1)−tree can be obtained
from an n−tree T , by joining a leaf labelled n + 1 to an edge of T . This construction increases the number of
edges by 2 and internal vertices by 1. Hence each n−tree has 2n− 1 edges and n − 1 internal vertices, giving
the recursion bn+1 = (2n− 1)bn, (n ≥ 1; b1 = 1.) Thus we have the well known result that bn = (2n− 3)!!, the
product of the first n− 1 odd positive integers.

However I wanted to illustrate generating functions to my class. For n > 1, an n−tree
T can be decomposed into two subtrees, a k−tree T1 (labelled by S ⊂ [n] of order k), and
an (n− k)−tree T2 (labelled by [n] \ S of order n− k) by deleting the root. When we sum
over all such pairs of complementary trees and over all

(
n
k

)
labelling subsets S, we count

each pairing twice (the trees are not embedded in the plane, so we do not distinguish left from

T2T1

right). Hence we obtain the recursion bn = 1
2

∑n−1
k=1

(
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k

)
bkbn−k for n > 1 with b1 = 1. This sum corresponds

to half the coefficient of xn in the square of the exponential generating function B(x) =
∑

n bn
xn

n! , and implies
B(x) = x + 1

2B2(x).
In comparing these equations Douglas noted that B(x) = xC(x/2), so comparing coefficients this implies

2n−1bn = n!cn−1 for n ≥ 1. A hurried numerical check of the first few values: b1 = 1, b2 = 1, b3 = 3, b4 = 15,
b5 = 105 and c0 = 1, c1 = 1, c2 = 2, c3 = 5, c4 = 14, confirmed this observation. Of course numerical agreement
demands a constructive bijection.

We then noted that as a planar tree with n − 1 edges has n distinguished vertices, so 2ncn−1 counts the
number of planar trees with n− 1 edges, with the vertices labelled by [n]. The n−trees (with leaves labelled by
[n]) are not planar, indeed a Biologist wishing to present such a tree on paper has a left/right choice at each of
the n− 1 internal vertex, hence there are 2n−1 distinct embeddings of n−trees in the plane.

Thus we seek a bijection between the set C of planar rooted trees
of n vertices, with the vertices labelled by [n], and the set B of planar
rooted binary trees of n leaves, with the leaves labelled by [n]. For a
planar n−tree in B, this is achieved by shrinking the left edge above
each internal vertex of T to a vertex, and deleting the root edge, to
produce a tree in C. Conversely, given any tree in C, at each labelled
non-leaf vertex v, add a new edge (v, v′) up and left, and move all but
the rightmost subtree above v (including the labels) to v′. Finally add
a root edge below the root of T . This produces a tree in B.

3 5 6 1 4 2

3

5 6 1
4

2

←→

John Butcher butcher@math.auckland.ac.nz


