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In attempting to solve f(x) = 0, a good thing to try is an iteration scheme which starts with an
initial approximation, x0 (sometimes called an initial ‘guess’, which I don’t altogether like because
it doesn’t sound very serious). From x0 find a sequence of further approximations, x1, x2, . . .,
basing the value of each of these on previous approximations. In this apology, we will think only
about methods in which xn = φ(xn−1), for some appropriately chosen function φ. If the sequence
of approximations is going to have any hope of converging to a zero of the function f , then we had
better make sure that the set of solutions of the equation x = φ(x), that is, the set of fixed points
of φ, includes solutions of f(x) = 0. The easiest way of making sure this is the case, is to construct
φ as φ(x) = x− f(x)g(x), where g has to be decided on. We will consider some general principles
about the choice of this function and then zero in, so to speak, on the calculation of

√
2.

When we get close to the solution we want, it would be just as well if the function φ is not very
sensitive to small changes in x. If ξ is the fixed point we are trying to evaluate, and xn−1 is close
to ξ, then

xn − ξ = φ(ξ + (xn−1 − ξ))− ξ ≈ φ(ξ) + φ′(ξ)(xn−1 − ξ)− ξ = φ′(ξ)(xn−1 − ξ).

Thus, the value of φ′(ξ) should have a magnitude less than 1 otherwise, doing an additional iteration,
once we have got close to the solution, will push it away again. Best of all we would like φ′(ξ) = 0.
If φ(x) = x− f(x)g(x), then φ′(x) = 1− f ′(x)g(x)− f(x)g′(x) so that φ′(ξ) = 1− f ′(ξ)g(ξ).

In the famous Newton method, g is chosen as g(x) = 1/f ′(x) since we will then have φ′(ξ) = 0.
If f(x) = x2 − 2, this will give us

φ(x) = x− x2 − 2

2x
=

x

2
+

1

x
.

To see how well this iteration scheme works, start with x0 = 100, surely a very poor approximation
to
√

2 but still, as we will see, close enough for us to get there in the end. Here are the members
of the approximation sequence up to x10. Also shown are the values of the approximations minus
the value of

√
2.

x0 100.00000000000000 x0 −
√

2 98.58578643762691

x1 50.01000000000000 x1 −
√

2 48.59578643762691

x2 25.02499600079984 x2 −
√

2 23.61078243842674

x3 12.55245804674590 x3 −
√

2 11.13824448437281

x4 6.35589469493114 x4 −
√

2 4.94168113255805

x5 3.33528160928043 x5 −
√

2 1.92106804690734

x6 1.96746556223115 x6 −
√

2 0.55325199985805

x7 1.49200088968972 x7 −
√

2 0.07778732731663

x8 1.41624133203894 x8 −
√

2 0.00202776966585

x9 1.41421501405005 x9 −
√

2 0.00000145167696

x10 1.41421356237384 x10 −
√

2 0.00000000000074
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When we are a long way from the correct answer, the approximations, and therefore the errors,
decrease by a factor of about 1

2
in each iteration; but when we get close to the answer, quadratic

convergence takes over; that is the error in each iteration is more or less proportional to the square
of the error in the previous iteration.

An interesting fact about this Newton iteration scheme, if we interpret it in the complex plane
rather than on just the real line, is that the sign of the real part of each approximation is the same
as in the previous approximation. If we start with x0 in the positive half of the complex plane, then
we stay there and eventually converge to

√
2. On the other hand, if we start in the left half-plane

then we stay there forever and converge to −
√

2. What happens if we start on the imaginary axis?
We stay on the imaginary axis forever and wander up and down, never really making up our minds
what we want to do. Clearly we cannot converge to anything because φ has only two fixed points,
both real, and we cannot get near either of them. However, if we start at either of ±i

√
6/3 then

we alternate forever between these two values. But even this is a fragile arrangement: the slightest
error in the magnitude of the starting imaginary number will push us away even from this relatively
simple outcome.
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