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Abstract

Global bifurcations involving saddle periodic orbits have recently been rec-
ognized as being involved in various new types of organizing centers for com-
plicated dynamics. The main emphasis has been on heteroclinic connections
between saddle equilibria and saddle periodic orbits, called EtoP orbits for
short, which can be found in vector fields in R3. Thanks to the development
of dedicated numerical techniques, EtoP orbits have been found in a number of
three-dimensional model vector fields arising in applications.

We are concerned here with the case of heteroclinic connections between
two saddle periodic orbits, called PtoP orbits for short. A homoclinic orbit
from a periodic orbit to itself is an example of a PtoP connection, but is gener-
ically structurally stable in a phase space of any dimension. The issue that we
address here is that, until now, no example of a concrete vector field with a
non-structurally stable PtoP connection was known. We present an example
of a PtoP heteroclinic cycle of codimension one between two different saddle
periodic orbits in a four-dimensional vector field model of intracellular calcium
dynamics. We first show that this model is a good candidate system for the
existence of such a PtoP cycle and then demonstrate how a PtoP cycle can be
detected and continued in system parameters using a numerical setup that is
based on Lin’s method.

1 Introduction

In numerous fields of application one finds mathematical models with continuous
time that take the general form of a vector field

ẋ = f(x, λ), (1)

where
f : Rn × Rm → Rn

is sufficiently smooth, say, twice differentiable for the purpose of this paper. Here
Rn is the phase space of (1) and λ ∈ Rm is a multi-dimensional parameter. The
flow of (1) is denoted by ϕt.
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To understand the dynamics of (1) one needs to study how the phase space is
organised by invariant objects, including equilibria and periodic orbits, and, when
the equilibria or periodic orbits are of saddle type, their global stable and unstable
manifolds. Furthermore, one needs to study bifurcations, where these objects change
qualitatively when the parameter λ is varied. A bifurcation is said to be of codimen-
sion d if it is encountered generically at isolated points in a d-dimensional parameter
space. A distinction is made between local and global bifurcations: a local bifurca-
tion occurs when there is a change of stability of an equilibrium or a periodic orbit,
while a global bifurcation is characterised by the rearrangement of global stable and
unstable manifolds. Of particular interest are homoclinic and heteroclinic bifurca-
tions, where one finds a homoclinic or heteroclinic orbit (or connection) that arises
as a non-generic intersection of stable and unstable manifolds of a saddle object or
of two different saddle objects. It is well known that homoclinic and heteroclinic
bifurcations may give rise to complicated behavior, including chaotic dynamics; see,
for example, the textbooks [31, 43, 47] for general information about bifurcation
theory.

Due to their inherently global nature, the identification of homoclinic or hete-
roclinic orbits in a given system typically requires the use of advanced numerical
methods [4, 5, 12, 13, 18, 22, 29, 23, 24, 42, 48]. A common feature of many of
these methods is that the connecting orbit in question is represented by an orbit
segment (over a finite time interval) that is the solution of a boundary value prob-
lem (BVP) with suitable boundary conditions near equilibria and/or periodic orbits.
Homoclinic and heteroclinic orbits to equilibria can be computed readily in this way
with, for example, the HomCont [12] part of the well-known continuation package
Auto [21]. This makes it possible to perform comprehensive studies of systems with
complicated bifurcation diagrams featuring numerous curves of global bifurcations
of equilibria; some recent examples can be found in [10, 41].

More recently, heteroclinic cycles in generic vector fields (without additional
symmetry properties) involving periodic orbits have attracted considerable interest.
The basic examples are the EtoP cycle between a saddle equilibrium and a saddle
periodic orbit and the PtoP cycle between two different periodic orbits. When
these cycles are of codimension one, they give rise to nearby complicated recurrent
dynamics; see, for example, [11, 36, 37, 38, 49, 50, 51]. Most of the emphasis has
been on the case of a codimension-one EtoP heteroclinic cycle, which can be found
in three-dimensional vector fields. A well-known example is the EtoP heteroclinic
cycle in the Lorenz system (where it is responsible for the birth of chaotic dynamics)
[25, 42], but EtoP cycles have also been found in a number of vector fields arising in
different applications, including models of a food chain [6, 7], of intracellular calcium
dynamics [10], of electronic circuits [28], of nonlinear laser dynamics [53], and of a
global return mechanism near a saddle-node Hopf bifurcation [40, 42]. The case of
PtoP cycles, on the other hand, is much less studied. In fact, as far as we know,
all published examples of PtoP connections in concrete vector fields [18, 19, 24, 42]
are structurally stable and, hence, of codimension zero. Providing an example of a
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vector field with a PtoP connection of codimension d ≥ 1 is the challenge that is
addressed here; we do this with the use of advanced numerical tools.

A number of numerical methods have been developed for the computation of
EtoP and PtoP connections. The work of Beyn [5] introduced the general setup and
error bounds with projection boundary conditions for such computations. Pam-
pel [48] implemented this scheme to compute a codimension-one EtoP connection in
the Lorenz system. This EtoP connection and a codimension-zero PtoP connection
in a coupled oscillator system were computed by Dieci and Rebaza [18, 19] by using
the continuation of invariant subspaces from [13] to define the boundary conditions.
Doedel et al. [23] define projection boundary conditions via the adjoint variational
equation along a periodic orbit, and continue codimension-one EtoP connections in
the Lorenz system and in three-dimensional models of an electronic circuit and of a
food-chain; in [24] these authors also compute a codimension-zero PtoP homoclinic
orbit of the food-chain model. All these numerical methods represent the EtoP or
PtoP connecting orbit as a single orbit segment, and they have the common diffi-
culty of finding an initial approximate connecting orbit that satisfies the defining
BVP. Pampel [48] finds this start data by continuing intersection curves of (un)stable
manifolds in a suitably chosen plane, while Dieci and Rebaza [18, 19] use a simple
shooting method. Doedel et al. [23, 24], on the other hand, find an initial connecting
orbit with a homotopy-type approach (as is used in HomCont [12] for connecting
orbits between equilibria), which works quite well when the (un)stable manifold of
the equilibrium is of dimension one and the phase space is not too large (n = 3 in
their examples).

In contrast to the above methods, Krauskopf and Rieß [42] represent an EtoP
orbit of codimension d in any phase space dimension by two separate orbit segments.
Their numerical setup is an implementation of Lin’s method [45], which is a the-
oretical tool for the analysis of recurrent dynamics, in particular near homoclinic
orbits and heteroclinic cycles; see, for example, [36, 49, 51, 52, 54]. More specifi-
cally, one orbit segment starts near the equilibrium and ends in a suitably chosen
section Σ, and the second orbit segment starts in Σ and ends near the periodic orbit.
Projection boundary conditions are used near the saddle objects; the conditions are
well established near equilibria [4] and adapted from [26] near periodic orbits. The
crucial point is that the difference of the end points of the two orbit segments can
be restricted to lie in a fixed d-dimensional subspace Z, which is also referred to as
the Lin space. After choosing a basis for Z one obtains d well-defined test functions,
called the Lin gaps, that measure the (signed) gap sizes along each of the basis vec-
tors. An EtoP orbit can be found by continuation runs that close the Lin gaps one
by one, and the EtoP orbit can then be continued in system parameters with the
Lin gaps remaining closed. While two orbit segments (rather than just one) need to
be computed, the major advantage of the Lin’s method approach is that the overall
BVP for the two orbit segments is well posed irrespective of how close the system is
to an actual EtoP orbit. As a result, finding start data is not really an issue. Fur-
thermore, other common zeros of the Lin gaps and, hence, more than just one EtoP
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connection may be detected with the same setup. The method was demonstrated in
[42] with the detection and continuation of codimension-one EtoP connections in the
Lorenz system and in the model vector field from [40]; moreover, a codimension-two
EtoP connection was computed in a four-dimensional Duffing-type system.

In this paper we use the Lin’s method approach from [42] to find and continue
a codimension-one PtoP heteroclinic cycle between two saddle periodic orbits. A
brief discussion of how this approach could be adapted for the computation of PtoP
connections was already given in [42], but in that paper the method was demon-
strated only with the computation of a PtoP heteroclinic connection of codimension
zero. The main issue, which we address here, is the lack of an example of a con-
crete vector field that features a PtoP connection of codimension d ≥ 1, where the
codimension is only due to the dimensions of the (un)stable manifolds and the re-
sulting dimension of a generic intersection. It is not at all straightforward to find
such an example. First of all, note that a PtoP homoclinic orbit of a hyperbolic
saddle periodic orbit Γ is of codimension d = 0 in a phase space of any dimension
n, because dim(W u(Γ)) + dim(W s(Γ)) = n+ 1 regardless of the value of n. Hence,
one needs to consider PtoP heteroclinic connections between two saddle periodic
orbits, Γ1 and Γ2. For a codimension-one PtoP connection to exist, the phase space
must be at least four dimensional; in the case that the phase space is R4 we must
have k := dim(W u(Γ1)) = 2 and l := dim(W s(Γ2)) = 2. Where should one look for
two periodic orbits with this property? If one can find suitable periodic orbits in a
concrete vector field, how can one check that a PtoP connection actually exists?

It is quite clear that, even with numerical continuation tools such as Auto [21]
or MatCont [16], these questions cannot be answered by an unguided search for
saddle periodic orbits in model vector fields with phase spaces of dimension (at least)
four. Rather, our approach is to:

I. provide theoretical insight into a minimal example of a codimension-one PtoP
heteroclinic connection and describe the type of bifurcation structure near
which one may expect to find such a connection;

II. implement the Lin’s method approach from [42] for the detection and contin-
uation of PtoP heteroclinic connections;

III. identify a candidate vector field from a suitable area of application that has
the correct ingredients in terms of its bifurcation structure; and

IV. verify the existence of a codimension-one PtoP heteroclinic connection in the
candidate vector field.

In this way, we are able to show that a codimension-one PtoP heteroclinic cycle exists
in a four-dimensional model of intracellular calcium dynamics [55]. We are also able
to continue the locus of the PtoP cycle as a curve in a parameter plane, and to detect
and continue nearby PtoP homoclinic orbits and periodic orbits. In other words,
the dynamics near the codimension-one PtoP heteroclinic cycle can now be studied
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with advanced numerical tools. We remark in this context that PtoP heteroclinic
cycles are closely related to heterodimensional cycles between saddle fixed points of a
diffeomorphism. This type of global bifurcation provides a mechanism for generating
partially hyperbolic attractors and related complicated dynamics; see, for example,
[8, 9, 17] and further references therein, as well as [2, 39].

The structure of the paper is as follows. In Sec. 2 we provide the formal definition
of a PtoP orbit of codimension d and then discuss in Sec. 2.1 the specific example of a
PtoP heteroclinic cycle in R4. The Lin’s method setup for PtoP orbits is introduced
in Sec. 3 and its implementation is presented in Sec. 3.1. In Sec. 4 we introduce the
four-dimensional simplified Atri model for intracellular calcium dynamics. A partial
bifurcation analysis in Sec. 4.2 demonstrates that this model has the geometric
elements required for the existence of a codimension-one PtoP heteroclinic cycle.
Sec. 5 is devoted to finding and continuing the heteroclinic cycle with the Lin’s
method approach. The codimension-one PtoP connection is computed in Sec. 5.1
and the codimension-zero PtoP connection is found in Sec. 5.2; the codimension-
one PtoP cycle is then continued in Sec. 5.3 as a curve in two system parameters.
Sec. 6 shows how PtoP homoclinic orbits and saddle periodic orbits can be found
numerically near the codimension-one PtoP cycle. We summarize our findings in
Sec. 7.

2 PtoP connection of codimension d

We consider here a heteroclinic connecting orbit Q of (1) between two hyperbolic
saddle periodic orbits Γ1 and Γ2 that exists for a given value of the parameter λ = λ∗.
To be specific, we assume that the connection is such that the flow on it is from Γ1

to Γ2; if necessary, this can be achieved by reversing time in (1). Hence, we consider
the unstable manifold

W u(Γ1) := {x ∈ Rn | lim
t→−∞

dist(ϕt(x),Γ1) = 0}

and the stable manifold

W s(Γ2) := {x ∈ Rn | lim
t→∞

dist(ϕt(x),Γ2) = 0},

which are assumed to intersect in Q, that is, Q ∈ W u(Γ1) ∩ W s(Γ2) ⊂ Rn. We
further assume that the following genericity conditions are satisfied.

(C1) The periodic orbit Γ1 is hyperbolic and its unstable manifold W u(Γ1) is of
dimension k ≥ 2.

(C2) The periodic orbit Γ2 is hyperbolic and its stable manifold W s(Γ2) is of di-
mension l ≥ 2.
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(C3) k + l ≤ n.

(C4) The connecting orbitQ at λ = λ∗ is isolated and dim (TqW
u(Γ1) ∩ TqW

s(Γ2)) =
1 for any point q ∈ Q.

(C5) The λ-dependent families of W u(Γ1) and W s(Γ2) intersect transversely in the
product Rn+m of phase space and parameter space.

Conditions (C1)–(C5) ensure that the only source of codimension of the PtoP con-
nection is due to the dimensions of the two global manifolds W u(Γ1) and W s(Γ2), so
that Q ∈ W u(Γ1)∩W s(Γ2) ⊂ Rn has the codimension d := n+1− k− l. Note that
d ≥ 1 due to (C3); hence, the PtoP connection Q can be found along an (m − d)-
dimensional subspace of the m-dimensional parameter region Λ. In particular, one
encounters the PtoP connection Q generically for m ≥ d. In the case that (C3) is
not satisfied, (that is, for k + l > n) the PtoP connection Q is structurally stable
(since the intersection of W u(Γ1) and W s(Γ2) in Rn is structurally stable) and we
say that Q is of codimension zero. Note further that in this case the connection Q
need not be isolated and, hence, condition (C4) may be violated.

2.1 Codimension-one PtoP connection in R4

Codimension-one EtoP orbits can occur in R3 when the equilibrium has a one-
dimensional unstable manifold; a well-known example can be found in the Lorenz
system [1, 23, 25, 42], but EtoP connections also occur in other systems [18, 23,
42, 48]. For PtoP connections, on the other hand, all examples considered so far in
[18, 24, 42, 48] are of codimension zero. Since the dimensions k and l of W u(Γ1) and
W s(Γ2), respectively, are at least two, finding a PtoP connection of codimension
d ≥ 1 requires a phase space of dimension n ≥ 4. Furthermore, Q must be a PtoP
heteroclinic connection, that is, Γ1 ̸= Γ2. Hence, the minimal example of a PtoP
connecting orbit that is not structurally stable requires n = 4, k = 2 and l = 2 so
that the connection (if it exists) is of codimension d = 1.

It is not a straightforward task to find a vector field with the required overall
properties. We proceed by identifying a bifurcation structure in parameter space
near which one expects to find two suitable periodic orbits. More specifically, we
propose to look in a two-dimensional parameter space near a curve of saddle-node of
limit cycles bifurcations that create Γ1 and Γ2 as saddle objects in R4. Then, say, Γ1

has a two-dimensional unstable manifold and a three-dimensional stable manifold,
while Γ2 has a two-dimensional stable manifold and a three-dimensional unstable
manifold. Furthermore, the two-dimensional manifold Q0 = W s(Γ1) ∩ W u(Γ2) is
a topological cylinder that is bounded by Γ1 and Γ2. In other words, Γ1 and Γ2

have the correct ‘local’ properties. The main question is, hence, whether the two-
dimensional manifolds W u(Γ1) and W s(Γ2) are ‘close enough’ to each other, so that
they may pass through each other (along a suitable path in the two-dimensional
parameter space). If they do then the codimension-one PtoP connection Q1 also

6



γ1 γ2

W s(γ1)

Wu(γ1) W s(γ2)

Wu(γ2)

q0

q−2

1

q−1

1 q0

1
q1

1

q2

1

Figure 1: Schematic of the global structure of a codimension-one PtoP heteroclinic
cycle in R4 near a saddle-node bifurcation of the two periodic orbits Γ1 and Γ2,
sketched on the level of a three-dimensional (local) Poincaré section Σcyl trans-
verse to Γ1 and Γ2. The two corresponding saddle fixed points γ1 and γ2 have a
codimension-one connection q1 = {. . . q−2

1 , q−1
1 , q01, q

1
1, q

2
1, . . .} = W u(γ1) ∩ W s(γ2)

and a codimension-zero connection q0 = W s(γ1) ∩W u(γ2).

exists and the heteroclinic cycle is complete at the corresponding isolated point λ∗

along the parameter path.
This situation is best pictured in a three-dimensional (local) Poincaré section

Σcyl transverse to the flow on the cylinder Q0 that is bounded by Γ1 and Γ2. Fig-
ure 1 shows the saddle fixed points γ1 = Γ1 ∩ Σcyl and γ2 = Γ2 ∩ Σcyl and their
invariant global manifolds. Notice the structurally stable one-dimensional hetero-
clinic connection q0 = W u(γ2) ∩ W s(γ1) = Q0 ∩ Σcyl from γ2 to γ1. The phase
portrait shown corresponds to λ = λ∗ where the PtoP heteroclinic cycle is complete.
This means that the one-dimensional manifolds W u(γ1) and W s(γ2) intersect in a
heteroclinic orbit q1 = {. . . q−2

1 , q−1
1 , q01, q

1
1, q

2
1, . . .} = Q1 ∩ Σcyl; under the Poincaré

return map on Σcyl points in q1 move to γ1 and γ2 under backward and forward
iteration, respectively. When a generic parameter λ ∈ R is moved through λ = λ∗

then W u(γ1) and W s(γ2) pass through each other as curves in R3. Notice further
from Fig. 1 that the curve W u(γ1) bounds the surface W

u(γ2) and the curve W s(γ2)
bounds the surface W s(γ1).

We remark that the heteroclinic cycle between the two saddle points γ1 and
γ2 that is shown in Fig. 1 constitutes the minimal example of a heterodimensional
cycle of a diffeomorphism on R3. More specifically, in the notation of [8, 9, 17], it
is the case of a codimension-one heterodimensional cycle that is quasi-transversal
(the tangent spaces of the respective stable and unstable manifolds of γ1 and γ2
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intersect minimally), connected and non-critical. It has been proved (under an
additional small distortion condition) that there are robust non-hyperbolic transitive
sets in a parameter neighborhood of such a codimension-one heterodimensional cycle;
see [9] and further references therein. The authors of [2, 39] speak of heteroclinic
cycles with unstable dimension variability. The transition through a codimension-
one heteroclinic cycle as in Fig. 1 is referred to as a crossing bifurcation in [39], where
it is shown that it may result in a crisis bifurcation of an attractor. Finding a minimal
codimension-one PtoP heteroclinic cycle, hence, provides a concrete example of a
minimal heterodimensional cycle and the associated crossing bifurcation. Nearby
dynamics can then be investigated in its suspended form in the vector field model,
or by considering the local Poincaré map to a section transverse to the periodic
orbits.

3 Finding a codimension-one PtoP connection with Lin’s
method

The mathematical setup of Lin’s method for a PtoP connecting orbit Q is a direct
generalization of the corresponding setup for an EtoP orbit when the role of the
saddle equilibrium is played by another saddle periodic orbit; compare with [42].
Consider a cross-section Σ (an (n − 1)-dimensional submanifold) that intersects Q
transversely and separates Γ1 and Γ2. In many situations such a section can be
found in the convenient linear form

Σ = {x ∈ Rn | ⟨x− pΣ, nΣ⟩ = 0}, (2)

where pΣ is a point in Σ and nΣ is a fixed normal vector to Σ. Note that transversality
of the flow of (1) to Σ can be assured in practice at least locally near Q, even when
Q is not yet known. We now consider the parameter neighborhood Λ of λ∗ and
define for all λ ∈ Λ (λ-dependent) orbit segments

Q− = {q−(t) | t ≤ 0} ⊂ W u(Γ1) where q−(0) ∈ Σ, (3)

Q+ = {q+(t) | t ≥ 0} ⊂ W s(Γ2) where q+(0) ∈ Σ, (4)

from Γ1 to Σ and from Σ to Γ2, respectively.
The main idea of Lin’s method [45] is that the difference of the points q−(0), q+(0) ∈

Σ can be required to lie in a fixed d-dimensional linear subspace Z, which is referred
to as the Lin space. There is an element of choice (which we will exploit in what
follows), but Z must satisfy the genericity condition

(L) dim (W+ ⊕W− ⊕ Z) = dim(Σ) = n− 1, where W− = TQ∩ΣW
u(Γ1) ∩ TQ∩ΣΣ

and W+ = TQ∩ΣW
s(Γ2) ∩ TQ∩ΣΣ.

In other words, in the tangent space TQ∩ΣΣ of Σ at Q ∩ Σ the d-dimensional space
Z must span the d-dimensional complement of the sum W+ ⊕W− of the respective
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tangent spaces of the global manifolds. Since the flow is transverse to Σ, this means
that no non-zero vector in Z is allowed to lie in the tangent space of either W u(Γ1)
or W s(Γ2). Note that for a linear section Σ of the form (2) TQ∩ΣΣ is simply the
orthogonal complement of nΣ. A well-known choice for the Lin space Z, which is
‘most transverse’ in a way, is to consider solutions of the adjoint variational equation
along Q [36, 46, 52].

Statement of Lin’s method for PtoP orbits. Suppose that system (1) has
a PtoP connection Q satisfying conditions (C1)–(C5), and let Z be a d-dimensional
space satisfying condition (L) with basis z1, · · · , zd. Then, in some neighbourhood Λ
of λ∗, for any λ ∈ Λ the solutions Q− and Q+ as defined by (3) and (4) are uniquely
defined by the condition that

ξ(λ) := q+(0)− q−(0) ∈ Z.

Furthermore, there are d smooth functions ηi : Rm → R such that

ξ(λ) =
d∑

i=1

ηi(λ)zi and ηi(λ
∗) = 0 for all i = 1, . . . , d.

This statement is typical for any setup of Lin’s method. The underlying idea is
to consider so-called Lin orbits, which may consist of any number of orbit segments
with ‘jumps’ in suitable Lin spaces from one orbit segment to the next; see, for
example, [36, 50, 52, 54]. Each such Lin orbit is well defined, and it encodes a type
of global orbit of interest. When all jumps, that is, all Lin gaps, are zero then one
has found the desired global orbit. This approach can be used to study EtoP and
PtoP connections, as well as more general heteroclinic networks involving periodic
orbits; see [35, 37, 49, 50] for details.

The main step in proving the statement of Lin’s method for PtoP orbits as stated
here is to show the uniqueness of the orbit segments Q− and Q+ for any λ ∈ Λ. The
properties of the functions ηi are a consequence of this uniqueness. Since the matrix
Dξ is non-singular due to condition (C5), the ηi(λ) — which we refer to as the Lin
gaps — are well-defined test functions with regular roots, including a joint regular
root at λ∗. An approach to finding an unknown PtoP connection Q is, therefore,
to continue the λ-dependent orbit segments Q− and Q+ in parameters until all Lin
gaps ηi(λ) are zero.

This Lin’s method setup is sketched in Fig. 2 for the lowest-dimensional case
of a codimension-one heteroclinic PtoP connection in R4 with k = l = 2; then
the Lin space Z is of dimension one, and the PtoP connection can be found at
an isolated point λ∗ of a single parameter λ ∈ R. The situation in panel (a) is
for λ near λ∗. The two-dimensional manifolds W u(Γ1) and W s(Γ2) of the periodic
orbits Γ1 and Γ2 are shown up to the three-dimensional section Σ, which they
intersect in one-dimensional curves (shown here as two circles). The orbit segments
Q− ⊂ W u(Γ1) and Q+ ⊂ W s(Γ2) end in Σ. The difference of their end points
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(a) Σ
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Wu(Γ1)
W s(Γ2)
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W s(Γ2) ∩ Σ

Q−

Q+

Z

g1
v
u

1
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s

1

(b) Σ

Γ1

Γ2

Wu(Γ1)
W s(Γ2)

Wu(Γ1) ∩ Σ

W s(Γ2) ∩ Σ

Q−

Q+

Z
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v
u

1

g2
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1

Figure 2: Schematic diagram illustrating the Lin’s method setup for finding a
codimension-one PtoP connecting orbit in R4. The end points of the two orbit
segments, Q− ∈ W u(Γ1) and Q+ ∈ W s(Γ2), in the three-dimensional section Σ lie
in the one-dimensional Lin space Z. In the numerical implementation Q− and Q+

are truncated to orbit segments whose other end points lie on vectors vu
1 and ws

1 in
the respective (un)stable eigenspaces at points g1 ∈ Γ1 and g2 ∈ Γ2, respectively.
Panel (a) shows a non-zero Lin gap along Z for λ near λ∗, and panel (b) shows the
PtoP connection Q = Q− ∪Q+ for λ = λ∗.

q+(0) and q−(0) lies along the one-dimensional Lin space Z, giving rise to the single
Lin gap η1(λ) = q+(0)− q−(0) ̸= 0; for definiteness, we choose the sign of the Lin
direction vector z1 in such a way that η1(λ) is initially positive. While Q− and
Q+ are continued in the parameter λ, the Lin gap η1(λ) can be monitored. As is
shown in Fig. 2(b), at λ∗ the orbit segments Q− and Q+ meet and form the PtoP
connecting orbit Q. Note that η1(λ) undergoes a sign change at λ∗ because it is a
regular root.
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3.1 Implementation of the method

The continuation of families of orbit segments is a very powerful and accurate general
numerical method for the investigation of global objects in dynamical systems such
as invariant manifolds, connecting orbits and slow manifolds; see [1, 20, 41] for more
details. The key step is to formulate a suitable parameterized family of well-posed
BVPs, which can be solved, for example, with the collocation solver of the package
Auto [21]. Solutions of the BVP can then be continued in parameters with Auto’s
pseudo-arclength continuation routine. In this spirit, the setup of Lin’s method
presented in the previous section can be implemented numerically by defining a
boundary value problem (BVP) for all the objects involved, namely, for finite-time
approximations u− of Q− and u+ of Q+, as well as for the periodic orbits Γ1 and
Γ2 and their linear (un)stable eigenfunctions. For the convenient definition of orbit
segments, one considers (1) in the rescaled version

u′(t) = T f(u(t), λ), (5)

where T ∈ R is a parameter. Then any orbit segment satisfying (5) can be considered
in the standard form

u : [0, 1] 7→ Rn

over the time interval [0, 1], where the actual integration time in (1) appears as the
explicit parameter T . The finite-time approximations u− of Q− and u+ of Q+ can
now be defined as solutions of the BVP

(u−)′(t) = T− f(u−(t), λ), (6)

(u+)′(t) = T+ f(u+(t), λ), (7)

u−(0) = g1 +

k−1∑
i=1

εiv
u
i , (8)

u+(1) = g2 +

l−1∑
i=1

δiw
s
i , (9)

⟨u−(1)− pΣ, nΣ⟩ = 0, (10)

u+(0)− u−(1) =
d∑

i=1

ηizi. (11)

Boundary conditions (6) and (7) define u− and u+ as orbit segments with integration
times T− and T+, respectively. Conditions (8) and (9) are projection boundary
conditions [4, 5] near the periodic orbits Γ1 and Γ2, which require that the start point
of u− and the end point of u+ lie in the respective linear eigenspaces Eu(Γ1) and
Es(Γ2) (or Floquet vector bundles). Here, g1 ∈ Γ1 is a chosen point, vu

i ∈ Eu(Γ1),
1 ≤ i ≤ k− 1 are the unstable Floquet vectors of Γ1 at g1, and the k− 1 coefficients
εi ∈ R are parameters of the BVP. Similarly, g2 ∈ Γ2 is a chosen point, ws

i ∈ Es(Γ2),
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1 ≤ i ≤ l − 1 are the stable Floquet vectors of Γ2 at g2, and the l − 1 coefficients
δi ∈ R are parameters of the BVP. Boundary conditions (10) and (11) ensure that
the difference between the end points u−(1) and u+(0) lies in the Lin space Z; here
Z is spanned by the vectors z1, · · · , zd, and the coefficients ηi describe the difference
in this basis.

The formulation of (6)–(11) is quite compact and shows that this BVP for u−

and u+ is well posed. More specifically, the orbits (6)–(7) are given by a system
of N = 2n equations, while (8)–(11) are a system of B = 3n + 1 constraints.
Hence, for any fixed value of the parameter λ there is a unique solution for the
B−N = n+1 = 2+ (k− 1)+ (l− 1)+ d internal parameters T−, T+, εi, δi and ηi.
When solutions of the BVP (6)–(11) are continued, the periodic orbits Γi and their
unstable and stable eigenfunctions need to be continued simultaneously as solutions
of separate well-posed BVPs; see, for example, [20, 23, 42] for more details. The
periodic orbits are represented as the solutions uΓi of

(uΓi)
′(t) = TΓif(uΓi(t), λ), (12)

uΓi(0) = uΓi(1), (13)∫ 1

0
⟨ ˙̃uΓi ,uΓi(τ)⟩dτ = 0. (14)

Here T = TΓi is the (minimal) period of Γi and (14) is a standard integral phase
condition [20]. The solutions uΓi are found in practice by continuation, for example,

from a Hopf bifurcation. Numerical representations u
u/s
i of the unstable and stable

eigenfunctions of Γ1 and Γ2, respectively, can be obtained as the solutions of

(u
u/s
i )′(t) = TΓiDuf(uΓi(t), λ)u

u/s
i (t), (15)

u
u/s
i (1) = µ

u/s
i u

u/s
i (0), (16)

⟨uu/s
i (0),u

u/s
i (0)⟩ = 1. (17)

Here the µ
u/s
i are the respective Floquet multipliers of Γ1 and Γ2, which can be

found as branch points of an initial continuation run of the trivial bundle. A second
run then increases the norm in (17) from zero; see [15, 23, 26, 42] for more details.
With these representations one sets g1 = uΓ1(0) and obtains the required unstable
Floquet vectors as vu

i = uu
i (0), (i = 1, . . . , k−1) in (8), and similarly for g2 = uΓ2(0)

and the stable Floquet vectors ws
i = us

i (0), (i = 1, . . . , l − 1) in (9).
In order to find initial orbit segments u− and u+ that satisfy the BVP (6)–(11)

one proceeds as follows. First, one determines, for a suitable and fixed value of
the system parameter λ, the two periodic orbits Γ1 and Γ2 and their linear eigen-
functions. One then defines the section Σ, for example, as in (2). To find an orbit
segment u− that ends in Σ, one considers the BVP given by (6) and (8) for fixed
small εi. Starting from a small positive value, one continues the solution family in
T− (effectively, solving the initial value problem), which grows the orbit u− from
near Γ1 until Σ is reached; this can be detected by monitoring ⟨u−(1)−pΣ, nΣ⟩ until
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a zero is detected. Similarly, an orbit segment u+ that starts in Σ can be found by
continuing solutions of the BVP given by (7) and (9) for fixed small δi in T+ while
monitoring ⟨u+(0)− pΣ, nΣ⟩. After these continuation runs we have u−(1) ∈ Σ and
u+(0) ∈ Σ, and we can define the Lin space Z as a space that contains the difference
by setting z1 = (u+(0) − u−(1))/∥ u+(0)− u−(1) ∥ for this fixed value of the pa-
rameter λ. Generically, with this choice the space Z satisfies condition (L) and the
ηi can be determined after the remaining basis vectors z2, . . . , zd have been chosen;
see also [42]. In particular, for the case d = dim(Z) = 1, which is considered in the
subsequent sections, one has in (11) that Z = span(z1) and η1 = u+(0) − u−(1).
It is important to note that, once chosen, the Lin space Z and its basis vectors zi
remain fixed.

The orbit segments u− and u+ obtained in this way satisfy (6)–(11). Hence,
one can now continue u− and u+ in the system parameter λ to find the desired
heteroclinic connection of codimension d as a joint zero of the test functions ηi, (i =
1, . . . , d). As was already mentioned, this requires the simultaneous continuation in
λ of g1 = uΓ1(0), v

u
i , g2 = uΓ2(0) and ws

i in (8) and (9) as solutions of BVPs (12)–
(14) and (15)–(17); this can be achieved with the package Auto by considering the
single combined BVP (6)–(17). Once a PtoP connection has been found in this way,
it can be continued in (further) system parameters, as will be presented in Sec. 5.

4 A simple model of intracellular calcium dynamics.

In this section we specify a model of intracellular calcium dynamics and show that
it has the geometric elements required for the existence of a codimension-one PtoP
heteroclinic cycle with n = 4 and d = 1. In the next section we will locate this
global bifurcation and follow its bifurcation locus in a two-dimensional parameter
space.

4.1 Model description

The model we consider is based on the Atri model of intracellular calcium oscillations
[3]. In the Atri model, oscillations in the concentration of free cytoplasmic calcium
arise through sequential release of calcium from the endoplasmic reticulum (ER)
through inositol trisphosphate receptors (IPR) and uptake of calcium to the ER
through ATPase pumps. Calcium can also enter and leave the cell from the outside.
Details about the modeling assumptions that give rise to the original Atri model
can be found in [3] and [32]. We are interested in a traveling wave version of
the Atri model, which is obtained by including a diffusion term in the Atri model
and then transforming to a moving frame. A general discussion of traveling wave
equations for calcium models is contained in [10], with a comprehensive review of
models of calcium waves being given in [27]. Our simplified model keeps the essential
qualitative features of the original Atri model, but uses much simpler functional
forms for the various fluxes. A discussion of the steps taken in simplifying the fluxes
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α ks kf kp φ1 φ2 τ γ Dc δ

0.05 s−1 20.0 s−1 20.0 s−1 20.0 s−1 2.0 µM 1.0 µM 2.0 s−1 5.0 25.0 0.2

Table 1: Parameters of the simplified Atri model, equations (18).

is given in [55].
The equations for the simplified Atri model are:

ċ = d,

Dcḋ = sd−
((

α+
kfc

2

c2 + φ2
1

n

)(
γ(ct +Dcd− sc)

s
− c

)
− ksc+ δ(Jin − kpc)

)
,

ċt = δ(Jin − kpc), (18)

sṅ =
1

τ

(
φ2

φ2 + c
− n

)
.

Here, c represents the concentration of free calcium in the cytosol, ct is the total
number of moles of calcium in the cell, divided by the cytoplasmic volume, and n
is the proportion of IPR that have not been inactivated by calcium. The parameter
δ represents the magnitude of fluxes through the cell membrane relative to the
fluxes through the ER membrane, the diffusion coefficient of cytoplasmic calcium
is denoted by the parameter Dc, and the ratio between the volume of the ER and
the volume of the cytoplasm is denoted by the parameter γ. The terms ksc and kpc
represent the calcium fluxes pumped from the cell cytoplasm into the ER and out
of the cell, respectively. The term(

α+
kfc

2

c2 + φ2
1

n

)(
γ(ct +Dcd− sc)

s
− c

)
represents the calcium flux from the ER into the cytoplasm, while the term Jin
represents the calcium flux going into the cell cytoplasm from outside the cell. In
the analysis that follows, Jin is one of the main bifurcation parameters, with the
other bifurcation parameter being s, the wave speed of calcium waves. The values
of the other model parameters are given in Table 1.

4.2 Partial bifurcation study

As discussed in [10], a wide variety of models of intracellular calcium waves and
other excitable systems have a common basic bifurcation structure if the model is
formulated in traveling wave coordinates: there is a C-shaped curve of homoclinic
bifurcations (corresponding to traveling pulse solutions in the underlying PDE) and
a U-shaped curve of Hopf bifurcations (corresponding to the onset of periodic waves
in the underlying PDE). In [10], this kind of system is called a ‘CU system’.

Panel (a) of Fig. 3 shows the CU bifurcation structure that occurs in the (Jin, s)
parameter plane for the simplified Atri model (18). Equations (18) have a single
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Figure 3: Panel (a) shows a partial bifurcation set in the (Jin, s)-plane for equations
(18), consisting of a C-shaped curve (labeled hom) of homoclinic bifurcations and
a U-shaped curve (labeled H) of Hopf bifurcations, which are connected by a curve
of saddle-node of limit cycles bifurcations (labeled SL). Panel (b) is an enlargement
near the curve SL, and also shows a curve of EtoP connections with end points on
the curves H and hom.

equilibrium solution p, which is always of saddle type, having one negative eigenvalue
and three eigenvalues with positive real parts inside the region bounded by the Hopf
curve (labeled H), and having one positive eigenvalue and three eigenvalues with
negative real parts outside this region. The equilibrium undergoes a supercritical
Hopf bifurcation on the section of the Hopf locus to the left of a codimension-two
degenerate Hopf bifurcation marked by a dot, and undergoes a subcritical Hopf
bifurcation on the rest of the Hopf curve.

The curve of homoclinic bifurcations of p is labeled hom in Fig. 3. The upper
end of this curve terminates on the Hopf curve at a codimension-two Shil’nikov-
Hopf bifurcation [14, 33]. The lower end of the homoclinic curve does not actually
reach the Hopf bifurcation curve H. Instead it has a sharp turning point and traces
back very close to itself, stopping at a codimension-two Belyakov bifurcation point
where the saddle-quantity of the equilibrium is equal to zero. Complex dynamics
are known to arise in the neighbourhood of such a Belyakov point [44]. Figure 3
shows a curve SL of saddle-node of limit cycles bifurcations that emerges from this
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Figure 4: Panel (a) shows the EtoP cycle for s = 10.0 and Jin = 2.71917 between
the equilibrium p and the periodic orbit Γ1, which consists of the codimension-one
EtoP connection Q1 and the codimension-zero EtoP connection Q0. Time traces (of
the variable c) of the computed orbit segments Q1 and Q0 are shown in panels (b)
and (c), respectively.

point and ends at the degenerate Hopf point on curve H.
In the region of the (Jin, s)-plane between the curves H and SL, which is shown

enlarged in Fig. 3(b), there exist two saddle-type periodic orbits, Γ1 and Γ2, that are
created in a pair along the curve SL. We seek a codimension-one heteroclinic cycle
between these two periodic orbits in this region of parameter space, and observe
that Γ1 and Γ2 have the correct ‘local’ properties; see the discussion in Sec. 2.1.
Specifically, they have stable and unstable manifolds, respectively, of dimension
three, which must intersect (locally near the curve SL) in a two-dimensional cylinder
that lies in the center manifold of the saddle-node of limit cycles bifurcation.

A hint that there may be a codimension-one PtoP heteroclinic cycle in this
system comes from Fig. 4, which shows a codimension-one EtoP heteroclinic cycle
connecting the saddle equilibrium p and the saddle periodic orbit Γ1. The two
connecting orbits Q0 and Q1 were found with the Lin’s method setup from Ref. [42]
as implemented in the Auto. The connection Q1 from p to Γ1 is of codimension one,
and it occurs when the one-dimensional unstable manifold W u(p) lies in the three-
dimensional stable manifold W s(Γ1); see Fig. 4(a) and the time series of the variable
c alongQ1 in panel (b). There also exists a structurally stable heteroclinic connection
from Γ1 back to p, which is the intersection of the two-dimensional unstable manifold
W u(Γ1) with the three-dimensional stable manifoldW s(p); see Fig. 4(a) and the time
series along Q0 in panel (c). Once it was found as the solution of the corresponding
BVP from [42], the locus of codimension-one EtoP connections was continued to
yield the curve labeled EtoP in Fig. 3(b). This curve has one end point at (Jin, s) =
(2.93121, 10.51284) on the Hopf bifurcation curve and another end point at (Jin, s) =
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(2.04216, 9.04523) on the homoclinic bifurcation curve (near the Belyakov point). In
the region of interest we also find the second periodic orbit Γ2, which bifurcates from
the curve H in Fig. 3(b) and, hence, is quite close to the equilibrium p. Therefore,
the existence of the EtoP connections from p to Γ1 and back strongly suggests that
there may also be a PtoP cycle between Γ1 and Γ2. Overall, we conclude that the
global geometry of the phase space of (18) looks very promising for the hunt for a
codimension-one PtoP cycle with the method from Sec. 3.1.

5 Finding the codimension-one PtoP cycle in the sim-
plified Atri model

In this section we describe the computations needed to locate a codimension-one
PtoP cycle in the Atri model and then to follow the locus of the bifurcation in
the (Jin, s) parameter plane. All computations of solution families of BVPs are
implemented and performed with the Auto07p release of the package Auto, which
uses orthogonal collocation with Gauss-Legendre polynomials [20, 21]. Throughout
we use polynomials of degree NCOL = 4 in each collocation interval and, depending
on the complexity of the orbit, between NTST = 100 and NTST = 1000 collocation
intervals. Note that all boundary value problems, for the periodic orbits, their
(un)stable eigenfunctions and for the orbit segments Q− and Q+, are represented in
Auto07p over the same mesh as specified by NTST and NCOL; see also [42].

To start, we fix s = 9.0 and continue two periodic orbits Γ1 and Γ2 of (18)
for decreasing Jin from the Hopf bifurcation points at Jin = 6.04467 and at Jin =
3.04800, where they are born, respectively. Inspection of the Floquet multipliers
shows that Γ1 has a two-dimensional unstable manifold and a three-dimensional
stable manifold, while Γ2 has a three-dimensional unstable manifold and a two-
dimensional stable manifold. The continuation of Γ1 and Γ2 is stopped at Jin = 3.0,
which is a point right in the region of interest; see Fig. 3(b). We now compute the
eigenfunctions of Γ1 and Γ2 by setting up BVP (15)–(17) for both periodic orbits.
Furthermore, we define the section

Σ = {(c, d, ct, n) | ct = 36.0},

for which pΣ = (0, 0, 36, 0) and nΣ = (0, 0, 1, 0) in (2). The section Σ divides the
phase space of (18) into two parts, one containing Γ1 (where ct < 36.0) and the other
containing Γ2 (where ct > 36.0). It is important to realize that any orbit connecting
Γ1 and Γ2 must cross Σ.

5.1 The codimension-one PtoP connection

We first consider the PtoP connecting orbit Q1 from Γ1 to Γ2 which, if it exists, is
of codimension one since n = 4, k = 2, l = 2 and d = 1. An initial orbit segment Q−

1

from Γ1 to the section Σ is found by performing a continuation in the integration
time T− of the BVP (6) and (8) for g1 = (0.0915, 0.0019, 34.0078, 0.8833) ∈ Γ1, the
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Figure 5: Computing the codimension-one PtoP connection Q1 for s = 9.0. Panel
(a) for Jin = 3.0 shows two initial orbit segments Q−

1 from Γ1 to Σ = {ct = 36.0}
and Q+

1 from Σ to Γ2 with a Lin gap in Σ of η1 = 0.4065 along the direction Z.
Panel (b) shows the connecting orbit Q1 for Jin = 3.02661 where η1 = 0.

associated Floquet vector vu
1 = (−0.1997,−0.1630, 0.9661, 0.0106) of the unstable

Floquet multiplier µu
1 = 95340 and ε1 = 10−6. Similarly, an orbit segment Q+

1

from Σ to Γ2 is found by continuation in T+ of the BVP (7) and (9), where now
g2 = (0.1347, 0.0023, 38.2595, 0.8728) ∈ Γ2, w

s
1 = (0.0108,−0.0064, 0.9981,−0.0606)

is the associated Floquet vector of the stable Floquet multiplier µs
1 = 0.3387 and

δ1 = 10−4. Figure 5(a) shows the periodic orbits Γ1 and Γ2, the section Σ and the
orbit segments Q−

1 and Q+
1 for (Jin, s) = (3.0, 9.0) in projection onto (c, d, ct)-space.

Also shown is the Lin space Z, which we also refer to as the Lin direction because
it is of dimension d = 1. It is chosen here as the line through the two end points
Q−

1 ∩ Σ and Q+
1 ∩ Σ for (Jin, s) = (3.0, 9.0), and is spanned by a direction vector

z1; the initial Lin gap is η1 = 0.4065 in Fig. 5(a). We stress that the Lin vector z1
is kept fixed throughout further computations, that is, it is not allowed to change
with system parameters. After these initial computations, the overall BVP (6)–(11),
together with BVPs (12)–(14) and (15)–(17) for both Γ1 and Γ2, can be continued
in a single system parameter. Specifically, we continue Q−

1 and Q+
1 as solutions of

this overall BVP in the parameter Jin and thus detect that η1 = 0 for Jin = 3.02661.
Figure 5(b) depicts the corresponding codimension-one PtoP connection Q1 from Γ1

to Γ2, which is the concatenation of the two orbit segments Q−
1 and Q+

1 .

5.2 The codimension-zero PtoP connection

We next find the codimension-zero connection Q0 from Γ2 to Γ1 at (Jin, s) =
(3.02661, 9.0). The roles of Γ1 and Γ2 are now exchanged in the formulation of
the BVP. Furthermore, n = 4, k = 3 and l = 3, so that W u(Γ2) intersects W

s(Γ1) in
a two-dimensional surface. First, we consider an orbit segment Q−

0 whose starting
point lies near the base point g1 = (0.1405, 0.0020, 38.2727, 0.8708) ∈ Γ2 along the as-
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Figure 6: Computing the cylinder Q0 of codimension-zero PtoP connections from
Γ2 to Γ1 for s = 9.0 and Jin = 3.02661. Panel (a) shows two initial orbit segments
Q−

0 from Γ2 to Σ = {ct = 36.0} and Q+
0 from Σ to Γ1 with a gap in Σ of η0 = 0.1624

along the direction Z0. Panel (b) shows a codimension-zero PtoP connecting orbit
Q0 where η0 = 0. Panel (c) shows the one-parameter families Q−

0 and Q+
0 that form

a cylinder of connecting PtoP orbits, and panel (d) is an enlargement of Q−
0 and

Q+
0 near their intersection curve Q0 ∩ Σ.

siociated two-dimensional unstable eigenspace Eu(Γ2), which is spanned by Floquet
vectors vu

1 = (0.8676,−0.3284, 0.1326,−0.3491) and vu
2 = (−0.1038,−0.0434, 0.9936, 0.0092)

of the unstable Floquet multipliers µu
1 = 1.3045 and µu

2 = 695.9515; initial distances
along these vectors are ε1 = 10−4 and ε2 = 10−6, respectively. Continuation in the
integration time T− is performed until the end point of Q−

0 lies in the section Σ. Sec-
ondly and similarly, we find an orbit segment Q+

0 whose starting point lies in Σ and
whose end point lies near the base point g2 = (0.0919, 0.0020, 33.9624, 0.8823) ∈ Γ1

in the corresponding two-dimensional stable eigenspace Es(Γ1), which is spanned
by associated Floquet vectors ws

1 = (−0.0059,−0.0001, 0.9914,−0.1310) and ws
2 =

(0.2051,−0.1042, 0.9692, 0.0884) of the stable Floquet multipliers µs
1 = 0.2757 and

µs
2 = 0.0077; initial distances along these vectors are δ1 = 10−4 and δ2 = 10−6,

respectively. The periodic orbits Γ1 and Γ2 and the orbit segments Q−
0 and Q+

0 up
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to Σ for (Jin, s) = (3.02661, 9.0) are shown in Fig. 6(a) in projection onto (c, d, ct)-
space. To find an actual PtoP connection we adapt a numerical setup that was
first employed in [42]. Specifically, we define the one-dimensional space Z0 as the
direction given by Q−

0 ∩Σ and Q+
0 ∩Σ, spanned by the vector z0. While Z0 is not a

Lin space (in the sense of the Statement of Lin’s method in Sec. 3) it plays a similar
role during the computation and remains fixed from now on. More specifically, we
consider the BVP (6)–(10) with the additional boundary condition

u+(0)− u−(1) = η0z0, (19)

where η0 = 0.1624 is the initial gap size. The idea is now to continue Q−
0 and Q+

0

as solutions of this BVP with the gap size η0 as the main continuation parameter,
while the system parameters, Jin and s, remain fixed. This continuation for fixed
(Jin, s) = (3.02661, 9.0) yields a zero of η0, which corresponds to the connecting orbit
Q0 shown in Fig. 6(b).

In fact, the BVP given by (6)–(10) and (19) has a one-dimensional solution
manifold, because, for fixed η0 = 0, it has only B − N = n + 1 = 5 conditions for
the six free internal parameters T−, T+, ε1, ε2, δ1, δ2. Hence, a continuation of
this BVP with η0 = 0 allows us to follow the initial connecting orbit Q0 (which is
not isolated) in internal parameters as it sweeps out the two-dimensional surface
Q0 of connecting orbits from Γ2 to Γ1. The surface Q0 is the topological cylinder
bounded by the two periodic orbits that is shown in Fig. 6(c) in projection onto
(c, d, ct)-space. It consists of two bounded cylinders, Q−

0 from Γ2 to Σ and Q+
0 from

Σ to Γ1, which connect in the section Σ along the closed curve Q0 ∩Σ. Figure 6(d)
shows Q0∩Σ in (c, d, n)-space, together with selected orbit segments of Q−

0 and Q+
0 .

Figure 7 shows the entire PtoP cycle between Γ1 and Γ2 for (Jin, s) = (3.02661, 9.0)
in projection onto (c, d, ct)-space. The codimension-one PtoP orbit Q1 connects Γ1

to Γ2. The connection from Γ2 back to Γ1, on the other hand, consists of a one-
parameter family of connecting PtoP orbits (parameterized, for example, by Q0∩Σ);
it forms the cylinder Q0 = W u(Γ2) ∩W s(Γ1), which has been rendered in Fig. 7 as
a two-dimensional surface. Note that Fig. 7 shows in projection onto (c, d, ct)-space
the same dynamical object that was sketched in Fig. 1 on the level of a Poincaré
return map to the three-dimensional local section Σcyl transverse to the orbits on
Q0.

5.3 Continuation of the PtoP cycle

The locus of the codimension-one PtoP heteroclinic connection Q1 can be continued
in the system parameters Jin and s as the solution of the BVP (6)–(11) with the
additional condition that η1 = 0. The resulting curve, labeled PtoP, is shown in
Fig. 8. The curve has one end point on the curve of saddle-node of limit cycles
bifurcations (SL), then follows the Hopf bifurcation curve (H) closely for increasing
s and ends on H; see Fig. 8(b). Along the curve PtoP we also continued a single
connecting orbit Q0 of the family Q0 of codimension-zero PtoP connections as the
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Figure 7: The heteroclinic PtoP cycle between Γ1 and Γ2 for (Jin, s) = (3.02661, 9.0),
consisting of the codimension-one PtoP connection Q1 from Γ1 to Γ2 and the
bounded cylinder Q0 of PtoP connections from Γ2 to Γ1.

solution of the BVP defined by (6)–(9) and (19) for fixed η0 = 0. This computation
confirmed that the entire heteroclinic cycle exists along the curve PtoP in Fig. 8.

Figure 9(a) shows the heteroclinic PtoP cycle that one finds when s = 10.0, and
panel (b) shows the heteroclinic cycle for s = 8.5. The surface Q0 was swept out by
continuation of the single orbit Q0 as in Sec. 5.2. From Fig. 9(a) we observe that the
amplitude of Γ2 becomes quite small when s is increased from s = 9.0 and the curve
PtoP is close to the Hopf bifurcation curve H. At the end point of the curve PtoP on
H, the periodic orbit Γ2 finally disappears in the Hopf bifurcation of the equilibrium
p. We found numerically that this happens at (Jin, s) = (2.79224, 24.64540). When
s is decreased from s = 9.0 the periodic orbits Γ1 and Γ2 approach one another;
see Fig. 9(b). Finally, at the end point (Jin, s) = (2.98015, 8.37696) of the curve
PtoP on the curve SL, the two periodic orbits Γ1 and Γ2 meet and disappear. At
this point of codimension two one finds a saddle-node limit cycle Γ̂ with a two-
dimensional center manifold, whose two-dimensional manifolds W u(Γ̂) and W s(Γ̂)
intersect transversely in R4 in a single orbit. On the level of the Poincaré return
map to the three-dimensional local section Σcyl transverse to the orbits on Q0, this
corresponds to the sketch in Fig. 1 where the saddle points γ1 and γ2 have moved
towards each other to become a saddle-node γ̂.
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saddle-node of limit cycles bifurcation curve SL and on the Hopf bifurcation curve
H. Panel (a) shows the region of interest where the PtoP connection was found, and
panel (b) shows the entire PtoP curve.
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Figure 9: The heteroclinic PtoP cycle between Γ1 and Γ2 for (Jin, s) = (2.95950, 10.0)
(a) and for (Jin, s) = (3.06319, 8.5) (b); the viewpoint is the same as that in Fig. 7.
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Figure 10: Finding a homoclinic PtoP orbit of Γ1 via the continuation of orbit
segments Q−

Γ1
and Q+

Γ1
that connect Γ1 with the section Σ = {ct = 38.27}. Panel

(a) shows the start data for (Jin, s) = (3.02661, 9.0) where Q−
Γ1

= Q1 and Q+
Γ1

is a

connecting orbit in Q0. Panel (b) shows Q−
Γ1

and Q+
Γ1

near the direction Z0 in Σ.
In panel (c) the gap along Z0 has been closed, yielding the homoclinic PtoP orbit
QΓ1 .

6 Finding PtoP homoclinic orbits and periodic orbits
near the PtoP cycle

In the vicinity of the heteroclinic PtoP cycle between Γ1 and Γ2 one can find other
dynamical objects, including orbits that are homoclinic to Γ1 and to Γ2 and saddle
periodic orbits that pass close to Γ1 and Γ2. We now show how these objects can be
found numerically with a BVP approach, using the heteroclinic PtoP cycle as start
data.

To find a homoclinic orbit connecting Γ1 to itself we consider two orbit segments:
Q−

Γ1
, which starts near the base point g1 ∈ Γ1 in the unstable Floquet space and

ends at a section Σ near Γ2, and Q+
Γ1
, which starts in Σ and ends near g1 in the

stable Floquet space. These orbit segments are readily available from the knowledge
of the PtoP heteroclinic cycle. Specifically, as start data we set Q−

Γ1
= Q1 and

Q+
Γ1

⊂ Q0. Then the section Σ is chosen to contain the end points of Q−
Γ1

and Q+
Γ1

near Γ2. We define the one-dimensional space Z0 as the line in Σ through these
two end points; the gap η0 is measured along Z0. The setup is the one considered
in [42] for the computation of homoclinic PtoP orbits, and Q−

Γ1
and Q+

Γ1
can be

represented by and continued as solutions of the BVP given by (6)–(10) and (19).
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Figure 11: Finding a homoclinic PtoP orbit of Γ2 via the continuation of orbit
segments Q−

Γ2
and Q+

Γ2
that connect Γ2 with the section Σ = {ct = 33.95}. Panel

(a) shows the start data for (Jin, s) = (3.02661, 9.0) where Q−
Γ2

is a connecting orbit

in Q0 and Q+
Γ2

= Q1. Panel (b) shows Q−
Γ2

and Q+
Γ2

near the direction Z0 in Σ. In
panel (c) the gap along Z0 has been closed, yielding the homoclinic PtoP orbit QΓ2 .

This boundary value problem has a one-dimensional solution manifold, providing
B−N = n+1 = 5 conditions for the six free internal parameters T−, T+, ε1, δ1, δ2
and η0. Figure 10(a) and (b) shows the start data for (Jin, s) = (3.02661, 9.0), given
by the orbit segments Q−

Γ1
and Q+

Γ1
, the section Σ = {ct = 38.27} and the direction

Z0. In panel (c) the gap along Z0 has been closed via the continuation of Q−
Γ1

and

Q+
Γ1
, and the homoclinic PtoP orbit QΓ1 has been found as their concatenation.
A homoclinic orbit connecting Γ2 to itself can be computed in exactly the same

way, by considering Q−
Γ2

and Q+
Γ2

from Γ2 to a section Σ near Γ1 and back. In fact,
the same initial data from the PtoP heteroclinic orbit can be used for these orbits.
Specifically, we set Q−

Γ2
⊂ Q0 and Q+

Γ2
= Q1, with the difference being that Σ is

now chosen through the end points of Q−
Γ2

and Q+
Γ2

near Γ1. Figure 11(a) shows this
start data for (Jin, s) = (3.02661, 9.0), where the section is now Σ = {ct = 33.95}.
Panel (b) shows the direction Z0 with an initial gap η0 between the end points of
Q−

Γ2
and Q+

Γ2
in Σ. Continuation of Q−

Γ2
and Q+

Γ2
as solutions of (6)–(10) and (19)

and detection of η0 = 0 gives the homoclinic PtoP orbit QΓ2 ; see Fig. 11(c).
In the continuation runs to close the gap η0 to find the QΓ1 and QΓ2 the system

parameters Jin and s remained fixed. Indeed, for every fixed value of Jin and s the
homoclinic PtoP orbits QΓ1 and QΓ2 are each a unique solution of the BVP (6)–(10)
and (19) with η0 = 0. As such, they can be continued (together with the respective
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Figure 12: PtoP homoclinic orbits of Γ1 (a1)–(a2) and of Γ2 (b1)–(b2) continued
in the system parameter Jin over the interval [3.0, 3.04] for fixed s = 9.0. Panels
(a1) and (b1) shows selected homoclinic orbits in projection onto (c, d, ct)-space, and
panels (a2) and (b2) show them as a waterfall diagram of time series of ct over the
unit time interval. The PtoP homoclinic orbits for Jin = 3.02661, QΓ1 from Fig. 10
and QΓ2 from Fig. 11, are highlighted.

periodic orbits and their Floquet vectors) in any system parameter. Figure 12 shows
results of their continuation in Jin over the interval [3.0, 3.04], namely, of QΓ1 in row
(a) and of QΓ2 in row (b). Panels (a1) and (b1) show selected PtoP homoclinic
orbits in projection onto (c, d, ct)-space, demonstrating that they indeed are close to
the PtoP heteroclinic cycle between Γ1 and Γ2; compare with Fig. 7. Notice further
from Fig. 12(a1) that for any Jin ∈ [3.0, 3.04] the PtoP homoclinic orbit QΓ1 closely
follows the codimension-one PtoP connection Q1 from Γ1 to Γ2, while different orbits
from the one-parameter familyQ0 of codimension-zero PtoP connections are followed
back to Γ1. The waterfall diagram in Fig. 12(a2) shows that, as Jin is increased, the
number of loops of QΓ1 near the periodic orbit Γ2 increases from about five to about
six; this is consistent with the fact that the computed family QΓ1 in Fig. 12(a1)
‘covers’ the entire cylinder of the PtoP heteroclinic cycle in Fig. 7 as Jin increases.
The corresponding statement holds for the continuation of the PtoP homoclinic
orbits QΓ2 in Fig. 12(b1), where now the number of loops near the periodic orbit Γ1
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Figure 13: Finding a saddle periodic orbit by continuation from the PtoP homoclinic
orbitQΓ1 for (Jin, s) = (3.02661, 9.0) from Fig. 10. Panel (a) shows the orbit segment
QΓ1 whose endpoints lie in the section Σ = {ct = 33.95}, and panel (b) shows QΓ1

near the direction Z0 in Σ. In panel (c) the gap along Z0 has been closed by
continuation in the internal parameters T− and η0 until η0 = 0, yielding a saddle
periodic orbit Γnew.

decreases in panel (b2) from about five to about three.
We finish by showing how saddle periodic orbits near PtoP homoclinic orbits

can be computed. As an example we compute a periodic orbit near QΓ1 . The idea
is simply to close the gap between the two end points of QΓ1 . Therefore, we choose
the section Σ = {ct = 33.95} and the direction Z0 defined by these end points,
with gap η0. This initial data is shown in Fig. 13(a) and (b). The orbit segment
QΓ1 is a solution of the smaller BVP given by (6), (10) and (19), which provides
B −N = (n+ 1)− n = 1 condition for the two free internal parameters T− and η0.
Continuing solutions of this BVP until η0 = 0 yields a saddle periodic orbit Γnew

that closely follows the original PtoP homoclinic orbit QΓ1 ; see Fig. 13(c). Once it
has been found, Γnew can be continued in system parameters, as usual, as a solution
of the standard periodic orbit BVP (12)–(14).
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7 Conclusions

We have presented the first example of a concrete vector field in which a non-
structurally stable PtoP heteroclinic cycle connecting two saddle periodic orbits has
been located numerically. Specifically, we showed that a four-dimensional model
of intracellular calcium dynamics has a bifurcation structure with the necessary
geometric ingredients, and then identified a codimension-one PtoP cycle numerically
with an implementation of Lin’s method. The PtoP cycle was then continued as a
curve in the relevant two-parameter plane of the system. We also computed two
nearby homoclinic orbits of periodic orbits and a new saddle periodic orbit.

Our computations provide evidence for a considerable level of maturity in numer-
ical techniques for the detection and continuation of global objects. In particular,
the Lin’s method approach that we employed here can be used, in principle, to
identify and continue in parameters any homoclinic or heteroclinic chain involving
a (finite) number of equilibria and periodic orbits, as well as nearby global objects.
The ability to do these kinds of computations can be very useful in the context of
applications. For example, termination mechanisms for homoclinic curves in the
context of models of various excitable systems were discussed in [10]. One of the
mechanisms considered in [10] and investigated further in [11] is a so-called EP1t
point, which is a codimension-two bifurcation that can occur at parameter values
for which there is simultaneously a codimension-one heteroclinic connection from
an equilibrium to a periodic orbit and a codimension-one heteroclinic tangency be-
tween the unstable manifold of the periodic orbit and the stable manifold of the
equilibrium. The analysis in [11] makes predictions about the scaling of turning
points of branches of homoclinic bifurcations of equilibria and of the loci of saddle-
node of limit cycles bifurcations in the vicinity of an EP1t point; numerical evidence
consistent with these predictions was given for several models in [11], and provided
indirect evidence for the existence of EP1t points in these models. However, the
EP1t points were not computed directly. Other global bifurcations such as PtoP
heteroclinic bifurcations are also thought to occur near EP1t points, but, similarly,
have not been directly computed because of the lack of appropriate numerical algo-
rithms. Thus, the availability of methods such as those outlined in this paper will
enable fuller investigation of models of this type, and may consequently lead to a
better understanding of their dynamics.

We would argue that the availability of concrete vector field models in combi-
nation with advanced numerical tools may also be of benefit for theoretical investi-
gations of higher-dimensional dynamical phenomena as they occur in vector fields
on Rn with n ≥ 4 or, equivalently, in diffeomorphisms on Rk with k ≥ 3. A key
role in this field is played by heterodimensional cycles (also referred to as cycles
with unstable dimension variability) in diffeomorphisms between saddle points with
different dimensions of their stable and unstable manifolds [2, 8, 9, 17, 39]. As was
mentioned in Sec. 2.1, the PtoP cycle of codimension one presented in Fig. 1 consti-
tutes the minimal example of such a heterodimensional cycle. Roughly speaking, the
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recurring passage along such a cycle generates chaotic dynamics that is more com-
plicated (in a well-defined sense) than the ‘usual’ chaos that one knows from planar
diffeomorphisms and three-dimensional vector fields; see [8, 9, 17]. Hence, the study
of the codimension-one PtoP cycle and its nearby dynamics in the calcium model
discussed here is of interest beyond the specific application, as a way to illustrate
and further motivate theoretical investigations of heterodimensional cycles.
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