John Butcher's tutorials Low order Runge–Kutta methods

Review of order conditions

Recall the order-4 conditions for a 4-stage method:

t $\Phi(t)$	$=\frac{1}{\gamma(t)}$
$\bullet \qquad \qquad b_1+b_2+b_3+b_4$	= 1
$b_2c_2 + b_3c_3 + b_4c_4$	$=\frac{1}{2}$
$\checkmark \qquad \qquad b_2 c_2^2 + b_3 c_3^2 + b_4 c_4^2$	$=\frac{1}{3}$
$b_3a_{32}c_2 + b_4a_{42}c_2 + b_4a_{43}c_3$	$=\frac{1}{6}$
$\mathbf{\Psi} \qquad \qquad b_2 c_2^3 + b_3 c_3^3 + b_4 c_4^3$	$=\frac{1}{4}$
$\mathbf{v} \qquad b_3c_3a_{32}c_2 + b_4c_4a_{42}c_2 + b_4c_4a_{43}c_3$	$=\frac{1}{8}$
$\mathbf{Y} \qquad \qquad b_3 a_{32} c_2^2 + b_4 a_{42} c_2^2 + b_4 a_{43} c_3^2$	$=\frac{1}{12}$
$b_4 a_{43} a_{32} c_2$	$=\frac{1}{24}$

The conditions for these can be found, when p < 4, by

 \blacksquare omitting conditions corresponding to trees with greater than p vertices

The conditions for these can be found, when p < 4, by

• omitting conditions corresponding to trees with greater than *p* vertices

(that is by omitting trees with order greater than p)

The conditions for these can be found, when p < 4, by

 \blacksquare omitting conditions corresponding to trees with greater than p vertices

(that is by omitting trees with order greater than p)

• omitting all terms in $\Phi(t)$ with subscripts greater than p.

The conditions for these can be found, when p < 4, by

 \blacksquare omitting conditions corresponding to trees with greater than p vertices

(that is by omitting trees with order greater than p)

• omitting all terms in $\Phi(t)$ with subscripts greater than p. Order 2:

•
$$b_1 + b_2 = 1$$

• $b_2c_2 = \frac{1}{2}$

The conditions for these can be found, when p < 4, by

 \blacksquare omitting conditions corresponding to trees with greater than p vertices

(that is by omitting trees with order greater than p)

• omitting all terms in $\Phi(t)$ with subscripts greater than p. Order 2:

Order 3: $\begin{array}{c|c}
b_1 + b_2 &= 1\\
b_2 c_2 &= \frac{1}{2}\\
b_1 + b_2 + b_3 &= 1\\
b_2 c_2 + b_3 c_3 &= \frac{1}{2}\\
b_2 c_2^2 + b_3 c_3^2 &= \frac{1}{3}\\
b_3 a_{32} c_2 &= \frac{1}{6}\\
\end{array}$

In the special case of a differential equation of the form:

$$\frac{dy}{dx} = \phi(x),$$

integration over a single step using an s-stage Runge–Kutta method is equivalent to the approximation

$$\int_{x_0}^{x_1} \phi(x) dx \approx h \sum_{i=1}^{s} b_i \phi(x_0 + hc_i)$$
 (*)

We will examine how well this approximation works for the s special choices of ϕ given by

$$\phi(x) = (x - x_0)^{k-1}, \qquad k = 1, 2, \dots, s.$$

The error in (*) is equal to

$$-\left(\sum_{i=1}^{s}b_{i}c_{i}^{k-1}-\frac{1}{k}\right)h^{k}\tag{\dagger}$$

To obtain order s, the coefficient of h^k in (†) must be zero for all $k = 1, 2, \ldots, s$.

Low order Runge–Kutta methods

In the special case of a differential equation of the form:

$$\frac{dy}{dx} = \phi(x),$$

integration over a single step using an s-stage Runge–Kutta method is equivalent to the approximation

$$\int_{x_0}^{x_1} \phi(x) dx \approx h \sum_{i=1}^{s} b_i \phi(x_0 + hc_i)$$
 (*)

We will examine how well this approximation works for the s special choices of ϕ given by

$$\phi(x) = (x - x_0)^{k-1}, \qquad k = 1, 2, \dots, s.$$

The error in (*) is equal to

$$-\left(\sum_{i=1}^{s}b_{i}c_{i}^{k-1}-\frac{1}{k}\right)h^{k}\tag{\dagger}$$

To obtain order s, the coefficient of h^k in (†) must be zero for all $k = 1, 2, \ldots, s$.

In the special case of a differential equation of the form:

$$\frac{dy}{dx} = \phi(x),$$

integration over a single step using an s-stage Runge–Kutta method is equivalent to the approximation

$$\int_{x_0}^{x_1} \phi(x) dx \approx h \sum_{i=1}^{s} b_i \phi(x_0 + hc_i)$$
 (*)

We will examine how well this approximation works for the s special choices of ϕ given by

$$\phi(x) = (x - x_0)^{k-1}, \qquad k = 1, 2, \dots, s.$$

The error in (*) is equal to

$$-\left(\sum_{i=1}^{s}b_{i}c_{i}^{k-1}-\frac{1}{k}\right)h^{k}\tag{\dagger}$$

To obtain order s, the coefficient of h^k in (†) must be zero for all $k = 1, 2, \ldots, s$.

In the special case of a differential equation of the form:

$$\frac{dy}{dx} = \phi(x),$$

integration over a single step using an s-stage Runge–Kutta method is equivalent to the approximation

$$\int_{x_0}^{x_1} \phi(x) dx \approx h \sum_{i=1}^{s} b_i \phi(x_0 + hc_i)$$
 (*)

We will examine how well this approximation works for the s special choices of ϕ given by

$$\phi(x) = (x - x_0)^{k-1}, \qquad k = 1, 2, \dots, s.$$

The error in (*) is equal to

$$-\left(\sum_{i=1}^{s}b_{i}c_{i}^{k-1}-\frac{1}{k}\right)h^{k}\tag{\dagger}$$

To obtain order s, the coefficient of h^k in (†) must be zero for all k = 1, 2, ..., s.

From a consideration of special quadrature problems, we have seen that necessary conditions for order s are that

$$\sum_{i=1}^{s} b_i c_i^{k-1} = \frac{1}{k}, \qquad k = 1, 2, \dots, s.$$
 (*)

From a consideration of special quadrature problems, we have seen that necessary conditions for order s are that

$$\sum_{i=1}^{s} b_i c_i^{k-1} = \frac{1}{k}, \qquad k = 1, 2, \dots, s.$$
 (*)

. . .

These are equivalent to those Runge-Kutta order conditions which correspond to the trees

$$\cdot$$
 \cdot \cdot \cdot \cdot \cdot

From a consideration of special quadrature problems, we have seen that necessary conditions for order s are that

$$\sum_{i=1}^{s} b_i c_i^{k-1} = \frac{1}{k}, \qquad k = 1, 2, \dots, s.$$
 (*)

These are equivalent to those Runge-Kutta order conditions which correspond to the trees

It will usually be convenient to choose a quadrature formula as the first step in deriving a Runge–Kutta method. From a consideration of special quadrature problems, we have seen that necessary conditions for order s are that

$$\sum_{i=1}^{s} b_i c_i^{k-1} = \frac{1}{k}, \qquad k = 1, 2, \dots, s.$$
 (*)

These are equivalent to those Runge-Kutta order conditions which correspond to the trees

$$\cdot$$
 \cdot \cdot \cdot \cdot \cdot \cdot \cdot

It will usually be convenient to choose a quadrature formula as the first step in deriving a Runge–Kutta method.

Once this is done, the b_i and the c_i are known and the final task will be to satisfy the remaining order conditions by choosing suitable values of the a_{ij} .

From a consideration of special quadrature problems, we have seen that necessary conditions for order s are that

$$\sum_{i=1}^{s} b_i c_i^{k-1} = \frac{1}{k}, \qquad k = 1, 2, \dots, s.$$
 (*)

These are equivalent to those Runge-Kutta order conditions which correspond to the trees

$$\cdot$$
 \cdot \cdot \cdot \cdot \cdot \cdot \cdot

It will usually be convenient to choose a quadrature formula as the first step in deriving a Runge–Kutta method.

Once this is done, the b_i and the c_i are known and the final task will be to satisfy the remaining order conditions by choosing suitable values of the a_{ij} .

In the remaining sections of this tutorial, these ideas will be applied to finding methods up to order 4.

Order 2

Methods with order 2

The two "quadrature" conditions are

$$b_1 + b_2 = 1,$$
$$b_2 c_2 = \frac{1}{2},$$

corresponding to the trees ${\scriptstyle \bullet}$ and ${\scriptstyle \blacksquare}$.

There are no additional trees (or additional order conditions) to satisfy, so all we have to do is choose $c_2 \neq 0$ and immediately we find that $b_2 = 1/2c_2$, $b_1 = 1 - 1/2c_2$.

Here are three methods based on convenient choices of c_2 . Note that the first two methods are due to Runge.

Methods with order 2

The two "quadrature" conditions are

$$b_1 + b_2 = 1,$$

 $b_2 c_2 = \frac{1}{2},$

corresponding to the trees ${\scriptstyle \bullet}$ and ${\scriptstyle \blacksquare}$.

There are no additional trees (or additional order conditions) to satisfy, so all we have to do is choose $c_2 \neq 0$ and immediately we find that $b_2 = 1/2c_2$, $b_1 = 1 - 1/2c_2$.

Here are three methods based on convenient choices of c_2 . Note that the first two methods are due to Runge.

Methods with order 2

The two "quadrature" conditions are

$$b_1 + b_2 = 1,$$

 $b_2 c_2 = \frac{1}{2},$

corresponding to the trees ${\scriptstyle \bullet}$ and ${\scriptstyle \blacksquare}$.

There are no additional trees (or additional order conditions) to satisfy, so all we have to do is choose $c_2 \neq 0$ and immediately we find that $b_2 = 1/2c_2$, $b_1 = 1 - 1/2c_2$.

Here are three methods based on convenient choices of c_2 . Note that the first two methods are due to Runge.

Methods with order 3

There are now three quadrature conditions corresponding to the trees \bullet , \bullet and \checkmark .

Orde

Methods with order 3

There are now three quadrature conditions corresponding to the trees $\hfill \bullet$, $\hfill \bullet$ and \bigvee

These are

$$b_1 + b_2 + b_3 = 1, (a)$$

$$b_2c_2 + b_3c_3 = \frac{1}{2},\tag{b}$$

$$b_2 c_2^2 + b_3 c_3^2 = \frac{1}{3}.$$
 (c)

Ord

Methods with order 3

There are now three quadrature conditions corresponding to the trees \bullet , \bullet and \checkmark .

These are

$$b_1 + b_2 + b_3 = 1, (a)$$

$$b_2c_2 + b_3c_3 = \frac{1}{2},\tag{b}$$

$$b_2 c_2^2 + b_3 c_3^2 = \frac{1}{3}.$$
 (c)

There is also an additional condition corresponding to $\climath{\climath{I}}$:

$$b_3 a_{32} c_2 = \frac{1}{6}.$$
 (d)

Ord

Methods with order 3

There are now three quadrature conditions corresponding to the trees $\hfill \bullet$, $\hfill \bullet$ and \bigvee

These are

$$b_1 + b_2 + b_3 = 1, (a)$$

$$b_2c_2 + b_3c_3 = \frac{1}{2},\tag{b}$$

$$b_2 c_2^2 + b_3 c_3^2 = \frac{1}{3}.$$
 (c)

There is also an additional condition corresponding to I:

$$b_3 a_{32} c_2 = \frac{1}{6}.$$
 (d)

The steps in finding a method are to choose suitable c_i , solve (a), (b) and (c) for the b_i and finally solve (d) for a_{32} .

Ord

Methods with order 3

There are now three quadrature conditions corresponding to the trees $\hfill \bullet$, $\hfill \bullet$ and \bigvee

These are

$$b_1 + b_2 + b_3 = 1, (a)$$

$$b_2c_2 + b_3c_3 = \frac{1}{2},\tag{b}$$

$$b_2 c_2^2 + b_3 c_3^2 = \frac{1}{3}.$$
 (c)

There is also an additional condition corresponding to I:

$$b_3 a_{32} c_2 = \frac{1}{6}.$$
 (d)

The steps in finding a method are to choose suitable c_i , solve (a), (b) and (c) for the b_i and finally solve (d) for a_{32} . Note that in the choice of the c_i and the evaluation of the b_i ,

the value $b_3 = 0$ must be avoided, otherwise the solution of (d) becomes impossible.

Examples of third order methods:

$ \begin{array}{c} 0 \\ \frac{1}{2} \\ 1 \end{array} $		1 2 1	9		0 1 <u>1</u>	1 1	<u>1</u>		
		1 1 3	$\frac{2}{3}$	$\frac{1}{6}$	2	$\frac{\overline{4}}{\overline{6}}$	$\frac{\overline{4}}{\overline{6}}$	$\frac{2}{3}$	-
$0 \\ \frac{2}{3} \\ \frac{2}{3} \\ \frac{2}{3}$	$\frac{2}{3}$ 0	$\frac{2}{3}$			$\begin{array}{c} 0\\ \frac{1}{3}\\ 1\end{array}$]	<u>L</u> 3 L	2	
	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{3}{8}$			()	$\frac{3}{4}$	$\frac{1}{4}$
$\begin{array}{c} 0\\ \frac{2}{3}\\ \frac{2}{3}\\ \frac{2}{3} \end{array}$	$\frac{2}{3}$ $\frac{1}{3}$	$\frac{1}{3}$			$ \begin{array}{c} 0 \\ \frac{2}{3} \\ 0 \end{array} $	-]	2 3 L	1	
	$\frac{1}{4}$	0	$\frac{3}{4}$	•		()	$\frac{3}{4}$	$\frac{1}{4}$

(6)(7) (8)

Methods with order 4

Recall the conditions for order 4, but ordered differently:

- $b_1 + b_2 + b_3 + b_4 = 1, \tag{1}$

$$b_2c_2^3 + b_3c_3^3 + b_4c_4^3 = \frac{1}{4}, \tag{4}$$

$$c_2 + b_4a_{42}c_2 + b_4a_{43}c_3 = \frac{1}{6}, \tag{5}$$

$$b_{3}a_{32}c_{2} + b_{4}a_{42}c_{2} + b_{4}a_{43}c_{3} = \frac{1}{6},$$

$$b_{3}c_{3}a_{32}c_{2} + b_{4}c_{4}a_{42}c_{2} + b_{4}c_{4}a_{43}c_{3} = \frac{1}{8},$$

$$b_{3}a_{32}c_{2}^{2} + b_{4}a_{42}c_{2}^{2} + b_{4}a_{43}c_{3}^{2} = \frac{1}{12},$$

$$b_{4}a_{43}a_{32}c_{2} = \frac{1}{24}.$$

Given c_2 , c_3 , c_4 , carry out the three steps:

- **1** solve for b_1 , b_2 , b_3 , b_4 from (1), (2), (3), (4),
- **2** solve for a_{32} , a_{42} , a_{43} from (5), (6), (7),

7

3 substitute the results found in steps 1 and 2 into (8) and check for consistency.

Order 4

(5)

(6)

Methods with order 4

Recall the conditions for order 4, but ordered differently:

- $b_1 + b_2 + b_3 + b_4 = 1, \tag{1}$
- $b_2c_2 + b_3c_3 + b_4c_4 = \frac{1}{2},\tag{2}$
- $b_2c_2^2 + b_3c_3^2 + b_4c_4^2 = \frac{1}{3},$ (3) $b_2c_2^2 + b_3c_3^2 + b_4c_4^2 = \frac{1}{4},$ (4)

$$b_{3}a_{32}c_{2} + b_{4}a_{42}c_{2} + b_{4}a_{43}c_{3} = \frac{1}{6},$$

$$b_{3}c_{3}a_{32}c_{2} + b_{4}c_{4}a_{42}c_{2} + b_{4}c_{4}a_{43}c_{3} = \frac{1}{8},$$

$$b_{3}a_{32}c_{2}^{2} + b_{4}a_{42}c_{2}^{2} + b_{4}a_{43}c_{3}^{2} = \frac{1}{12},$$

$$a_{32}c_{2}^{2} + b_{4}a_{42}c_{2}^{2} + b_{4}a_{43}c_{3}^{2} = \frac{1}{12},$$

$$b_{4}a_{43}a_{32}c_{2} = \frac{1}{24}.$$
(8)

- **1** solve for b_1 , b_2 , b_3 , b_4 from (1), (2), (3), (4),
- **2** solve for a_{32} , a_{42} , a_{43} from (5), (6), (7),
- **3** substitute the results found in steps 1 and 2 into (8) and check for consistency.

Order 4

(5)

(6)

Methods with order 4

Recall the conditions for order 4, but ordered differently:

- $b_1 + b_2 + b_3 + b_4 = 1, \tag{1}$
- $b_2c_2 + b_3c_3 + b_4c_4 = \frac{1}{2},$ $b_2c_2^2 + b_3c_2^2 + b_4c_4^2 = \frac{1}{2},$ (2)

$$b_2c_2^3 + b_3c_3^3 + b_4c_4^3 = \frac{1}{4},$$
(4)

$$b_{3}a_{32}c_{2} + b_{4}a_{42}c_{2} + b_{4}a_{43}c_{3} = \frac{1}{6},$$

$$b_{3}c_{3}a_{32}c_{2} + b_{4}c_{4}a_{42}c_{2} + b_{4}c_{4}a_{43}c_{3} = \frac{1}{8},$$

$$b_{3}a_{32}c_{2}^{2} + b_{4}a_{42}c_{2}^{2} + b_{4}a_{43}c_{3}^{2} = \frac{1}{12},$$
(7)
$$b_{4}a_{43}a_{32}c_{2} = \frac{1}{24}.$$
(8)

- **1** solve for b_1 , b_2 , b_3 , b_4 from (1), (2), (3), (4),
- **2** solve for a_{32} , a_{42} , a_{43} from (5), (6), (7)
- **3** substitute the results found in steps 1 and 2 into (8) and check for consistency.

Order 4

(5)

Methods with order 4

hacan

Recall the conditions for order 4, but ordered differently:

- $b_1 + b_2 + b_3 + b_4 = 1.$ (1)(2)
- $b_2c_2 + b_3c_3 + b_4c_4 = \frac{1}{2},$ $b_2c_2^2 + b_3c_3^2 + b_4c_4^2 = \frac{1}{2},$ (3) $b_{2}a^{\bar{3}} + b_{2}a^{\bar{3}} + b_{3}a^{\bar{3}} - b_{4}a^{\bar{3}} - b_{4}a^{\bar{3}$ (4)

$$b_{3}a_{32}c_{2} + b_{4}a_{42}c_{2} + b_{4}a_{43}c_{3} = \frac{1}{6},$$

$$b_{3}a_{32}c_{2} + b_{4}c_{4}a_{42}c_{2} + b_{4}c_{4}a_{42}c_{3} = \frac{1}{6},$$

$$b_{3}c_{3}a_{32}c_{2} + b_{4}c_{4}a_{42}c_{2} + b_{4}c_{4}a_{43}c_{3} = \frac{1}{8},$$
(6)
$$b_{3}a_{32}c_{2}^{2} + b_{4}a_{42}c_{2}^{2} + b_{4}a_{43}c_{3}^{2} = \frac{1}{12},$$
(7)
$$b_{4}a_{43}a_{32}c_{2} = \frac{1}{24}.$$
(8)

$$b_4 a_{43} a_{32} c_2 = \frac{1}{24}.$$

- **1** solve for b_1 , b_2 , b_3 , b_4 from (1), (2), (3), (4),
- **2** solve for a_{32} , a_{42} , a_{43} from (5), (6), (7),

; Ore

Order 4

Methods with order 4

Recall the conditions for order 4, but ordered differently:

- $b_1 + b_2 + b_3 + b_4 = 1, \tag{1}$
- $b_2c_2 + b_3c_3 + b_4c_4 = \frac{1}{2},\tag{2}$
- $b_{2}c_{2}^{2} + b_{3}c_{3}^{2} + b_{4}c_{4}^{2} = \frac{1}{3},$ (3) $b_{2}c_{2}^{3} + b_{3}c_{3}^{3} + b_{4}c_{4}^{3} = \frac{1}{4},$ (4)

$$b_{2}c_{2}^{2} + b_{4}a_{42}c_{2}^{2} + b_{4}a_{43}c_{3}^{2} = \frac{1}{12},$$

$$b_{4}a_{43}a_{32}c_{2} = \frac{1}{24}.$$

$$(8)$$

- **1** solve for b_1 , b_2 , b_3 , b_4 from (1), (2), (3), (4),
- **2** solve for a_{32} , a_{42} , a_{43} from (5), (6), (7),
- **3** substitute the results found in steps 1 and 2 into (8) and check for consistency.

For specific choices of c_2 and c_3 to be used with $c_4 = 1$, it sometimes happens that some step of the process cannot be carried out, for example because of a vanishing denominator, but fortunately, many cases exist when there is no trouble.

$$c_4 = 1.$$

For specific choices of c_2 and c_3 to be used with $c_4 = 1$, it sometimes happens that some step of the process cannot be carried out, for example because of a vanishing denominator, but fortunately, many cases exist when there is no trouble.

$$c_4 = 1.$$

For specific choices of c_2 and c_3 to be used with $c_4 = 1$, it sometimes happens that some step of the process cannot be carried out, for example because of a vanishing denominator, but fortunately, many cases exist when there is no trouble.

$$c_4 = 1.$$

For specific choices of c_2 and c_3 to be used with $c_4 = 1$, it sometimes happens that some step of the process cannot be carried out, for example because of a vanishing denominator, but fortunately, many cases exist when there is no trouble.

			Order 5 Order
$\begin{array}{c c} 0 \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \end{array}$	-) 1	$\begin{array}{c ccccc} 0 & & \\ \frac{1}{4} & \frac{1}{4} & \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 1 & -2 & 2 \end{array}$	
$\frac{1}{6}$ $\frac{1}{3}$	$\frac{1}{3}$ $\frac{1}{6}$	$\frac{1}{6}$ 0 $\frac{2}{3}$	$\frac{1}{6}$
$\begin{array}{c c} 0 \\ \frac{1}{2} & \frac{1}{2} \\ 0 & -1 \\ 1 & -1 \\ \hline & \frac{1}{12} \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} 0 & & & \\ 1 & 1 & & \\ \frac{1}{2} & \frac{3}{8} & \frac{1}{8} \\ 1 & -2 & -1 \\ \hline & \frac{1}{6} & \frac{1}{12} \end{array}$	$\frac{4}{\frac{2}{3} + \frac{1}{12}}$
$\begin{array}{c c} 0 \\ \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} \\ 1 & 1 \\ \end{array}$	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\frac{1}{8}$	$\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{8}$	$\frac{1}{8}$ $\frac{3}{8}$ $\frac{3}{8}$	$\frac{1}{8}$