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Some positive integers cannot be written as the sum of the squares of two integers, for example
3, 6, 7, 11, 14, 15, 19 cannot; some integers can be written as the some of two squares in exactly
one way, for example 2 = 12 + 12, 5 = 22 + 12, 8 = 22 + 22, 10 = 32 + 12; and some integers can be
written as the sum of two squares in two or more different ways, for example 65 = 82 +12 = 72 +42.
In this apology we will try to find reasons behind these observations. But it pays us first to look a
little away from the main question.

A field is a set of objects (known as numbers) on which the operations of +, ×, − and ÷
can be performed under certain rules. Most clubs have ethical standards required of its members
and the Field Club is no exception. Both addition and multiplication must be commutative and
associative, the distributive rule must hold, there must be a zero number which cannot be divided
by and zero multiplied by anything must be zero and added to anything must leave it unchanged.
There is some further fine print in the rules but I will mention only one extra requirement, because
some applications for membership (for example, the application by the set {0, 1, 2, 3, 4, 5}, where
addition and multiplication are defined modulo 6), have had to be declined because of the rule
“there cannot be divisors of zero”. In turning down the particular application from the 6 member
set, it was pointed out that 2 × 3 = 6 ≡ 0 (mod 6) and no exceptions can be made even for close
relatives of existing club members.

The well-known fields of rational, real and complex numbers are the mainstays of this club and
are always present to make up a quorum at meetings. Within the last couple of hundred years they
were joined by some upstart “finite fields”. These newcomers were discovered by Evariste Galois
before he threw his life away in a duel in 1832 at the age of 20. There is a Galois Field with pn

members for any prime number p and any positive integer n. We will concentrate, however, just
on the fields with a prime number of members.

The field with p members, denoted by GF (p), is made up from the numbers {0, 1, 2, . . . , p− 1}
with addition and multiplication defined modulo p. There is obviously a negative of each number a,
equal to p− a if a 6= 0, and this makes subtraction possible. To find the reciprocal of a number, so
as to perform division, solve the Diophantine equation ax− yp = 1, using the Euclidean algorithm.
But even if we don’t explicitly find a−1 for a 6= 0, we know it exists, because if we multiply a by
each member of {1, 2, . . . , p− 1} we can easily see that we get this same set back again (with the
order changed) and one of the products must be 1. In passing, this enables us to prove one of the
great theorems of mathematics, with the understated name of “Fermat’s Little Theorem”. We have
seen that the sets {1, 2, . . . , p− 1} and {1a, 2a, . . . , (p− 1)a} are the same and hence the products
of their members are the same. This means that 1 · 2 · · · · · (p− 1) = 1 · 2 · · · · · (p− 1)ap−1, and
cancelling the factors 1, 2, . . ., p− 1 from both sides assures us that

ap−1 ≡ 1 (mod p).

One way of interpreting the Fermat theorem is to consider the polynomial equation

xp−1 − 1 = 0, (1)
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in the field GF (p) as having each of the p− 1 numbers {1, 2, . . . , p− 1} as solutions. If p is an odd
prime, then we can factorize (1) as

xp−1 − 1 = (x(p−1)/2 − 1)(x(p−1)/2 + 1),

so that exactly half of the members of {1, 2, . . . , p− 1} satisfy

x(p−1)/2 = 1 (2)

and the remainder satisfy
x(p−1)/2 = −1. (3)

While we have the set {1, 2, . . . , p− 1} in our hands, with p 6= 2, let us square every member.
We get only half as many distinct squares because a and p−a have the same square. The non-zero
members of GF (p) which are in this set of squares, are known as “quadratic residues”, and the
remainder are known as “non-residues”. If x = t2, then

x(p−1)/2 = tp−1 = 1,

so that for the quadratic residues it is (2) that is satisfied, rather than (3). Because there are
exactly the same numbers of solutions to these two equations, and exactly the same number of
quadratic residues and non-residues, it follows that if x a non-residue it satisfies (3).

This enables us to answer a question suggested by the title of this apology. When does
√
−1

exist in GF (p)? In other words, for which odd primes p is −1 (or, equivalently, p − 1) a perfect
square modulo p?

From our brief introduction to quadratic residues, we see that everything hinges on the value
of (−1)(p−1)/2. But this is easy to calculate. If the prime p has the form p = 4n + 1, then −1 is
a quadratic residue, because (−1)(p−1)/2 = (−1)2n = +1. If p has the form 4n + 3, then it is a
non-residue, because (−1)(p−1)/2 = (−1)2n+1 = −1.

Finally, we return to the question of the possible solutions of the Diophantine equation

x2 + y2 = N.

Suppose that N is equal to a prime p. We already know the answer if p = 2, because 2 = 12 + 12.
If p = 4n + 3, there is no hope because the squares of x and y are each congruent to either 0 or 1
(mod 4) and therefore the total of x2 and y2 cannot be 3 (mod 4).

If p = 4n + 1 we can find a number t in GF (p) such that t2 = −1. This means if we choose any
non-zero x in GF (p) and define y = tx, then x2 +y2 = 0. If we now interpret x as an integer, rather
than as a member of GF (p), and restrict its value so that 0 < x2 < p, then y can be interpreted as
the remainder when tx is divided by p. With this interpretation, we know that x2 + y2 = np, for
some positive integer n, and we want to prove that n = 1 arises at least once. Write x1, x2, . . ., xk

for the values of x for which we do this calculation, where k is the integer part of
√

p, and let y1,
y2, . . ., yk denote the corresponding values of y. If the values of yi, i = 1, 2, . . . , k are sorted into
increasing order, and the numbering adjusted to reflect this ordering, then we have

0 < y1 < y2 < · · · < yk < p.

Because
(y1 − 0) + (y2 − y1) + (y3 − y2) + · · ·+ (p− yk) = p,
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it follows that at least one of the terms on the left-hand side must be less than
√

p because the
arithmetic mean of these terms is

p

k + 1
<

p
√

p
=
√

p.

If y1 <
√

p, then x2
1 + y2

1 = p because this sum of squares is a multiple of p and is less than 2p. If,
for some i = 2, 3, . . . , k − 1, yi − yi−1 <

√
p, it similarly follows that (xi − xi−1)

2 + (yi − yi−1)
2 = p

and if p− yk <
√

p, then x2
k + (p− yk)

2 = p.
Having concluded that x2+y2 = p is possible only if p = 2 or p ≡ 1 (mod 4), it seems reasonable

to leave the question of asking when x2 + y2 = N has solutions for N a composite positive integer,
as an exercise. The following identities should be a help

2(x2 + y2) = (x + y)2 + (x− y)2,

(x2
1 + y2

1)(x
2
2 + y2

2) = (x1x2 ± y1y2)
2 + (x1y2 ∓ y1x2)

2.
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