Mathematical Apologies

Professor John Butcher, The University of Auckland

“Apology” is used in the sense of justification or defence of an opinion firmly held. From time
to time mathematicians are called upon to explain why they are what they are and they have to
be apologists for what they regard as important, just as much as holders of an unfashionable belief
or ideology have to be prepared to explain themselves to sceptics. For some reason it is difficult to
make anything reasonable out of what we do, whereas other behaviour that is no more obviously
sensible seems to justify itself. The famous mathematician G. H. Hardy felt compelled to call his
autobiography “A Mathematician’s Apology” and my choice of the name for this column is partly
as a tribute to him. I hope that these apologies will become a regular feature of New Zealand
Mathematics Magazine.

In these articles I will explore some small mathematical ideas and see what can be learnt from
them. The starting point will usually be something quite elementary that can be explained to a
high-school pupil, if he or she is willing to work at it. It will not, however, be something that
can easily be dismissed as either true or false and therefore of no further interest, any more than
a musical phrase is dismissed by a composer who still sees some potential new development or
variation in it.

The general theme of the first few Apologies will be the computation of 7. Today we will go
back to one of the oldest known methods for the evaluation of this constant. In fact it goes back
to Archimedes (circa 287BC - 212BC) and starts from the inequality nsin(r/n) < 7 < ntan(n/n),
which can be interpreted as stating that the circumference of a circle lies between the lengths of
the perimeters of an inscribed and of a circumscribed regular polygon with n sides. For n a low
integer it is sometimes possible to evaluate the upper and lower bound exactly and to then improve
the result by obtaining the values of 2nsin(7/2n) and 2n tan(7/2n) in terms of the known bounds.
Write P, = ntan(n/n) and p, = nsin(mw/n). By elementary trigonometry, we find that

2pn by I
Pn: ; n — Pn n -
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Using the known values of pg = 3, Py = 2v/3, the following table gives the first few approximations

n Pn P,

6 3.0000000000 3.4641016151
12 3.1058285412 3.2153903092
24 3.1326286133 3.1596599421
48 3.1393502030 3.1460862151
96 3.1410319509 3.1427145996
192 3.1414524723 3.1418730500
384 3.1415576079 3.1416627471
768 3.1415838921 3.1416101766

JFrom the n = 192 entries we derive the famous bounds, due to Archimedes: 3% << 3%. This
takes quite a lot of work, especially if we do not have the benefit of modern computing aids. In
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fact, apart from the basic data and some multiplications, divisions and additions, the heavy part
of the work is an extra square root calculation for each iteration.

Can we squeeze more information out of this data? Can we avoid so many square-root calcula-
tions and still obtain good accuracy? As a first step in investigating these questions, let us see if
we can find any pattern in the way the errors behave. The following table gives not p, and P, but

the values of 7 — p, and P, — .

n

T — Pn

P, —

6
12
24
48
96

192
384
768

0.1415926536
0.0357641124
0.0089640403
0.0022424505
0.0005607027
0.0001401813
0.0000350457
0.0000087614

0.3225089615
0.0737976556
0.0180672885
0.0044935615
0.0011219461
0.0002803964
0.0000700935
0.0000175230

It looks as though, as we move down the list, the value of an entry divided by the entry above it
becomes closer and closer to i. It also looks as though the values of P, — m become closer and
closer to twice the corresponding values of m — p,,. Both of these facts can be verified by using the
series for the sine and tangent functions

booad 3 228
sin(x):a:—g+ﬁ—~-~, tan(x):a:qtg—i-g-k 7
from which it follows that
(T m m° m T 2n
pn:nsm(g):ﬁ—@-i-m—~~, Pn:ntan(g):w+w+w+....

If we have two consecutive members of a column and they are equal to

1
A=n+FE, and B:7T+ZE,

approximately, then 7 is approximately equal to g—"B — %A. This suggests that we can get improved
sequences by using %pgn — %pn in place of ps, and %Pgn — %Pn in place of P,,. These sequences are
2n

4 1 4 1

12
24
48
96
192
384
768

3.1411047216
3.1415619706
3.1415907330
3.1415925335
3.1415926461
3.1415926531
3.1415926536

3.1324865405
3.1410831531
3.1415616395
3.1415907278
3.1415925334
3.1415926461
3.1415926531

Unfortunately, even though the two columns now seem to converge to the correct answer more
rapidly, the property of bracketing m between the two columns has disappeared. We can recover
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this by carrying out the same operations to the new table but using the factors
of % and % respectively. This gives the following table

24 3.1415924539 3.1416562606
48 3.1415926505 3.1415935386
96 3.1415926535 3.1415926670
192 3.1415926536 3.1415926538
384 3.1415926536 3.1415926536

16 1
B and B instead

We don’t need to go so far this time because, to the accuracy to which we have presented the
answers, we get perfect accuracy even in these few steps.

The other observation we have made, that the errors in P, are approximately —2 times those
in p,, suggests that we might get better approximations from the values of %pn + %Pn. This gives
the table

n 2p,+iP,

6 3.1547005384
12 3.1423491305
24 3.1416390562
48  3.1415955404
96 3.1415928338

192 3.1415926649
384 3.1415926543
768 3.1415926536

This gives a rapidly converging sequence, but the advantage of the original Archimedes scheme, in
which the value of 7 is bracketed between two sequences, one increasing and one decreasing, is lost.

Another means of squeezing out extra information is to use extrapolation. Amongst the many
formulations for the value of a polynomial at a given point which interpolates an existing function
on a given data set is due to Neville and the New Zealander Aitken. Let ¢(t) denote a function for
which the values of ¢(t;) and ¢(t2) are given. If a polynomial of degree 1 is fitted to this data, the
value at an aribtrary value of ¢ of this polynomial, which can be used to approximate the value of

o(t), is given by

-t t—t
o(t) = - t2¢(t1) LT t1¢(t2)-

Denote this expression by ¢(t;1,t2), because it is the interpolated value based on data at ¢; and
to. If we have only a single data point, then the appropriate approximation is just ¢(t;t;) = ¢(t1).
The nice thing is that the interpolated value based on many points can be evaluated recursively
according to the formula

t—1, t—1
ity e, ty) = Byt tey) +
Pt ty, ta ) tl_tnéb( 1, b2 1) P—

gb(t; tg, cee ,tn).
We can apply this formula to each of two functions associated with the polygons of Archimedes

F(t) =t 2 sin(mv4), F(t) = t % tan(mV/%)



By using the values t = n~2 for various n, we can interpret the p, and P, data in terms of these

functions. Furthermore, by choosing t = 0 as the point at which approximations are to be found,

we are effectively extrapolating the data to the limiting values at ¢ = 0 for which f(0) = F(0) = 7.
It is customary to arrange the computations in a table like this:

ti | ot ta
ta | 9(t;t2
ty | o(t;t
ta | 9(t;

(

(Lt ta, t3, ta)
¢(ta t2a t3a t4a t5)

ts | o(:t5

Note that each entry, after the ¢(¢;t;) column, is found from the two closest entries to its left. Note
also that we will use tables like this only with ¢ = 0, as we have described above.

To show how this works, the functions f(t) = p, and F(t) = P,, are computed for values t = -
for n = 3,4,5,6,8,10,12,16, 20 and the first four extrapolated columns are evaluated. Note that
the first few of these can be evaluated using the table

Pn b
V3 3V3
2v/2 4
210 -2v5  5y/5-2V5
3 2V/3
HW2—-v2  8(vV2-1)

10 3(v5-1) 2y/25-10V5

w0 O Ut ok W3

Later members of the table can be found in terms of earlier members; it is interesting that this can
be done with only a single square-root operation for each three successive values of n.
The extrapolated values for the function f are in the following table

f(n 2) = Dn

2.5980762114
3.1245925848

2.8284271247 3.1414310010
3.1353691712 3.1415920333

2.9389262615 3.1415517753 3.1415926527
3.1388039512 3.1415925656

3.0000000000 3.1415823680 3.1415926535
3.1404970490 3.1415926394

3.0614674589 3.1415900716 3.1415926536
3.1411965834 3.1415926511

10 | 3.0901699437 3.1415920062 3.1415926536

3.1414162628 3.1415926532

12 | 3.1058285412 3.1415924915 3.1415926536

3.1415236522 3.1415926535

16 | 3.1214451523 3.1415926130

3.1415677871
20 | 3.1286893008
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And the similar table for F.

F(n™?) =P,

o O Ut o WS

10

5.1961524227
4.0000000000
3.6327126400
3.4641016151
3.3137084990
3.2491969623

2.4620897422
29797573334
3.0808947404
3.1203459211
3.1345097861
3.1385570065

3.2709453534
3.1618046660
3.1456351395
3.1424769601
3.1417947829

3.1254244368
3.1402452973
3.1414242336
3.1415673906
3.1415894456

3.1426705290
3.1416487930
3.1415974655
3.1415930546

12 | 3.2153903092
16 | 3.1825978781
20

3.1416407799 3.1415926860

3.1404361809

3.1411837903
3.1676888065

3.1415921675
3.1416043206

Note that we have already achieved 10 decimal places accuracy for the f extrapolations but
that the accuracies of the results based on F' lag far behind.

If this pattern is taken further, so as to include altogether 32 values of n and 6 levels of
extrapolation, then 7 can be bracketed to about 40 decimal places. If 8 levels of extrapolation
are used instead, then 26 values of n are enough to achieve this sort of accuracy. Even restricting
ourselves to 4 levels of extrapolation just 22 values of n will yield 20 decimal places. This mightn’t
sound very much but it is sufficient to calculate the circumference of a circle with radius the distance
between the sun and the earth, to an accuracy of about the size of an atom.

I hope that there is something of interest to some of the readers of the Magazine in this first
Apology. Please do not hestitate to tell me if I have got something wrong or if you feel that further
details would be worth presenting in a later number. I have made many assertions without the
benefit of proof and I shouldn’t be allowed to get away with too much of this. Please try, yourself,
to justify some statements that are not obvious but let me know if you want me to give my own
attempt at justification.

I also write a series of “Mathematical Miniatures” for the Newsletter of the New Zealand
Mathematical Society and you might find some of these interesting, especially a recent potted
history of the computation of 7. These can now be read on internet at
http://math.auckland.ac.nz/ butcher/miniature
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