
John Butcher’s tutorials

Implicit Runge–Kutta methods

1

2
−

√

3

6

1

4

1

4
−

√

3

6

1

2
+

√

3

6

1

4
+

√

3

6

1

4

1

2

1

2

Implicit Runge–Kutta methods



Since we have an order barrier, which says that order p RK
methods require more than p stages if p > 4, we might ask how
to get around this barrier.

For explicit methods, solving the order conditions becomes
increasingly difficult as the order increases but everything
becomes simpler for implicit methods.

For example the following method has order 5:

0

1
4

1
8

1
8

7
10 − 1

100
14
25

3
20

1 2
7 0 5

7

1
14

32
81

250
567

5
54

Implicit Runge–Kutta methods



Since we have an order barrier, which says that order p RK
methods require more than p stages if p > 4, we might ask how
to get around this barrier.

For explicit methods, solving the order conditions becomes
increasingly difficult as the order increases but everything
becomes simpler for implicit methods.

For example the following method has order 5:

0

1
4

1
8

1
8

7
10 − 1

100
14
25

3
20

1 2
7 0 5

7

1
14

32
81

250
567

5
54

Implicit Runge–Kutta methods



Since we have an order barrier, which says that order p RK
methods require more than p stages if p > 4, we might ask how
to get around this barrier.

For explicit methods, solving the order conditions becomes
increasingly difficult as the order increases but everything
becomes simpler for implicit methods.

For example the following method has order 5:

0

1
4

1
8

1
8

7
10 − 1

100
14
25

3
20

1 2
7 0 5

7

1
14

32
81

250
567

5
54

Implicit Runge–Kutta methods



Since we have an order barrier, which says that order p RK
methods require more than p stages if p > 4, we might ask how
to get around this barrier.

For explicit methods, solving the order conditions becomes
increasingly difficult as the order increases but everything
becomes simpler for implicit methods.

For example the following method has order 5:

0

1
4

1
8

1
8

7
10 − 1

100
14
25

3
20

1 2
7 0 5

7

1
14

32
81

250
567

5
54

Implicit Runge–Kutta methods



We could check the order of this method by verifying the 17
order conditions but there is an easier way.
A method has order 5 if it satisfies the B(5), C(2) and D(2)
conditions.
A method satisfies B(k), C(k), D(k) and E(k, ℓ) if

s∑

i=1

bic
j−1
i = 1

j
, j = 1, 2, . . . , k, B(k)

s∑

j=1

aijc
ℓ−1
j = 1

ℓ
cℓ
i , i = 1, 2, . . . , s, ℓ = 1, 2, . . . , k, C(k)

s∑

i=1

bic
ℓ−1
i aij = 1

ℓ
bj(1−cℓ

j), j = 1, 2, . . . , s, ℓ = 1, 2, . . . , k, D(k)

s∑

i,j=1

bic
m−1
i aijc

n−1
j = 1

(m+n)n , m, n = 1, 2, . . . , s, E(k, ℓ)

and B(5), C(2) and D(2) are easy to check for this method.

Implicit Runge–Kutta methods



We could check the order of this method by verifying the 17
order conditions but there is an easier way.
A method has order 5 if it satisfies the B(5), C(2) and D(2)
conditions.
A method satisfies B(k), C(k), D(k) and E(k, ℓ) if

s∑

i=1

bic
j−1
i = 1

j
, j = 1, 2, . . . , k, B(k)

s∑

j=1

aijc
ℓ−1
j = 1

ℓ
cℓ
i , i = 1, 2, . . . , s, ℓ = 1, 2, . . . , k, C(k)

s∑

i=1

bic
ℓ−1
i aij = 1

ℓ
bj(1−cℓ

j), j = 1, 2, . . . , s, ℓ = 1, 2, . . . , k, D(k)

s∑

i,j=1

bic
m−1
i aijc

n−1
j = 1

(m+n)n , m, n = 1, 2, . . . , s, E(k, ℓ)

and B(5), C(2) and D(2) are easy to check for this method.

Implicit Runge–Kutta methods



We could check the order of this method by verifying the 17
order conditions but there is an easier way.
A method has order 5 if it satisfies the B(5), C(2) and D(2)
conditions.
A method satisfies B(k), C(k), D(k) and E(k, ℓ) if

s∑

i=1

bic
j−1
i = 1

j
, j = 1, 2, . . . , k, B(k)

s∑

j=1

aijc
ℓ−1
j = 1

ℓ
cℓ
i , i = 1, 2, . . . , s, ℓ = 1, 2, . . . , k, C(k)

s∑

i=1

bic
ℓ−1
i aij = 1

ℓ
bj(1−cℓ

j), j = 1, 2, . . . , s, ℓ = 1, 2, . . . , k, D(k)

s∑

i,j=1

bic
m−1
i aijc

n−1
j = 1

(m+n)n , m, n = 1, 2, . . . , s, E(k, ℓ)

and B(5), C(2) and D(2) are easy to check for this method.

Implicit Runge–Kutta methods



We could check the order of this method by verifying the 17
order conditions but there is an easier way.
A method has order 5 if it satisfies the B(5), C(2) and D(2)
conditions.
A method satisfies B(k), C(k), D(k) and E(k, ℓ) if

s∑

i=1

bic
j−1
i = 1

j
, j = 1, 2, . . . , k, B(k)

s∑

j=1

aijc
ℓ−1
j = 1

ℓ
cℓ
i , i = 1, 2, . . . , s, ℓ = 1, 2, . . . , k, C(k)

s∑

i=1

bic
ℓ−1
i aij = 1

ℓ
bj(1−cℓ

j), j = 1, 2, . . . , s, ℓ = 1, 2, . . . , k, D(k)

s∑

i,j=1

bic
m−1
i aijc

n−1
j = 1

(m+n)n , m, n = 1, 2, . . . , s, E(k, ℓ)

and B(5), C(2) and D(2) are easy to check for this method.

Implicit Runge–Kutta methods



The most important types of “fully implicit” methods (that is
A can have any structure) are

Gauss methods of order 2s, characterized by B(2s) and
C(s). To satisfy B(2s), the ci must be zeros of
Ps(2x − 1) = 0, where Ps is the Legendre polynomial of
degree s.

Radau IIA methods of order 2s − 1, characterized by
cs = 1, B(2s − 1) and C(s). The ci are zeros of
Ps(2x − 1) − Ps−1(2x − 1) = 0.

Both these families of methods are A-stable.

But both are very expensive to implement and both can suffer
from order reduction.

Implicit Runge–Kutta methods



The most important types of “fully implicit” methods (that is
A can have any structure) are

Gauss methods of order 2s, characterized by B(2s) and
C(s). To satisfy B(2s), the ci must be zeros of
Ps(2x − 1) = 0, where Ps is the Legendre polynomial of
degree s.

Radau IIA methods of order 2s − 1, characterized by
cs = 1, B(2s − 1) and C(s). The ci are zeros of
Ps(2x − 1) − Ps−1(2x − 1) = 0.

Both these families of methods are A-stable.

But both are very expensive to implement and both can suffer
from order reduction.

Implicit Runge–Kutta methods



The most important types of “fully implicit” methods (that is
A can have any structure) are

Gauss methods of order 2s, characterized by B(2s) and
C(s). To satisfy B(2s), the ci must be zeros of
Ps(2x − 1) = 0, where Ps is the Legendre polynomial of
degree s.

Radau IIA methods of order 2s − 1, characterized by
cs = 1, B(2s − 1) and C(s). The ci are zeros of
Ps(2x − 1) − Ps−1(2x − 1) = 0.

Both these families of methods are A-stable.

But both are very expensive to implement and both can suffer
from order reduction.

Implicit Runge–Kutta methods



The most important types of “fully implicit” methods (that is
A can have any structure) are

Gauss methods of order 2s, characterized by B(2s) and
C(s). To satisfy B(2s), the ci must be zeros of
Ps(2x − 1) = 0, where Ps is the Legendre polynomial of
degree s.

Radau IIA methods of order 2s − 1, characterized by
cs = 1, B(2s − 1) and C(s). The ci are zeros of
Ps(2x − 1) − Ps−1(2x − 1) = 0.

Both these families of methods are A-stable.

But both are very expensive to implement and both can suffer
from order reduction.

Implicit Runge–Kutta methods



The most important types of “fully implicit” methods (that is
A can have any structure) are

Gauss methods of order 2s, characterized by B(2s) and
C(s). To satisfy B(2s), the ci must be zeros of
Ps(2x − 1) = 0, where Ps is the Legendre polynomial of
degree s.

Radau IIA methods of order 2s − 1, characterized by
cs = 1, B(2s − 1) and C(s). The ci are zeros of
Ps(2x − 1) − Ps−1(2x − 1) = 0.

Both these families of methods are A-stable.

But both are very expensive to implement and both can suffer
from order reduction.

Implicit Runge–Kutta methods



Outline proof that Gauss methods have order 2s

B(2s)

C(s)

D(s)

E(s, s)

p=2s

AND

AND

AND

AND

AND

Implicit Runge–Kutta methods



Examples of Gauss methods

s = 1 :
1
2

1
2

1

s = 2 :

1
2 −

√

3
6

1
4

1
4 −

√

3
6

1
2 +

√

3
6

1
4 +

√

3
6

1
4

1
2

1
2

s = 3 :

1
2 −

√

15
10

5
36

2
9 −

√

15
15

5
36 −

√

15
30

1
2

5
36 +

√

15
24

2
9

5
36 −

√

15
24

1
2 +

√

15
10

5
36 +

√

15
30

2
9 +

√

15
15

5
36

5
18

4
9

5
18

Implicit Runge–Kutta methods



Examples of Gauss methods

s = 1 :
1
2

1
2

1

s = 2 :

1
2 −

√

3
6

1
4

1
4 −

√

3
6

1
2 +

√

3
6

1
4 +

√

3
6

1
4

1
2

1
2

s = 3 :

1
2 −

√

15
10

5
36

2
9 −

√

15
15

5
36 −

√

15
30

1
2

5
36 +

√

15
24

2
9

5
36 −

√

15
24

1
2 +

√

15
10

5
36 +

√

15
30

2
9 +

√

15
15

5
36

5
18

4
9

5
18

Implicit Runge–Kutta methods



Examples of Gauss methods

s = 1 :
1
2

1
2

1

s = 2 :

1
2 −

√

3
6

1
4

1
4 −

√

3
6

1
2 +

√

3
6

1
4 +

√

3
6

1
4

1
2

1
2

s = 3 :

1
2 −

√

15
10

5
36

2
9 −

√

15
15

5
36 −

√

15
30

1
2

5
36 +

√

15
24

2
9

5
36 −

√

15
24

1
2 +

√

15
10

5
36 +

√

15
30

2
9 +

√

15
15

5
36

5
18

4
9

5
18

Implicit Runge–Kutta methods



Examples of Radau IIA methods

s = 1 :
1 1

1

s = 2 :

1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

s = 3 :

2
5 −

√

6
10

11
45 − 7

√

6
360

37
225 − 169

√

6
1800 − 2

225 +
√

6
75

2
5 +

√

6
10

37
225 + 169

√

6
1800

11
45 + 7

√

6
360 − 2

225 −
√

6
75

1 4
9 −

√

6
36

4
9 +

√

6
36

1
9

4
9 −

√

6
36

4
9 +

√

6
36

1
9

Implicit Runge–Kutta methods



Examples of Radau IIA methods

s = 1 :
1 1

1

s = 2 :

1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

s = 3 :

2
5 −

√

6
10

11
45 − 7

√

6
360

37
225 − 169

√

6
1800 − 2

225 +
√

6
75

2
5 +

√

6
10

37
225 + 169

√

6
1800

11
45 + 7

√

6
360 − 2

225 −
√

6
75

1 4
9 −

√

6
36

4
9 +

√

6
36

1
9

4
9 −

√

6
36

4
9 +

√

6
36

1
9

Implicit Runge–Kutta methods



Examples of Radau IIA methods

s = 1 :
1 1

1

s = 2 :

1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

s = 3 :

2
5 −

√

6
10

11
45 − 7

√

6
360

37
225 − 169

√

6
1800 − 2

225 +
√

6
75

2
5 +

√

6
10

37
225 + 169

√

6
1800

11
45 + 7

√

6
360 − 2

225 −
√

6
75

1 4
9 −

√

6
36

4
9 +

√

6
36

1
9

4
9 −

√

6
36

4
9 +

√

6
36

1
9

Implicit Runge–Kutta methods



This idea of choosing A as a lower triangular matrix can be
taken further by avoiding diagonal zeros.

If all the diagonal elements are equal, we get the
Diagonally-Implicit methods of R. Alexander and the
Semi-Explicit methods of S. P. Nørsett (referred to as
semi-implicit by J.C. Butcher in 1965).

The following third order L-stable method illustrates what is
possible for DIRK methods

λ λ
1
2(1 + λ) 1

2(1 − λ) λ
1 1

4(−6λ2 + 16λ − 1) 1
4(6λ2 − 20λ + 5) λ

1
4(−6λ2 + 16λ − 1) 1

4(6λ2 − 20λ + 5) λ

where λ ≈ 0.4358665215 satisfies 1
6−

3
2λ+3λ2−λ3 = 0.

Implicit Runge–Kutta methods



This idea of choosing A as a lower triangular matrix can be
taken further by avoiding diagonal zeros.

If all the diagonal elements are equal, we get the
Diagonally-Implicit methods of R. Alexander and the
Semi-Explicit methods of S. P. Nørsett (referred to as
semi-implicit by J.C. Butcher in 1965).

The following third order L-stable method illustrates what is
possible for DIRK methods

λ λ
1
2(1 + λ) 1

2(1 − λ) λ
1 1

4(−6λ2 + 16λ − 1) 1
4(6λ2 − 20λ + 5) λ

1
4(−6λ2 + 16λ − 1) 1

4(6λ2 − 20λ + 5) λ

where λ ≈ 0.4358665215 satisfies 1
6−

3
2λ+3λ2−λ3 = 0.

Implicit Runge–Kutta methods



This idea of choosing A as a lower triangular matrix can be
taken further by avoiding diagonal zeros.

If all the diagonal elements are equal, we get the
Diagonally-Implicit methods of R. Alexander and the
Semi-Explicit methods of S. P. Nørsett (referred to as
semi-implicit by J.C. Butcher in 1965).

The following third order L-stable method illustrates what is
possible for DIRK methods

λ λ
1
2(1 + λ) 1

2(1 − λ) λ
1 1

4(−6λ2 + 16λ − 1) 1
4(6λ2 − 20λ + 5) λ

1
4(−6λ2 + 16λ − 1) 1

4(6λ2 − 20λ + 5) λ

where λ ≈ 0.4358665215 satisfies 1
6−

3
2λ+3λ2−λ3 = 0.

Implicit Runge–Kutta methods



This idea of choosing A as a lower triangular matrix can be
taken further by avoiding diagonal zeros.

If all the diagonal elements are equal, we get the
Diagonally-Implicit methods of R. Alexander and the
Semi-Explicit methods of S. P. Nørsett (referred to as
semi-implicit by J.C. Butcher in 1965).

The following third order L-stable method illustrates what is
possible for DIRK methods

λ λ
1
2(1 + λ) 1

2(1 − λ) λ
1 1

4(−6λ2 + 16λ − 1) 1
4(6λ2 − 20λ + 5) λ

1
4(−6λ2 + 16λ − 1) 1

4(6λ2 − 20λ + 5) λ

where λ ≈ 0.4358665215 satisfies 1
6−

3
2λ+3λ2−λ3 = 0.

Implicit Runge–Kutta methods



A SIRK method is characterised by the equation
σ(A) = {λ}.That is A has a one-point spectrum.

For DIRK methods the stages can be computed independently
and sequentially from equations of the form

Yi − hλf(Yi) = a known quantity.

Each stage requires the same factorised matrix I − hλJ to
permit solution by a modified Newton iteration process (where
J ≈ ∂f/∂y).

How then is it possible to implement SIRK methods in a
similarly efficient manner?

The answer lies in the inclusion of a transformation to Jordan
canonical form into the computation.

Implicit Runge–Kutta methods



A SIRK method is characterised by the equation
σ(A) = {λ}.That is A has a one-point spectrum.

For DIRK methods the stages can be computed independently
and sequentially from equations of the form

Yi − hλf(Yi) = a known quantity.

Each stage requires the same factorised matrix I − hλJ to
permit solution by a modified Newton iteration process (where
J ≈ ∂f/∂y).

How then is it possible to implement SIRK methods in a
similarly efficient manner?

The answer lies in the inclusion of a transformation to Jordan
canonical form into the computation.

Implicit Runge–Kutta methods



A SIRK method is characterised by the equation
σ(A) = {λ}.That is A has a one-point spectrum.

For DIRK methods the stages can be computed independently
and sequentially from equations of the form

Yi − hλf(Yi) = a known quantity.

Each stage requires the same factorised matrix I − hλJ to
permit solution by a modified Newton iteration process (where
J ≈ ∂f/∂y).

How then is it possible to implement SIRK methods in a
similarly efficient manner?

The answer lies in the inclusion of a transformation to Jordan
canonical form into the computation.

Implicit Runge–Kutta methods



A SIRK method is characterised by the equation
σ(A) = {λ}.That is A has a one-point spectrum.

For DIRK methods the stages can be computed independently
and sequentially from equations of the form

Yi − hλf(Yi) = a known quantity.

Each stage requires the same factorised matrix I − hλJ to
permit solution by a modified Newton iteration process (where
J ≈ ∂f/∂y).

How then is it possible to implement SIRK methods in a
similarly efficient manner?

The answer lies in the inclusion of a transformation to Jordan
canonical form into the computation.

Implicit Runge–Kutta methods



A SIRK method is characterised by the equation
σ(A) = {λ}.That is A has a one-point spectrum.

For DIRK methods the stages can be computed independently
and sequentially from equations of the form

Yi − hλf(Yi) = a known quantity.

Each stage requires the same factorised matrix I − hλJ to
permit solution by a modified Newton iteration process (where
J ≈ ∂f/∂y).

How then is it possible to implement SIRK methods in a
similarly efficient manner?

The answer lies in the inclusion of a transformation to Jordan
canonical form into the computation.

Implicit Runge–Kutta methods



A SIRK method is characterised by the equation
σ(A) = {λ}.That is A has a one-point spectrum.

For DIRK methods the stages can be computed independently
and sequentially from equations of the form

Yi − hλf(Yi) = a known quantity.

Each stage requires the same factorised matrix I − hλJ to
permit solution by a modified Newton iteration process (where
J ≈ ∂f/∂y).

How then is it possible to implement SIRK methods in a
similarly efficient manner?

The answer lies in the inclusion of a transformation to Jordan
canonical form into the computation.

Implicit Runge–Kutta methods



Suppose the matrix T transforms A to canonical form as follows

T−1AT = A

where

A = λ(I − J)= λ




1 0 0 · · · 0 0
−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0
0 0 0 · · · −1 1





Implicit Runge–Kutta methods



Suppose the matrix T transforms A to canonical form as follows

T−1AT = A

where

A = λ(I − J)= λ




1 0 0 · · · 0 0
−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0
0 0 0 · · · −1 1





Implicit Runge–Kutta methods



Suppose the matrix T transforms A to canonical form as follows

T−1AT = A

where

A = λ(I − J)= λ




1 0 0 · · · 0 0
−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0
0 0 0 · · · −1 1





Implicit Runge–Kutta methods



Consider a single Newton iteration, simplified by the use of the
same approximate Jacobian J for each stage.

Assume the incoming approximation is y0 and that we are
attempting to evaluate

y1 = y0 + h(bT ⊗ I)F

where F is made up from the s subvectors Fi = f(Yi),
i = 1, 2, . . . , s.

The implicit equations to be solved are

Y = e ⊗ y0 + h(A ⊗ I)F

where e is the vector in R
n with every component equal to 1

and Y has subvectors Yi, i = 1, 2, . . . , s

Implicit Runge–Kutta methods



Consider a single Newton iteration, simplified by the use of the
same approximate Jacobian J for each stage.

Assume the incoming approximation is y0 and that we are
attempting to evaluate

y1 = y0 + h(bT ⊗ I)F

where F is made up from the s subvectors Fi = f(Yi),
i = 1, 2, . . . , s.

The implicit equations to be solved are

Y = e ⊗ y0 + h(A ⊗ I)F

where e is the vector in R
n with every component equal to 1

and Y has subvectors Yi, i = 1, 2, . . . , s

Implicit Runge–Kutta methods



Consider a single Newton iteration, simplified by the use of the
same approximate Jacobian J for each stage.

Assume the incoming approximation is y0 and that we are
attempting to evaluate

y1 = y0 + h(bT ⊗ I)F

where F is made up from the s subvectors Fi = f(Yi),
i = 1, 2, . . . , s.

The implicit equations to be solved are

Y = e ⊗ y0 + h(A ⊗ I)F

where e is the vector in R
n with every component equal to 1

and Y has subvectors Yi, i = 1, 2, . . . , s

Implicit Runge–Kutta methods



Consider a single Newton iteration, simplified by the use of the
same approximate Jacobian J for each stage.

Assume the incoming approximation is y0 and that we are
attempting to evaluate

y1 = y0 + h(bT ⊗ I)F

where F is made up from the s subvectors Fi = f(Yi),
i = 1, 2, . . . , s.

The implicit equations to be solved are

Y = e ⊗ y0 + h(A ⊗ I)F

where e is the vector in R
n with every component equal to 1

and Y has subvectors Yi, i = 1, 2, . . . , s

Implicit Runge–Kutta methods



Consider a single Newton iteration, simplified by the use of the
same approximate Jacobian J for each stage.

Assume the incoming approximation is y0 and that we are
attempting to evaluate

y1 = y0 + h(bT ⊗ I)F

where F is made up from the s subvectors Fi = f(Yi),
i = 1, 2, . . . , s.

The implicit equations to be solved are

Y = e ⊗ y0 + h(A ⊗ I)F

where e is the vector in R
n with every component equal to 1

and Y has subvectors Yi, i = 1, 2, . . . , s

Implicit Runge–Kutta methods



The Newton process consists of solving the linear system

(Is ⊗ I − hA ⊗ J )D = Y − e ⊗ y0 − h(A ⊗ I)F

and updating
Y → Y − D

To benefit from the SI property, write

Y = (T−1 ⊗ I)Y, F = (T−1 ⊗ I)F, D = (T−1 ⊗ I)D,

so that

(Is ⊗ I − hA ⊗ J )D = Y − e ⊗ y0 − h(A ⊗ I)F

The following table summarises the costs

Implicit Runge–Kutta methods



The Newton process consists of solving the linear system

(Is ⊗ I − hA ⊗ J )D = Y − e ⊗ y0 − h(A ⊗ I)F

and updating
Y → Y − D

To benefit from the SI property, write

Y = (T−1 ⊗ I)Y, F = (T−1 ⊗ I)F, D = (T−1 ⊗ I)D,

so that

(Is ⊗ I − hA ⊗ J )D = Y − e ⊗ y0 − h(A ⊗ I)F

The following table summarises the costs

Implicit Runge–Kutta methods



The Newton process consists of solving the linear system

(Is ⊗ I − hA ⊗ J )D = Y − e ⊗ y0 − h(A ⊗ I)F

and updating
Y → Y − D

To benefit from the SI property, write

Y = (T−1 ⊗ I)Y, F = (T−1 ⊗ I)F, D = (T−1 ⊗ I)D,

so that

(Is ⊗ I − hA ⊗ J )D = Y − e ⊗ y0 − h(A ⊗ I)F

The following table summarises the costs

Implicit Runge–Kutta methods



The Newton process consists of solving the linear system

(Is ⊗ I − hA ⊗ J )D = Y − e ⊗ y0 − h(A ⊗ I)F

and updating
Y → Y − D

To benefit from the SI property, write

Y = (T−1 ⊗ I)Y, F = (T−1 ⊗ I)F, D = (T−1 ⊗ I)D,

so that

(Is ⊗ I − hA ⊗ J )D = Y − e ⊗ y0 − h(A ⊗ I)F

The following table summarises the costs

Implicit Runge–Kutta methods



The Newton process consists of solving the linear system

(Is ⊗ I − hA ⊗ J )D = Y − e ⊗ y0 − h(A ⊗ I)F

and updating
Y → Y − D

To benefit from the SI property, write

Y = (T−1 ⊗ I)Y, F = (T−1 ⊗ I)F, D = (T−1 ⊗ I)D,

so that

(Is ⊗ I − hA ⊗ J )D = Y − e ⊗ y0 − h(A ⊗ I)F

The following table summarises the costs

Implicit Runge–Kutta methods



without with
transformation transformation

LU factorisation s
3
N

3
N

3

Transformation s
2
N

Backsolves s
2
N

2
sN

2

Transformation s
2
N

In summary, we reduce the very high LU factorisation cost to a
level comparable to BDF methods.

Also we reduce the back substitution cost to the same work per
stage as for DIRK or BDF methods.

By comparison, the additional transformation costs are
insignificant for large problems.

Implicit Runge–Kutta methods



without with
transformation transformation

LU factorisation s
3
N

3
N

3

Transformation s
2
N

Backsolves s
2
N

2
sN

2

Transformation s
2
N

In summary, we reduce the very high LU factorisation cost to a
level comparable to BDF methods.

Also we reduce the back substitution cost to the same work per
stage as for DIRK or BDF methods.

By comparison, the additional transformation costs are
insignificant for large problems.

Implicit Runge–Kutta methods



without with
transformation transformation

LU factorisation s
3
N

3
N

3

Transformation s
2
N

Backsolves s
2
N

2
sN

2

Transformation s
2
N

In summary, we reduce the very high LU factorisation cost to a
level comparable to BDF methods.

Also we reduce the back substitution cost to the same work per
stage as for DIRK or BDF methods.

By comparison, the additional transformation costs are
insignificant for large problems.

Implicit Runge–Kutta methods



without with
transformation transformation

LU factorisation s
3
N

3
N

3

Transformation s
2
N

Backsolves s
2
N

2
sN

2

Transformation s
2
N

In summary, we reduce the very high LU factorisation cost to a
level comparable to BDF methods.

Also we reduce the back substitution cost to the same work per
stage as for DIRK or BDF methods.

By comparison, the additional transformation costs are
insignificant for large problems.

Implicit Runge–Kutta methods



Stage order s means that
s∑

j=1

aijφ(ci) =

∫ ci

0
φ(t)dt,

for φ any polynomial of degree s − 1. This implies that

Ack−1 = 1
k
ck, k = 1, 2, . . . , s,

where the vector powers are interpreted component by
component.

This is equivalent to

Akc0 =
1

k!
ck, k = 1, 2, . . . , s (∗)

Implicit Runge–Kutta methods



Stage order s means that
s∑

j=1

aijφ(ci) =

∫ ci

0
φ(t)dt,

for φ any polynomial of degree s − 1. This implies that

Ack−1 = 1
k
ck, k = 1, 2, . . . , s,

where the vector powers are interpreted component by
component.

This is equivalent to

Akc0 =
1

k!
ck, k = 1, 2, . . . , s (∗)

Implicit Runge–Kutta methods



Stage order s means that
s∑

j=1

aijφ(ci) =

∫ ci

0
φ(t)dt,

for φ any polynomial of degree s − 1. This implies that

Ack−1 = 1
k
ck, k = 1, 2, . . . , s,

where the vector powers are interpreted component by
component.

This is equivalent to

Akc0 =
1

k!
ck, k = 1, 2, . . . , s (∗)

Implicit Runge–Kutta methods



Stage order s means that
s∑

j=1

aijφ(ci) =

∫ ci

0
φ(t)dt,

for φ any polynomial of degree s − 1. This implies that

Ack−1 = 1
k
ck, k = 1, 2, . . . , s,

where the vector powers are interpreted component by
component.

This is equivalent to

Akc0 =
1

k!
ck, k = 1, 2, . . . , s (∗)

Implicit Runge–Kutta methods



Stage order s means that
s∑

j=1

aijφ(ci) =

∫ ci

0
φ(t)dt,

for φ any polynomial of degree s − 1. This implies that

Ack−1 = 1
k
ck, k = 1, 2, . . . , s,

where the vector powers are interpreted component by
component.

This is equivalent to

Akc0 =
1

k!
ck, k = 1, 2, . . . , s (∗)

Implicit Runge–Kutta methods



From the Cayley-Hamilton theorem

(A − λI)sc0 = 0

and hence
s∑

i=0

(
s

i

)
(−λ)s−iAic0 = 0.

Substitute from (∗) and it is found that

s∑

i=0

1

i!

(
s

i

)
(−λ)s−ici = 0.

Implicit Runge–Kutta methods



From the Cayley-Hamilton theorem

(A − λI)sc0 = 0

and hence
s∑

i=0

(
s

i

)
(−λ)s−iAic0 = 0.

Substitute from (∗) and it is found that

s∑

i=0

1

i!

(
s

i

)
(−λ)s−ici = 0.

Implicit Runge–Kutta methods



From the Cayley-Hamilton theorem

(A − λI)sc0 = 0

and hence
s∑

i=0

(
s

i

)
(−λ)s−iAic0 = 0.

Substitute from (∗) and it is found that

s∑

i=0

1

i!

(
s

i

)
(−λ)s−ici = 0.

Implicit Runge–Kutta methods



Hence each component of c satisfies
s∑

i=0

1

i!

(
s

i

) (
−

x

λ

)i

= 0

That is
Ls

(x

λ

)
= 0

where LS denotes the Laguerre polynomial of degree s.

Let ξ1, ξ2, . . . , ξs denote the zeros of Ls so that

ci = λξi, i = 1, 2, . . . , s

The question now is, how should λ be chosen?

Implicit Runge–Kutta methods



Hence each component of c satisfies
s∑

i=0

1

i!

(
s

i

) (
−

x

λ

)i

= 0

That is
Ls

(x

λ

)
= 0

where LS denotes the Laguerre polynomial of degree s.

Let ξ1, ξ2, . . . , ξs denote the zeros of Ls so that

ci = λξi, i = 1, 2, . . . , s

The question now is, how should λ be chosen?

Implicit Runge–Kutta methods



Hence each component of c satisfies
s∑

i=0

1

i!

(
s

i

) (
−

x

λ

)i

= 0

That is
Ls

(x

λ

)
= 0

where LS denotes the Laguerre polynomial of degree s.

Let ξ1, ξ2, . . . , ξs denote the zeros of Ls so that

ci = λξi, i = 1, 2, . . . , s

The question now is, how should λ be chosen?

Implicit Runge–Kutta methods



Hence each component of c satisfies
s∑

i=0

1

i!

(
s

i

) (
−

x

λ

)i

= 0

That is
Ls

(x

λ

)
= 0

where LS denotes the Laguerre polynomial of degree s.

Let ξ1, ξ2, . . . , ξs denote the zeros of Ls so that

ci = λξi, i = 1, 2, . . . , s

The question now is, how should λ be chosen?

Implicit Runge–Kutta methods



Unfortunately, to obtain A-stability, at least for orders p > 2, λ
has to be chosen so that some of the ci are outside the interval
[0, 1].

This effect becomes more severe for increasingly high orders and
can be seen as a major disadvantage of these methods.

We will look at two approaches for overcoming this
disadvantage.

However, we first look at the transformation matrix T for
efficient implementation.

Implicit Runge–Kutta methods



Unfortunately, to obtain A-stability, at least for orders p > 2, λ
has to be chosen so that some of the ci are outside the interval
[0, 1].

This effect becomes more severe for increasingly high orders and
can be seen as a major disadvantage of these methods.

We will look at two approaches for overcoming this
disadvantage.

However, we first look at the transformation matrix T for
efficient implementation.

Implicit Runge–Kutta methods



Unfortunately, to obtain A-stability, at least for orders p > 2, λ
has to be chosen so that some of the ci are outside the interval
[0, 1].

This effect becomes more severe for increasingly high orders and
can be seen as a major disadvantage of these methods.

We will look at two approaches for overcoming this
disadvantage.

However, we first look at the transformation matrix T for
efficient implementation.

Implicit Runge–Kutta methods



Unfortunately, to obtain A-stability, at least for orders p > 2, λ
has to be chosen so that some of the ci are outside the interval
[0, 1].

This effect becomes more severe for increasingly high orders and
can be seen as a major disadvantage of these methods.

We will look at two approaches for overcoming this
disadvantage.

However, we first look at the transformation matrix T for
efficient implementation.

Implicit Runge–Kutta methods



Define the matrix T as follows:

T =





L0(ξ1) L1(ξ1) L2(ξ1) · · · Ls−1(ξ1)
L0(ξ2) L1(ξ2) L2(ξ2) · · · Ls−1(ξ2)
L0(ξ3) L1(ξ3) L2(ξ3) · · · Ls−1(ξ3)

...
...

...
...

L0(ξs) L1(ξs) L2(ξs) · · · Ls−1(ξs)





It can be shown that for a SIRK method

T−1AT = λ(I − J)

Implicit Runge–Kutta methods



Define the matrix T as follows:

T =





L0(ξ1) L1(ξ1) L2(ξ1) · · · Ls−1(ξ1)
L0(ξ2) L1(ξ2) L2(ξ2) · · · Ls−1(ξ2)
L0(ξ3) L1(ξ3) L2(ξ3) · · · Ls−1(ξ3)

...
...

...
...

L0(ξs) L1(ξs) L2(ξs) · · · Ls−1(ξs)





It can be shown that for a SIRK method

T−1AT = λ(I − J)

Implicit Runge–Kutta methods



There are two ways in which SIRK methods can be generalized

In the first of these we add extra diagonally implicit stages so
that the coefficient matrix looks like this:

[
Â 0
W λI

]
,

where the spectrum of the p × p submatrix Â is

σ(Â) = {λ}

For s − p = 1, 2, 3, . . . we get improvements to the behaviour of
the methods

Implicit Runge–Kutta methods



A second generalization is to replace “order” by “effective
order”.

This allows us to locate the abscissae where we wish.

In “DESIRE” methods:

Diagonally Extended Singly Implicit Runge-Kutta methods
using Effective order

these two generalizations are combined.

This seems to be as far as we can go in constructing efficient
and accurate singly-implicit Runge-Kutta methods.

Implicit Runge–Kutta methods



A second generalization is to replace “order” by “effective
order”.

This allows us to locate the abscissae where we wish.

In “DESIRE” methods:

Diagonally Extended Singly Implicit Runge-Kutta methods
using Effective order

these two generalizations are combined.

This seems to be as far as we can go in constructing efficient
and accurate singly-implicit Runge-Kutta methods.

Implicit Runge–Kutta methods



A second generalization is to replace “order” by “effective
order”.

This allows us to locate the abscissae where we wish.

In “DESIRE” methods:

Diagonally Extended Singly Implicit Runge-Kutta methods
using Effective order

these two generalizations are combined.

This seems to be as far as we can go in constructing efficient
and accurate singly-implicit Runge-Kutta methods.

Implicit Runge–Kutta methods



A second generalization is to replace “order” by “effective
order”.

This allows us to locate the abscissae where we wish.

In “DESIRE” methods:

Diagonally Extended Singly Implicit Runge-Kutta methods
using Effective order

these two generalizations are combined.

This seems to be as far as we can go in constructing efficient
and accurate singly-implicit Runge-Kutta methods.

Implicit Runge–Kutta methods


