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Optimism and Pessimism

If a glass contains 50% of a pleasant liquid and 50% of
space, do we say

“The glass is half empty”?

or
“The glass is half full”?

This test to distinguish pessimism from optimism has a
counterpart in solving ordinary differential equations.

If a numerical method is midway between being fully
implicit and fully explicit do we say

“The method is semi-implicit”?
or

“The method is semi-explicit”?
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This test between optimism and pessimism was failed by
me

but passed by Syvert Nørsettwhen we first started
looking at Runge-Kutta methods with the structure

c1 a11 0 0 · · · 0

c2 a21 a22 0 · · · 0

c3 a31 a32 a33 · · · 0
... ... ... ... ...
cs as1 as2 as3 · · · ass

b1 b2 b3 · · · bs

I called these methods “Semi-Implicit”and Syvert called
them “Semi-Explicit”
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SIRK

My first interest in Implicit Runge-Kutta methods came
from the desire to solve the order conditions.

For explicit
methods, this becomes increasingly more difficult as the
order increasesbut everything becomes simpler for
implicit methods.
For example the following method has order 5:
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SERK

One of the topics in the multi-faceted thesis of Syvert
Nørsett was the study of methods which are similar to
SIRK methods

, but with the additional assumption
a11 = a22 = · · · = ass

These are the famous SERK methods and, when they
were introduced, led to a resurgence of interest in the
so-called restricted Padé approximations:

R(z) =
N(z)

(1− λz)s

Knowing which cases lead to A-stable methods is of
crucial importance in the solution of stiff problems.
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A brief list of papers illustrates the debt we owe to the
work of S. P. Nørsett on SE and other RK methods

S. P. Nørsett: C-polynomials for rational
approximation to the exponential function, Numer.
Math. 25 (1975/1976), 39–56.

S. P. Nørsett: Runge-Kutta methods with a multiple
real eigenvalue only, BIT 16 (1976), 388–393.

S. P. Nørsett, A. Wolfbrandt: Attainable order of
rational approximation to the exponential function
with only real poles, BIT 17 (1977), 200–208.

S. P. Nørsett: Restricted Padé approximations to the
exponential function, SIAM J. Numer. Anal. 15
(1978), 1008–1092.
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DIRK

These methods with the acronym denoting
Diagonally-Implicit Runge-Kutta methods were studied
by Roger Alexander.

The methods are just like SERK
methods and were developed independently.
The following third order L-stable method illustrates
what is possible for DIRK methods

λ λ
1
2(1 + λ) 1

2(1− λ) λ

1 1
4(−6λ2 + 16λ− 1) 1

4(6λ
2 − 20λ + 5) λ

1
4(−6λ2 + 16λ− 1) 1

4(6λ
2 − 20λ + 5) λ

where λ ≈ 0.4358665215 satisfies 1
6−

3
2λ+3λ2−λ3 = 0.
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SDIRK

The change of name emphasised the singly-implicit
nature of SDIRK methods

and seems to have been part of
an attempt at a systematic naming system.As we shall
see in the next few slides, singly-implicit methods
without the DIRK structure are also possible.At least two
papers by the indomitable team of S. P. Nørsett and
P. G. Thomsen have used the SDIRK name.

Embedded SDIRK methods of basic order three, BIT
24 (1984), 364-646.

Local error control in SDIRK methods, BIT 26
(1986), 100-113.

This work is part of a practical project to obtain efficient
stiff solvers of moderate order.
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SIRK

A SIRK method is characterised by the equation
σ(A) = {λ}.

That is A has a one-point spectrum.

For DIRK methods the stages can be computed
independently and sequentiallyand each requires
approximately the same factorised matrix I − hλJ to
permit solution by a modified Newton iteration process.

How then is it possible to implement SIRK methods in a
similarly efficient manner?

The answer lies in the inclusion of a transformation to
Jordan canonical form into the computation.
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Suppose the matrix T transforms A to canonical form as
follows

T−1AT = A

where

A = λ(I − J) = λ



1 0 0 · · · 0 0

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
... ... ... ... ...
0 0 0 · · · 1 0

0 0 0 · · · −1 1
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Consider a single Newton iteration, simplified by the use
of the same approximate Jacobian J for each stage.

Assume the incoming approximation is y0 and that we
are attempting to evaluate

y1 = y0 + h(bT ⊗ I)F

where F is made up from the s subvectors Fi = f(Yi),
i = 1, 2, . . . , s.
The implicit equations to be solved are

Y = e⊗ y0 + h(A⊗ I)F

where e is the vector in R
n with every component equal

to 1 and Y has subvectors Yi, i = 1, 2, . . . , s
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The Newton process consists of solving the linear system

(Is ⊗ I − hA⊗ J)D = Y − e⊗ y0 − h(A⊗ I)F

and updating
Y → Y −D

To benefit from the SI property, write

Y = (T−1⊗I)Y, F = (T−1⊗I)F, D = (T−1⊗I)D,

so that

(Is ⊗ I − hA⊗ J)D = Y − e⊗ y0 − h(A⊗ I)F

The following table summarises the costs
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without with
transformation transformation

LU factorisation s3N 3

N 3

Transformation s2N

Backsolves s2N 2

sN 2

Transformation s2N

In summary, we reduce the very high LU factorisation
costto a level comparable to BDF methods.

Also we reduce the back substitution costto the same
work per stage as for DIRK or BDFmethods.

By comparison, the additional transformation costs are
insignificant for large problems .
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SIRK methods and stage order

Stage order s means that
s∑

j=1

aijφ(ci) =

∫ ci

0

φ(t)dt,

for φ any polynomial of degree s− 1. This implies that

Ack−1 = 1
k
ck, k = 1, 2, . . . , s,

where the vector powers are interpreted component by
component.
This is equivalent to

Akc0 =
1

k!
ck, k = 1, 2, . . . , s (∗)
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From the Cayley-Hamilton theorem

(A− λI)sc0 = 0

and hence
s∑

i=0

(
s

i

)
(−λ)s−iAic0 = 0.

Substitute from (∗) and it is found that

s∑

i=0

1

i!

(
s

i

)
(−λ)s−ici = 0.
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Hence each component of c satisfies
s∑

i=0

1

i!

(
s

i

)(
−

x

λ

)i

= 0

That is

Ls

(x

λ

)
= 0

where LS denotes the Laguerre polynomial of degree s.

Let ξ1, ξ2, . . . , ξs denote the zeros of Ls so that

ci = λξi, i = 1, 2, . . . , s

The question now is, how should λ be chosen?

SIRK→SERK→DIRK→SDIRK→SIRK – p. 17/36



Hence each component of c satisfies
s∑

i=0

1

i!

(
s

i

)(
−

x

λ

)i

= 0

That is

Ls

(x

λ

)
= 0

where LS denotes the Laguerre polynomial of degree s.

Let ξ1, ξ2, . . . , ξs denote the zeros of Ls so that

ci = λξi, i = 1, 2, . . . , s

The question now is, how should λ be chosen?

SIRK→SERK→DIRK→SDIRK→SIRK – p. 17/36



Hence each component of c satisfies
s∑

i=0

1

i!

(
s

i

)(
−

x

λ

)i

= 0

That is

Ls

(x

λ

)
= 0

where LS denotes the Laguerre polynomial of degree s.

Let ξ1, ξ2, . . . , ξs denote the zeros of Ls so that

ci = λξi, i = 1, 2, . . . , s

The question now is, how should λ be chosen?

SIRK→SERK→DIRK→SDIRK→SIRK – p. 17/36



Hence each component of c satisfies
s∑

i=0

1

i!

(
s

i

)(
−

x

λ

)i

= 0

That is

Ls

(x

λ

)
= 0

where LS denotes the Laguerre polynomial of degree s.

Let ξ1, ξ2, . . . , ξs denote the zeros of Ls so that

ci = λξi, i = 1, 2, . . . , s

The question now is, how should λ be chosen?

SIRK→SERK→DIRK→SDIRK→SIRK – p. 17/36



Unfortunately, to obtain A-stability, at least for orders
p > 2, λ has to be chosen so that some of the ci are
outside the interval [0, 1].

This effect becomes more severe for increasingly high
orders and can be seen as a major disadvantage of these
methods.

We will look at two approaches for overcoming this
disadvantage.

However, we first look at the transformation matrix T for
efficient implementation.
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Define the matrix T as follows:

T =




L0(ξ1) L1(ξ1) L2(ξ1) · · · Ls−1(ξ1)

L0(ξ2) L1(ξ2) L2(ξ2) · · · Ls−1(ξ2)

L0(ξ3) L1(ξ3) L2(ξ3) · · · Ls−1(ξ3)
... ... ... ...

L0(ξs) L1(ξs) L2(ξs) · · · Ls−1(ξs)




It can be shown that for a SIRK method

T−1AT = λ(I − J)
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Improving SIRK methods

There are two ways in which SIRK methods can be
generalized
In the first of these we add extra diagonally implicit
stages so that the coefficient matrix looks like this:

[
Â 0

W λI

]
,

where the spectrum of the p× p submatrix Â is

σ(Â) = {λ}
For s− p = 1, 2, 3, . . . we get improvements to the
behaviour of the methods

SIRK→SERK→DIRK→SDIRK→SIRK – p. 20/36



A second generalization is to replace “order” by
“effective order”.

This allows us to locate the abscissae where we wish.

In “DESIRE” methods:
Diagonally Extended Singly Implicit Runge-Kutta

methods using Effective order
these two generalizations are combined.

We will examine effective order in more detail.
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Doubly companion matrices

Matrices like the following are “companion matrices” for
the polynomial

zn + α1z
n−1 + · · ·+ αn

or
zn + β1z

n−1 + · · ·+ βn,

respectively:




−α1−α2−α3· · · −αn−1−αn

1 0 0 · · · 0 0

0 1 0 · · · 0 0
... ... ... ... ...
0 0 0 · · · 0 0

0 0 0 · · · 1 0




,




0 0 0 · · · 0 −βn

1 0 0 · · · 0 −βn−1

0 1 0 · · · 0 −βn−2
... ... ... ... ...
0 0 0 · · · 0 −β2

0 0 0 · · · 1 −β1
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Their characteristic polynomials can be found from
det(I − zA) = α(z) or β(z), respectively, where,
α(z) = 1+α1z+· · ·+αnz

n, β(z) = 1+β1z+· · ·+βnz
n.

A matrix with both α and β terms:

X =




−α1 −α2 −α3 · · · −αn−1 −αn − βn

1 0 0 · · · 0 −βn−1

0 1 0 · · · 0 −βn−2
... ... ... ... ...
0 0 0 · · · 0 −β2

0 0 0 · · · 1 −β1




,

is known as a “doubly companion matrix” and has
characteristic polynomial defined by

det(I − zX) = α(z)β(z) + O(zn+1)
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Matrices Ψ−1 and Ψ transforming X to Jordan canonical
form are known.

In the special case of a single Jordan block with n-fold
eigenvalue λ, we have

Ψ−1 =




1 λ + α1 λ2 + α1λ + α2 · · ·

0 1 2λ + α1 · · ·

0 0 1 · · ·
... ... ... . . .


 ,

where row number i + 1 is formed from row number i
by differentiating with respect to λ and dividing by i.

We have a similar expression for Ψ:
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Ψ =




. . . ... ... ...
· · · 1 2λ + β1 λ2 + β1λ + β2

· · · 0 1 λ + β1

· · · 0 0 1




The Jordan form is Ψ−1XΨ=J + λI , where Jij =δi,j+1.
That is

Ψ−1XΨ =




λ 0 · · · 0 0

1 λ · · · 0 0
... ... ... ...
0 0 · · · λ 0

0 0 · · · 1 λ
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Effective order

We will consider how to use the properties of
doubly-companion matrices to derive SIRK methods
with effective order s.

First we look at the meaning of order for Runge-Kutta
methods and to its generalisation to effective order.

Denote by G the group consisting of mappings of
(rooted) trees to real numbers where the group operation
is defined in the usual way, according to the algebraic
theory of Runge-Kutta methods or to the (equivalent)
theory of B-series.

We will illustrate this operation in a table, where we also
introduce the special member E ∈ G.
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r(ti)

i ti

α(ti) β(ti) (αβ)(ti) E(ti)

1

1

α1 β1 α1 + β1 1

2

2

α2 β2 α2 + α1β1 + β2
1
2

3

3

α3 β3 α3 + α2
1β1 + 2α1β2 + β3

1
3

3

4

α4 β4 α4 + α2β1 + α1β2 + β4
1
6

4

5

α5 β5 α5 + α3
1β1 + 3α2

1β2 + 3α1β3 + β5
1
4

4

6

α6 β6
α6 + α1α2β1 + (α2

1 + α2)β2 1
8+ α1(β3 + β4) + β6

4

7

α7 β7 α7 + α3β1 + α2
1β2 + 2α1β4 + β7

1
12

4

8

α8 β8 α8 + α4β1 + α2β2 + α1β4 + β8
1
24
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Gp will denote the normal subgroup defined by t 7→ 0 for
r(t) ≤ p.

If α ∈ G then this maps canonically to αGp ∈ G/Gp.

If α is defined from the elementary weights for a
Runge-Kutta method then order p can be written as

αGp = EGp.

Effective order p is defined by the existence of β such
that

βαGp = EβGp.
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The computational interpretation of this idea is that we
carry out a starting step corresponding to β

and a
finishing step corresponding to β−1, with many steps in
between corresponding to α.

This is equivalent to many steps all corresponding to
βαβ−1.

Thus, the benefits of high order can be enjoyed by high
effective order.
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We analyse the conditions for effective order 4.

Without loss of generality assume β(t1) = 0.
i (βα)(ti) (Eβ)(ti)

1 α1 1

2 β2 + α2
1
2 + β2

3 β3 + α3
1
3 + 2β2 + β3

4 β4 + β2α1 + α4
1
6 + β2 + β4

5 β5 + α5
1
4 + 3β2 + 3β3 + β5

6 β6 + β2α2 + α6
1
8 + 3

2β2 + β3 + β4 + β6

7 β7 + β3α1 + α7
1
12 + β2 + 2β4 + β7

8 β8 + β4α1 + β2α2 + α8
1
24 + 1

2β2 + β4 + β8
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Of these 8 conditions, only 5 are conditions on α.

Once α is known, there remain 3 conditions on β.

The 5 order conditions, written in terms of the
Runge-Kutta tableau, are ∑

bi = 1
∑

bici = 1
2∑

biaijcj = 1
6∑

biaijajkck = 1
24∑

bic
2
i (1− ci) +

∑
biaijcj(2ci − cj) = 1

4
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Effective order of SIRK methods

If the stage order is equal to the order, then this analysis
can be simplified.

We can assume the input to step n is an approximation to

y(xn−1) + α1hy′(xn−1) + · · ·+ αsh
sy(s)(xn−1)

and we want the output to be an approximation to

y(xn) + α1hy′(xn) + · · ·+ αsh
sy(s)(xn)

To construct a SIRK method with effective order s, and
with a specific choice of the abscissa vector c and a
specific value of λ, use the properties of doubly
companion matrices.
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Construction of methods

Choose λ and abscissa vector c.

Define β1, β2, . . . , βs so that the zeros of the
polynomial

1
s!x

s + β1

(s−1)!x
s−1 + · · ·+ βs

are c1, c2, . . . cs.

Define α1, α2, . . . , αs so that
α(z)β(z) = (1− λz)s + O(zs+1)

Construct the corresponding doubly companion
matrix X
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Construct A = CXC−1

, where

C =




1 c1
1
2!c

2
1 · · · 1

(s−1)!c
s−1
1

1 c2
1
2!c

2
2 · · · 1

(s−1)!c
s−1
2

... ... ... ...
1 cs

1
2!c

2
s · · · 1

(s−1)!c
s−1
s




Construct bT = b̂TC−1, where

b̂T =
[

1
1! ,

α1

1! + 1
2! ,

α2

1! + α1

2! + 1
3! , . . . , αs−1

1! + · · ·+ 1
s!

]
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Final comments

The search for efficient methods to solve stiff
problems requires a balance between three aims:

accuracy, stability, low cost

A good place to look for these methods is amongst
SERK methods and their generalisations

Further generalisations are also possible

The development of stiff methods is inextricably
linked with the pioneering work of S. P. Nørsett

I am greatly honoured to be present at this
celebration of his outstanding contributions

Lastly: I will report on my efforts to document links
between the two of us
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Proof that my Nørsett number is 2

S. P. Nørsett
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