Mathematical Apology 2

Professor John Butcher, The University of Auckland

In this series of Apologies on issues connected with 7, especially the computation of 7, we look
at a formula that was popular in the seventeenth century. This “Wallis formula” consists of an
infinite product with repeated even integers on the top and repeated odd integers on the bottom.

We might well ask where such a formula comes from. Like many formulae involving purely
real numbers, the best way to understand results like this is to work in the more esotoric, but
in some senses simpler, world of complex numbers. One example which makes complex numbers
simpler than real numbers is in the zeros of polynomials. These might not exist in the sense of real
numbers and even if they do there might not be enough of them. However, we can always factorise
polynomials over the complex numbers and we can always factorise into linear factors. This result
is known as “the fundamental theorem of algebra”. There are other functions that do not quite
achieve this level of simplicity but get quite close to it. One example is the function sin(7z)/7z
(where it is defined for z = 0 to have the limiting value of 1). For this function there are an infinite
number of zeros located at z = 4+1,4+2,£3,... and a generalisation of the fundamental theorem
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Substitute z = % and take the reciprocal of both sides and we arrive at the Wallis product formula
for .

Here is how the first 20 approximations using the formula work out. Also shown (in the third
column) is the mean of each two adjacent approximations and this looks as though it is an im-
provement.

1 4.0000000000 11 3.2751010413
3.3333333333 3.1491356167

2 2.6666666667 12 3.0231701920
3.1111111111 3.1394459686

3 3.5555555556 13 3.2557217452
3.2000000000 3.1471976871

4 2.8444444444 14 3.0386736289
3.1288888889 3.1399627498

5 3.4133333333 15 3.2412518708
3.1695238095 3.1459209334

6 2.9257142857 16 3.0505899961
3.1346938776 3.1403132312

7 3.3436734694 17 3.2300364664
3.1579138322 3.1450355068

8 2.9721541950 18 3.0600345471
3.1372738725 3.1405617721
9 3.3023935500 3 1529847523 19 3.2210889970 3 1443964018

10 3.0021759546 20 3.0677038066

3.1386384979

This is not a very convenient method of computing 7 to high accuracy because the convergence
is so poor. In the next Apology in this series a much better method will be discussed. In the
meantime let us consider if any more goddies can be squeezed out of (1).
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The series for the sin function is given by

3 x> 2

sin(z) =z — §+§_ﬁ+”" (2)
If you believe that such a series exists then this must be it because the limit of sin(x)/x (as x — 0)
works out right and so does the requirement that the second derivative is given by sin”(x) =
—sin(z). Another way of realising that this must be the right series is by the relation exp(iz) =
cos(x) +isin(x): all we need to do is to substitute iz into the exponential series and then pick out
the purely imaginary terms.
Divide both sides of (2) by x, substitute x = 72z and we find
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Even though (1) is written as an infinite product, it is possible to expand it in terms of powers
of z. The coefficient of 22 is easy to find because we need to select the term “1” from all factors on
the right hand side of (1) except for just one of these factors. Do this in all possible ways and we
find the coefficient of 2% to be —172 — 272 — 372 —

Comparing this with (3) we conclude that
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Finding the z* coefficient in (1) is a little more complicated because we need to choose pairs of
factors in of the form —z?/m? and —z?/n* where m < n. Twice the result will give 3, ., m=?n~?
and allowing m to equal n in the set of (m,n) pairs in the summation will cause the result to be
overstated by >°°, n~% Furthermore the sum Y m™2n~2, where there is nor restriction on the
positive integers m and n, is exactly the same as (3> n~2)%. Hence, putting this all together and

comparing with the z? term in (3) leads to
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implying that
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The two sums (4) and (5) are not very practical for evaluating m because even when we have
obtained good approximations to the infinite sums, we still have to calculate square (or fourth)
roots.

Nevertheless we are much better off than we would have been in the days of Wallis, because we
now have computers and it is possible to do the calculations very easily and quickly. The following
table shows approximations to m worked out from the partial sums of (4) and (5).



1 2.4494897428 3.0800702882 11 3.0574815067 3.1414341947
2 2.7386127875 3.1271078664 12 3.0642878178 3.1414691945
3 2.8577380332 3.1361523798 13 3.0700753719 3.1414946046
4 2.9226129861 3.1389978894 14 3.0750569156 3.1415134957
5 2.9633877010 3.1401611795 15 3.0793898260 3.1415278307
6 2.9913764947 3.1407217179 16 3.0831930203 3.1415389040
7 3.0117739478 3.1410241579 17  3.0865580258 3.1415475928
8 3.0272978567 3.1412014021 18  3.0895564350 3.1415545057
9 3.0395075896 3.1413120396 19  3.0922450523 3.1415600741
10 3.0493616360 3.1413846225 20  3.0946695241 3.1415646096
Exercises

1. Substitute z = 4

value?
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in (1) to obtain a new product expression for 7. Is this formula of practical

2. Why does a calculation of 7 using (5) seem to work better than the similar calculation based
on (4)7

3. Find a formula for 7° based on the 2° coefficient in (3). How would this rate as the basis for
a calculation of 77

4. Find similar formulae to (4) and (5) where the summations now run only over the odd positive
integers.

Correspondence on the exercises, or on any aspect of this column, is welcome. If it seems to be
a good idea at the time, some remarks on the exercises will be given in the next issue.
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