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General linear methods

“General linear methods” is a large family of numerical
methods for ordinary differential equations, which includes
linear multistep, predictor-corrector and Runge-Kutta
methods as special cases.
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General linear methods

“General linear methods” is a large family of numerical
methods for ordinary differential equations, which includes
linear multistep, predictor-corrector and Runge-Kutta
methods as special cases.

A characteristic feature is that each step
imports r quantities, and exports the
same quantities, updated in accordance
with the development of the solution.
A second characteristic feature is that,
within the step, s stages are computed,
together with the corresponding s stage
derivatives.

RK LMS

Euler

GLM
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Denote the output approximations from step number n by

y
[n]
i , i = 1, 2, . . . , r, the stage values by Yi, i = 1, 2, . . . , s

and the stage derivatives by Fi, i = 1, 2, . . . , s.

For convenience, write

y[n−1] =




y
[n−1]
1

y
[n−1]
2

...

y
[n−1]
r


, y[n] =




y
[n]
1

y
[n]
2
...

y
[n]
r


, Y =




Y1

Y2
...
Ys


, F =




F1

F2
...
Fs


.

It is assumed that Y and F are related by a differential
equation.
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The computation of the stages and the output from step
number n is carried out according to the formulae

Yi =
s∑

j=1

aijhFj +
r∑

j=1

uijy
[n−1]
j , i = 1, 2, . . . , s,

y
[n]
i =

s∑

j=1

bijhFj +
r∑

j=1

vijy
[n−1]
j , i = 1, 2, . . . , r,

where the matrices A = [aij ], U = [uij], B = [bij],
V = [vij] are characteristic of a specific method.
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We can write these relations more compactly in the form
[
Y

y[n]

]
=

[
A⊗ I U ⊗ I

B ⊗ I V ⊗ I

] [
hF

y[n−1]

]

which we can simplify by making a harmless abuse of
notation in the form

[
Y

y[n]

]
=

[
A U

B V

] [
hF

y[n−1]

]
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Order of methods
The input to a step is an approximation to some vector of
quantities related to the exact solution at xn−1.

When the step has been completed, the vectors
comprising the output are approximations to the same
quantities, but now related to xn.
If the input is exactly what it is supposed to approximate,
then the “local truncation error” is defined as the error in
the output after a single step.

If this can be estimated in terms of hp+1, then the method
has order p.

We will refer to the calculation which produces y[n−1]

from y(xn−1) as a “starting method”.
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Let S denote the “starting method”, that is a mapping
from R

N to R
rN , and let F : R

rN → R
N denote a

corresponding finishing method, such that F ◦ S = id.

The order of accuracy of a multivalue method is defined
in terms of the diagram

E

S S

M
O(hp+1)

(h = stepsize)
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By duplicating this diagram over many steps, global
error estimates may be found.

E E E

S S S S S

M M
M

O(hp)

F

O(hp)
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Methods with high stage order
If we want not only order p but also “stage-order” q
equal to p (or possibly p− 1), things become simpler.

exp(cz) = zA exp(cz) + Uφ(z) +O(zq+1)

exp(z)φ(z) = zB exp(cz) + V φ(z) +O(zp+1)

where it is assumed the input is

y
[n−1]
i = αi1y(xn−1)+αi2hy

′(xn−1)+· · ·+αi,p+1h
py(p)(xn−1)

and where

φi(z) = αi1 + αi2z + · · ·+ αi,p+1z
p
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Stability of methods
In our discussion of errors, we assumed that V is power
bounded.

This is necessary for convergence in the sense of
Dahlquist and is sometimes referred to as
“zero-stability”.

We will consider only methods which are strongly
zero-stable, so that only the principal eigenvalue of V
lies on the unit circle.
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By formulating the method appropriately, that is by
making a simple change of basis transformation:

[
A, U, B, V

]
→

[
A, UT, T−1B, T−1V T

]

we can assume that V has the form

V =

[
1 vT

0 V̇

]

where
ρ(V̇ ) < 1.
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Stability matrix and stability function
By considering the linear test problem y′ = qy and
defining z = hq, we arrive at the stability matrix

M(z) = V + zB(I − zA)−1U.

For the linear test problem, the sequence of
approximations are related by

y[n] = M(z)y[n−1].

We define the “stability region” as the set of points in the
complex plane such that M(z) is power bounded.

We also define the “stability function” as

Φ(w, z) = det(wI −M(z)).
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Doubly companion matrics

Matrices like the following are “companion matrices” for
the polynomial

zn + α1z
n−1 + · · ·+ αn

or
zn + β1z

n−1 + · · ·+ βn,
respectively:




−α1−α2−α3· · · −αn−1−αn

1 0 0 · · · 0 0

0 1 0 · · · 0 0
... ... ... ... ...
0 0 0 · · · 0 0

0 0 0 · · · 1 0




,




0 0 0 · · · 0 −βn

1 0 0 · · · 0 −βn−1

0 1 0 · · · 0 −βn−2
... ... ... ... ...
0 0 0 · · · 0 −β2

0 0 0 · · · 1 −β1



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Their characteristic polynomials can be found from
det(I − zA) = α(z) or β(z), respectively, where,
α(z) = 1+α1z+· · ·+αnz

n, β(z) = 1+β1z+· · ·+βnz
n.

A matrix with both α and β terms:

X =




−α1 −α2 −α3 · · · −αn−1 −αn − βn

1 0 0 · · · 0 −βn−1

0 1 0 · · · 0 −βn−2
... ... ... ... ...
0 0 0 · · · 0 −β2

0 0 0 · · · 1 −β1



,

is known as a “doubly companion matrix” and has
characteristic polynomial defined by

det(I − zX) = α(z)β(z) +O(zn+1)
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Matrices Ψ−1 and Ψ transforming X to Jordan canonical
form are known.

In the special case of a single Jordan block with n-fold
eigenvalue λ, we have

Ψ−1 =




1 λ+ α1 λ2 + α1λ+ α2 · · ·

0 1 2λ+ α1 · · ·

0 0 1 · · ·
... ... ... . . .


 ,

where row number i+ 1 is formed from row number i
by differentiating with respect to λ and dividing by i.

We have a similar expression for Ψ:
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Ψ =




. . . ... ... ...
· · · 1 2λ+ β1 λ2 + β1λ+ β2

· · · 0 1 λ+ β1

· · · 0 0 1




The Jordan form is Ψ−1XΨ=J + λI , where Jij =δi,j+1.
That is

Ψ−1XΨ =




λ 0 · · · 0 0

1 λ · · · 0 0
... ... ... ...
0 0 · · · λ 0

0 0 · · · 1 λ



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Methods with the RK stability property
By “Runge-Kutta stability” we mean the property a

method might have in which the characteristic
polynomial of its stability matrix has all except one of its
zeros equal to zero.
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Methods with the RK stability property
By “Runge-Kutta stability” we mean the property a

method might have in which the characteristic
polynomial of its stability matrix has all except one of its
zeros equal to zero.

det(wI −M(z)) = wr−1(w −R(z))

Although methods exist with this property with
r = s = p = q, it is difficult to construct them.

If s ≥ r = p+ 1, it is possible to construct the methods
in a systematic way by imposing a condition known as
“Inherent Runge-Kutta Stability”.
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Construction of methods
Using doubly companion matrices, it is possible to
construct GL methods possessing RK stability with
rational operations.

The methods constructed in this way are said to possess
“Inherent Runge–Kutta Stability”.

Apart from exceptional cases, (in which certain matrices
are singular), we characterize the method with
r = s = p+ 1 = q + 1 by several parameters.
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Parameters for construction of methods

λ single eigenvalue of lower triangular matrix A

c1, c2, . . . , cs stage abscissae

Error constant

β1, β2, . . . , βp elements in last column of s× s
doubly companion matrix X

Information on the structure of V
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Consider only methods for which the step n outputs
approximate the “Nordsieck vector”

:



y
[n]
1

y
[n]
2

y
[n]
3
...

y
[n]
p+1



≈




y(xn)

hy′(xn)

h2y′′(xn)
...

hpy(p)(xn)




For such methods, V has the form

V =

[
1 vT

0 V̇

]
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Such a method has the IRKS property if a doubly
companion matrix X exists so that for some vector ξ,

BA = XB,

BU = XV − V X + e1ξ
T , ρ(V̇ ) = 0

It can be shown that, for such methods, the stability
matrix satisfies

M(z) ∼ V + ze1ξ
T (I − zX)−1

which has all except one of its eigenvalues zero. The
non-zero eigenvalue has the role of stability function

R(z) =
N(z)

(1− λz)s
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Construction of methods
From the order and stage-order conditions, we can write
U and V in terms of A and B:

U = C − ACK,

V = E −BCK,
where

C=




1 c1
1
2c

2
1 · · · 1

p!c
p
1

1 c2
1
2c

2
2 · · · 1

p!c
p
2

... ... ... ...
1 cs

1
2c

2
s · · · 1

p!c
p
s


, KT =J=




0 0 · · · 0 0

1 0 · · · 0 0
... ... ... ...
0 0 · · · 1 0


.
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Substitute these formulae for U and V into
BU = XV − V X + e1ξ

T and, after some simplification,
we find

ḂC




βp

βp−1
...
β1

1




=




βp−1 + 1
2!βp−2 + · · ·+ 1

p!

βp−2 + 1
2!βp−3 + · · ·+ 1

(p−1)!
...

β1 + 1
2!

1



,

where Ḃ denotes the last p rows of B.

By taking account of the error constant prescribed for the
method, we can find a similar formula involving the first
row of B.
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To simplify the construction we introduce a matrix
B̃ = Ψ−1B, assumed to be non-singular.
Because

B̃A = (λI + J)B̃,

we know that B̃ is lower triangular.

Using the known value for B̃C
[
βp βp−1 · · · β1 1

]T

and the fact that the ρ(V̇ ) = 0, where

V = E −ΨB̃CK,

we can find a suitable value of B̃.
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Once B̃ is known, we find the defining matrices for the
method from

A = B̃−1(J + λI)B̃,

U = C − ACK,

B = ΨB̃,

V = E −BCK.
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Collaboration with Will Wright
When two people work together, it is often hard to
untangle the contributions that each makes.

Will’s contributions include, but are not confined to,

Showing how to extend the original formulation of
stiff IRKS methods to explicit non-stiff methods.

Showing how to use doubly companion matrices in
the formulation of IRKS methods.

Relating the principal error coefficients to the β
values.
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Example methods
The following third order method is explicit and suitable
for the solution of non-stiff problems

[
AU

BV

]
=




0 0 0 0 1 1
4

1
32

1
384

− 176
1885 0 0 0 1 2237

3770
2237
15080

2149
90480

−335624
311025

29
55 0 0 1 1619591

1244100
260027
904800

1517801
39811200

−67843
6435

395
33 −5 0 1 29428

6435
527
585

41819
102960

−67843
6435

395
33 −5 0 1 29428

6435
527
585

41819
102960

0 0 0 1 0 0 0 0
82
33 −274

11
170
9 −4

3 0 482
99 0 −161

264

−8 −12 40
3 −2 0 26

3 0 0



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The following fourth order method is implicit, L-stable,
and suitable for the solution of stiff problems



1

4
0 0 0 0 1 3

4

1

2

1

4
0

− 513

54272

1

4
0 0 0 1 27649

54272

5601

27136

1539

54272
− 459

6784

3706119

69088256
− 488

3819

1

4
0 0 1 15366379

207264768

756057

34544128

1620299

69088256
− 4854

454528

32161061

197549232
− 111814

232959

134

183

1

4
0 1− 32609017

197549232

929753

32924872

4008881

32924872

174981

3465776

− 135425

2948496
− 641

10431

73

183

1

2

1

4
1 − 367313

8845488
− 22727

1474248

40979

982832

323

25864

− 135425

2948496
− 641

10431

73

183

1

2

1

4
1 − 367313

8845488
− 22727

1474248

40979

982832

323

25864

0 0 0 0 1 0 0 0 0 0
2255

2318
− 47125

20862

447

122
− 11

4

4

3
0 − 28745

20862
− 1937

13908

351

18544

65

976

12620

10431
− 96388

31293

3364

549
− 10

3

4

3
0 − 70634

31293
− 2050

10431
− 187

2318

113

366

414

1159
− 29954

31293

130

61
−1 1

3
0 − 27052

31293
− 113

10431
− 491

4636

161

732



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Implementation questions for IRKS methods

Initial stepsize

Towards practical general linear methods – p. 33/42



General linear methods
Doubly companion matrices

Methods with the RK stability property
Implementation questions for IRKS methods

Implementation questions for IRKS methods

Initial stepsize

Starting method

Evaluation of stages

Interpolation for continuous output

Error estimation

Variable stepsize

Variable order

Towards practical general linear methods – p. 34/42



General linear methods
Doubly companion matrices

Methods with the RK stability property
Implementation questions for IRKS methods

Implementation questions for IRKS methods

Initial stepsize

Starting method

Evaluation of stages

Interpolation for continuous output

Error estimation

Variable stepsize

Variable order

Towards practical general linear methods – p. 34/42



General linear methods
Doubly companion matrices

Methods with the RK stability property
Implementation questions for IRKS methods

Implementation questions for IRKS methods

Initial stepsize

Starting method

Evaluation of stages

Interpolation for continuous output

Error estimation

Variable stepsize

Variable order

Towards practical general linear methods – p. 34/42



General linear methods
Doubly companion matrices

Methods with the RK stability property
Implementation questions for IRKS methods

Implementation questions for IRKS methods

Initial stepsize

Starting method

Evaluation of stages

Interpolation for continuous output

Error estimation

Variable stepsize

Variable order

Towards practical general linear methods – p. 34/42



General linear methods
Doubly companion matrices

Methods with the RK stability property
Implementation questions for IRKS methods

Implementation questions for IRKS methods

Initial stepsize

Starting method

Evaluation of stages

Interpolation for continuous output

Error estimation

Variable stepsize

Variable order

Towards practical general linear methods – p. 34/42



General linear methods
Doubly companion matrices

Methods with the RK stability property
Implementation questions for IRKS methods

Implementation questions for IRKS methods

Initial stepsize

Starting method

Evaluation of stages

Interpolation for continuous output

Error estimation

Variable stepsize

Variable order

Towards practical general linear methods – p. 34/42



General linear methods
Doubly companion matrices

Methods with the RK stability property
Implementation questions for IRKS methods

Implementation questions for IRKS methods

Initial stepsize

Starting method

Evaluation of stages

Interpolation for continuous output

Error estimation

Variable stepsize

Variable order

Towards practical general linear methods – p. 34/42



General linear methods
Doubly companion matrices

Methods with the RK stability property
Implementation questions for IRKS methods

Variable stepsize stability
Zero stability, in the constant stepsize case, is concerned
with the power-boundedness of V .

The naive method of achieving variable stepsize
(h→ rh) is to rescale the Nordsieck vector by a matrix

D(r) = diag(1, r, r2, . . . , rp).

If r is constrained to lie in an interval I = [rmin, rmax] then
zero-stability generalizes to the existence of a uniform
bound on

‖D(rn)V D(rn−1)V · · ·D(r2)V D(r1)V ‖

when r1, r2, . . . , rn ∈ I .
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For implicit methods, we might also want
“infinity-stability” by requiring a uniform bound on

‖D(rn)V̂ D(rn−1)V̂ · · ·D(r2)V̂ D(r1)V̂ ‖,

where
V̂ = M(∞) = V −BA−1U.

This naive approach is very unsatisfactory from the
stability point of view and it has other disadvantages, as
we will see.
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Less naive is to modify the rescaled Nordsieck vector by
adding quantities computed from

hF1, hF2, . . . , hFp+1, y
[n−1]
2 , y

[n−1]
3 , . . . , y

[n−1]
p+1 , such that

the order remains p

, but variable stepsize stability is
achieved.

There are other issues to consider in making the
modification, as we will see.

In particular we need to consider the effect of variable h
on the error constants in incoming approximations.

We introduce these ideas in the context of the underlying
one-step method.
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To introduce the underlying one-step method, consider a
modification of the diagram relating the starting method
and a single step of the method.

E

S S

M
O(hp+1)

E

E∗

S∗
S∗

M

O(hp+1)

In the modified diagram, the perturbed starting method,
shown as S∗, is chosen to obtain a commutative diagram
if E is replaced by the underlying one-step method E∗.

Towards practical general linear methods – p. 38/42



General linear methods
Doubly companion matrices

Methods with the RK stability property
Implementation questions for IRKS methods

To introduce the underlying one-step method, consider a
modification of the diagram relating the starting method
and a single step of the method.

E

S S

M
O(hp+1)

E

E∗

S∗
S∗

M

O(hp+1)

In the modified diagram, the perturbed starting method,
shown as S∗, is chosen to obtain a commutative diagram
if E is replaced by the underlying one-step method E∗.

Towards practical general linear methods – p. 38/42



General linear methods
Doubly companion matrices

Methods with the RK stability property
Implementation questions for IRKS methods

To introduce the underlying one-step method, consider a
modification of the diagram relating the starting method
and a single step of the method.

E

S S

M
O(hp+1)

E

E∗

S∗
S∗

M

O(hp+1)

In the modified diagram, the perturbed starting method,
shown as S∗, is chosen to obtain a commutative diagram
if E is replaced by the underlying one-step method E∗.

Towards practical general linear methods – p. 38/42



General linear methods
Doubly companion matrices

Methods with the RK stability property
Implementation questions for IRKS methods

If S maps y(x) to 


y(x)

hy′(x)
...

hpy(p)(x)



,

then · · ·

S∗ maps y(x) to



y(x)

hy′(x)−θ1h
p+1y(p+1)(x)−φ1h

p+2y(p+2)(x)−ψ1h
p+2 ∂f

∂y
y(p+1)(x)+O(hp+3)

...

hpy(p)(x)−θph
p+1y(p+1)(x)−φph

p+2y(p+2)(x)−ψph
p+2 ∂f

∂y
y(p+1)(x)+O(hp+3)



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Values of the coefficients θi, φi, ψi (i = 1, 2, . . . , p) are
known.

If h is constant, we can rely on the values of these
coefficients as possible ingrediants of the error
estimation formulae.
However, for variable h, the coefficients vary as
functions of the step-size history.
Hence, management of the coefficients must become part
of the modification process which follows scaling of the
Nordsieck vector.
We now know how to do this so that behaviour is
stabilised and so that at least the θ values effectively
retain their constant values.
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It is now possible to estimate

The value of hp+1y(p+1)(xn) to within O(hp+2).

Hence the local truncation error in a step.

The value of hp+2y(p+2)(xn) to within O(hp+3).

Hence the local truncation error of a contending
method of order p+ 1.

We believe we now have the ingredients for constructing
a variable order, variable stepsize code based on the new
methods.
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