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What is the next step in evolution beyond Homo Sapiens? We can get some clue about popularly
held opinions on this question through a particular type of cartoon drawing that graces staff notice
boards here and there. They show a sequence of more or less human forms changing from a primitive
appearance and posture, through to a modern human appearance and then on to some proposed
next step. One that I have seen suggests that the wise human has advanced from standing upright
to crouching again, this time in front of a computer screen. Others suggest that it is football that
distinguishes us, not only from other primates, but also from our more primitive human ancestors.
Neither of these claims appeals much to me. I wonder if Mathematics has a stronger claim. While
mathematics, as a human behaviour, is as intellectual as almost anything people do, even this does
not really constitute such a great step forward as to be regarded as an evolutionary leap. On the
other hand, occasionally indulging in pride that we have got somewhere towards understanding a
small corner of this vast and difficult subject, acts as an antidote to the party-stopping reaction
we usually get when we tell people what we do and what we teach. But why feel either pride or
shame in belonging to a club that anyone can join?

Even though the fellowship of mathematics has open membership it has continually changing
customs and patterns of behaviour. Mathematics has become more abstract than it used to be
and many questions are now looked at from a fresh point of view. Geometry and Analysis, two of
the great cornerstones of mathematical understanding a hundred years ago, have been joined by
Topology as a profound subject in its own right and also as a unifying force. We will show that even
such a mundane question as evaluating the square root of 2 can be looked at from a topological
point of view. Thus, continuity and smoothness of change can be just as significant in considering
computational questions as the discrete and the digital.

The so-called homotopy approach to computation is to gradually change a problem from one
where we already know the answer into one for which we wish to know the answer. Sometimes we
“cannot get there from here” but sometimes we can. I chattered on about Homo Sapiens at the
begining of this dissertation in the hope that I could make some sort of pretentious pun out of the
words Homo and Topological but it now seems better to use the word “homotopy” purely in its
technical sense, as a mapping which takes t ∈ [0, 1] to Φ(t). We wish to relate Φ(1) to Φ(0) using
properties of the mapping.

Let x(t) denote the function defined by x =
√

1 + t so that

x2 = 1 + t.

In this case Φ(t) will denote the problem of solving this equation. When t = 0 we have a solution
equal to x = 1 and we want to move towards t = 1 for which x =

√
2. How then are x and t

related? They could for example be connected by the initial value differential equation problem

ẋ =
1

2x
, x(0) = 1, (1)
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or perhaps by the problem

ẋ =
x

2(1 + t)
, x(0) = 1. (2)

The twentieth century was a great time for discoveries about numerical methods for solving this
type of problem. The year 2001, for example, celebrates the centenary of the paper by Kutta in
which the Runge-Kutta method became firmly established as an accurate and reliable method for
solving initial value problems. We will select the most famous member of this family of numerical
schemes. To advance an approximation to the solution of the problem

y′(t) = f(t, y(t)), y(t0) = y0,

to a nearby point t1 = t0 + h, write the result y1 ≈ y(t0 + h) in the form

y1 = y0 +
h

6
(F1 + 2F2 + 2F3 + F4) ,

where
F1 = f(t0, y0), F2 = f(t0 + 1

2
h, y0 + 1

2
hF1),

F3 = f(t0 + 1
2
h, y0 + 1

2
hF2), F4 = f(t0 + h, y0 + hF3).

The cunning way that the benefits of Simpson’s rule are brought to the aid of differential
equations is as remarkable as it is simple. The scheme usually works much better, for example,
than the method of Euler which uses only the F1 , instead of a linear combination of F1, F2, F3

and F4, to approximate the average derivative of y over the step. Thus the Euler method gives the
result

y1 = y0 + hf(t0, y0).

It costs only a quarter as much in terms of f evaluations but is, nevertheless, usually not as efficient.
When we carry out a single step of the Euler method, using either problem (1) or problem (2),

we obtain the same answer as we would find by a single step of the Newton-Raphson method for
finding square roots. However, if we take n steps, with h = 1/n, we get a sequence of increasing
good approximations to

√
2 for each of the two problems

n Problem (1) Problem (2)
1 1.50000000 1.50000000
2 1.45000000 1.45833333
3 1.43679654 1.44375000
4 1.43071119 1.43638393

For the Runge-Kutta method there is an enormous improvement

n Problem (1) Problem (2)
1 1.41437908 1.41493056
2 1.41422370 1.41427766
3 1.41421549 1.41422757
4 1.41421415 1.41421819

Notice that, even for a single step of the Runge-Kutta method, the result is much closer to the
correct answer (1.41421356) than for four small steps of the Euler method.
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Having obtained an approximation after one application of one of these homotopy schemes, we
do not need to rest there. We can then start a new homotopy for the problem

x2 = X2(1− t) + 2t,

where X is the approximation already found. For t = 0 we have x = X and for t = 1, we hope to
get close to x =

√
2.
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