
Cascades of heterodimensional cycles
via period doubling

Nelson Wong, Bernd Krauskopf and Hinke M. Osinga

Department of Mathematics, The University of Auckland,
Private Bag 92019, Auckland 1142, New Zealand

July 2024

Abstract

A heterodimensional cycle is formed by the intersection of stable and unstable manifolds
of two saddle periodic orbits that have unstable manifolds of different dimensions: connecting
orbits exist from one periodic orbit to the other, and vice versa. The difference in dimensions
of the invariant manifolds can only be achieved in vector fields of dimension at least four. At
least one of the connecting orbits of the heterodimensional cycle will necessarily be structurally
unstable, meaning that is does not persist under small pertubations. Nevertheless, the theory
states that the existence of a heterodimensional cycle is generally a “robust” phenomenon: any
sufficiently close vector field (in the C1-topology) also has a heterodimensional cycle.

We investigate a particular four-dimensional vector field that is known to have a heterodi-
mensional cycle. We continue this cycle as a codimension-one invariant set in a two-parameter
plane. Our investigations make extensive use of advanced numerical methods that prove to be an
important tool for uncovering the dynamics and providing insight into the underlying geometric
structure. We study changes in the family of connecting orbits as two parameters vary and Flo-
quet multipliers of the periodic orbits in the heterodimensional cycle change. In particular the
Floquet multipliers of one of the periodic orbits change from real positive to real negative and a
period-doubling bifurcation occurs. We then focus on the transitions that occur near this period-
doubling bifurcation and find that it generates new families of heterodimensional cycles with
different geometric properties. Our careful numerical study suggests that further two-parameter
continuation of the ‘period-doubled heterodimensional cycles’ gives rise to an abundant presence
of heterodimensional cycles of different types in the limit of a period-doubling cascade.

Our results for this particular example vector field make a contribution to the emerging
bifurcation theory of heterodimensional cycles. In particular, the bifurcation scenario we present
can be viewed as a specific mechanism behind so-called stabilisation of a heterodimensional cycle
via the embedding of one of its constituent periodic orbits into a more complex invariant set.

1 Introduction

From a pragmatic standpoint, mathematical models are ‘well behaved’ when small variations (for
example, in system parameters) do not qualitatively alter the dynamics. This idea is formally cap-
tured by the notion of structural stability, which applies to both continuous-time and discrete-time
systems, given by smooth vector fields and diffeomorphisms (smooth maps with smooth inverses),
respectively. A system (vector field or diffeomorphism) is structurally stable if every system in
a C1-neighbourhood has topologically equivalent dynamics. Throughout this paper, we consider
the C1-topology for vector fields and diffeomorphisms, meaning that nearby systems must be close
also in their first (partial) derivatives [20]. In the 1960s and 70s, various contributors led by
Smale [28, 29, 30] determined equivalent properties for a system of any dimension to be struc-
turally stable: a diffomorphism is structurally stable if, and only if

(1) its nonwandering set is hyperbolic and equal to the closure of the set of periodic orbits; and

(2) the unstable manifold of any nonwandering point transversely intersects the stable manifold
of the same and any other nonwandering point.
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Properties (1) and (2) are known as Axiom A and Strong Transversality, respectively; they can be
extended to vector fields, which are related to diffeomorphisms by way of considering a Poincaré
map. Systems (vector fields or diffeomorphisms) satisfying these two properties are also called
hyperbolic systems since they exhibit hyperbolic recurrent dynamics in the following sense: every
periodic orbit is hyperbolic, and there is a hyperbolic connecting orbit from any one periodic orbit
to itself or to any other periodic orbit. In particular, hyperbolic systems do not have nontransverse
intersections of stable and unstable manifolds and, therefore, their dynamics is considered relatively
simple. A famous example is Smale’s horseshoe construction in the plane [30]. For example, the
existence of a homoclinic tangency, which is a tangential intersection of the stable and unstable
manifolds of a saddle periodic fixed or periodic point (for a diffeomorphism) or a periodic orbit (for
a vector field), implies that the system is nonhyperbolic since Strong Transversality is not satisfied.
However, a generic perturbation creates two nearby transverse homoclinic points or destroys the
intersection altogether. In either case, the homoclinic tangency violating Strong Transversality no
longer exists. It turned out that hyperbolicity is only typical for diffeomorphisms of dimension at
most two and, equivalently, vector fields of dimension at most three. While Newhouse [26] showed
that a planar diffeomorphism can have robust homoclinic tangencies, meaning that all nearby
planar diffeomorphisms also have a homoclinic tangency of the same type, his proof requires the
C2-topology (nearby systems are also close in their second derivatives). Moreira [25] later showed
that planar diffeomorphisms cannot have C1-robust homoclinic tangencies.

Robustness (in the C1-topology) of nonhyperbolicity for systems of higher dimensions was shown
via the existence of a so-called heterodimensional cycle between two saddle periodic orbits of differ-
ent index, defined as the number of unstable eigenvalues or Floquet multipliers. The requirement
that the unstable dimensions (and, therefore, the stable ones) of the two periodic orbits are different
implies that the phase space must have dimension at least three for diffeomorphisms and at least
four for flows. A heterodimensional cycle involves one intersection set between the repsective lower-
dimensional invariant manifolds of the two periodic orbits, which is necessarily non-transverse and,
therefore, violates Strong Transversality. Typically, this intersection is quasi-transverse, meaning
that the tangent spaces of the invariant manifolds at their intersection share only the flow direction
(for vector fields), or do not share any direction in the case of diffeomorphisms [5]. Similar to a ho-
moclinic tangency, a quasi-transverse heteroclinic connection breaks under a generic perturbation.
However, Abraham and Smale [1] constructed a four-dimensional diffeomorphism with a robust
heterodimensional cycle. An important part of the theory is the result by Bonatti and Dı́az [6]
that a heterodimensional cycle between two saddle periodic orbits can be stabilised into a robust
heterodimensional cycle. More precisely, this is achieved by constructing an arbitrarily C1-close
system that embeds one of the two periodic orbits into a more complicated hyperbolic set known
as a blender, which has an invariant manifold whose dimension exceeds that given by the index
of the periodic orbit [6]. For a three-dimensional diffeomorphism, such a manifold is technically
one dimensional, but functionally it behaves as a two-dimensional manifold in the sense that it
cannot be ‘avoided’ by the one-dimensional invariant manifold of the other saddle; this property
allows a quasi-transverse intersection with this manifold of the blender to ‘persist’ even after a
generic perturbation. Li and Turaev [24] proved this result in the Cr-topology for any r ∈ N.
Bonatti conjectured that, in the C1-topology, robust heterodimensional cycles are more prevalent
than robust homoclinic tangencies, suggesting that heterodimensional cycles are especially useful
in understanding robust nonhyperbolicity.

In this paper, we investigate the prevalence of heterodimensional cycles in an example vector
field, called the Atri model; see already Sec. 2 for details and particularly the explicit equations (1)
of this four-dimensional model for intracellular calcium oscillations. The Atri model is one of the
very few vector fields for which an explicit heterodimensional cycle has been identified and nu-
merically approximated. Zhang et al. [32] employed the advanced computational technique known
as Lin’s method (see Appendix A) to find a heterodimensional cycle, and further computational
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Figure 1: The primary heterodimensional cycle of system (1) at the parameter point (J, s) ≈
(3.061, 8.55) in region I (introduced in Fig. 3). Panels (a1) and (a2) show, in projection onto
(c, v, ct)-space and (c, v, n)-space, respectively, the saddle periodic orbits Γ1 and Γ2 (green curves),
the codimension-one orbit A (blue), and the surface B (orange) of return connections. Panel (b) is
a sketch of this type of heterodimensional cycle at the level of a three-dimensional diffeomorphism.
The fixed points γ1 and γ2 (green) correspond to Γ1 and Γ2, respectively, the orbit (ak)k∈Z (black
dots) is the quasi-transverse intersection of the curves W u(γ1) (red) and W s(γ2) (blue), and the
curve B̂ (magenta) is the transverse intersection of the surfaces W u(γ2) (red) and W s(γ1) (blue);
also shown is a sample orbit (magenta dots) in B̂.

work by Mason et al. [19] showed, in phase space and in a three-dimensional Poincaré section, how
the invariant manifolds of the associated periodic orbits intersect to form the heterodimensional
cycle. As in these earlier studies, we focus our attention on the two-parameter plane given by the
parameters J and s of system (1). Figure 1 illustrates a heterodimensional cycle for the choice
(J, s) ≈ (3.061, 8.55) in the parameter region I that represents the simplest case of such heterodi-
mensional cycles, which are all topologically the same as the one found in [19, 32]. Panels (a1)
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and (a2) show different three-dimensional projections of saddle periodic orbits Γ1 and Γ2, which
have different indices. The two-dimensional unstable manifold W u(Γ1) of Γ1 intersects the two-
dimensional stable manifold W s(Γ2) of Γ2 in the heteroclinic connection A from Γ1 to Γ2. This
codimension-one connection is quasi-transverse and is encountered at an isolated parameter value
when a single parameter is varied (in fact, we computed it by varying the parameter J for fixed
parameter s = 8.55). In contrast, the unstable manifold W u(Γ2) and stable manifold W s(Γ1) are
both three dimensional and intersect transversely in the surface B, which is a topological cylinder
consisting of heteroclinic connections from Γ2 back to Γ1; this cylinder is structurally stable, that
is, it persists under parameter perturbations. Figure 1(b) shows a sketch of this geometric object at
the level of a three-dimensional diffeomorphism, which illustrates how the heterodimensional cycle
arises from the quasi-transverse intersection of the invariant manifolds of two corresponding saddle
fixed points γ1 and γ2; a similar sketch can be found in [32]. The heteroclinic orbit (ak)k∈Z is the
intersection of the one-dimensional invariant manifolds W u(γ1) and W s(γ2) and corresponds to the
connection A. The transverse intersection of the two-dimensional invariant manifolds W u(γ2) and
W s(γ1) is the single curve B̂; it corresponds to the surface B and consists of heteroclinic orbits from
γ2 back to γ1. We base this sketch on theoretical considerations that are supported in system (1)
by careful computations of the relevant objects on suitably chosen three-dimensional Poincaré sec-
tions. We remark that sketches in the theoretical literature generally focus on the one-dimensional
invariant manifolds [5, 6]. The heterodimensional cycle of the Atri model in Fig. 1 is formed by the
connection A and the surface B; at the level of a diffeomorphism, it is formed equivalently by the
orbit (ak)k∈Z and the curve B̂. We refer to the heterodimensional cycle in Fig. 1 as the primary
heterodimensional cycle. The primary heterodimensional cycle is a particularly simple example
since the Atri model is of the minimal dimension required for heterodimensional cycles, and the
surface B is a topological cylinder.

The primary heterodimensional cycle forms a suitable starting point for our investigation into
bifurcations of a heterodimensional cycle in the Atri model. We show that, when it is continued
further, this primary cycle undergoes a number of transitions that change the geometric properties
of the surface B. This culminates in a period-doubling bifurcation of Γ2, beyond which the primary
cycle is no longer heterodimensional due to the resulting change in the index of Γ2. However, this is
not the end of the story, and this ‘period doubling’ of the primary heterodimensional cycle creates
new families of different heterodimensional cycles. We present these ‘period-doubled heterodimen-
sional cycles’ and their geometric properties, and continue them in the system parameters J and
s. We find that these new families encounter the same geometric transitions as the primary het-
erodimensional cycle, and further period-doubling bifurcations create yet more heterodimensional
cycles, and so on. By detecting and continuing these different cycles, we uncover and present a
comprehensive picture in the (J, s)-plane of how a cascade of bifurcations generates a plethora of
heterodimensional cycles of different types. This demonstrates the abundance of heterodimensional
cycles in the Atri model and, hence, provides a glimpse into how a robust heterodimensional cycle
may manifest itself in an actual vector field.

We achieve these results by adapting and employing state-of-the-art techniques of numerical
bifurcation theory. The periodic orbits involved, together with their Floquet multipliers, Floquet
bundles, and bifurcations, can be found with established continuation tools; we use the continuation
software AUTO [13, 14] for this purpose. We then set up a boundary value problem (BVP) that
defines two orbit segments in the stable or unstable manifold of a periodic orbit via projection
boundary conditions [4]. These are combined to find and then continue connecting orbits of different
types; see [21, 32] for a thorough discussions of this approach. Central is the use of continuation
to close a ‘gap’ between the endpoints of the two orbit segments; the general setup, known as Lin’s
method, provides a well-defined direction along which the Lin gap is measured. We implement
Lin’s method in AUTO by making use of its collocation-based BVP solver and pseudo-arclength
continuation, which enables us to identify connecting orbits as zeroes of the Lin gap. The computed
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objects are rendered and visualised in three-dimensional projections and in three-dimensional local
Poincaré sections; the latter is also achieved with a BVP setup by imposing that one endpoint of
each orbit segment of the respective family lies in a chosen section.

Overall, our numerical investigation of explicit heterodimensional cycles contributes to the
emerging bifurcation theory of heterodimensional cycles, following on from initial work by Li and
Turaev [24]. The results presented here also align in spirit with more recent efforts [12] to un-
derstand how the geometric properties of a heterodimensional cycle can theoretically affect the
dynamics of a system. Moreover, we showcase how state-of-the-art numerical methods are an
important tool for uncovering novel types of dynamics and providing insight into the underlying
geometric structure.

The paper is organised as follows. In Sec. 2, we introduce the Atri model and its basic bifurcation
diagram in the (J, s)-plane with the curve PtoP (which stands for Periodic to Periodic), along which
one finds the connection A and, in fact, the entire primary heterodimensional cycle. Section 3 then
shows how the heterodimensional cycle changes as it is continued along PtoP towards the curve PD
of period-doubling bifurcations. More specifically, the topological cylinder B = W u(Γ2) ∩W s(Γ1)
changes geometrically because real pairs of Floquet multipliers of Γ1 and Γ2 become complex
conjugate, and those of Γ2 subsequently become real again but negative. The endpoint of PtoP
on PD is a global codimension-two bifurcation, and we show in Sec. 4 how it generates novel types
of heterodimensional cycle, which we informally call ‘period-doubled heterodimensional cycles’.
We start in Sec. 4 by presenting the bifurcation structure near this special point. Section 4.1
then shows that the primary heterodimensional cycle can be continued past the curve PD as
a codimension-one strong heteroclinic cycle between Γ1 and Γ2, which returns to Γ2 along its
one-dimensional strong stable manifold. When the strong heteroclinic cycle is perturbed, one
finds the structurally stable situation discussed in Sec. 4.2. Nearby, new heterodimensional cycles
involving the period-doubled orbit emerging at PD can be found, as is explained in Secs. 4.3,
4.4 and 4.5. These new heterodimensional cycles can then bifurcate as well when further period-
doubling bifurcations are encountered. We explain this phenomenon of cascading heterodimensional
cycles in Sec. 5 by presenting an overall bifurcation scenario that creates infinitely more period-
doubled heterodimensional cycles. In Sec. 6, we draw some conclusions and point to future work.
Further details of how certain heterodimensional cycles were found and computed can be found in
Appendix A.

2 The Atri model and its basic bifurcation diagram

The specific model we study is the four-dimensional system of ordinary differential equations
(ODEs) 




ċ = v,

Dcv̇ = s v −
(
α+

kf c
2

c2+ϕ2
1
n
)(

γ(ct+Dcv−s c)
s − c

)
+ ksc− δ(J − kpc),

ċt = δ(J − kpc),
s ṅ = 1

τ

(
ϕ2

ϕ2+c
− n

)
,

(1)

It is known as the Atri model [2, 32, 33] and describes how the calcium concentration inside a
cell is related to changes in the cell’s electrical charge; see [7] for a general discussion of how this
and similar calcium models are derived. The Atri model incorporates two mechanisms: calcium is
released from, or absorbed into, an internal calcium store called the endoplasmic reticulum; and
calcium can enter or exit the cell through its membrane. The four state variables of system (1)
represent: the calcium concentration c inside the main body of the cell; the voltage v of the cell;
the total calcium level ct, which also accounts for the stored calcium; and the proportion n of active
chemical gates that release calcium from the endoplasmic reticulum.
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α γ δ J kf kp ks ϕ1 ϕ2 Dc s τ

0.05 5.0 0.2 varies 20.0 20.0 20.0 2.0 1.0 25.0 varies 2.0

Table 1: Parameters of system (1).
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Figure 2: Bifurcation diagram in the (J, s)-plane of system (1) with curves H (red) of Hopf bi-
furcations, SL (green) of saddle-node bifurcations of the periodic orbits, PD (magenta) of period-
doubling bifurcations, HC (blue) of homoclinic orbits, EtoP (gray) of codimension-one EtoP cycles,
and PtoP (black) of the primary heterodimensional cycle with the point (J∗, s∗) ≈ (3.0266, 9.0)
where the first heterodimensional cycle was found in [32]; also shown is the codimension-two
point GH (red) of generalised Hopf bifurcation. Along the curves CC±1 and CC±2 (brown) the
periodic orbit Γ1 and Γ2, respectively, has a positive/negative real double Floquet multiplier. The
region in the black frame is enlarged in Fig. 3(a).

The physiological context of the Atri model (1) is not the focus here. Rather, our interest lies
in the fact the Arti model is the first and still only example of an explicitly given, concrete four-
dimensional vector field with a heterodimensional cycle [19, 32]. As in previous work, we consider
J and s as the bifurcation parameters of our study and fix all other parameters at the values given
in Table 1.

Our starting point is the bifurcation diagram in Fig. 2, which shows the relevant basic bifur-
cation curves known from previous work [19, 32]. Along the curve H the only equilibrium p of
system (1) undergoes a Hopf bifurcation, which changes criticality at the generalised Hopf bifur-
cation point GH. From GH emerges the curve SL along which there is a saddle-node or fold
bifurcation where two periodic orbits meet and disappear. In fact, the periodic orbits Γ1 and Γ2 in
Fig. 1 meet along the curve SL, and they exist above SL and to the left of the curve H. The periodic
orbit Γ2 shrinks to the equilibrium p and disappears along the segment of H above the point GH.
Along the curve HC the periodic orbit Γ2 vanishes by becoming a codimension-one homoclinic
orbit to p. We conclude that both Γ1 and Γ2 exist in the ‘triangular’ region of the (J, s)-plane that
is bounded by the curves H, SL and HC. We remark that this so-called “CU-structure” involving
the curves H and HC is found in quite a number of ODE models of calcium waves [7, 31]. Figure 2
also shows a curve PD of period doubling, which is tangent to the curve SL at a codimension-two
saddle-node period-doubling point [23] near J = 3. Along the part of PD to the left of this point
there is a period-doubling bifurcation of Γ1, while to the right there is a period-doubling bifur-
cation of Γ2. Note that the right part of PD turns sharply and then effectively runs parallel to
the curve H at some distance. The two periodic orbits Γ1 and Γ2 of different index coexist in the
region bounded by the curves H, SL and PD.

A further ingredient of the bifurcation diagram in Fig. 2 is the curve EtoP along which one
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finds a codimension-one Equilibrium-to-Periodic (EtoP) cycle between the equilibrium p and the
periodic orbit Γ1. This cycle consists of a codimension-one non-transverse connection from p to Γ1

and a single structurally stable return connection. Since the periodic orbit Γ2 is close to p near the
curve H, the existence of an EtoP cycle in this region suggests that there might also be a heteroclinic
PtoP cycle between Γ1 and Γ2. This observation was behind the initial discovery by Zhang et
al. [32] of the primary heterodimensional cycle, which exists along the curve PtoP in Fig. 2. The
heterodimensional cycle shown and studied in [19, 32] is the one at (J∗, s∗) ≈ (3.0266, 9.0), and the
curve PtoP was also computed in these earlier works by continuation. Mason et al. [19] found that
PtoP ends at a point on the curve PD, where the periodic orbit Γ2 undergoes period doubling.
Namely, the index of Γ2 to the left of PD is no longer different from the index of Γ1, so that there
can no longer be a heterodimensional cycle between these two periodic orbits.

3 Geometrical changes to the primary PtoP cycle

At the original parameter point (J∗, s∗) ≈ (3.0266, 9.0), as well as at (J, s) ≈ (3.061, 8.55) as used
in Fig. 1, the periodic orbits Γ1 and Γ2 have real and positive Floquet multipliers. However, the two
unstable Floquet multipliers of Γ2 are negative and real near the period-doubling bifurcation, since
at PD, one of them is −1. This sign change necessitates the transition through two codimension-
one situations where they coalesce to form a real double Floquet multiplier of Γ2 that splits into
a complex-conjugate pair, and vice versa. We also find similar changes for Γ1, and the associated
loci for Γ1 and Γ2 are referred to as CC±1 and CC±2 , respectively, where the sign denotes whether
the double Floquet multiplier is positive or negative.

The loci CC±1 and CC±2 are part of the bifurcation structure shown in Fig. 2, where they were
continued as solutions of a suitably defined BVP; see [16] for the details. Each of the curves CC±2
end on SL at a codimension-two point (not indicated), and the curve CC−1 is actually the con-
tinuation (to the left) of CC−2 past this point. These details are beyond our focus here. Rather,
the key observation is that the curve PtoP crosses first CC+

1 , then CC+
2 and finally CC−2 before

ending on PD, which all happens inside the black frame in Fig. 2.
This transition is illustrated in Fig. 3, which enlarges the region in the black frame in Fig. 2.

The curves CC+
1 and CC±2 divide the parameter space to the right of the curve PD into subregions.

In each subregion, the two Floquet spectra of Γ1 and Γ2 are in a specific configuration depending
on whether their respective multipliers are real or complex, and with positive or negative real parts
as shown in the accompanying sketches. We shade the subregions visited by the curve PtoP and
refer to them as regions I to IV. Note that region I extends beyond the shown (J, s)-range.

Figure 3(a) highlights selected points on the curve PtoP, chosen from each of the regions I—IV,
at which we compute and present the primary heterodimensional cycle as a representative example.
The numerical values of the corresponding Floquet multipliers of Γ1 and Γ2 are given in Table 2.
The primary heterodimensional cycle we showed in Fig. 1 represents region I, where Γ1 and Γ2 have
positive Floquet multipliers, one and two of which are unstable, respectively. This configuration
of their Floquet multipliers is the reason behind the primary heterodimensional cycle in region I
being called “simple” [5]: it is of minimal dimension and the structurally stable connection B is a
cylinder. Note that B is tangent to the two-dimensional linear bundle of the weak stable Floquet
multiplier λs1 of Γ1 and of the weak unstable Floquet multiplier λu2 of Γ2; see Fig. 1(b). Notice
also from Table 2 that there is a considerable difference between the weak and the strong Floquet
multipliers, especially of Γ1.

At CC+
1 , the periodic orbit Γ1 has a positive real, double stable Floquet multiplier. In the

adjacent region II, this double multiplier has separated into a complex-conjugate pair with positive
real part. The unstable Floquet multiplier λu1 of Γ1 is also positive real. This configuration of the
spectrum of Γ1 is retained throughout regions II to IV. At CC+

2 , the periodic orbit Γ2 has a positive
real, double unstable Floquet multiplier. In region III, this double multiplier has separated into a
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Figure 3: Transition of the Floquet spectra of both Γ1 and Γ2 along the curve PtoP. Panel (a) is an
enlargement of the black frame in Fig. 2 with the regions I–IV (shaded in different colours), which
are separated by the curves CC+

1 and CC±2 (brown); the open circles indicate the (J, s)-parameter
points for Figs. 1, 4, 6 and 8, respectively. The Floquet spectra of Γ1 (left) and Γ2 (right) during
the transition are sketched in the complex plane in the other panels; here stable multipliers (inside
the unit circle) are shown blue and unstable ones red.

J s Γ1 Γ2

I 3.061 8.550
stable :

{
λss
1 ≈ 7.558 × 10−2

λs
1 ≈ 2.009 × 10−1

unstable : λu
1 ≈ 4.749 × 103

unstable :

{
λu
2 ≈ 1.925 × 100

λuu
2 ≈ 1.539 × 102

stable : λs
2 ≈ 3.544 × 10−1

II 3.062 8.450
stable :

{
λs
1 ≈ (1.396 + 0.907 i) × 10−1

λs
1 ≈ (1.396 − 0.907 i) × 10−1

unstable : λu
1 ≈ 2.279 × 103

unstable :

{
λu
2 ≈ 3.438 × 100

λuu
2 ≈ 6.696 × 101

stable : λs
2 ≈ 3.718 × 10−1

III 3.053 8.414
stable :

{
λs
1 ≈ (1.376 + 1.348 i) × 10−1

λs
1 ≈ (1.376 − 1.348 i) × 10−1

unstable : λu
1 ≈ 1.689 × 103

unstable :

{
λu
2 ≈ (−8.214 + 14.46 i) × 10−1

λu
2 ≈ (−8.214 − 14.46 i) × 10−1

stable : λs
2 ≈ 3.895 × 10−1

IV 3.035 8.420
stable :

{
λs
1 ≈ (1.280 + 1.449 i) × 10−1

λs
1 ≈ (1.280 − 1.449 i) × 10−1

unstable : λu
1 ≈ 1.807 × 103

unstable :

{
λu
2 ≈ −2.128 × 100

λuu
2 ≈ −1.014 × 102

stable : λs
2 ≈ 4.045 × 10−1

Table 2: Floquet multipliers of Γ1 and Γ2 at the chosen points in regions I–IV that are marked on
the curve PtoP in Fig. 3(a).

complex-conjugate pair that has positive real part near CC+
2 . Moving along PtoP towards CC−2 ,

the two complex-conjugate unstable Floquet multipliers of Γ2 stay outside the unit circle; however,
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Figure 4: The primary heterodimensional cycle PtoP of system (1) at (J, s) ≈ (3.062, 8.45) in
region II, illustrated as in Fig. 1.

they cross the imaginary axis, that is, their real part becomes negative. At CC−2 , these complex-
conjugate multipliers meet at a negative real, double unstable Floquet multiplier. As PtoP crosses
into region IV, this double multiplier of Γ2 splits into two negative real ones, and the one closest
to the unit circle approaches −1 as PD is approached.

3.1 The primary heterodimensional cycle in regions II, III and IV

We now show how the simple heterodimensional cycle in region I changes geometrically as the
curve PtoP passes through regions II, III and IV. The corresponding computed representative
PtoP cycles are shown in Figs. 4, 6 and 8 in the style of Fig. 1. The presented sketches at the
level of a three-dimensional diffeomorphism are backed up in Figs. 5, 7 and 9, respectively, by
computations of the relevant invariant objects in local Poincaré sections transverse to Γ1 and Γ2.

Figure 4 shows the primary heterodimensional cycle at (J, s) ≈ (3.062, 8.45) in region II, where
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Figure 5: The computed heterodimensional cycle PtoP from region II in Fig. 4 shown in the three-
dimensional local Poincaré section Σ1 at the point γ1 ∈ Γ1 (green). Panel (a) sketches the setup,
where the vectors vr and vc (blue arrows) are the real and the imaginary parts of a complex stable
Floquet vector at γ1, and the unit vector n (black arrow) is orthogonal to both vr and vc. The
purple and magenta curve is the intersection B̂ = B∩Σ1. In particular, the magenta segment of B̂
is a fundamental domain, whose starting point b0 maps to its endpoint b1 as indicated by the orbit
segment b(t) (orange); the inset shows the location of Σ1 in (c, v, ct)-space. Shown in panel (b) is
a computation of B̂, where the axes are the coordinates αr, αc and η of the basis {vr, vc, n} of Σ1.
The gray curve is the spiral Sp given by Eq. (2), and the inset shows the orthogonal projection of
B̂ onto the (αr, αc)-plane.

Γ1 and Γ2 have the Floquet multipliers shown in Table 2. The fact that Γ1 now has complex-
conjugate stable Floquet multipliers means that trajectories in B spiral around Γ1 as they converge
to this periodic orbit in forward time. As a result, the surface B ‘rolls up’ around Γ1. In the global
views of panels (a1) and (a2), however, this is not discernible, owing to the fact that trajectories
in B converge to Γ1 with a large radial contraction of approximately 0.1665, while the angular
rotation given by the complex part is quite weak. Nevertheless, at the level of a diffeomorphism,
the situation is geometrically as sketched in Fig. 4(b), where the curve B̂ = W u(γ2)∩W s(γ1) spirals
around γ1. Consequently, the two-dimensional unstable manifold W u(γ2) ‘wraps around’ the one-
dimensional unstable manifold W u(γ1) because of the λ-lemma [18, 27]. Note that the situation
near γ2 is unchanged: the segment B̂ still approaches γ2 along the weak unstable eigendirection,
as in Fig. 1(b).

Figure 5 presents numerical evidence that, in a chosen Poincaré section Σ1 transverse to Γ1,
the intersection set B̂ = Σ1 ∩ B indeed forms a logarithmic spiral around the point γ1 ∈ Σ1 ∩ Γ1.
Panel (a) is a sketch of how the local flow near Γ1 induces the intersection set B̂ = B ∩ Σ1, and
the inset illustrates the location of the local three-dimensional section Σ1 used for the computation
shown in panel (b). More specifically, the normal to Σ1 at the chosen point γ1 = Σ1 ∩Γ1 is defined
as an adjoint Floquet vector at γ1, and this implies that Σ1 contains the Floquet vectors of Γ1

at the point γ1. In the sketch of panel (a), the vectors vr and vc are the real and the imaginary
parts, respectively, of a complex stable Floquet vector at γ1 associated with the complex stable
multiplier λs1; moreover, the unit vector n is orthogonal to both vr and vc, and these three vectors

span Σ1 at γ1. Also illustrated in panel (a) is how the surface B intersects Σ1 as the curve B̂: the
orbit segment b(t) starting at a point b0 ∈ B̂ returns to Σ1 under the flow at the image b1 ∈ B̂
of the Poincaré map. Similarly, b1 maps to b2 ∈ B̂ and so on. Note that the highlighted segment
between b0 and b1 is a fundamental domain of B̂ because any trajectory in B intersects it exactly
once. Figure 5(b) shows the curve B̂ computed with a BVP setup as in [19]; here, the section Σ1
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is represented by the coordinates αr, αc and η along the vectors vr, vc and n, respectively, and the
inset is the projection onto the (αr, αc)-plane. Note that the point γ1 ∈ Σ1∩Γ1 is the origin (0, 0, 0)
in this representation. Also shown are points bi for i = 0, 1, 2, 3 of a single orbit that approaches
γ1 in forward time. To demonstrate that B̂ does indeed spiral towards γ1, we show the associated
logarithmic spiral Sp of the linearised Poincaré map near γ1, given by

Sp :





(
αr
αc

)
= rk

(
cos(kθ) sin(kθ)
− sin(kθ) cos(kθ)

)(
εr
εc

)
,

η = 0,

(2)

where (r, θ) ≈ (0.1665, 0.5763) are the polar coordinates of the complex stable Floquet multiplier
λs1, and k ∈ Z is the iteration index.

For the spiral Sp, we choose the initial point εrvr + εcvc as the orthogonal projection onto
Es(γ1) of the point closest to γ1 in the computed segment of B̂. Our computation of B̂ agrees quite
well with Sp. Since the same spiralling of B̂ occurs for any choice of γ1 ∈ Γ1, Fig. 5(b) constitutes
numerical evidence that the surface B as a whole wraps around the periodic orbit Γ1.

Figure 6 shows the primary PtoP cycle at (J, s) ≈ (3.053, 8.414) in region III, where now also
the periodic orbit Γ2 has two complex-conjugate unstable Floquet multipliers; see Table 2 for their
exact values. Here, the associated change in the surface B from region II to region III is not
discernible in the three-dimensional projections of panels (a1) and (a2). However, it is sketched in
panel (b) at the level of a diffeomorphism, where the curve B̂ now also spirals towards γ2, and the
two-dimensional manifold W s(γ1) wraps around the one-dimensional manifold W s(γ2), according
to the λ-lemma. Figure 7 illustrates this locally in two Poincaré sections Σ1 transverse to Γ1

and Σ2 transverse to Γ2, where we compute the intersection sets B̂ = B ∩ Σ1 and B̂ = B ∩ Σ2,
respectively. The locations of Σ1 and Σ2 are shown in the inset of panel (a). As in Fig. 5, we
represent each section in (αr, αc, η)-coordinates as given by the basis {vr, vc, n} of the respective
Poincaré section at the intersection point γi, and we also show the corresponding logarithmic spiral
Sp in the (αr, αc)-plane. Figure 7(a) shows that B̂ is now spiralling slightly more near γ1, compared
to Fig. 5(b), due to the fact that the polar coordinates of λs1 are now (r, θ) ≈ (0.1927, 0.7750), that
is, there is less contraction and more rotation. The situation near γ2 is shown in Fig. 7(b), where
the polar coordinates of the complex unstable Floquet multiplier λu2 are (r, θ) ≈ (14.49, 1.627).
Hence, for each iteration of the local Poincaré map, there is very strong contraction in backward
time, while the change in angle around γ2 is marginal; nevertheless, the curves Sp given by Eq. (2)
are still spirals, albeit very steep ones, and they are approached by B̂ near the respective origin of
these local coordinates.

Figure 8 shows the primary PtoP cycle at (J, s) ≈ (3.035, 8.42) in region IV, where the two
unstable Floquet multipliers of Γ2 are real but negative. Hence, Γ2 has a negative weak unstable
Floquet multiplier λu2 close to −1 and a negative strong unstable Floquet multiplier λuu2 far from
−1; see Table 2 for their values at this parameter point. Sketched in panel (b) at the level of
a diffeomorphism, the two-dimensional manifold W s(γ1) still spirals around the one-dimensional
manifold W s(γ2), but this spiral is now strongly ‘compressed’ in the strong unstable eigendirection
Euu(γ2) of γ2. A typical orbit in B̂ converges to γ2 along the weak eigendirection; near γ2, each
iterate rotates by an angle approximately equal to π since both unstable Floquet multipliers of Γ2

are negative. The spiralling of the curve B̂ near γ2 implies that B̂ transversely intersects the one-
dimensional strong unstable manifold W uu(γ2) ⊂ W u(γ2) (represented in Fig. 8(b) by the strong
unstable eigendirection). This intersection yields a structurally stable strong connecting orbit
(buuk )k∈Z ⊂ B̂, and some of the points buuk are shown in the sketch together with local segments of
W uu(γ2). The sequence (buuk ) corresponds to the connecting orbit Buu = W uu(Γ2) ∩W s(Γ1) ⊂ B
of the vector field, which we computed and show in panels (a1) and (a2).

Figure 9 presents numerical evidence for how the surface B in Fig. 8 intersects the three-
dimensional Poincaré section Σ2 transverse to Γ2. In panel (a), we represent Σ2 by the coordinates
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Figure 6: The primary heterodimensional cycle PtoP of system (1) at (J, s) ≈ (3.053, 8.414) in
region III, illustrated as in Fig. 1.

αu, αuu and αs along the unit Floquet vectors vu, vuu and vs, respectively, at the chosen point
γ2 ∈ Σ2 ∩ Γ2; the inset shows the location of Σ2 in (c, v, ct)-space. Since the strong unstable
eigenvalue λuu2 ≈ −1.014× 102 is much larger than the weak unstable one λu2 ≈ −2.128, the curve

B̂ is greatly compressed in the strong unstable direction (under backward iteration) and, hence, is
a much ‘flattened’ spiral with sharp turning points (unlike in the idealised sketch in Fig. 8(b). In
particular, the associated range of the coordinate αuu is much smaller than that of αu, and it turned
out to be numerically unfeasible to compute B̂ as a single smooth curve at this resolution. However,
with a suitable BVP setup, we are able to compute local segments of B̂ = B ∩Σ2 as they converge
to γ1 = Γ2 ∩ Σ2. To illustrate the action of the Poincaré map, segments of B̂ are alternatingly
coloured, meaning that each segment of one colour maps to a segment of the other, and vice versa.
Panel (b) shows an extreme enlargement of panel (a) in projection onto the (αu, αuu)-plane. Here,
we see that B̂ strongly aligns with the weak unstable Floquet direction, and the two colours of B̂
approach γ2 from opposite directions in the coordinate αuu.
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Figure 7: The computed heterodimensional cycle PtoP in region III from Fig. 6 at the level of the
Poincaré maps on local sections Σ1 at γ1 ∈ Γ1 in panel (a) and Σ2 at γ2 ∈ Γ2 in panel (b). Shown
is the respective curve B̂ = B ∩ Σi in (αr, αc, η)-space with γi and the associated spiral Sp (gray)
in the (αr, αc)-plane; the inset in panel (a) illustrates the locations of Σ1 and Σ2 in (c, v, ct)-space.
Compare with Fig. 5.

3.2 Strong homoclinic orbit to Γ2 in region IV

Near the primary heterodimensional cycle in phase space there exist structurally stable homoclinic
orbits to Γ1 and Γ2, some of which were computed in Zhang et al. [32] at the point (3.0266, 9.0)
in region I. Notably, those homoclinic orbits can be continued through the curves CC+

1 , CC+
2

and CC−2 ; that is, they also exist in regions II–IV. However, there are additional homoclinic orbits
to Γ1 and to Γ2 that are generated by the spiralling nature of the surface B. More specifically,
observe in Fig. 4(b) that the one-dimensional stable manifold W s(γ2) must transversely intersect
the two-dimensional unstable manifold W u(γ2), because the latter rolls around W u(γ1) near γ1;
this follows from the fact that W u(γ1) intersects W s(γ2) in the codimension-one connecting orbit
(ai)i∈Z. An intersection between W u(γ2) and W s(γ2) corresponds to a robust homoclinic orbit to γ2
that exists only below the curve CC+

1 in Fig. 3(a); note that this additional type of homoclinic orbit
does not exist in region I, because the surface W u(γ2) approaches the curve W u(γ1) tangentially
to the weak stable eigendirection of γ1, while W s(γ2) accumulates on the one-dimensional manifold
W ss(γ1); see Fig. 1(b). To the left of the curve CC+

2 in Fig. 3(a), the spiralling of B̂ towards γ2
similarly induces robust homoclinic orbits to γ1, since the quasi-transverse orbit (ai)i∈Z implies that
the one-dimensional manifold W u(γ1) transversely intersects the two-dimensional manifold W s(γ1)
near γ2; see Figs. 6(b) and 8(b).

Any additional homoclinic orbits in W u(Γ2)∩W s(Γ2) near Γ1 are extremely close to the primary
heterodimensional cycle itself, owing to the very weak spiralling caused by the strong contraction
rate on W s(Γ1) in regions II to IV. We attempted to find one numerically, but verifying that
the computed homoclinic orbit is of the type generated by spiralling was not feasible; this is due
to the fact that homoclinic orbits to Γ2 in region I found in [32] already lie very close to the
primary heterodimensional cycle. We are, however, able to find a new type of homoclinic orbit to
Γ2 in region IV: the codimension-one strong homoclinic orbit shown in Fig. 10. It is effectively
a perturbation of the quasi-transverse connection A and the structurally stable strong connection
Buu from Fig. 8 that results in an intersection of the two-dimensional manifolds W uu(Γ2) and
W s(Γ2) near Γ1; in fact, the strong homoclinic orbit from Fig. 10 was computed with a BVP setup
using these two connections as the starting data; see Appendix A. Panels (a1) and (a2) of Fig. 10
show the codimension-one strong homoclinic orbit SHC to Γ2 at the point (J, s) ≈ (3.029, 8, 43) in
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Figure 8: The primary heterodimensional cycle PtoP of system (1) at (J, s) ≈ (3.035, 8.42) in
region IV, illustrated as in Fig. 1. Also shown is the strong connecting orbit Buu ⊂ B (red curve)
in panels (a1) and (a2), and its counterpart (buuk )k∈Z (red dots) in panel (b).

region IV, which is close to the point (J, s) ≈ (3.035, 8.42) of Fig. 8. The first part of the orbit SHC
starts near Γ2 and travels towards Γ1 in close proximity to Buu; subsequently, SHC makes several
‘loops’ around Γ1 and then returns to Γ2, with a trajectory that is similar to the codimension-one
connection A, which does not exist after the perturbation; compare panels (a1) and (a2) of Fig. 10
with the corresponding panels of Fig. 8.

Figure 10(b1) is an idealised sketch of the situation near the fixed point γ1. As in Fig. 8(b),
which provides the global context of Fig. 10(b1), the curve B̂ spirals towards γ1. The structurally
stable strong connection (buuk )k∈Z = W uu(γ2) ∩W s(γ1) ⊂ B corresponds to Buu and exists also

near the curve PtoP in region IV. Its existence implies that W uu(γ2) follows B̂ towards γ1 and
approaches the one-dimensional manifold W u(γ1) as a consequence of the λ-lemma. Since the
sketch in Fig. 10(b1) is a perturbation of the sketch in Fig. 8(b), segments of W s(γ2) lie near γ1
and extend in a direction of the stable subspace Es(γ1). These segments (of which two are shown)
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Figure 9: The computed heterodimensional cycle PtoP in region IV from Fig. 8 at the level of the
Poincaré map on a local section Σ2 at γ2 ∈ Γ2. Panel (a) shows computed segments of B̂ = B ∩Σ2

with γ2 in (αu, αuu, αs)-space of the coordinates of the eigenbasis {vu, vuu, vs} at γ2, and panel (b)
is an extreme enlargement of a projection onto the (αu, αuu)-plane. Segments of B̂ of the same
colour (magenta or purple) map to one another under the second iterate of the Poincaré map, and
the inset in panel (a) illustrates the location of Σ2 in (c, v, ct)-space.

quasi-transversely intersect W uu(γ2) to form the codimension-one strong homoclinic orbit (qk)k∈Z,
which corresponds to the curve SHC in panels (a1) and (a2) of Fig. 10. Panel (b2) shows the ‘top
view’ of panel (b1), namely its projection onto Es(γ1) along the unstable eigendirection Eu(γ1);
here, the points qk and buuk coincide due to local curve segments of W uu(γ2) being idealised as
vertical lines.

4 Period-doubling of the primary heterodimensional cycle

We now focus on the region to the left of the period-doubling curve PD: here, Γ1 and Γ2 coexist
with a third periodic orbit Γ3 that is the ‘period-doubled orbit’ which emerges from the period-
doubling bifurcation PD of Γ2. Panel (a) of Fig. 11 shows this (J, s)-region with the relevant
computed loci, and panel (b) is a corresponding topological sketch. The periodic orbit Γ3 has
positive Floquet multipliers and (unstable) index two just to the left of PD. Its two unstable
Floquet multipliers are a complex-conjugate pair between the curves CC+

3 and CC−3 ; these two
curves lie very close together in panel (a), and they are shown separated in the sketch in panel (b).
To the left of CC−3 , they are real and negative, and Γ3 then has a period-doubling bifurcation
along the curve PD. Continuing on from Sec. 3, we label and colour these (J, s)-regions as follows:
region V between PD and CC+

3 , region VI between CC+
3 and CC−3 , and region VII between CC−3

and PD. Figure 11 also shows the locus PtoPss of the strong heteroclinic cycle between Γ1 and Γ2,
which is effectively the continuation of the primary heterodimensional cycle from the codimension-
two endpoint PDP of the curve PtoP. However, the heteroclinic cycle along the curve PtoPss is
not heterodimensional since both Γ1 and Γ2 have index one; it will be presented and discussed in
Sec. 4.1. The Floquet spectra of Γ1, Γ2 and Γ3 in region V are shown in the bottom row of Fig. 11.
Observe that both Γ1 and Γ2 have index one and Γ3 has index two, so that there is the possibility
of new types of heterodimensional cycles involving Γ3. We proceed by showing that these, indeed,
exist and are ‘mediated’ by the strong heteroclinic cycle in region V.
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Figure 10: Strong homoclinic orbit SHC to Γ2 of system (1) at (J, s) ≈ (3.029, 8, 43) in region IV.
Panels (a1) and (a2) show SHC (black) with Γ2 and Γ2 (green) in projection onto (c, v, ct)-space and
(c, v, n)-space. Panel (b1) is a sketch of a representative diffeomorphism near γ1, which illustrates
how W uu(γ2) intersects W s(γ2) (blue) along the corresponding codimension-one strong homoclinic
orbit (qk)k∈Z (black dots) to γ2; see Fig. 8(b) for the global context. Also shown is the strong
connecting orbit (buuk )k∈Z (red dots) that corresponds to Buu = W uu(Γ2) ∩W s(Γ1). Panel (b2)
shows the projection of panel (b1) onto Es(γ1) in the direction of Eu(γ1).

4.1 The strong heteroclinic cycle PtoPss

Figure 12 shows the strong heteroclinic cycle PtoPss between the two index-one periodic orbits
Γ1 and Γ2 at the point (J, s) ≈ (3.0158, 8.452) on the curve PtoPss in region V. The Floquet
multipliers of Γ1, Γ2 and Γ3 at this parameter point are given in Table 3. Note that the stable
manifold W s(Γ2) is of dimension three in region V, while the two-dimensional unstable manifold
W u(Γ2) is the natural continuation of the strong unstable manifold W uu(Γ2) in region IV. The
two projections in panels (a) and (b) show the two constituent connections between Γ1 and Γ2.
Firstly, there is the single codimension-one strong connecting orbit A = W u(Γ1) ∩W ss(Γ2); we
refer to it again as A, because it the natural extension of the quasi-transverse connection A =
W u(Γ1)∩W s(Γ2) in region IV. Secondly, there is the single structurally stable return orbit Buu =
W u(Γ2)∩W s(Γ1); in a slight abuse of notation, we refer to it as Buu because it is the continuation
of the single strong connecting orbit Buu = W uu(Γ2) ∩W s(Γ1) in region IV. Also shown are the
period-doubled orbit Γ3 and the surface D = W u(Γ3) ∩W s(Γ1) of connecting orbits from Γ3 to
Γ1. Note that the connecting orbit Buu lies in the closure of D; together, they are the natural
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Figure 11: Bifurcation loci in the region [3.0153, 3.0161] × [8.451, 8.453] of the (J, s)-plane of sys-
tem (1), showing the curves PD and PD (magenta) of period-doubling of Γ2 and Γ3, respectively,
the curve PtoPss (gray) of the codimension-one strong heteroclinic cycle between Γ1 and Γ2, and
the curves CC±3 (brown) of real double unstable Floquet multipliers of Γ3. Also shown is the
codimension-two point PDP at (J, s) ≈ (3.016, 8.451) on PD. Panel (a) shows the curves as com-
puted, and panel (b) is a corresponding topological sketch that introduces regions V–VII bounded
by PD, CC±3 and PD. The bottom row shows the Floquet spectra of Γ1, Γ2 and Γ3 in region V.
Compare with Figs. 3(a) and 18.

continuation of the surface B = W u(Γ2) ∩W s(Γ1) in region IV.

Γ1 Γ2 Γ3

stable :

{
λs
1 ≈ (1.175 + 1.245 i) × 10−1

λs
1 ≈ (1.175 − 1.245 i) × 10−1

unstable : λu
1 ≈ 2.571 × 103

stable :

{
λss
2 ≈ 4.094 × 10−1

λs
2 ≈ −9.911 × 10−1

unstable : λu
2 ≈ −2.451 × 102

unstable :

{
λu
3 ≈ 1.231 × 100

λuu
3 ≈ 1.860 × 104

stable : λs
3 ≈ 4.116 × 10−1

Table 3: Floquet multipliers of Γ1, Γ2 and Γ3 at the parameter point (J, s) ≈ (3.0158, 8.452) of
Fig. 12 on the curve PtoPss in region V.

The overall geometry of the relevant objects in region V is further illustrated in Fig. 12(b) at the
level of a three-dimensional diffeomorphism; compare with Fig. 1(b). The heteroclinic cycle between
the corresponding fixed points γ1 and γ2 consists of the strong connecting orbit (ak)k∈Z, which is
the quasi-transverse intersection of the one-dimensional manifolds W u(γ1) and W ss(γ2), and the
structurally stable connecting orbit (buuk )k∈Z = W u(γ2)∩W s(γ1). Also shown in Fig. 12(b) are the
points γ−3 and γ+3 of the period-two orbit γ3 = (γ−3 , γ

+
3 ), which correspond to Γ3 and are fixed points

of the second iterate of the diffeomorphism. The one-dimensional manifoldW u(γ2) has two branches
W u
−(γ2) and W u

+(γ2) that are each invariant under the second iterate, because the unstable Floquet
multiplier λu2 is negative; moreover, W u(γ2) lies in the closure of the two-dimensional manifold
W u(γ3). Consequently, the connecting orbit (buuk )k∈Z lies in the closure of the intersection set

D̂ = W u(γ3) ∩W s(γ1) and, together, they form a single smooth curve, as sketched. The λ-lemma
implies that W u(γ3) accumulates on W u(γ1). The two-dimensional manifold W s(γ2) is locally
a strip bounded by the one-dimensional manifolds W s(γ−3 ) and W s(γ+3 ), and it extends towards
γ1; here, W s(γ2) accumulates on the two-dimensional manifold W s(γ1), because the strong stable
manifold W ss(γ2) ⊂W s(γ2) quasi-transversely intersects the one-dimensional manifold W u(γ1).
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Figure 12: The codimension-one strong heteroclinic cycle PtoPss of system (1) at (J, s) ≈
(3.0158, 8.452) in region V , illustrated in the style of Fig. 1. Shown in panels (a1) and (a2)
are Γ1 and Γ2 (green), Γ3 (purple), the strong connection A = W u(Γ1)∩W ss(Γ2) (blue), the return
connection Buu = W u(Γ2) ∩W s(Γ1), and the surface D = W u(Γ3) ∩W s(Γ1) (orange). The sketch
at the level of a diffeomorphism shows the corresponding objects γ1, γ2 (green dots), the period-two
orbit γ3 = (γ−3 , γ

+
3 ) (purple dots), the connecting orbits (ak)k∈Z = W u(γ1) ∩W ss(γ2) (black dots)

and (buuk )k∈Z = W u(γ2) ∩W s(γ1) (red dots), the curve D̂ = W u(γ3) ∩W s(γ1) (magenta), and the
two-dimensional stable manifold W s(γ2) (green strip), which is bounded by W s(γ−3 ) (cyan curve)
and W s(γ+3 ) (dashed blue curve).

Figure 13 provides numerical evidence that the strong heteroclinic cycle along PtoPss is, indeed,
as sketched in Fig. 12(b); more specifically, it shows the relevant computed objects in two local
Poincaré sections, namely, Σ1 at γ1 ∈ Γ1 and Σ2 at γ2 ∈ Γ2. Figure 13(a) shows the locations
of Σ1 and Σ2 in projection onto (c, v, ct)-space, and panels (b) and (c) are local phase portraits
on Σ2 and on Σ1, respectively. Panel (b) shows the situation in Σ2, which is represented by
the coordinates αs, αss and αu along the respective real Floquet vectors γ2. The strong stable
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Figure 13: The computed strong heteroclinic cycle PtoPss from Fig. 12 shown in Poincaré sections
Σ1 at γ1 ∈ Γ1 and Σ2 at γ2 ∈ Γ2 as indicated in panel (a). Panel (b) shows the phase portrait in
local (αss, αs, αu)-coordinates near γ2 (green dot) with the connecting orbits (ak) (black dots) on
W ss(γ2) (blue) and local segments of W u(γ1) (red), and (buuk ) (red dots) on W u(γ2) (red) with local
tangent disks of W s(γ1) (blue). Panel (c1) shows the phase portrait in local (αr, αc, α

u)-coordinates
near γ1 (green dot) with (ak) (black dots) on W u(γ1) (red) with local segments of W ss(γ2) (blue),
and (buuk ) (red dots) on local segments of W u(γ2) (red) and near the spiral Sp (gray). The αu-
coordinate has been rescaled so that the points b−1 in panel (b) and a−1 in panel (c1) are at αu = 1;
panel (c2) is the orthogonal projection of panel (c1) onto the (αr, αc)-plane.

manifold W ss(γ2) = W ss(Γ2) ∩ Σ2 is a curve that contains the shown points a1, a2 and a3 of the
quasi-transverse connecting orbit; the computed local segments of W u(γ1) through these points are
aligned with, and can be seen to accumulate on W u(γ2) as (ak) approaches γ2. The points buu−1
and buu−2 of the structurally stable connecting orbit lie on the one-dimensional manifold W u(γ2).
To enhance visibility, the coordinate αu has been scaled here so that the point buu−1 is given by
αu = 1. We verified that buu−2, which is very close to γ2, lies below γ2; this implies that buu−1 and buu−2
belong to opposite branches of W u(γ2), as required by the negative sign of λu2 . The blue disks are
approximations of the tangent plane of W s(γ1) at buu−1 and at buu−2; the arrows along the outer circle
indicate that the Poincaré map is orientation-reversing on the tangent disk at buu−2.

Figure 13(c1) shows the relevant computed objects in Σ1, which are represented by coordinates
αr, αc and αu, as in Fig. 5(b). Figure 13(c2) shows the orthogonal projection of panel (c1) onto the
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(αr, αc)-plane. In panel (c1), the points a−1, a−2 and a−3 of the quasi-transverse connecting orbit lie
on W u(γ1); moreover, because of the complex-conjugate stable Floquet multipliers, local segments
of W ss(γ2) through the points a−k are rotated under the inverse of the Poincaré map around
W u(γ1), as is further illustrated in panel (c2). The points buu1 , buu2 , buu3 ∈ Σ1 of the structurally
stable connecting orbit Buu lie on the two-dimensional manifold W s(γ1) (not shown). However,
these points practically lie in Es(γ1), that is, the (αr, αc)-plane. Also shown is the logarithmic
spiral Sp through the (αr, αc)-component of buu1 , and we observe in panel (c2) that, indeed, buu2 and
buu3 lie close to Sp in projection. Also shown in panel (c1) are local segments of W u(γ2) through
these points, which align with and accumulate on W u(γ1) as buuk converges to γ1.

4.2 Nearby structurally stable heteroclinic cycle between Γ1 and Γ2

Any typical or generic small perturbation of the strong heteroclinic cycle from Fig. 12 breaks
the codimension-one strong connection A. Such a perturbation results in a structurally stable
heteroclinic cycle between the periodic orbits Γ1 and Γ2 of the same index one. For example,
Fig. 14 shows the cycle obtained by changing the parameter J , from its value in Fig. 12 by only
10−4. The structurally stable connection Buu remains unaffected, and the difference is that W u(Γ1)
still intersects W s(Γ2), but it no longer does so along W ss(Γ2); hence, the single connecting orbit
Ã = W u(Γ1) ∩W s(Γ2) in panels (a1) and (a2) of Fig. 14 is now structurally stable as well. At the
scale of these projections, the difference between Ã and A is not noticeable; however, in panel (b),
the sketch at the level of a diffeomorphism illustrates that W u(Γ1) now spirals around W ss(Γ2); the
corresponding structurally stable orbit (ãk)k∈Z is the transverse intersection of the one-dimensional
manifold W u(γ1) and the two-dimensional manifold W s(γ2)\W ss(γ2). Locally near γ2, the λ-lemma
still forces W u(γ1) to accumulate on W u(γ2), but the connecting orbit (ãk)k∈Z approaches γ2 along
its weak stable eigendirection under forward iteration.

Figure 15 confirms the sketch in Fig. 14(b) by showing the relevant computed objects in two
local Poincaré sections Σ1 at γ1 and Σ2 at γ2, as indicated in (c, v, ct)-space in Fig. 15(a). Com-
parison with Fig. 13 shows that the nature of the structurally stable connecting orbit (buuk ) remains
unchanged near both γ1 and γ2. However, Fig. 15(a) confirms that the connecting orbit (ãk) does
not approach γ2 along W ss(γ2). Indeed, the computed points ã1, ã2, ã3 and ã4 in (αs, αss, αu)-
space lie alternatingly on either side of W ss(γ2); hence, they approach γ2 along the weak stable
Floquet direction at γ2, which is represented by the αs-coordinate. Note that the local segments of
W u(γ1) still align with and accumulate on W u(γ2). Figure 15(c1) shows the situation near γ1 in
(αr, αc, α

u)-space representing Σ1. Indeed, the computed points b1, b2 and b3 effectively follow the
logarithmic spiral Sp in the (αr, αc)-plane. Unfortunately, the computed points ã−1, ã−2 and ã−3
are indistinguishable at the scale of panel (c1), because the unstable Floquet multiplier of Γ1 is still
of order 103. However, they can be seen to converge to γ1 along W u(γ1) in the much enlarged pro-
jection onto the (αc, α

u)-plane shown in panel (c2). Figure 15(c3) shows the orthogonal projection
of panel (c1) onto the (αr, αc)-plane. New here are the segments S−1, S−2, S−3 ⊂ W ss(Γ2) ∩ Σ1,
which lie outside the limited αu-range shown in panel (c1). As these segments rotate counter-
clockwise towards γ1 under backward iteration, they no longer intersect W u(γ1); compare with
Fig. 13(c2).

4.3 The heterodimensional cycle PP3
1

Suitable perturbations of the structurally stable heteroclinic cycle shown in Fig. 14(b) will move the
points of the connecting orbit (ãk) closer to the boundary curves W s(γ−3 ) and W s(γ+3 ) of the two-
dimensional manifold W s(γ2). This implies that (ãk) becomes a codimension-one connecting orbit
between γ1 and the period-two orbit γ3 if and when it reaches these boundary curves. Figure 16
shows the heterodimensional cycle PP3

1 between Γ1 and the period-doubled orbit Γ3 at (J, s) ≈
(3.026, 8.341) in region V. It comprises the codimension-one connection C = W u(Γ1) ∩W s(Γ3)
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ã2

ã3

Figure 14: A structurally stable heteroclinic cycle between Γ1 and Γ2 of system (1) in region V,
illustrated as in Fig. 12; here, (J, s) ≈ (3.0159, 8.452). Note the structurally stable connection
Ã = W u(Γ1)∩W s(Γ2) from Γ1 to Γ2 in panels (a1) and (a2), which corresponds to the connecting
orbit (ãk)k∈Z in the sketch in panel (b).

and the structurally stable return surface D = W u(Γ3) ∩W s(Γ1), shown in panels (a1) and (a2).
At the level of a diffeomorphism, the corresponding heterodimensional cycle is formed by the
codimension-one connecting orbit (ck)k∈Z = W u(γ1) ∩W s(γ3) and the structurally stable curve
D̂ = W u(Γ3) ∩W s(Γ1); compare with Figs. 13 and 15.

Figure 17 presents the computed invariant objects of PP3
1 in two Poincaré sections Σ1 and Σ2,

illustrated in panel (a). Panel (b) shows, in local (αs, αss, αu)-coordinates of Σ2, the period-two
orbit γ3 = (γ−3 , γ

+
3 ) on both sides of γ2 and the computed intersection points c1, c2, c3, c4 and c5

of C with Σ2; these points lie on W s(γ−3 ) for even indices and on W s(γ+3 ) for odd indices. Note
that the local segments of W u(γ1) through these points align with and accumulate on W u(γ−3 )
and W u(γ+3 ). Panel (c1) shows phase portraits in Σ2 in local (αr, αc, α

u)-coordinates; here, the
coordinate αu is scaled so that c0 lies at αu = 1. The computed points c0, c−1 and c−2 are seen
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ã4

ã2
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ã−2
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Figure 15: The computed structurally stable heteroclinic cycle from Fig. 14 at the level of the
Poincaré maps on local sections Σ1 at γ1 ∈ Γ1 and Σ2 at γ2 ∈ Γ2 that are shown in panel (a).
The phase portrait near γ2 is shown in local (αss, αs, αu)-coordinates in panel (b), and near γ1 in
local (αr, αc, α

u)-coordinates in panels (c1)–(c3). The orthogonal projection of panel (c1) onto the
(αr, αc)-plane in panel (c2) shows the curves S−1, S−2 and S−3 (blue), which are local segments of
W ss(Γ2)∩Σ2 that exist beyond the αu-range of panel (c1). Panel (c3) is a much enlarged orthogonal
projection onto the (αc, α

u)-plane showing how ã−1, ã−2 and ã−3 (black dots) approach γ1 (green
dot). Compare with Fig. 13.

to approach γ1 along W u(γ1) under backward iteration, while the alternating local segments of
W u(γ−3 ) and W u(γ+3 ) rotate predominantly by the action on their (αr, αc)-components; see also
the enlargement in panel (c2). Indeed, Fig. 17 confirms the sketch in Fig. 16(b) and shows that
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Figure 16: The heterodimensional cycle PP3
1 of system (1) between Γ1 (green) and the period-

doubled orbit Γ3 (purple) at (J, s) ≈ (3.026, 8.341) in region V, illustrated as in Fig. 12. Shown are
the codimension-one connection C = W u(Γ1) ∩W s(Γ3) (blue) and the structurally stable surface
D = W u(Γ3) ∩W s(Γ1) (orange) of return connections in panels (a1) and (a2), which correspond
to the connecting orbit (ck)k∈Z (black) from γ1 (green) to γ±3 (purple) and the curve D̂ (magenta)
in the sketch in panel (b).

the connecting orbit (ck) is the quasi-transverse intersection W u(γ1) ∩ W s(γ3) resulting from a
continuation of (ãk) from Fig. 14(b). Our findings suggest that the locus of the heterodimensional
cycle PP3

1 is a curve that emanates from the codimension-two point PPD on the period-doubling
curve PD, where the curve PtoP ends and the curve PtoPss emerges; this will be confirmed and
illustrated in Sec. 4.5.
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Figure 17: The computed heterodimensional cycle PP3
1 from Fig. 16 at the level of the Poincaré

maps on local sections Σ1 at γ1 ∈ Γ1 and Σ2 at γ2 ∈ Γ2, shown in the style of Fig. 13; here,
panel (c2) is an enlargement of panel (c1) near γ1.

4.4 The locus SHC and heterodimensional cycles PP3
2 and PP

3

2

To identify and explain the geometrical properties of heterodimensional cycles between the periodic
orbits Γ2 and Γ3, which meet at the curve PD, we find it convenient to consider perturbations of
the codimension-one strong homoclinic orbit SHC from Fig. 10. Its locus can be continued, which
yields the curve shown in Fig. 18 in the (J, s)-plane from Fig. 3(a). Note that SHC emerges
from a point on the curve CC−2 in region IV and crosses the curve PD at the codimension-
two point PDHC; near this point and to the left of PD, the curve SHC lies very close to the
curves PtoP and PtoPss, respectively.

In region IV, the strong homoclinic orbit to Γ2 of SHC involves the strong unstable manifold
W uu(Γ2); this is the type of strong homoclinic orbit illustrated in Fig. 10. However, in regions
V–VII, the Floquet spectrum of Γ2 is as shown in Fig. 11, that is, W u(Γ2) is now two dimensional
and W s(Γ2) has dimension three. Hence, the strong homoclinic orbit involves a return along the
two-dimensional strong stable manifold W ss(Γ2), which is the natural continuation of W s(Γ2) from
region IV. At the level of a diffeomorphism, the one-dimensional manifold W ss(γ2) lies in the
interior of the two-dimensional manifold W s(γ2), which is a strip bounded by the one-dimensional
manifolds W ss(γ±3 ); see Fig. 14(b). Akin to what we have seen for the strong heterodimensional
cycle in Secs. 4.1–4.3, near the curve PD, the strong heteroclinic cycle (qk)k∈Z = W u(γ2)∩W ss(γ2)
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Figure 18: Bifurcation diagram from Fig. 3(a) with the locus SHC (cyan curve) of codimension-one
strong homoclinic orbits to Γ2, which starts on the curve CC−2 and crosses the curve PD at the
codimension-two bifurcation point PDHC (cyan). Also shown is the locus PtoPss (gray curve)
form Fig. 11, and the inset is an enlargement of the black frame near the points PDHC and PDP.

first perturbs to a structurally stable homoclinic orbit given by W u(γ2) ∩W s(γ2) \W ss(γ2), which
exists until the one-dimensional manifold W u(γ2) reaches the boundary W ss(γ±3 ) of the strip.

For such a specific perturbation, there exists a heterodimensional cycle between Γ2 and its
period-doubled counterpart Γ3; it is shown in Fig. 19 for the point (J, s) ≈ (3.026, 8.35) in region V.
The projections in panels (a1) and (a2) illustrate that the periodic orbits Γ2 and Γ3 are very close
to each other at this parameter point. The codimension-one connecting orbit E = W u(Γ2)∩W s(Γ3)
makes a large excursion very close to Γ1, and the structurally stable return surface F = W u(Γ3) ∩
W s(Γ2) is a Möbius strip bounded by Γ3; see also the inset in panel (a1). The sketch in Fig. 19(b)
shows the situation at the level of a diffeomorphism: the two branches W u

−(γ2) and W u
+(γ2) of

W u(γ2) quasi-transversely intersect W s(γ−3 ) and W s(γ+3 ), respectively, along the connecting orbit
(ek)k∈Z, which includes points e0, e1 and e2 that lie near γ1. Consequently, the curves W s(γ±3 ) pass
near γ1 but then return to a neighbourhood of γ2, where further iterates of e2 accumulate on γ2; this
behaviour of W s(γ±3 ) is illustrated in panel (b) by local segments, which are shown to accumulate

on W ss(γ2). The curve F̂ , corresponding to the surface F , is the transverse intersection of the
two-dimensional manifolds W u(γ3) and W s(γ2). We de-emphasise the one-dimensional manifolds
W u(γ1) and W ss(γ2) in Fig. 19(b) to avoid confusion, but note that W u(γ1) still intersects W s(γ2)
transversely, as in Fig. 14(b).

Figure 20 presents the numerical evidence for Fig. 19 by showing the relevant computed objects
in sections Σ1 and Σ2 illustrated in panel (a); here, Σ2 is chosen at γ2 ∈ Γ2 as before, and Σ1

is a section at γ1 ∈ Γ1 that allows us to illustrate the excursion of PP3
2 to this periodic orbit.

Panel (b) shows the time series of the state variable ct for the connection E; here, time t̃ = t/T
has been rescaled by the total integration time T of the computed orbit segment. This time series
illustrates how PP3

2 first oscillates near Γ2, then transitions to a few oscillations near Γ1, and finally
settles into oscillations near the period-doubled orbit Γ3; the final part is further illustrated by the
enlargement in the inset, where the period-two nature of the oscillations is apparent.

Panels (c1) and (c2) of Fig. 20 are local phase portraits near γ2 and the period-two points
γ±3 showing computed points of the connecting orbit (ek)k∈Z. The points e−2 and e−1 on W u(γ2)
lie below and above γ2, respectively, and the local segments of W s(γ−3 ) through them align with
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Figure 19: The heterodimensional cycle PP3
2 of system (1) at (J, s) ≈ (3.026, 8.35) in region V,

illustrated as in Fig. 12. It consists of the codimension-one connection E = W u(Γ2) ∩ W s(Γ3)
(blue) and the structurally stable surface F = W u(Γ3) ∩W s(Γ2) (orange) of return connections
in panels (a1) and (a2), which correspond to the connecting orbit (ek)k∈Z and the curve F̂ in
the sketch in panel (b). The inset in panel (a1) is an enlargement of the black frame. To avoid
confusion, the curves W u(γ1) and W ss(γ2) are shown in gray in panel (b). Compare with Fig. 12.

W ss(γ−2 ). After an excursion near γ1, the connecting orbit (ek) re-enters the shown part of the
(αss, αs, αu)-space in panel (c1), where the computed points e4 and e6 lie on W s(γ−3 ) and e5 and
e7 lie on W s(γ+3 ). Note that the shown segments of W uu(γ2) align with W uu(γ−3 ) and W u(γ+3 ). In
panel (c2), the orthogonal projection of panel (c1) onto the (αs, αss)-plane shows how the segments
S−3, S−2, S−1 ⊂ W s(γ±3 ) through the points e−3, e−2 and e−1 ‘flip’ with respect to the αss-axis
under the Poincaré map.

Panels (d1) and (d2) of Fig. 20 show the computed points e0, e1, e2 and e3 of the connecting
orbit(ek) near γ1 in the (αr, αc, α

u)-space of Σ1. They closely follow the spiral Sp ⊂ Es(γ1)
(chosen to contain the (αr, αc)-coordinates of e3) almost to γ1, but (ek) does not reach this fixed
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Figure 20: The computed heterodimensional cycle PP3
2 from Fig. 19. Panel (a) shows it in (c, v, ct)-

space with an indication of local sections Σ1 at γ1 ∈ Γ1 and Σ2 at γ2 ∈ Γ2, and panel (b) is the
scaled ct-time trace of the connecting orbit E, where the inset enlarges the black frame. A phase
portrait of the Poincaré map is shown in local (αss, αs, αu)-coordinates of Σ2 in panel (c1) and (c2),
and in local (αr, αc, α

u)-coordinates of Σ1 in panels (d1)–(d3).

point. Nevertheless, the shown local segments of W u(γ2) still align with W u(γ1). The situated
illustrated in panel (d1) is confirmation that the connection E shown in Fig. 19 is, indeed, a
suitable perturbation of the strong homoclinic orbit SHC shown in Fig. 10. In panel (d2), the
orthogonal projection of panel (d1) onto the (αr, αc)-plane illustrates the clockwise rotation of the
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Figure 21: The heterodimensional cycle PP
3
2 of system (1) at (J, s) ≈ (3.021, 8.4) in region V,

illustrated as in Fig. 12. It consists of the codimension-one connection E = W u(Γ2) ∩ W s(Γ3)
(blue) and the structurally stable return surface F (orange) from Fig. 19 in panels (a1) and (a2),
which correspond to the connecting orbit (ēk)k∈Z and the curve F̂ in the sketch in panel (b).
Compare with Fig. 19.

local segments of W s(γ±3 ) under the Poincaré map.
In region V, we also discovered a different heterodimensional cycle between Γ2 and Γ3, namely,

one with a codimension-one connecting orbit that does not come close to Γ1. We refer to it as PP
3
2,

and it is shown for the point (J, s) ≈ (3.021, 8.4) in Fig. 21. The surface F of structurally stable
connecting orbits in panels (a1) and (a2) is actually the continuation of the Möbius strip bounded
by Γ3 from Fig. 19. Observe that the codimension-one connecting orbit E from Γ2 to Γ3 does not

visit a neighbourhood of Γ1. Figure 21(b) emphasises the more local nature of PP
3
2 at the level of

a diffeomorphism and, here, the codimension-one connecting orbit (ēk) = W u(γ2) ∩W s(γ±3 ) stays
well away from γ1. Otherwise, this sketch is as that in Fig. 19(b) for PP3

2.
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Figure 22: The bifurcation loci and subregions from Figs. 11 and 18 shown over a larger range of

the (J, s)-plane with the loci PP3
1 (black), PP3

2 (orange) and PP
3
2 (black). The inset in panel (a)

enlarges the black frame, and panel (b) is a topological sketch of panel (a).

4.5 Loci of heterodimensional cycles involving Γ3

The loci of the heterodimensional cycles PP3
1,PP3

2 and PP
3
2 can be found as curves in the (J, s)-

plane by continuation of their respective codimension-one connections, starting from the parameter

points used for PP3
1 in Fig. 17, PP3

2 in Fig. 16, and PP
3
2 in Fig. 21, respectively. Figure 22 shows

the resulting curves together with the bifurcation loci and Floquet regions from Figs. 11 and 18.
Here, panel (a) of Fig. 22 presents the computed curves in a larger region of the (J, s)-plane, and
panel (b) is a topological sketch that clarifies their relative positions.

As we already mentioned, the curve PP3
1 is tangent to the curve PD at the codimension-two

point PDP, at which the curve PtoP joins the curve PtoPss. When this codimension-two point
is approached along PP3

1, the codimension-one connection C from Fig. 16 becomes, precisely at
PDP, the codimension-one connection A of PtoP and PtoPss from Figs. 8 and 12, respectively.
When continued from PDP in the direction of increasing s, the curve PP3

1 closely follows PD and
leaves the shown part of the (J, s)-plane in Fig. 22. When continued from PDP in the opposite
direction, the curve PP3

1 initially again closely follows PD, but then turns around, crosses the
curve PtoPss and finally, follows the other branch of PP3

1, as it leaves the shown (J, s)-region; see
also the inset in Fig. 22(a).

Similarly, the curve PP3
2 is tangent to PD at the codimension-two point PDHC, at which

the curve SHC meets PD. When this codimension-two point is approached along PP3
2, the

codimension-one connection E from Fig. 19 becomes the strong homoclinic orbit SHC from Fig. 10
precisely at PDHC. When continued from PDHC in either direction, the curve PP3

2 also leaves
the shown region of the (J, s)-plane in Fig. 22 in the direction of increasing s. Similar to the
curve PP3

1, the curve PP3
2 sharply turns around in the region enlarged in the inset and subse-

quently crosses the curve PtoPss. The curve PP
3
2, on the other hand, does not bifurcate from a

locus of strong homoclinic orbits. Instead, it enters the shown (J, s)-region from the top in the
direction of decreasing s, crosses the curve PtoPss, turns around, crosses PtoPss again, and then
leaves the shown region of the (J, s)-plane in the direction of increasing s.

Further support for the sketch in Fig. 22(b) is provided in Fig. 23, where we show the computed
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Figure 23: Bifurcation loci from Fig. 22, shown near PDP and PDHC in terms of the rescaled
coordinate ∆J , which measures the difference in the J-coordinate from the curve PD. Panels (b1)
and (b2) are extreme enlargements of panel (a) near the codimension-two bifurcation points PDP
and PDHC, respectively.

loci relative to the curve PD. More specifically, for any given parameter point (J, s), we define

∆J = β(J − JPD(s)),

where JPD(s) is the rightmost point on PD (which exists for s above the s-minimum of PD);
hence, the vertical line at ∆J = 0 in Fig. 23 corresponds to PD. In panel (a), the scaling factor β
is set to 2.797×106; even for this considerable enlargement, the curves PP3

1 and PP3
2 are still very

close to PD for s ∈ [8.37, 8.5]. However, further enlargements in Fig. 23(b1) and (b2), respectively,
demonstrate that PP3

1 has a quadratic tangency with PD at PDP, and that PP3
2 has a quadratic

tangency with PD at PDHC. In Fig. 22(b), notice that the curves PP3
1 and PP3

2 cross each other

a number of times, while the curve PP
3
2 neither intersects PP3

1 nor PP3
2.

5 Cascading heterodimensional cycles

The three curves PP3
1, PP3

2 and PP
3
2 shown in Figs. 22(a) and 23(a) all remain inside region V of

the shown (J, s)-region. In fact, PP3
1 and PP3

2 stay close to the curve PD for even greater values of

s. However, the curve PP
3
2 moves from region V through region VI to region VII and ends at two

different points on the curve PD shown in Fig. 22. Recall that the two positive unstable Floquet
multipliers of Γ3 in region V become a complex-conjugate pair in region VI, and then real but
negative in region VII. Since this transition only affects the structurally stable surface F , shown

in panels (a1) and (a2) of Fig. 21, the curve PP
3
2 can end on the period-doubling locus PD of Γ3.

We found that, near PD, the heterodimensional cycle PP
3
2 undergoes the same transition

discussed in Sec. 3 for the primary heterodimensional cycle PtoP. This is illustrated in Fig. 24.

Panel (a1) is an overall view of the (J, s)-region [2.91, 3.1] × [8.3, 9.5] showing the curve PP
3
2 in

relation to the relevant bifurcation curves from Figs. 2 and 22. The two endpoints of PP
3
2 on PD

are inside the frame, which is enlarged in Fig. 24(a2). As is the case for the curve PtoP of primary
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Figure 24: Bifurcation diagram in the (J, s)-plane of system (1) with the bifurcation curves from

Fig. 2 with PD, P̂D (magenta), PP
3
2 (black, and grey when a strong heteroclinic cycle past PD)

and PP4
2 (cyan). Panel (a1) shows a large (J, s)-region, and panel (a2) enlarges the black frame.

Panel (b) shows the region between PD and P̂D in terms of the rescaled parameter ∆J where

PD lies at ∆J = 1 and P̂D at ∆J = 0 (not shown); the black star at (J, s) ≈ (2.929, 9.3) is the
parameter point of Fig. 25.

heteroclinic cycles, the curve PP
3
2 can be continued past PD as a strong heteroclinic cycle between

Γ2 and Γ3 along the two gray segments (not labelled). More specifically, the codimension-one

connection E of PP
3
2 persists as the codimension-one strong connection W u(Γ2) ∩W ss(Γ3).

5.1 The heterodimensional cycle PP4
2

Figure 24(a2) also shows the locus PP
4
2 of the primary heterodimensional cycle between Γ2 and the

periodic orbit Γ4 that emanates from PD. The curve PP4
2 meets PD in a tangent fashion at both

of the codimension-two points on PP3
2. Moreover, PP4

2 ends on the period-doubling locus P̂D
of Γ4, beyond which it can also be continued as a strong heteroclinic cycle between Γ2 and Γ4.

Figure 24(b) shows the region to the left of PD near the two crossing points of PP
3
2. Here, we

plot PP4
2 in terms of its relative J-distance ∆J from PD and P̂D, which is scaled so that these
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Figure 25: The heterodimensional cycle PP4
2 of system (1) at (J, s) ≈ (2.929, 9.3). It consists of the

codimension-one connection G = W u(Γ2)∩W s(Γ4) (blue) and the structurally stable return surface
H = W u(Γ4) ∩W s(Γ2) (not shown) in panels (a1) and (a2), which correspond to the connecting
orbit (gk)k∈Z and the curve Ĥ in the sketch near γ4 = (γ14 , γ

2
4 , γ

3
4 , γ

4
4) (purple dots) in panel (b).

Compare with Fig. 21.

two curves are at ∆J = 1 and ∆J = 0, respectively. The shown segment of PP4
2 was continued

from the lower crossing point in the direction of decreasing s. It starts tangentially to PD, makes a
single loop that is also tangent to PD at the upper crossing point, leaves the shown (∆J, s)-region

in the direction of decreasing J , and finally ends on P̂D; see also panel (a2). We remark that the

curves PD, PD and P̂D are part of a period-doubling cascade. Hence, Fig. 24 suggests that there
could exist an associated cascade of heterodimensional cycles involving PP3

2, PP4
2 and so on.

Figure 25 shows the heterodimensional cycle PP4
2 at the point (J, s) ≈ (2.929, 9.3), which is

indicated by the black star in Fig. 24(b); the Floquet multipliers of Γ2 and Γ4 at this parameter
point are given in Table 4. The two projections in panels (a1) and (a2) show the codimension-one
connection G, which is the quasi-transverse intersection of the two-dimensional manifolds W u(Γ2)
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Γ2 Γ4

stable :

{
λss
2 ≈ 3.401 × 10−1

λs
2 ≈ −6.899 × 10−1

unstable : λu
2 ≈ −4.367 × 103

unstable :

{
λu
4 ≈ 2.482 × 100

λuu
4 ≈ 1.672 × 1013

stable : λs
4 ≈ 2.110 × 10−2

Table 4: Floquet multipliers of Γ2 and Γ4 at parameter point (J, s) ≈ (2.929, 9.3) of Fig. 25 on the
curve PP4

2.

and W s(Γ4). Notably, G becomes the codimension-one connection E from Fig. 21 when a crossing

point of PP
3
2 and PD is approached along PP4

2; note that both G and E have a single global
excursion that does not come close to Γ1.

The structurally stable return surface H = W u(Γ4) ∩W s(Γ2) is a narrow Möbius strip that
accumulates on the single codimension-zero connection W u(Γ3) ∩W s(Γ2). This particular surface
is not shown in panels (a1) and (a2) of Fig. 25, but its counterpart Ĥ at the level of a diffeo-
morphism is included in the sketch in panel (b) that shows a neighbourhood of the period-four
orbit γ4 = (γ14 , γ

2
4 , γ

3
4 , γ

4
4) representing Γ4. The outer curve Î is the transverse intersection of the

two-dimensional manifolds W u(γ4) and W s(γ1); note that the overall global picture including γ1

is still as shown in Fig. 21(b). As PP4
2 approaches one of the crossing points of PP

3
2 with the

curve PD, the intersection curves Ĥ and Î converge to the curves F̂ = W u(γ3) ∩ W s(γ2) and
D̂ = W u(γ3) ∩W s(γ1), respectively; see Fig. 21(b). Also shown in Fig. 25(b) is the codimension-
one connecting orbit (gk)k∈Z corresponding to G, which similarly converges to the connecting orbit
(ēk) from γ2 to γ3; see again Fig. 21(b).

5.2 Accumulation of the heterodimensional cycle PP4
2 onto Γe

The heterodimensional cycle PP4
2 can also be continued in the direction of increasing s from the

lower crossing point of PP
3
2 in Fig. 24(b). The resulting curve PP4

2 is shown in Fig. 26(a), and it
has many more loops that each have an additional tangency point with PD; moreover, this new
segment of PP4

2 appears to accumulate on other curves, and we now explain why.
Figure 26(b1) shows the scaled ct-time trace of a computed orbit segment of G from Fig. 25 at

the parameter point (∆J, s) ≈ (0.674, 9.3) on the first loop of the curve PP4
2. It features a single

large ‘peak’ throughout its excursion away from a neighbourhood of Γ2 and Γ4. Figure 26(b2)
shows the ct-time trace of G at the point (∆J, s) ≈ (0.702, 9.3), which lies on the second loop
of PP4

2; it features two large peaks. The ct-time trace of G in panel (b3) has six large peaks, and it
is for G at the point (∆J, s) ≈ (0.926, 9.3) on the sixth loop of PP4

2. The large peaks are, in fact,
excursions to an additional periodic orbit, which we denote Γe, because it is ‘external’ in the sense
that it is not associated with bifurcations of any periodic orbit we considered so far. Figure 26(c)
shows Γe together with the connection G from Γ2 to Γ4 that corresponds to the ct time trace shown
in panel (b3).

The external periodic orbit Γe was found from the data of G by imposing periodic boundary
conditions on a segment of approximately one period; it has index one at (J, s) ≈ (2.926, 9.35) with
Floquet multipliers

λsse ≈ −5.955× 10−3, λse ≈ 5.525× 10−1, λue ≈ −1.499× 108.

Hence, the connection G approaches Γe near its three-dimensional stable manifold W s(Γe), makes
a number of loops around it, and then leaves along the two-dimensional unstable manifold W u(Γe).
Completing a loop of the curve PP4

2 in Fig. 26(a) corresponds to G making another loop near
Γe. In other words, G winds more and more around Γe along PP4

2. In the limit of infinitely
many windings around Γe, the connection G becomes two separate connections: the codimension-
one connection Ge from Γe to Γ4 in the quasi-transverse intersection W u(Γe) ∩W s(Γ4), and the
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Figure 26: Accumulation of the curve PP4
2 and the corresponding heterodimensional cycle.

Panel (a) shows the rescaled bifurcation diagram from Fig. 24(b) with many more loops of PP4
2

(cyan), and additionally: the curve SLe (green) of saddle-node bifurcations of Γe; the locus Tan
(orange), along which He is a codimension-one tangential connection; and the locus ExPP (brown

curve) of the extended PtoP cycle involving Γe; and the locus P̂P
3

2 of a further heterodimen-
sional cycle between Γ2 and Γ3. Panels (b1)–(b3) show the scaled ct-time traces of the computed
connecting orbit G, specifically, on the first loop of PP4

2 at (∆J, s) ≈ (0.674, 9.3) as in Fig. 25,
the second loop at (∆J, s) ≈ (0.702, 9.3), and the sixth loop at (∆J, s) ≈ (0.926, 9.3), respec-
tively; panel (c) shows the connecting orbit G on the sixth loop with Γe. Panel (d) shows the
codimension-one connection Ge = W u(Γe) ∩W s(Γ4) (blue) and the structurally stable connecting
orbit He = W u(Γ2)∩W s(Γe) (red) at (J, s) = (2.926, 9.35); with the surface H = W u(Γ4)∩W s(Γ2)
(not shown) they form the extended PtoP cycle ExPP between Γ2, Γ4 and Γe.

structurally stable connection He from Γ2 to Γe in the transverse intersection W u(Γ2) ∩W s(Γe).
These two new connections can be found with a suitable BVP setup initialised with the respective
computed segments of G; they are shown in Fig. 26(d) at (J, s) ≈ (2.926, 9.35). Together with the
surface H = W u(Γ4) ∩W s(Γ2) (not shown), they form a PtoP cycle from Γ2 to Γe to Γ4 and back
to Γ2, which is heterodimensional since Γ2 and Γe have index one and Γ4 has index two. We refer
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to this PtoP cycle as the ‘extended’ heterodimensional cycle ExPP, and it exists along the curve
segment shown in Fig. 26(a). More specifically, it is the part of the locus of the codimension-one
connection Ge that lies in the region where the structurally stable connecting orbit He also exists.
The latter disappears at a tangency between W u(Γ2) and W s(Γe); we computed this tangency and
continued its locus Tan, which is also shown in Fig. 26(a). The connection He does not exist in the
region above Tan since W u(Γ2) and W s(Γe) are disjoint there. However, the curve along which Ge
exists does extend above Tan, and it has an endpoint on the locus SLe at which Γe disappears in
a saddle-node bifurcation.

Observe in Fig. 26(a) that the curve PP4
2 accumulates on the curve segment ExPP, and this

accumulation is explained by the windings of G around the external periodic orbit Γe. This phe-
nomenon is akin to the windings of a homoclinic orbit to an equilibrium around an ‘external’
periodic orbit found and analysed in [21]: the limit of this process is an Equilibrium-to-Periodic
(EtoP) cycle, and the associated curve of homoclinic orbits was also found to accumulate on a
curve segment of such EtoP cycles, bounded by tangency loci of the structurally stable EtoP con-
nection. Here, we find a more complicated instance of the same general phenomenon: a connecting
orbit accumulating on an external saddle object and subsequently forming a complicated global
heteroclinic structure. In our case, a codimension-one PtoP connection accumulates on the sad-
dle periodic orbit Γe to form the extended PtoP cycle ExPP shown in Fig. 26(d). Notably, the
curve ExPP in Fig. 26(a) appears to be tangent to PD at the accumulation point of the tangency
points of PP4

2 with PD.
The tangency points of PP4

2 come in pairs that each correspond to a ‘full loop’ of PP4
2, and each

such pair is also a pair of crossing points of a unique locus of heterodimensional cycles between

Γ2 and Γ3. One such curve, labeled P̂P
3

2, is shown in panel (a); it is actually a single smooth
curve that ends on PD at two tangency points of PP4

2. It can be extended as a locus of strong
heteroclinic cycles to the left of PD. Therefore, we conclude that there exists an infinite sequence of
further curves of heterodimensional cycles between Γ2 and Γ3; each such curve has a codimension-
one connection with additional loops around Γe. In particular, note that the global excursion of

the heterodimensional cycle PP
3
2 from Fig. 21 should perhaps be identified as a first loop near Γe

rather than Γ1.

5.3 Overall picture of cascading heterodimensional cycles

Our results in the last section show that heterodimensional cycles involving periodic orbits arising
from successive period-doubling bifurcations may interact with an external periodic orbit to gen-
erate infinite families of additional and more complicated heterodimensional cycles. By way of a
summary, Fig. 27 provides a conceptual overall picture in the form of a sequence of directed graphs.
Each node is a periodic orbit of a specified index, and the directed edges represent connections from
one periodic orbit to another. We indicate the nature of the connections symbolically in the style
introduced in [17] to represent different types of EtoP or PtoP connections:

−→ represents a codimension-one connection;

−→ represents a single codimension-zero connection; and

=⇒ represents a structurally stable surface of codimension-zero connections.

This representation is similar in spirit to the graph presented in [3] to illustrate how EtoP and
PtoP connections in a four-dimensional Hamiltonian system can be combined to generate new and
more complicated homoclinic orbits. Heterodimensional cycles between two specific periodic orbits
are closed loops between two nodes of different indices; they are heterodimensional if the cycles
involve a codimension-one connection and a structurally stable return surface.

Figure 27(a) depicts the situation in between the period-doubling loci PD and PD with Γ2, Γ3

and an external periodic orbit Γe; note again that Γ2 and Γe have index one, while Γ3 has index
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Figure 27: Directed graphs that represent how heterodimensional cycles from Γ2 to periodic orbits
Γk arising from successive period-doublings interact with an external periodic orbit Γe. Each node
represents a periodic orbit, and the number is its index; blue edges represent quasi-transverse
connecting orbits, red edges structurally stable isolated connecting orbits, and red double edges
surfaces of structurally stable connecting orbits. Panels (a) and (b) illustrates heterodimensional
cycles before and after the period-doubling bifurcation PD of Γ3, respectively; and panel (c)
represents the situation after the kth period-doubling bifurcation in the cascade.

two. The outer closed path
Γ2 −→ Γe −→ Γ3 =⇒ Γ2

is the extended PtoP cycle. The inner closed path Γ2 −→Γ3=⇒ Γ2 is the basic heterodimensional

cycle between Γ2 and Γ3, which is PP
3
2 from Fig. 21. The lighter edges that bypass Γe represent

additional codimension-one connections that are part of heterodimensional cycles between Γ2 and
Γ3 with an increasing number of loops around Γe. These additional heterodimensional cycles

form the infinite sequence discussed in Sec. 5.2, and the heterodimensional cycle P̂P
4

2 is a specific
example.

The situation just after the period-doubling bifurcation PD, when the new period-doubled orbit
Γ4 exists, is represented by the graph in Fig. 27(b). Here, the outer closed path

Γ2 −→ Γe −→ Γ4 =⇒ Γ2

is the extended heterodimensional cycle ExPP from Fig. 26(d). More precisely, its connections
He and Ge are Γ2 −→ Γe and Γe −→ Γ4, respectively, and the surface H = W u(Γ4) ∩W s(Γ2) (not
shown) is Γ4 =⇒ Γ2. The closed path Γ2 −→Γ4=⇒ Γ2 is the basic heterodimensional cycle PP4

2
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between Γ2 and Γ4 from Fig. 25. The lighter edges bypassing Γe again represent the codimension-
one connections of additional heterodimensional cycles along the curve PP4

2, each of which lies on
a full loop of PP4

2 as illustrated in Fig. 26.
The graph in Fig. 27(b) also shows the closed path Γ3 −→ Γ4=⇒ Γ3, which represents a basic

heterodimensional cycle between Γ3 and Γ4. Our results from Sec. 4.4 for the heterodimensional
cycle PP3

2 suggest that this basic heterodimensional cycle arises from a strong homoclinic orbit to

Γ3 that exists near PP
3
2. Such a strong homoclinic orbit features a single global excursion near

Γe; however, the fact that there exist additional heterodimensional cycles such as P̂P
3

2 with more
loops around Γe strongly suggests the existence of corresponding strong homoclinic orbits. This
situation is further complicated by the fact that each such heterodimensional cycle gives rise to a
strong homoclinic orbit with an arbitrary number of loops around Γ2. In turn, these homoclinic
orbits winding around both Γ2 and Γe give rise to additional codimension-one connections from Γ3

to Γ4 that also wind around both Γ2 and Γe. Such codimension-one connections, represented by
the lighter edge bypassing Γ2 and Γe in Fig. 27(b), are part of the corresponding heterodimensional
cycles between Γ3 and Γ4. Their limit is the extended heterodimensional cycle represented by

Γ3 −→ Γ2 −→ Γe −→ Γ4=⇒ Γ3.

We expect that all of these additional (extended) heterodimensional cycles exist in the (J, s)-
plane of system (1). However, computing them and their loci is beyond the scope of this paper.
Instead, this is illustrated conceptually in Fig. 27(c) by the graph of connections after the k-th
period-doubling bifurcation. We believe that it captures the essence of a ‘cascade’ of heterodi-
mensional cycles due to period doubling. More specifically, our overall conjecture is that all the
connections and intermediate families of (extended) heterodimensional cycles exist for any k; in-
deed, this is supported by the extensive computations of the global objects already presented. Note
here that the ‘top’ periodic orbit Γk+2 is the only periodic orbit of index two in this period-doubling
tower; hence, it must be part of any possible heterodimensional cycle. We note also that the exter-
nal periodic orbit Γe is not necessarily unique, and interaction of a heterodimensional cycle with
other external periodic orbits leads to further accumulations of heterodimensional cycles. Previous
work in [32] showed that infinitely many periodic orbits exist near the primary heterodimensional
cycle PtoP that are each a candidate for the role of Γe. In turn, every additional heterodimensional
cycle is expected to generate infinitely many more nearby families of periodic orbits. Hence, we
conjecture that the ‘true picture’ of the complexity in phase space involves infinitely many exter-
nal periodic orbits; this overall structure can be imagined in a three-dimensional representation
as infinitely many copies of the directed graph from Fig. 27(c) surrounding the ‘spine’ formed by
the period-doubling orbits Γ2 to Γk+2. At the limit of the period-doubling cascade, one finds a
parameter region with extremely rich recurrent and nonhyperbolic dynamics. In particular, the
periodic orbit Γ2 is now part of a hyperbolic set that may well play the role of a blender.

6 Conclusions and outlook

We showed how the primary heterodimensional cycle of the Atri model (1) changes geometrically
along its locus PtoP in the (J, s)-plane, which ends on the curve PD of period-doubling bifur-
cation of one constituent periodic orbit. Past PD, the curve PtoP can be continued as a strong
heteroclinic cycle. From the endpoint of PtoP on PD also emerges a heterodimensional cycle
involving the period-two periodic orbit. Moreover, we showed that a crossing of PD by a locus of
strong homoclinic orbits is the starting point of a new curve of ‘period-doubled heterodimensional
cycles’, namely, those between the periodic orbit of the homoclinic orbit and its own period-doubled
counterpart. In fact, we found evidence of infinitely many families of such period-doubled heterodi-
mensional cycles. Their loci in the (J, s)-plane end at the next period-doubling curve of a whole
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cascade, and the process keeps repeating in this way. We represented the overall phenomenon of
cascading heterodimensional cycles by a sequence of directed graphs, which encodes how different
types of heterodimensional cycles arise due to repeated period doubling. This includes extended
heterodimensional cycles that connect more than two periodic orbits.

These results have been obtained by a careful investigation of system (1) performed with ad-
vanced numerical tools by first formulating desired heteroclinic connections as orbit segments sat-
isfying a suitably defined boundary value problem. This approach allowed us to compute a hetero-
clinic orbit as the intersection set of the relevant stable and unstable manifolds and also their loci
of existence by further continuation in two system parameters. In this way, we investigated how
heterodimensional cycles change geometrically and bifurcate to generate a menagerie of new global
structures. These include new types of heterodimensional cycles, which we illustrated in the phase
space of system (1), as well as at the level of a three-dimensional diffeomorphism with supporting
numerical evidence of the geometric properties of global manifolds in suitable Poincaré sections.

While our investigation concerned the specific example of the Atri model (1), the numerical ev-
idence we collected, in combination with arguments from the theory of dynamical systems, shows
that we are dealing with generic phenomena. Hence, our work constitutes a contribution to the
emerging bifurcation theory of heterodimensional cycles: the transitions and bifurcations we found
must be expected to occur in vector fields of dimension four and, hence, equivalently in diffeomor-
phisms of dimension three.

We propose the following directions for further research. Firstly, in ongoing work, we are
investigating other bifurcations of a heterodimensional cycle or a related global object in the Atri
model (1). For example, a locus of heterodimensional cycles can also end on a curve of saddle-node
bifurcations of a constituent periodic orbit. Moreover, initial investigations show that such saddle-
node curves may feature infinitely many branches, along which different pairs of periodic orbits are
created; these branches are separated by cusp bifurcations and accumulate in the (J, s)-plane in an
intriguing way. These results will be discussed in a forthcoming publication. Secondly, it will be
interesting to find heterodimensional cycles in other vector-field models and also in diffeomorphisms;
a number of candidate systems are presently under investigation. Finally, the bifurcation diagrams
we presented are a contribution to the emerging bifurcation theory of heterodimensional cycles. It
will be interesting to study the different bifurcations and new types of heterodimensional cycles we
found here from a theoretical perspective. The codimension-two bifurcations of a heterodimensional
cycle and of a strong homoclinic orbit at period doubling are specific examples. It will be a
considerable challenge to determine the respective unfoldings and prove their completeness.
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Appendix A. Finding connecting orbits numerically

We provide a brief and high-level overview of how connecting orbits between saddle periodic orbits
of a vector field can be found and continued numerically. First of all, standard continuation
packages, such as AUTO [13, 14], COCO [8, 9] and MatCont [10, 11], readily compute equilibria,
periodic orbits and their bifurcations, and continue them in the appropriate number of system
parameters. Hence, the periodic orbits involved in the connection of interest are taken as known;
more specifically, they are given as solutions of a boundary value problem (BVP) with periodic
boundary conditions.
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Lin’s method Relevant parts of stable and unstable manifolds, as well as connecting orbits of
different kinds, can also be formulated and then found numerically as solutions of suitably defined
BVPs; this general approach has been shown to be efficient and reliable and is well established by
now [15, 22]. A particularly useful numerical tool for finding connecting orbits is Lin’s method [21,
32]: in the present context, two orbit segments, one on an unstable manifold and the other on a
stable manifold, are required to end in a user-specified section, where they define the so-called Lin
gap. Closing the Lin gap by an appropriate continuation run then gives the desired connecting orbit.
In practice, we require the respective opposite endpoints to lie close to the corresponding periodic
orbits on a stable or unstable Floquet vector; this requirement is known as projection boundary
conditions [4]. Lin’s method was introduced and implemented in [21] as a reliable numerical method
for finding connecting orbits involving periodic orbits; different Equilibrium-to-Periodic (EtoP)
connections and a structually stable PtoP connection were computed as examples, but no example
of a Periodic-to-Periodic (PtoP) connection of codimension one was known at the time. The first
such example was found and computed with Lin’s method in the four-dimensional Atri model (1)
in [32]. The precise formulation of the overall multi-segment BVP for the two periodic orbits, their
stable and unstable Floquet bundles, and the orbit segments required for Lin’s method can be found
in [32]; see also [21] for a detailed and general explanation of Lin’s method. Once a connecting
orbit of interest has been found in this way, the two orbit segments can be continued together in
system parameters while keeping the Lin gap closed; alternatively, they can be concatenated to
form a single orbit segment that represents the connecting orbit as a solution of a simplified BVP
with the same projection boundary conditions.

We use the methodology from [32] to implement and solve the appropriate BVPs within the
package AUTO [13, 14] by making use of its collocation-based BVP solver and pseudo-arclength
continuation. The examples of the primary heterodimensional cycle in regions I–IV, the associated
curve PtoP, as well as the strong heteroclinic cycle along the curve PtoPss were computed in
this way. More specifically, Lin’s method is implemented separately to find the codimension-one
connection and the connecting orbits forming the structurally stable return surface.

Finding additional global objects Connecting orbits can be continued in system parameters
as a means to detect new types of global objects. We used this strategy in a number of ways.
Firstly, we perturbed away from the codimension-one strong heteroclinic cycle PtoPss in region V
to obtain a structurally stable heteroclinic cycle between Γ1 and Γ2. When continued in a single
system parameter, the relevant connection appears to accumulate on the period-doubled periodic
orbit Γ3. This observation indicates that, at some limiting parameter value, the same connection
becomes a codimension-one connection involving Γ3, which inspired our method to compute the
heterodimensional cycle PP3

1 between Γ1 and Γ3 shown in Sec. 4.3. We first redefined the BVP
for the primary heterodimensional cycle in region IV in terms of double the period of Γ2. Since
this period-doubled version of Γ2 is identical to Γ3 at the period-doubling bifurcation PD, the
aforementioned observation infers that a new family of heterodimensional cycles between Γ1 and
Γ3 ‘branches off’ from the curve PtoP at its codimension-two endpoint PDP on the curve PD.
Specifically, one continues the codimension-one connection A from Γ1 to Γ2 as a solution of this
‘period-doubled BVP’ in the system parameters J and s towards PD; the software AUTO detects
a branching point of this continuation at PDP, and we then use the branch-switching functionality
of AUTO to switch to the curve PP3

1 and compute its associated period-doubled cycle. Similarly,
we found the extended heterodimensional cycle ExPP in Sec. 5.2 by continuing the codimension-
one connection G; more specifically, the new periodic orbit Γe was first found by using a suitable
segment of G as the initial data. Subsequently, the trajectory data of G was separated into two
segments to find the two new connections to and from Γe. Another example is the continuation of
the structurally stable connecting orbit He; it disappears at a codimension-one tangency between
W u(Γ2) and W s(Γe), yielding the corresponding curve Tan in Sec. 5.2.
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Computed orbit segments representing a given PtoP cycle can also be used to find nearby struc-
turally stable global objects, in particular, homoclinic orbits to one of the two constituent periodic
orbits. These can then be continued in a single system parameter until a global codimension-one
bifurcation is detected; specifically, we found the strong homoclinic orbit SHC in Sec. 3.2 in this
way. The reverse is also possible: the data of a homoclinic orbit that comes close to another sad-
dle periodic orbit can be separated into two segments, which are then used as initial guesses for
individual BVP formulations to find the corresponding new global connections.

Local intersection sets of global objects To support the sketches at the level of a diffeomor-
phism, we compute relevant intersection sets with local three-dimensional Poincaré sections. Each
such section is ‘pinned’ at a selected point γ of a periodic orbit Γ and defined as being normal
to the adjoint vector (left eigenvector) associated with the trivial Floquet multiplier µ = 1. This
choice is very convenient because it ensures that the section is spanned by the stable and unsta-
ble (generalised) Floquet vectors at γ. The local intersection sets of connecting orbits are then
computed by detecting when points of the respective (family of) orbit segments lie in the chosen
section. For codimension-one connections, local segments of the relevant one-dimensional invariant
manifolds can be computed by requiring one endpoint to remain in the section; we refer to [19] for
more details.
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