
Some examples of structure

preservation

John Butcher

The University of Auckland
New Zealand

ANZIAM 2006, Mansfield, Victoria
Some examples of structure preservation – p. 1/22



Traditional numerical methods for differential equations
are designed to keep computational errors as low as
possible for a given allocation of computing time.

However, not all errors are equally tolerable.

For example, in physical systems which conserve energy,
we might want to insist that a numerical model never has
excessive errors in the energy.

Structure preserving algorithms attempt to preserve the
integrity of inherent physical or geometric properties.
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Experiments with the Euler and Implicit Euler methods

ṗ = −q, p(0) = 1
q̇ = p, q(0) = 0

Euler method, ∆t = π/3

∆t = π/12

Implicit Euler method
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ṗ = −q, p(0) = 1
q̇ = p, q(0) = 0

Euler method, ∆t = π/3

∆t = π/12

Implicit Euler method

Some examples of structure preservation – p. 4/22



Experiments with the Euler and Implicit Euler methods
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ṗ = −q, p(0) = 1
q̇ = p, q(0) = 0

Euler method, ∆t = π/3

∆t = π/12

Implicit Euler method

Some examples of structure preservation – p. 4/22



Experiments with the Euler and Implicit Euler methods
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ṗ = −q, p(0) = 1
q̇ = p, q(0) = 0

Euler method, ∆t = π/3

∆t = π/12

Implicit Euler method

Some examples of structure preservation – p. 4/22



Experiments with the Euler and Implicit Euler methods
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Hamiltonian problems
The differential equation in these computations is an
example of a system of the form, based on a
“Hamiltonian” H(p, q):

ṗ = −
∂H

∂q
, q̇ =

∂H

∂p
.

For simplicity, we will consider only two-dimensional
problems.

One property of an equation of this form is that
H(p(t), q(t)) is invariant, because

Ḣ =
∂H

∂q
q̇ +

∂H

∂p
ṗ =

∂H

∂q

∂H

∂p
−

∂H

∂p

∂H

∂q
= 0.
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ṗ =

∂H

∂q

∂H

∂p
−

∂H

∂p

∂H

∂q
= 0.

Some examples of structure preservation – p. 5/22



Hamiltonian problems
The differential equation in these computations is an
example of a system of the form, based on a
“Hamiltonian” H(p, q):
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Symplectic property
Another conservation property possessed by Hamiltonian
problems is the “symplectic property”.

This states that the flow preserves areas.

Consider two small vectors defining a parallelogram at
time zero. At any later time t, the area of the
corresponding parallelogram is unchanged.

This means that the determinant of the 2× 2 matrix
formed from the two small vectors is conserved.

The reason for this hinges on a well-known fact.
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Well-known fact 1 Let X denote a matrix-valued
function of t which satisfies the differential equation

Ẋ(t) = M(t)X(t),
and let D(t) = det(X(t)).

Then
Ḋ(t) = tr(M(t))D(t).

Proof. Let Ξ(t) denote the adjoint matrix of X(t) and
write the columns of X as xi and the rows of Ξ as ξT

i .
We have

Ḋ =
n

∑

i=1

ξT
i ẋi =

n
∑

i=1

ξT
i Mxi

= tr(ΞMX) = tr(MXΞ)

= tr(M)D.
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Theorem 2 Let X(t) denote the matrix

X(t) =

[

dp1(t) dp2(t)

dq1(t) dq2(t)

]

,

where (p + dp1, q + dq1) and (p + dp2, q + dq2) are
solutions to

p = −∂H
∂q

, q = ∂H
∂p

.

Then det(X(t)) is constant.

Proof. Taking account of Well-Known Fact 1, we need
only to prove that the trace of the Jacobian matrix is zero.
The Jacobian matrix is

[

− ∂2H
∂p∂q

−∂2H
∂q2

∂2H
∂p2

∂2H
∂q∂p

]

,

which does indeed have zero trace.
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ṗ = − sin(q), p(0) = 1
q̇ = p, q(0) = 0

Gauss method
3−

√

3

6

3−2
√

3

12

1

4

3+
√

3

6

1

4

3+2
√

3

12

1

2

1

2Mid-point rule 1

2

1

2

1

General linear method














3+
√

3

6
0 1 −3−2

√

3

3

−

√

3

3

3+
√

3

6
1 3+2

√

3

3

1

2

1

2
1 0

1

2
−

1

2
0 −1















This requires a
starting method















3+
√

3

6
0 1

−

3+
√

3

3

3+
√

3

6
1

0 0 1
√

3−1

8

1−

√

3

8
0















Some examples of structure preservation – p. 9/22



Experiments with some symplectic methods
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ṗ = − sin(q), p(0) = 1
q̇ = p, q(0) = 0

Gauss method
3−

√

3

6

3−2
√

3

12

1

4

3+
√

3

6

1

4

3+2
√

3

12

1

2

1

2Mid-point rule 1

2

1

2

1

General linear method














3+
√

3

6
0 1 −3−2

√

3

3

−

√

3

3

3+
√

3

6
1 3+2

√

3

3

1

2

1

2
1 0

1

2
−

1

2
0 −1















This requires a
starting method















3+
√

3

6
0 1

−

3+
√

3

3

3+
√

3

6
1

0 0 1
√

3−1

8

1−

√

3

8
0















Some examples of structure preservation – p. 9/22



Experiments with some symplectic methods
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ṗ = − sin(q), p(0) = 1
q̇ = p, q(0) = 0

Gauss method
3−

√

3

6

3−2
√

3

12

1

4

3+
√

3

6

1

4

3+2
√

3

12

1

2

1

2Mid-point rule 1

2

1

2

1

General linear method














3+
√

3

6
0 1 −3−2

√

3

3

−

√

3

3

3+
√

3

6
1 3+2

√

3

3

1

2

1

2
1 0

1

2
−

1

2
0 −1















This requires a
starting method















3+
√

3

6
0 1

−

3+
√

3

3

3+
√

3

6
1

0 0 1
√

3−1

8

1−

√

3

8
0















Some examples of structure preservation – p. 9/22



Experiments with some symplectic methods
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Symplectic Runge-Kutta methods
A Runge-Kutta method with s stages is characterized by
three arrays A, b, c, where A is an s× s matrix and b and
c are s-dimensional vectors.

The stages are Y1, Y2, . . . , Ys and the stage derivatives
are Fi, i = 1, 2, . . . , s.

In a step from tn−1 to tn = tn−1 + h, Yi approximates
y(tn−1 + hci) and Fi ≈ y′(tn−1 + hci) is computed from
the differential equation y′(t) = f(y(t)).

These quantities, together with the output approximation
yn ≈ y(tn), are computed by

Yi = yn−1 + h
∑s

j=1 aijFj, i = 1, 2, . . . , s,

yn = yn−1 + h
∑s

i=1 biFi.
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A Runge-Kutta method is symplectic if

biaij + bjaji = bibj, i, j = 1, 2, . . . , s.

For such a method, the symplectic property, possessed by
the flow of a Hamiltonian system, is inherited by
numerical approximations.

All methods with order 2s, which are always based on
Gaussian quadrature, possess this property.

We recall two examples, the mid-point rule method and
the 2-stage Gauss method:

c A

bT
=

1
2

1
2

1
and

c A

bT
=

3−
√

3
6

3−2
√

3
12

1
4

3+
√

3
6

1
4

3+2
√

3
12

1
2

1
2
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A symplectic general linear method
Recently I discovered a symplectic general linear
method.

Like the Gauss method, it has two stages, but
unlike Runge-Kutta methods, there are two input and
output approximations for each step.

We will see below that the order is 4.

It therefore needs 4 matrices to describe how it works.

Here is the coefficient tableau, in the form of a
partitioned matrix, for this method:

[

A U

B V

]

=











3+
√

3
6 0 1 −3−2

√
3

3

−
√

3
3

3+
√

3
6 1 3+2

√
3

3
1
2

1
2 1 0

1
2 −1

2 0 −1










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For input y
[n−1]
1 and y

[n−1]
2 to step number n, the stages

and the output values are computed by
Y1 = a11hF1 + a12hF2 + u11y

[n−1]
1 + u12y

[n−1]
2

Y2 = a21hF1 + a22hF2 + u21y
[n−1]
1 + u22y

[n−1]
2

y
[n]
1 = b11hF1 + b12hF2 + v11y

[n−1]
1 + v12y

[n−1]
2

y
[n]
2 = b21hF1 + b22hF2 + v21y

[n−1]
1 + v22y

[n−1]
2

Substitute the coefficients from the matrices A, U , B, V :
Y1 = 3+

√
3

6 hF1 + y
[n−1]
1 − 3+2

√
3

3 y
[n−1]
2

Y2 = −
√

3
3 hF1 + 3+

√
3

6 hF2 + y
[n−1]
1 + 3+2

√
3

3 y
[n−1]
2

y
[n]
1 = 1

2hF1 + 1
2hF2 + y

[n−1]
1

y
[n]
2 = 1

2hF1 − 1
2hF2 − y

[n−1]
2
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Theorem 3 The new general linear method has order 4.

Proof.Given an input approximation

y[0]=

[

y(x0)√
3

12 h2y′′(x0)−
√

3
108h

4y(4)(x0)+
9+5

√
3

216 h4 ∂f
∂y

y(4)(x0)

]

, (1)

we need to verify that the output is

y[1]=











y(x0)+hy′(x0)+
1
2h

2y′′(x0)+
1
6h

3y(3)+
1
24h

4y(4)+O(h5)
√

3
12 h2y′′(x0) +

√
3

12 h3y(3)(x0) + 7
√

3
216 h4y(4)(x0)+

9+5
√

3
216 h4 ∂f

∂y
y(4)(x0) + O(h5)











, (2)

found by replacing x0 by x1 = x0 + h in (1) and
expanding about x0.
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By Taylor expansions we find

Y1 =y
(

x0 + h3+
√

3
6

)

+ 9+5
√

3
108 h3y(3)(x0)+O(h4),

hF1 =hy′
(

x0+ h3+
√

3
6

)

+ 9+5
√

3
108 h4 ∂f

∂y
y(3)(x0)+O(h5), (3)

Y2 =y
(

x0 + h3−
√

3
6

)

− 9+5
√

3
108 h3y(3)(x0) + O(h4),

hF2 =hy′
(

x0+h3−
√

3
6

)

− 9+5
√

3
108 h4 ∂f

∂y
y(3)(x0)+O(h5). (4)

Using (3) and (4), evaluate y[1] = hAF + V y[0] by Taylor
expansions, to obtain agreement with (2).

Now consider the symplectic property of the new method.
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For a general linear method to be symplectic, there
would need to exist a diagonal matrix D and a symmetric
matrix G, each of them positive definite, such that
DA + ATD = BTGB, G = V TGV, DU = BTGV.

In the case of the new method, these are easy to check

with G = diag(1, 1 + 2
√

3
3 ), D = diag(1

2 ,
1
2).

To actually use a method like this, there has to be a
starting method to prepare for the very first step. This
can be provided by the method











3+
√

3
6 0 1

−3+
√

3
3

3+
√

3
6 1

0 0 1
√

3−1
8

1−
√

3
8 0











Some examples of structure preservation – p. 16/22



For a general linear method to be symplectic, there
would need to exist a diagonal matrix D and a symmetric
matrix G, each of them positive definite, such that
DA + ATD = BTGB, G = V TGV, DU = BTGV.

In the case of the new method, these are easy to check

with G = diag(1, 1 + 2
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2).
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Preservation of quadratic invariants
If M is a symmetric matrix then the quadratic function

Φ(y) = yTMy
is a quadratic invariant if

UTMf(U) = 0,
for all U .

We are interested in numerical methods which preserve
as closely as possible the value of Φ applied to
approximations to y(x).
For a Runge-Kutta method this would mean that

Φ(yn) = Φ(yn−1)
but for a general linear method satisfying the symplectic
property, we will be happy if

r
∑

i,j=1

gij

(

(y
[n]
i )TM(y

[n]
j )

)

=
r

∑

i,j=1

gij

(

(y
[n−1]
i )TM(y

[n−1]
j )

)

.
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After a little manipulation, and using the conditions that

V TGV = G,

BTGV = DU,

BTGB = DA + ATD,

it is found that
r

∑

i,j=1

gij(y
[n]
i )TM(y

[n]
j )−

r
∑

i,j=1

gij(y
[n−1]
i )TM(y

[n−1]
j )

= 2h
s

∑

i=1

diF
T
i MYi

= 0.
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As an example of this result, consider the differential
equation system due to Euler

Aẇ1 = (B − C)w2w3,

Bẇ2 = (C − A)w3w1,

Cẇ3 = (A−B)w1w2,

which describes the motion a rigid body rotating freely
in space.

This differential equation system has two quadratic
invariants:

E = Aw2
1 + Bw2

2 + Cw2
3,

F = A2w2
1 + B2w2

2 + C2w2
3.
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Let En and Fn denote the values of these “invariants” as
computed from the results of n steps of a numerical
method.

For the fourth order symplectic Runge–Kutta method we
have considered, the values of these quantities do not
change at all.
It is more interesting to see what happens in the case of
the new symplectic general linear method.
For the case

[A,B,C] = [4, 3, 2], y0 = [1, 1, 0]T .
and a stepsize h = 0.1, the method was applied for
n = 100, 000 steps.
It was found that En/E0 and Fn/F0 do not deviate very
much from 1.
Results are shown on the next page.
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Conclusions
For problems that conserve some sort of invariant
structure, it is a good idea to use numerical methods
which mimic this behaviour.

Symplectic Runge–Kutta methods have this role for
many important problems.

In addition to known symplectic methods, it is possible
to construct general linear methods with closely related
properties.

Such methods work well in preliminary numerical
experiments.

T H E E N D
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