John Butcher's tutorials

Low order Runge-Kutta methods

Review of order conditions

Recall the order-4 conditions for a 4 -stage method:

t	$\Phi(t)=\frac{1}{\gamma(t)}$
-	$b_{1}+b_{2}+b_{3}+b_{4}=1$
!	$b_{2} c_{2}+b_{3} c_{3}+b_{4} c_{4}=\frac{1}{2}$
\mathcal{L}	$b_{2} c_{2}^{2}+b_{3} c_{3}^{2}+b_{4} c_{4}^{2}=\frac{1}{3}$
	$b_{3} a_{32} c_{2}+b_{4} a_{42} c_{2}+b_{4} a_{43} c_{3}=\frac{1}{6}$
8	$b_{2} c_{2}^{3}+b_{3} c_{3}^{3}+b_{4} c_{4}^{3}=\frac{1}{4}$
	$b_{3} c_{3} a_{32} c_{2}+b_{4} c_{4} a_{42} c_{2}+b_{4} c_{4} a_{43} c_{3}=\frac{1}{8}$
Y	$b_{3} a_{32} c_{2}^{2}+b_{4} a_{42} c_{2}^{2}+b_{4} a_{43} c_{3}^{2}=\frac{1}{12}$
	$b_{4} a_{43} a_{32} c_{2}=\frac{1}{24}$

For order $p(p \leq 4)$, no more than p stages are required.

For order $p(p \leq 4)$, no more than p stages are required.
The conditions for these can be found, when $p<4$, by ■ omitting conditions corresponding to trees with greater than p vertices

For order $p(p \leq 4)$, no more than p stages are required.
The conditions for these can be found, when $p<4$, by
■ omitting conditions corresponding to trees with greater than p vertices
(that is by omitting trees with order greater than p)

For order $p(p \leq 4)$, no more than p stages are required.
The conditions for these can be found, when $p<4$, by
■ omitting conditions corresponding to trees with greater than p vertices
(that is by omitting trees with order greater than p)
■ omitting all terms in $\Phi(t)$ with subscripts greater than p.

For order $p(p \leq 4)$, no more than p stages are required.
The conditions for these can be found, when $p<4$, by
■ omitting conditions corresponding to trees with greater than p vertices
(that is by omitting trees with order greater than p)
■ omitting all terms in $\Phi(t)$ with subscripts greater than p.
Order 2:

$$
\begin{aligned}
b_{1}+b_{2} & =1 \\
b_{2} c_{2} & =\frac{1}{2}
\end{aligned}
$$

For order $p(p \leq 4)$, no more than p stages are required.
The conditions for these can be found, when $p<4$, by
\square omitting conditions corresponding to trees with greater than p vertices
(that is by omitting trees with order greater than p)
■ omitting all terms in $\Phi(t)$ with subscripts greater than p.
Order 2:

$$
\begin{array}{r|r}
\bullet & b_{1}+b_{2}=1 \\
\bullet & b_{2} c_{2}=\frac{1}{2}
\end{array}
$$

Order 3:

\bullet	$b_{1}+b_{2}+b_{3}=1$
\vdots	$b_{2} c_{2}+b_{3} c_{3}=\frac{1}{2}$
	$b_{2} c_{2}^{2}+b_{3} c_{3}^{2}=\frac{1}{3}$
\vdots	$b_{3} a_{32} c_{2}=\frac{1}{6}$

Connection with quadrature

In the special case of a differential equation of the form:

$$
\frac{d y}{d x}=\phi(x),
$$

integration over a single step using an s-stage Runge-Kutta method is equivalent to the approximation

$$
\int_{x_{0}}^{x_{1}} \phi(x) d x \sim h \sum_{i=1}^{s} b_{i} \phi\left(x_{0}+h c_{i}\right)
$$

We will examine how well this approximation works for the s special choices of ϕ given by

$$
\phi(x)=\left(x-x_{0}\right)^{k-1}, \quad k=1,2, \ldots, s
$$

The error in $\left({ }^{*}\right)$ is equal to

$$
-\left(\sum_{i=1}^{s} b_{i} c_{i}^{k-1}-\frac{1}{k}\right) h^{k}
$$

Connection with quadrature

In the special case of a differential equation of the form:

$$
\frac{d y}{d x}=\phi(x)
$$

integration over a single step using an s-stage Runge-Kutta method is equivalent to the approximation

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}} \phi(x) d x \approx h \sum_{i=1}^{s} b_{i} \phi\left(x_{0}+h c_{i}\right) \tag{*}
\end{equation*}
$$

We will examine how well this approximation works for the s special choices of ϕ given by

$$
\phi(x)=\left(x-x_{0}\right)^{k-1}, \quad k=1,2, \ldots, s
$$

The error in $\left(^{*}\right)$ is equal to

To obtain order s, the coefficient of h^{k} in (\dagger) must be zero for all $k=1,2, \ldots, s$.

Connection with quadrature

In the special case of a differential equation of the form:

$$
\frac{d y}{d x}=\phi(x)
$$

integration over a single step using an s-stage Runge-Kutta method is equivalent to the approximation

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}} \phi(x) d x \approx h \sum_{i=1}^{s} b_{i} \phi\left(x_{0}+h c_{i}\right) \tag{*}
\end{equation*}
$$

We will examine how well this approximation works for the s special choices of ϕ given by

$$
\phi(x)=\left(x-x_{0}\right)^{k-1}, \quad k=1,2, \ldots, s
$$

The error in $\left(^{*}\right)$ is equal to

$$
-\left(\sum_{i=1}^{s} b_{i} c_{i}^{k-1}-\frac{1}{k}\right) h^{k}
$$

To obtain order s, the coefficient of h^{k} in (\dagger) must be zero for all $k=1,2, \ldots, s$.

Connection with quadrature

In the special case of a differential equation of the form:

$$
\frac{d y}{d x}=\phi(x)
$$

integration over a single step using an s-stage Runge-Kutta method is equivalent to the approximation

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}} \phi(x) d x \approx h \sum_{i=1}^{s} b_{i} \phi\left(x_{0}+h c_{i}\right) \tag{*}
\end{equation*}
$$

We will examine how well this approximation works for the s special choices of ϕ given by

$$
\phi(x)=\left(x-x_{0}\right)^{k-1}, \quad k=1,2, \ldots, s
$$

The error in $\left(^{*}\right)$ is equal to

$$
-\left(\sum_{i=1}^{s} b_{i} c_{i}^{k-1}-\frac{1}{k}\right) h^{k}
$$

To obtain order s, the coefficient of h^{k} in (\dagger) must be zero for all $k=1,2, \ldots, s$.

From a consideration of special quadrature problems, we have seen that necessary conditions for order s are that

$$
\begin{equation*}
\sum_{i=1}^{s} b_{i} c_{i}^{k-1}=\frac{1}{k}, \quad k=1,2, \ldots, s \tag{*}
\end{equation*}
$$

From a consideration of special quadrature problems, we have seen that necessary conditions for order s are that

$$
\begin{equation*}
\sum_{i=1}^{s} b_{i} c_{i}^{k-1}=\frac{1}{k}, \quad k=1,2, \ldots, s \tag{*}
\end{equation*}
$$

These are equivalent to those Runge-Kutta order conditions which correspond to the trees

From a consideration of special quadrature problems, we have seen that necessary conditions for order s are that

$$
\begin{equation*}
\sum_{i=1}^{s} b_{i} c_{i}^{k-1}=\frac{1}{k}, \quad k=1,2, \ldots, s \tag{*}
\end{equation*}
$$

These are equivalent to those Runge-Kutta order conditions which correspond to the trees

It will usually be convenient to choose a quadrature formula as the first step in deriving a Runge-Kutta method.

From a consideration of special quadrature problems, we have seen that necessary conditions for order s are that

$$
\begin{equation*}
\sum_{i=1}^{s} b_{i} c_{i}^{k-1}=\frac{1}{k}, \quad k=1,2, \ldots, s \tag{*}
\end{equation*}
$$

These are equivalent to those Runge-Kutta order conditions which correspond to the trees

It will usually be convenient to choose a quadrature formula as the first step in deriving a Runge-Kutta method.

Once this is done, the b_{i} and the c_{i} are known and the final task will be to satisfy the remaining order conditions by choosing suitable values of the $a_{i j}$.

From a consideration of special quadrature problems, we have seen that necessary conditions for order s are that

$$
\begin{equation*}
\sum_{i=1}^{s} b_{i} c_{i}^{k-1}=\frac{1}{k}, \quad k=1,2, \ldots, s \tag{*}
\end{equation*}
$$

These are equivalent to those Runge-Kutta order conditions which correspond to the trees

It will usually be convenient to choose a quadrature formula as the first step in deriving a Runge-Kutta method.

Once this is done, the b_{i} and the c_{i} are known and the final task will be to satisfy the remaining order conditions by choosing suitable values of the $a_{i j}$.
In the remaining sections of this tutorial, these ideas will be applied to finding methods up to order 4.

Methods with order 2

The two "quadrature" conditions are

$$
\begin{aligned}
b_{1}+b_{2} & =1 \\
b_{2} c_{2} & =\frac{1}{2}
\end{aligned}
$$

corresponding to the trees • and $\boldsymbol{\varrho}$.
There are no additional trees (or additional order conditions) to satisfy, so all we have to do is choose $c_{2} \neq 0$ and immediately we find that $b_{2}=1 / 2 c_{2}, b_{1}=1-1 / 2 c_{2}$.

Here are three methods based on convenient choices of c_{2}. Note that the first two methods are due to Runge.

Methods with order 2

The two "quadrature" conditions are

$$
\begin{aligned}
b_{1}+b_{2} & =1 \\
b_{2} c_{2} & =\frac{1}{2}
\end{aligned}
$$

corresponding to the trees • and \boldsymbol{d}.
There are no additional trees (or additional order conditions) to satisfy, so all we have to do is choose $c_{2} \neq 0$ and immediately we find that $b_{2}=1 / 2 c_{2}, b_{1}=1-1 / 2 c_{2}$.

Here are three methods based on convenient choices of c_{2}. Note that the first two methods are due to Runge.

Methods with order 2

The two "quadrature" conditions are

$$
\begin{aligned}
b_{1}+b_{2} & =1 \\
b_{2} c_{2} & =\frac{1}{2}
\end{aligned}
$$

corresponding to the trees • and \boldsymbol{d}.
There are no additional trees (or additional order conditions) to satisfy, so all we have to do is choose $c_{2} \neq 0$ and immediately we find that $b_{2}=1 / 2 c_{2}, b_{1}=1-1 / 2 c_{2}$.

Here are three methods based on convenient choices of c_{2}. Note that the first two methods are due to Runge.

Methods with order 3

There are now three quadrature conditions corresponding to the trees •, $\boldsymbol{\varrho}$ and

Methods with order 3

There are now three quadrature conditions corresponding to the trees •, $\boldsymbol{\ell}$ and $\boldsymbol{\gamma}$.
These are

$$
\begin{align*}
b_{1}+b_{2}+b_{3} & =1 \tag{a}\\
b_{2} c_{2}+b_{3} c_{3} & =\frac{1}{2} \tag{b}\\
b_{2} c_{2}^{2}+b_{3} c_{3}^{2} & =\frac{1}{3} . \tag{c}
\end{align*}
$$

Methods with order 3

There are now three quadrature conditions corresponding to the trees •, $\boldsymbol{\ell}$ and $\mathbf{\gamma}$.
These are

$$
\begin{align*}
b_{1}+b_{2}+b_{3} & =1 \tag{a}\\
b_{2} c_{2}+b_{3} c_{3} & =\frac{1}{2} \tag{b}\\
b_{2} c_{2}^{2}+b_{3} c_{3}^{2} & =\frac{1}{3} . \tag{c}
\end{align*}
$$

There is also an additional condition corresponding to \mathfrak{d} :

$$
\begin{equation*}
b_{3} a_{32} c_{2}=\frac{1}{6} . \tag{d}
\end{equation*}
$$

Methods with order 3

There are now three quadrature conditions corresponding to the trees •, $\boldsymbol{\ell}$ and $\mathbf{\gamma}$.
These are

$$
\begin{align*}
b_{1}+b_{2}+b_{3} & =1 \tag{a}\\
b_{2} c_{2}+b_{3} c_{3} & =\frac{1}{2} \tag{b}\\
b_{2} c_{2}^{2}+b_{3} c_{3}^{2} & =\frac{1}{3} . \tag{c}
\end{align*}
$$

There is also an additional condition corresponding to \mathfrak{d} :

$$
\begin{equation*}
b_{3} a_{32} c_{2}=\frac{1}{6} . \tag{d}
\end{equation*}
$$

The steps in finding a method are to choose suitable c_{i}, solve (a), (b) and (c) for the b_{i} and finally solve (d) for a_{32}.

Methods with order 3

There are now three quadrature conditions corresponding to the trees •, $\grave{\varrho}$ and $\boldsymbol{\gamma}$.
These are

$$
\begin{align*}
b_{1}+b_{2}+b_{3} & =1 \tag{a}\\
b_{2} c_{2}+b_{3} c_{3} & =\frac{1}{2} \tag{b}\\
b_{2} c_{2}^{2}+b_{3} c_{3}^{2} & =\frac{1}{3} . \tag{c}
\end{align*}
$$

There is also an additional condition corresponding to \mathfrak{d} :

$$
\begin{equation*}
b_{3} a_{32} c_{2}=\frac{1}{6} \tag{d}
\end{equation*}
$$

The steps in finding a method are to choose suitable c_{i}, solve (a), (b) and (c) for the b_{i} and finally solve (d) for a_{32}.

Note that in the choice of the c_{i} and the evaluation of the b_{i}, the value $b_{3}=0$ must be avoided, otherwise the solution of (d) becomes impossible.

Examples of third order methods:

Methods with order 4

Recall the conditions for order 4 , but ordered differently:

$$
\begin{align*}
b_{1}+b_{2}+b_{3}+b_{4} & =1, \tag{1}\\
b_{2} c_{2}+b_{3} c_{3}+b_{4} c_{4} & =\frac{1}{2}, \tag{2}\\
b_{2} c_{2}^{2}+b_{3} c_{3}^{2}+b_{4} c_{4}^{2} & =\frac{1}{3}, \tag{3}\\
b_{2} c_{2}^{3}+b_{3} c_{3}^{3}+b_{4} c_{4}^{3} & =\frac{1}{4}, \tag{4}\\
b_{3} a_{32} c_{2}+b_{4} a_{42} c_{2}+b_{4} a_{43} c_{3} & =\frac{1}{9}, \tag{5}\\
b_{3} c_{3} a_{32} c_{2}+b_{4} c_{4} a_{42} c_{2}+b_{4} c_{4} a_{43} c_{3} & =\frac{1}{8}, \tag{6}\\
b_{3} a_{32} c_{2}^{2}+b_{4} a_{42} c_{2}^{2}+b_{4} a_{43} c_{3}^{2} & =\frac{1}{12}, \tag{7}\\
b_{4} a_{43} a_{32} c_{2} & =\frac{1}{24} . \tag{8}
\end{align*}
$$

3 substitute the results found in steps 1 and 2 into (8) and check for consistency.

Methods with order 4

Recall the conditions for order 4 , but ordered differently:

$$
\begin{align*}
b_{1}+b_{2}+b_{3}+b_{4} & =1, \tag{1}\\
b_{2} c_{2}+b_{3} c_{3}+b_{4} c_{4} & =\frac{1}{2}, \tag{2}\\
b_{2} c_{2}^{2}+b_{3} c_{3}^{2}+b_{4} c_{4}^{2} & =\frac{1}{3}, \tag{3}\\
b_{2} c_{2}^{3}+b_{3} c_{3}^{3}+b_{4} c_{4}^{3} & =\frac{1}{4}, \tag{4}\\
b_{3} a_{32} c_{2}+b_{4} a_{42} c_{2}+b_{4} a_{43} c_{3} & =\frac{1}{6}, \tag{5}\\
b_{3} c_{3} a_{32} c_{2}+b_{4} c_{4} a_{42} c_{2}+b_{4} c_{4} a_{43} c_{3} & =\frac{1}{8}, \tag{6}\\
b_{3} a_{32} c_{2}^{2}+b_{4} a_{42} c_{2}^{2}+b_{4} a_{43} c_{3}^{2} & =\frac{1}{12}, \tag{7}\\
b_{4} a_{43} a_{32} c_{2} & =\frac{1}{24} . \tag{8}
\end{align*}
$$

Given c_{2}, c_{3}, c_{4}, carry out the three steps:

Methods with order 4

Recall the conditions for order 4 , but ordered differently:

$$
\begin{align*}
b_{1}+b_{2}+b_{3}+b_{4} & =1, \tag{1}\\
b_{2} c_{2}+b_{3} c_{3}+b_{4} c_{4} & =\frac{1}{2}, \tag{2}\\
b_{2} c_{2}^{2}+b_{3} c_{3}^{2}+b_{4} c_{4}^{2} & =\frac{1}{3}, \tag{3}\\
b_{2} c_{2}^{3}+b_{3} c_{3}^{3}+b_{4} c_{4}^{3} & =\frac{1}{4}, \tag{4}\\
b_{3} a_{32} c_{2}+b_{4} a_{42} c_{2}+b_{4} a_{43} c_{3} & =\frac{1}{6}, \tag{5}\\
b_{3} c_{3} a_{32} c_{2}+b_{4} c_{4} a_{42} c_{2}+b_{4} c_{4} a_{43} c_{3} & =\frac{1}{8}, \tag{6}\\
b_{3} a_{32} c_{2}^{2}+b_{4} a_{42} c_{2}^{2}+b_{4} a_{43} c_{3}^{2} & =\frac{1}{12}, \tag{7}\\
b_{4} a_{43} a_{32} c_{2} & =\frac{1}{24} . \tag{8}
\end{align*}
$$

Given c_{2}, c_{3}, c_{4}, carry out the three steps:
1 solve for $b_{1}, b_{2}, b_{3}, b_{4}$ from (1), (2), (3), (4),

3 substitute the results found in steps 1 and 2 into (8) and check for consistency.

Methods with order 4

Recall the conditions for order 4 , but ordered differently:

$$
\begin{align*}
b_{1}+b_{2}+b_{3}+b_{4} & =1, \tag{1}\\
b_{2} c_{2}+b_{3} c_{3}+b_{4} c_{4} & =\frac{1}{2}, \tag{2}\\
b_{2} c_{2}^{2}+b_{3} c_{3}^{2}+b_{4} c_{4}^{2} & =\frac{1}{3}, \tag{3}\\
b_{2} c_{2}^{3}+b_{3} c_{3}^{3}+b_{4} c_{4}^{3} & =\frac{1}{4}, \tag{4}\\
b_{3} a_{32} c_{2}+b_{4} a_{42} c_{2}+b_{4} a_{43} c_{3} & =\frac{1}{6}, \tag{5}\\
b_{3} c_{3} a_{32} c_{2}+b_{4} c_{4} a_{42} c_{2}+b_{4} c_{4} a_{43} c_{3} & =\frac{1}{8}, \tag{6}\\
b_{3} a_{32} c_{2}^{2}+b_{4} a_{42} c_{2}^{2}+b_{4} a_{43} c_{3}^{2} & =\frac{1}{12}, \tag{7}\\
b_{4} a_{43} a_{32} c_{2} & =\frac{1}{24} . \tag{8}
\end{align*}
$$

Given c_{2}, c_{3}, c_{4}, carry out the three steps:
1 solve for $b_{1}, b_{2}, b_{3}, b_{4}$ from (1), (2), (3), (4),
2 solve for a_{32}, a_{42}, a_{43} from (5), (6), (7),

Methods with order 4

Recall the conditions for order 4 , but ordered differently:

$$
\begin{align*}
b_{1}+b_{2}+b_{3}+b_{4} & =1, \tag{1}\\
b_{2} c_{2}+b_{3} c_{3}+b_{4} c_{4} & =\frac{1}{2}, \tag{2}\\
b_{2} c_{2}^{2}+b_{3} c_{3}^{2}+b_{4} c_{4}^{2} & =\frac{1}{3}, \tag{3}\\
b_{2} c_{2}^{3}+b_{3} c_{3}^{3}+b_{4} c_{4}^{3} & =\frac{1}{4}, \tag{4}\\
b_{3} a_{32} c_{2}+b_{4} a_{42} c_{2}+b_{4} a_{43} c_{3} & =\frac{1}{6}, \tag{5}\\
b_{3} c_{3} a_{32} c_{2}+b_{4} c_{4} a_{42} c_{2}+b_{4} c_{4} a_{43} c_{3} & =\frac{1}{8}, \tag{6}\\
b_{3} a_{32} c_{2}^{2}+b_{4} a_{42} c_{2}^{2}+b_{4} a_{43} c_{3}^{2} & =\frac{1}{12}, \tag{7}\\
b_{4} a_{43} a_{32} c_{2} & =\frac{1}{24} . \tag{8}
\end{align*}
$$

Given c_{2}, c_{3}, c_{4}, carry out the three steps:
1 solve for $b_{1}, b_{2}, b_{3}, b_{4}$ from (1), (2), (3), (4),
2 solve for a_{32}, a_{42}, a_{43} from (5), (6), (7),
3 substitute the results found in steps 1 and 2 into (8) and check for consistency.

If c_{2}, c_{3} and c_{4} are treated as parameters, and these steps are carried out, it is found that the consistency condition yielded in Step 3 is surprisingly simple. This condition is:

For specific choices of c_{2} and c_{3} to be used with $c_{4}=1$, it sometimes happens that some step of the process cannot be carried out, for example because of a vanishing denominator, but fortunately, many cases exist when there is no trouble. We conclude this tutorial by presenting a number of examples of order 4 methods.

If c_{2}, c_{3} and c_{4} are treated as parameters, and these steps are carried out, it is found that the consistency condition yielded in Step 3 is surprisingly simple. This condition is:

$$
c_{4}=1
$$

For specific choices of c_{2} and c_{3} to be used with $c_{4}=1$, it sometimes happens that some step of the process cannot be carried out, for example because of a vanishing denominator, but fortunately, many cases exist when there is no trouble. We conclude this tutorial by presenting a number of examples of order 4 methods.

If c_{2}, c_{3} and c_{4} are treated as parameters, and these steps are carried out, it is found that the consistency condition yielded in Step 3 is surprisingly simple. This condition is:

$$
c_{4}=1
$$

For specific choices of c_{2} and c_{3} to be used with $c_{4}=1$, it sometimes happens that some step of the process cannot be carried out, for example because of a vanishing denominator, but fortunately, many cases exist when there is no trouble.

We conclude this tutorial by presenting a number of examples of order 4 methods.

If c_{2}, c_{3} and c_{4} are treated as parameters, and these steps are carried out, it is found that the consistency condition yielded in Step 3 is surprisingly simple. This condition is:

$$
c_{4}=1
$$

For specific choices of c_{2} and c_{3} to be used with $c_{4}=1$, it sometimes happens that some step of the process cannot be carried out, for example because of a vanishing denominator, but fortunately, many cases exist when there is no trouble.

We conclude this tutorial by presenting a number of examples of order 4 methods.

0				
$\frac{1}{4}$	$\frac{1}{4}$			
$\frac{1}{2}$	0	$\frac{1}{2}$		
1	1	-2	2	
	$\frac{1}{6}$	0	$\frac{2}{3}$	$\frac{1}{6}$

