68  The New Zealand Mathematics Magazine Vol. 39 No 3, December 2002

Mathematical Apology Number 14:
Games with Fibonacci Numbers

J.C. Butcher, The University of Auckland

It came as a surprise to me, when I first heard about it, that there is
a Journal, “The Fibonacci Quarterly”, which devotes itself entirely to the
sequence of numbers referred to in its title. How is it possible to go on
year by year, publishing four issues per annum, dealing with nothing
other than Fibonacci numbers?

Everyone knows that the Fibonacci numbers are formed from the
“difference equation”

F,=F,.+F,, n=3,4,5 ...,

with “starting values” F; = 1, F, = 2. Other sequences satisfying the same
recurrence, but with different starting values, also have names, such as
Lucas numbers, but it is the difference equation itself which
characterises the long-term behaviour of the sequence. Except for some
exceptional values of the starting values, those with a ratio
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the ratio of F,/F,_; always has the same limit for large n:
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This limiting value is known as “the Golden Ratio” and is given the
symbol ¢.

Many years ago, I heard about a conjecture concerning Fibonacci
sequences. I was able to add some extra details and to prove it. [ would
like to describe the problem in terms of three questions. These are put
forward as a challenge to keen readers. At least the first of the three
statements in this challenge is relatively easy to verify. My own solution
from the seventies is buried in the archives of the Fibonacci Quarterly.

The problem concerns a table made up as follows:

51 S5 |5 54 55 Ss 5; Sg
R, 1 2 3 5 8 13 21 34
R, 4 6 |10 16 26 42 68 110
R, 7 11 |18 29 47 76 123 199
R, 9 15 |24 39 63 102 165 267
Rs 12 19 |31 50 81 131 212 343
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The numbers in the R, row are just the Fibonacci numbers. This
means that in the S, column, we start with 1 and in the S, column we
put the closest integer to ¢ times 1, which is of course 2. The remaining
columns entries in the row are formed from the Fiboncci difference
equation, so that the entry in column S, is the sum of the entries in the
previous fwo columns.

The numbers in R, are started by placing in the S; position the first
positive integer, that is 4, that has not appeared in row R, We then
place in the S, position the closest integer to 4¢ and carry on to later
columns using the Fibonacci formula of simply adding the entries in the
previous two columns.

In row R;, we start by inserting into S, the first positive integer that
has not appeared in either R, or R,and we follow this by the closest
integer to this number times ¢. After these entries, 7 and 11, we carry on
with the entries 7 + 11 = 18, 11 + 18 = 29, and so on.

Perhaps the pattern will become clear if we point out that the S,
entry in R, is the first positive integer, 9, which has not appeared in any
of Ry, R, or R;. Thus we carry on row by row to complete the whole
table. Eventually every positive integer n appears, at least once
somewhere, because if it had not appeared in any of rows R, R, ..., R,
but all integers less than n had already appeared, then n will be in the S,
column of row R,,.

To complete the picture, insert an additional column S, defined as
the difference between S,and S,. The row names R,, R, ..., can now be
dispensed with and replaced by the additional column S,

So | S Sl 5 S 55 S¢S S
1 12 3 5 8 13 21 34
2 4 6 10 16 26 42 68 110
4 7 11] 18 29 47 76 123 199
6 9 15| 24 39 63 102 165 267
7 12 19| 31 50 81 131 212 343

We will now think of the columns S, 5;, S,, . . . as sets. We already
know that 5; U S, U S, U... is the set of all positive integers. A converse
to this is built into the first of our three challenge statements.

1. No positive integer occurs in more than one of the sets

5,5, 85, ...
2. Every member of S;is a member of S; U S,.
3. SO = Sl ) Sz.

A second Fibonacci-related puzzle is concerned with an unusual
way of coding a secret message. The message itself consists of the choice
of an integer from the set {1, 2, 3, ..., m} and the code consists of the
sender and receiver of the message in turn taking one or more stones
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from a pile placed near a tree in a forest. Initially there are exactly n
stones in the pile, and both sender and receiver know this. The sender
visits the forest when it suits him and removes one or more of the
stones. The receiver looks at the pile from time to time and when he
sees that it has decreased in size, because the sender has started sending
his message, he takes a single stone from the pile himself. This indicates
to the sender that he is free to take further stones from the pile when he
is ready to continue with the message sending process. The two people
keep taking turns in removing stones until there are none left. Because
the sequence of stones that the sender can remove, whenever it is his

turn, can vary, it is possible to pass on information in this secret
manner.

The puzzle now is to find out how large m can be as a function of
n. Perhaps an example will help for the case n = 4.

The sender can do any of the following:

1.  Remove all four stones on his first visit.

2.  Remove three stones on his first (and only) visit.
3. Remove two stones on his first (and only) visit.
4.
5.

Remove one stone on his first visit and two on the second visit.

Remove one stone in each of two visits.

It looks as though m=>5 is possible when n=4. Can you generalise
this result, and give a convincing reason for your answer?

Author

Emeritus Professor John Butcher, Department of Mathematics,
The University of Auckland, Private Bag 92-019, Auckland. Phone (09)
373.7599, extn 8747, Fax (09) 373.7457, E-mail
butcher@math.auckland.ac.nz.



