
MATHEMATICAL MINIATURE 15

Numerical Analysis and Hopf Algebras

H. G. Forder, who was Professor of Mathematics at Auckland University College from 1934 until his retirement
in 1955, was the first real mathematician I had ever met and I was always in awe of him. He told me that
numerical analysis was boring and of no interest to a serious mathematician. I now realise that this was not
a well-considered opinion and could only be regarded as a prejudice. Paul Halmos once burst into print under
the title “Applied Mathematics is Bad Mathematics”. I read this document carefully with an eye open for the
irony that I felt must have been present; I did not believe such a great mathematician could, so lightly, dismiss
the work of many other mathematicians. But I never recognised even a trace of irony — he really did intend to
say what he seemed to be saying. Thus I enjoy a certain measure of perverse satisfaction that a small discovery
of mine, which was motivated by nothing more than its application to that small part of Applied Mathematics
known as Numerical Analysis, should now have a life of its own. I do not fully understand what a Hopf Algebra
is but I have been assured by people who do, that the entity I am describing in this Miniature, is an example
of such a structure.

Let T denote the set of all rooted trees and let G denote the set of all mappings from T to R. Multiplication
is defined on G×G to G by the formula

(αβ)(t) = α(t) + β(t) +
∑
u/t

α∗(t \ u)β(u),

where u / t denotes that u is formed from t by deleting a positive number of vertices, such that u is itself
connected and shares the same root with t. In this notation, t \ u denotes the graph formed by deleting u from
t and α∗ denotes the multiplicative extension of α. For example, if

t = , (1)

then there are nine choices for u. These are shown, together with t \ u, in the following table, which also gives
the value of α∗(t \ u)β(u).
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Combining identical terms, we find
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Under this operation, G is a group. Let r(t) denote the “order” (number of vertices) in t. The subset of
G denoted by Hp, for p a positive integer, is defined to contain those members which map every t ∈ T with
r(t) ≤ p to zero. It turns out Hp is a normal subgroup which along with the quotient group G/Hp and G itself are
directly related to Runge-Kutta methods. The relation is that every Runge-Kutta method has a corresponding
element of G associated with it and the group operation corresponds to composition of Runge-Kutta methods
over successive computational steps. The special element E ∈ G is defined by E(t) = 1/t!, where the factorial
of a tree is the product over all vertices of the subtree formed by selecting this vertex and its successors. In
the example in (1), t! = 8. The details of a particular Runge–Kutta method are usually expressed in terms of
a matrix A, together with vectors c and bT . To find the group element corresponding to (A, bT , c), evaluate for
each t ∈ T an expression formed by replacing every leaf by c and each internal arc by an application of the
linear operator A. Replace each internal node by the componentwise product of the quantities branching out
from it. Finally, operate on the vector evaluated at the root by the functional bT . In the case of (1), this gives∑

i,j biciaijc
2
j . For some well-known Runge-Kutta methods, the corresponding group element is easy to write

down. For example, in the case of the Euler method, the single one vertex tree maps to 1 and all other trees
map to zero. For the implicit Euler method, t 7→ 1 for all t ∈ T . If α corresponds to a given Runge–Kutta
method, then α being in the coset EHp is equivalent to “the Runge–Kutta method has order p”. The concept
of “effective order”, which allows the computational benefits of high order to be shared more widely, allows α
to be conjugate to a member of EHp. For example the implicit midpoint rule for which t 7→ 21−r(t) and the
implicit trapezoidal rule for which t 7→ 2−1 except for the tree with one vertex, which maps to 1, are conjugates
of each other and each has order 2. The easiest way to find out more details is to write to me.

One of my reasons for writing this rather personal note is that I made a mistake in Miniature 14 and this
has put me off number theory for a while. Irine Peng pointed out the error and, although further discussions
with her led me to see how to repair the error quite nicely, my hope that we would write a correction together
was stymied by her departure for graduate studies overseas. Another reason for the choice of subject is that it
is an anniversary celebration of Kutta’s seminal paper, which appeared in 1901.
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