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Abstract

Wild chaos is a new type of chaotic dynamics that can arise in a continuous-time dynamical system
of dimension at least four. We are interested in the possible bifurcations or sequence of bifurcations that
generate this type of chaos in dynamical systems. We focus our investigation on a planar noninvertible map
that has been introduced by Bamón, Kiwi and Rivera-Letelier to prove the existence of wild chaos in a five-
dimensional Lorenz-like system. The map opens up the origin (the critical point) to a disk and wraps the
plane twice around it; points inside the disk have no preimage. The bounding critical circle and its images,
together with the critical point and its preimages form the so-called critical set. This set interacts with the
stable and unstable sets of a saddle fixed point. Advanced numerical techniques enable us to study how
the stable and unstable sets change as a parameter is varied along a path towards the wild chaotic regime.
We find four types of bifurcations: The stable and unstable sets interact with each other in homoclinic
tangencies (which also occur in invertible maps) and they interact with the critical set in three types of
bifurcations specific to noninvertible maps, which cause changes (such as self-intersections) of the topology
of these global invariant sets. Overall, a consistent sequence of all four types of bifurcations emerges, which
we present as a first attempt towards explaining the geometric nature of wild chaos. Using two-parameter
bifurcation diagrams we show that essentially the same sequences of bifurcations occur along different paths
towards the wild chaotic regime, which we utilize to obtain an indication of the size of the parameter region
where wild chaos exists.

1 Introduction

Vector fields and diffeomorphisms with chaotic attractors arise in numerous fields of applications, including
neuroscience [20], chemical reactions [21] and laser systems [39]. One of the first and best known examples of
a chaotic three-dimensional vector field is the Lorenz system [38]. It was introduced in 1963 by meteorologist
Edward Lorenz as a simplified model of convection dynamics in the earth’s atmosphere. At the classical
parameter values, its chaotic attractor – the Lorenz attractor – has the shape of the wings of a butterfly. The
dynamics on this attractor has been studied in great detail; see, for example, [2, 3, 27, 53, 54]. More recently,
the focus has shifted to what this means for the global behavior on the entire phase space [16, 17].

The approach taken for studying the Lorenz system at the classical parameter values is of a geometric
nature. We discuss it briefly, because a similar approach is used to derive a map that exhibits so-called wild
chaos. The Lorenz system has three equilibria: the origin, which is a saddle, and two secondary equilibria, which
are saddle-foci. The origin and its one-dimensional unstable manifold are part of the Lorenz attractor. The
two-dimensional stable manifold of the origin is not part of the attractor but fills the phase space densely. This
manifold organizes the sensitivity to initial conditions that characterizes the chaotic dynamics in the Lorenz
system. In 1979, Guckenheimer and Williams introduced the concept of the geometric Lorenz attractor as a
geometric model of the Lorenz attractor [27]. It is formulated in an abstract way such that it displays all
the features of the Lorenz attractor that were known at the time. The dynamics on the geometric Lorenz
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attractor can be reduced to a one-dimensional noninvertible map – the Lorenz map – as follows. Consider a
two-dimensional Poincaré section through the two secondary equilibria and perpendicular to the z-axis. The
Poincaré return map is defined as a two-dimensional local diffeomorphism on the open subset of this section on
which the flow points in the direction of negative z. One can identify a strong stable foliation on the Poincaré
section (i.e. an invariant foliation that is uniformly contracted by the Poincaré return map). The quotient
map, defined on the quotient space of the Poincaré section induced by this foliation, is the one-dimensional
noninvertible Lorenz map. Note that the intersection curves of the two-dimensional stable manifold of the
origin and the Poincaré section are dense in the leaves of the strong stable foliation. They consist of points that
eventually do not come back to the Poincaré section under the flow of the system. One of these leaves consists
of points that do not return to the Poincaré section at all. Therefore, the two-dimensional Poincaré map is
not defined on this leaf and the one-dimensional Lorenz map has a corresponding point of discontinuity, called
the critical point. This point represents the boundary of the domain of the Lorenz map and splits the domain
into a left and a right subdomain, which correspond to orbits following the left or the right wing of the Lorenz
attractor, respectively. By construction, interactions with the critical point in the one-dimensional Lorenz map
correspond to interactions with the stable manifold of the origin and, therefore, to homoclinic or heteroclinic
bifurcations in the three-dimensional Lorenz system.

In 1999, Tucker proved that the Lorenz system satisfies the conditions of the geometric Lorenz attractor
and, therefore, is chaotic [54]. Already in 1976, Henón constructed a chaotic planar diffeomorphism as a
phenomenological model of the two-dimensional Poincaré return map of the Lorenz system, which is now
referred to as the Henón map [29]. The Lorenz system and the Henón map are the classical examples for the
type of chaos that arises in three-dimensional vector fields and two-dimensional diffeomorphisms, respectively;
see, for example, the textbooks [26] and [49]. This type of chaos is characterized by homoclinic tangencies at
certain parameter values between the stable and unstable manifolds of saddle fixed points of the Poincaré return
map of the Lorenz system or the Henón map, respectively. These tangencies are well known to generate nearby
homoclinic tangencies and homoclinic tangles, which are transverse intersections of the stable and unstable
manifolds and associated with horseshoes and chaotic attractors [52]. The Lorenz attractor is a robust singular
attractor, which means that this attractor contains an equilibrium as well as regular orbits of the vector field
and every sufficiently C1-close vector field has such an attractor nearby. In [43] it was proven that every robust
singular attractor of a three-dimensional vector field is a geometric Lorenz attractor. Hence, the geometric
Lorenz attractor is a typical kind of chaos that can appear in three-dimensional vector fields.

In applications, one generally expects more than three variables to play a role and, therefore, higher-
dimensional vector fields or diffeomorphisms arise. In higher-dimensional dynamical systems, one can encounter
chaotic behavior created by the same mechanisms as in the Lorenz system and the Henón map, but possibly also
more complicated types of chaos. Therefore, a natural question to ask is whether one can find robust singular
attractors with richer dynamical behavior in higher-dimensional vector fields.

In this paper, we study a robust singular attractor of an n-dimensional vector field, with n ≥ 5, that
was constructed by Bamón, Kiwi and Rivera-Letelier in [9]. This attractor is called Lorenz-like, because it
is a “geometric Lorenz-attractor” in higher dimensions. Analogous to the construction by Guckenheimer and
Williams discussed above, the authors of [9] reduce the n-dimensional vector field to the dynamics of an (n−1)-
dimensional invertible Poincaré return map to a suitable section. This section has an (n−3)-dimensional strong
stable foliation and the resulting quotient map is a two-dimensional noninvertible map. This map has a critical
point that corresponds to the stable manifold of an equilibrium of the vector field, in a similar fashion as the
critical point of the Lorenz map corresponds to the stable manifold of the origin in the Lorenz system. As
a consequence, interactions with the critical point of the two-dimensional map correspond to homoclinic or
heteroclinic bifurcations in the n-dimensional vector field. We discuss the Lorenz-like construction of the vector
field, the reduction to the two-dimensional map and the correspondences between bifurcations of the map and
the vector field in more detail in section 6.

Even though the construction of this attractor in at least five dimensions is similar to the construction of the
geometric Lorenz attractor in three dimensions, it exhibits a much more complicated type of chaotic dynamics,
called wild chaos. In order to discuss what this means, let us first introduce some notation. From now on, we
will confine ourselves to the case of diffeomorphisms, because, in general, vector fields can be reduced (locally)
to diffeomorphisms by means of Poincaré return maps and, conversely, any diffeomorphism can be suspended



Stefanie Hittmeyer, Bernd Krauskopf, Hinke M. Osinga 3

as the time-1 map of a vector field.
A hyperbolic set of a diffeomorphism is a set that admits a continuous decomposition of its tangent bun-

dle under the diffeomorphism into stable and unstable subspaces and, thereby, admits stable and unstable
manifolds. The simplest examples of hyperbolic sets are saddle fixed points and saddle periodic points. A
homoclinic tangency of a hyperbolic set is a nontransversal intersection of the stable and unstable manifolds
of this hyperbolic set. A nonwandering point is a point such that each of its neighborhoods contains a point
that comes back to this neighborhood after a finite number of iterations of the diffeomorphism. Examples are
fixed points, periodic points, homoclinic points and limit points. A diffeomorphism is uniformly hyperbolic if
the set of nonwandering points is hyperbolic and the set of periodic points is dense in it. The occurrence of
a homoclinic tangency implies that a diffeomorphism is not uniformly hyperbolic or simply nonhyperbolic: A
point of homoclinic tangency is nonwandering, but at this point the tangent bundle of the set of nonwandering
points cannot be decomposed into stable and unstable subspaces.

The theory of uniformly hyperbolic diffeomorphisms [31, 50, 51] and the theory of nonhyperbolic diffeomor-
phisms on the boundary of uniform hyperbolicity [13, 45] are well developed. We are interested in the question
whether nonhyperbolic diffeomorphisms can also appear in a robust fashion far away from uniformly hyperbolic
ones. A diffeomorphism is robust nonhyperbolic if it has a C1-neighborhood of nonhyperbolic diffeomorphisms.
One way to study robust nonhyperbolicity is to look for robust homoclinic tangencies. A homoclinic tangency
is Cr-robust for some r ≥ 1, if the diffeomorphism has a Cr-neighborhood consisting of diffeomorphisms with
homoclinic tangencies. For r = 1 we simply speak of a robust homoclinic tangency. A hyperbolic set is called
wild if it has robust homoclinic tangencies [47], and we refer to the existence of a wild hyperbolic set as wild
chaos.

In the space of two-dimensional diffeomorphism, each diffeomorphism with a homoclinic tangency is accu-
mulated by infinitely many diffeomorphisms with nearby homoclinic tangencies. Therefore, the set of diffeomor-
phisms with homoclinic tangencies is a union of Cantor sets. In [46], Newhouse constructed the first example
of C2-robust homoclinic tangencies in two-dimensional diffeomorphisms, but these are not C1-robust [55]. In
fact, in [44] it is argued that (C1-)robust homoclinic tangencies and, therefore, wild chaos can only exist in
diffeomorphisms of dimension at least three.

Another way to show robust nonhyperbolicity of a diffeomorphism is via the concept of heterodimensional
cycles [12]. A heterodimensional cycle is a cycle that is formed by the intersections of the stable and unstable
manifolds of two hyperbolic sets with different unstable dimensions; this phenomenon is also known as a hete-
roclinic cycle with unstable dimension variability [33]. The easiest example is a cycle that connects two saddle
points with unstable dimensions one and two in a three-dimensional diffeomorphism; see the example studied
in [5]. Reference [56] gives the first known example of a four-dimensional vector field model (of intracellular
calcium dynamics) that admits a heterodimensional cycle. The authors also provide a numerical method of how
to find heterodimensional cycles between two saddle periodic orbits in four-dimensional vector fields and how
to continue them in system parameters. By definition, heterodimensional cycles can only exist in diffeomor-
phisms of dimension at least three, so again, it appears that robust nonhyperbolicity is a higher-dimensional
phenomenon.

Many aspects of robust nonhyperbolic systems are still unknown. For example, one expects robust homoclinic
tangencies to play a role in the generation of heterodimensional cycles, but the nature of their interrelation
is unknown [11]. One of the difficulties is that, thus far, there are not many concrete examples. A three-
dimensional diffeomorphism with wild chaos is constructed in [6, 7]; see also [23, 24] for a three-dimensional
Henón-like diffeomorphism with a wild hyperbolic set contained in a Lorenz-like attractor.

Although two-dimensional diffeomorphisms are free of robust nonhyperbolicity, two-dimensional noninvert-
ible maps can be robustly nonhyperbolic. For noninvertible maps, uniform hyperbolicity, (robust) homoclinic
tangencies and heterodimensional cycles can be defined in the same way as for diffeomorphisms with the dif-
ference that their stable and unstable sets, in general, are not immersed manifolds. An example of a two-
dimensional noninvertible map with unstable dimension variability is studied in [33]. In this paper, we study a
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different example, namely, the two-dimensional noninvertible map

f : C\{0} → C

z 7→ (1− λ+ λ|z|a)
(

z

|z|

)2

+ c,
(1)

with c ∈ C and a, λ ∈ R. This map was constructed in [9] as the reduction of a Lorenz-like attractor in an
n-dimensional vector field for n ≥ 5. For λ, a ∈ (0, 1) sufficiently close to 1 and c = 1, the authors of [9]
showed that this map exhibits wild chaos. The regime of existence constructed in the proof is a very small
neighborhood of the point (a, λ) = (1, 1) for fixed c = 1, but the wild chaos is expected to extend to a larger
parameter regime. In order to understand the dynamics inside this regime and estimate its size, we study the
transition from uniform hyperbolicity to wild chaos in map (1). In particular, we start far away from the point
(a, λ, c) = (1, 1, 0) and vary the parameters towards (1, 1, 0). On the way, we encounter bifurcations between
the stable and unstable sets with the critical set.

Map (1) has two symmetries: It is symmetric under rotation by π for all c ∈ C (i.e., f(z) = f(−z) for all
z ∈ C\{0}) and symmetric under complex conjugation for all c ∈ R (i.e., f(z) = f(z) for all z ∈ C\{0}). Its
domain is C\{0} and we call the set

J0 := {0}
the critical point of the map. The map (1) acts on the punctured complex plane by opening up J0 to a circle
of radius 1− λ, wrapping the plane twice around it and translating it by c. In particular, the plane is mapped
outside the disk D1−λ(c) in a 2-to-1 fashion, where Dr(z) denotes the closed disk with radius r > 0 centered at
z ∈ C. The boundary of the range of the map (1) is given by the circle

J1 := ∂D1−λ(c),

which we call the critical circle. It builds the boundary between areas with different numbers of preimages:
points inside J1 have no preimage, points outside J1 have two preimages. The two branches of inverses of the
map (1) are symmetric under rotation by π and can be computed explicitly.

As in the Lorenz map, the critical point J0 of the map (1) corresponds to the last intersection of the stable
manifold of an equilibrium of the vector field with the Poincaré section before it does not return under the
flow. Analogously, the critical circle J1 corresponds to the last intersection of the unstable manifold of this
equilibrium with the Poincaré section before it does not return under the backward flow.

The backward iterates of J0 and the forward iterates of J1 correspond to all intersections of these stable and
unstable manifolds with the Poincaré section and they play a special role in the organization of the dynamics
of (1) on the punctured complex plane. The preimages J−k := f−k(J0), k ≥ 0, of J0 under the two inverses of
the map consist of up to 2k isolated points and we will refer to their union as the backward critical set

J− :=
∪
k≥0

J−k. (2)

The images Jk := fk−1(J1), k ≥ 1, of J1 are topological circles and we will refer to them as the circles in the
forward critical set

J + :=
∪
k≥1

Jk. (3)

We will also simply refer to the union of the forward and backward critical sets as the critical set J := J +∪J−.
In the parameter regime we consider, the map (1) has three fixed points denoted p, q+ and q−. The point p

is a saddle and the points q± are sinks in the upper and lower half plane, respectively. The points q± become
sources in Neimarck-Sacker bifurcations when the parameters are moved towards the chaotic regime. If c is real,
the map is symmetric under complex conjugation, p lies on the positive real axis and q± are complex conjugates.

In addition to the critical set and the fixed points, the overall dynamics of the map (1) is organized by the
stable and unstable sets of p: For a given neighborhood V of p, the local stable manifold W s

loc(p) is defined as

W s
loc(p) := {z ∈ C : fk(z) ∈ V for all k ≥ 0}.
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The local stable manifold is tangent to the stable eigenspace at p. The stable set W s(p) is defined as all
preimages of the local stable manifold W s

loc(p) [49]; i.e.,

W s(p) :=
∪
k≥0

f−k(W s
loc(p)). (4)

In the study of diffeomorphisms, the stable set W s(p) is an immersed manifold. However, the noninvertible
map (1) has multiple preimages and the stable set W s(p) consists of infinitely many branches; therefore, it is
not an immersed manifold [42]. The infinitely many branches of W s(p) have the points in the backward critical
set J− as branch points. In fact, the intersection of W s(p) and J− is empty, but the closure of the stable set is

W s(p) = W s(p) ∪ J +.

Similarly, for a given neighborhood V of p, the local unstable manifold Wu
loc(p) is defined as the local stable

set with respect to the local inverse f−1
loc of f that satisfies f−1

loc (p) = p. In other words,

Wu
loc(p) := {z ∈ C : (f−1

loc )
k(z) ∈ V for all k ≥ 0},

and it is tangent to the unstable eigenspace at p. The unstable set Wu(p) is defined as all images of the local
unstable set Wu

loc(p) [49]; i.e.,

Wu(p) :=
∪
k≥0

fk(Wu
loc(p)). (5)

For a diffeomorphism, the set Wu(p) is an immersed manifold, but for a noninvertible map, the images of
Wu

loc(p) form a single continuous curve that may have self-intersections. Due to the rotational symmetry of
map (1), Wu(p) intersects itself at a point f(z), with z ∈ C∗, if the two preimages z and −z are both contained
in Wu(p).

In this paper, we consider the two-dimensional noninvertible map (1) and study the bifurcations of the
forward critical, backward critical, stable and unstable sets that are involved in the transition between the
nonchaotic parameter regime and the regime of existence of the wild Lorenz-like attractor. These bifurcations
are:

1. the homoclinic tangency, where the stable set W s(p) and the unstable set Wu(p) become tangent; see
section 3.1;

2. the forward critical tangency, where the stable set W s(p) becomes tangent to the circles in the forward
critical set J +; see section 3.2;

3. the backward critical tangency, where a sequence of points in the backward critical set J− lies on the
unstable set Wu(p); see section 4.1;

4. the forward-backward critical tangency, where a sequence of points in the backward critical set J− lies on
the circles in the forward critical set J +; see section 4.2.

Homoclinic tangencies are bifurcations that are also encountered in diffeomorphisms, but the other three bi-
furcations are new and specific to this type of noninvertible map. Note that the two sides of the unstable set
Wu(p) can become tangent in an unstable tangency ; see section 3.1. Unlike the other four bifurcations, the
unstable tangency only occurs due to the projection from the four-dimensional Poincaré return map to the
two-dimensional map (1) and does not correspond to a bifurcation in the underlying vector field. Thus, it does
not contribute to the generation of wild chaos. However, the first unstable tangency is used in [9] to define a
region bounded by segments of the unstable set.

Our results indicate that these five types of tangency bifurcations appear consecutively in infinite sequences
that accumulate on each other: As we move the parameters towards the wild chaotic regime, we first encounter
a homoclinic tangency. This homoclinic tangency is the first of an infinite sequence of homoclinic tangencies
accumulating on each homoclinic tangency. At or after the first homoclinic tangency, a first unstable tangency
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occurs. Similar to the homoclinic tangency, an infinite sequence of unstable tangencies accumulates on each
unstable tangency. After the first homoclinic tangency, the stable set W s(p) interacts with the curves in the
forward critical set J + in forward critical tangencies. There is no first forward critical tangency, but an infinite
sequence of forward critical tangencies accumulates on each homoclinic tangency, because J + accumulates on
Wu(p). When the parameters are moved further towards the wild chaotic regime, in addition to the three initial
bifurcations, the unstable and the backward critical sets interact in a first backward critical tangency. This first
backward critical tangency is followed by an infinite sequence of backward critical tangencies that accumulate on
each backward critical tangency, becauseWu(p) accumulates on itself. After the first backward critical tangency,
the forward critical set J + and the backward critical set J− interact in forward-backward critical tangencies.
Since J + accumulates on Wu(p), an infinite sequence of forward-backward critical tangencies accumulates on
each backward critical tangency.

Two-dimensional noninvertible maps have been studied for some time now; see, for example, the textbooks
[1, 28, 42]. Famous examples include the coupled logistic map and polynomial maps. The classical examples
of maps with two preimages fold the plane along a curve J0 and map it onto one side of the image curve J1
of J0 in a 2-to-1 fashion. Often, J0 is defined as the set of points where the Jacobian of the map is singular.
The curves J0 and J1 are called critical curves or “lignes critiques” in the literature [40, 48]. In the case of
fold maps, bifurcations of the critical curves with the boundaries of basins of attractions have been investigated
in [4, 14, 32, 37, 41]. The approach taken in [19, 30, 36] reveals that the myriad of exotic transformations of
basin boundaries for fold maps are different global manifestations of local tangencies of a stable or unstable set
with the critical curves. The bifurcations we find for system (1) share some overall mechanisms with the results
presented in [19, 30, 36], such as changes in the connectivity of the stable set and loop forming of the unstable
set. However, the map (1) maps the plane onto itself in a 2-to-1 fashion that is different from that of fold maps.
It doubles the angles in a way that is reminiscent of the complex quadratic map z 7→ z2 + c; in fact, for a = 2
and λ = 1, map (1) reduces to the complex quadratic map. Due to the different nature of the double-cover of
the plane and the organization of the stable set, the bifurcations we find for map (1) are new and specific to
this different class of noninvertible maps.

This paper is organized as follows. In section 2 we discuss the basic properties of map (1) and the roles
of the forward and backward critical sets and the stable and unstable sets. In section 3 we explain the local
behavior and the global consequences of the three initial tangency bifurcations that appear when the parameter
c is decreased along the real line with a = 0.8 and λ = 0.8 fixed; these are the homoclinic, forward critical and
unstable tangencies. In section 4 we introduce the two subsequent tangency bifurcations that occur when c is
decreased further; these are the backward and forward-backward critical tangencies. In section 5 we present
bifurcation diagrams in two parameters to show that one encounters the same sequences of bifurcations when the
other parameters a and λ are varied, or when c has a small complex part. In section 6 we explain the Lorenz-like
construction of the five-dimensional vector field and its reduction to map (1) and present the implications of
the tangency bifurcations of (1) for this vector field. We end with conclusions in section 7.

In the appendix to this paper, we explain how we use the algorithm proposed in [34] and implemented in the
DsTool environment [8, 18, 35] to compute the stable and unstable sets of (1). Furthermore, we describe how
we modify the boundary value problem proposed in [10] for the continuation of homoclinic tangencies in order
to continue the other tangency bifurcations encountered in (1). We then changed the associated algorithm in
Cl MatContM [15, 22, 25] to follow all bifurcation curves in two parameters.

2 Background and Notation

In this section we discuss the basic properties of map (1) and the role of the critical, stable and unstable sets
in the dynamics on the complex plane.

2.1 Basic Properties of the Map

Figure 1 shows the action of the map (1) for the parameter values a = 0.8, λ = 0.8 and c = 1 in three steps.
Panel (a) shows the punctured disk D2(0)\J0 with a yellow-to-red color gradient. The critical point J0 = {0}
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Figure 1: The action of the map (1) on the punctured disk D2(0)\J0 (yellow-orange), the unit circle (black
circle) and the critical point J0 (green dot) for the parameter values a = 0.8, λ = 0.8 and c = 1. Panel (a)
shows the punctured disk D2(0)\J0; panel (b) illustrates the transformation via |z| 7→ 1 − λ + λ|z|a to the

annulus {z : 1 − λ < |z| ≤ 1 − λ + λ2a}. Then the angles are doubled via z/|z| 7→ (z/|z|)2 as illustrated
in (Re(z), Im(z),Arg(z))-space in panel (c), and finally the now double-covered annulus is translated by c to
{z + c : 1− λ < |z| ≤ 1− λ+ λ2a} as shown in panel (d).

is denoted by a green dot and the unit circle is highlighted in black. In the first step, the map (1) transforms
|z| to 1 − λ + λ|z|a, so D2(0)\J0 is opened up to the annulus {z : 1 − λ < |z| ≤ 1 − λ + λ2a} as shown in

Figure 1(b). In the second step, the angle doubling z/|z| 7→ (z/|z|)2 wraps this annulus twice around itself as
illustrated in (Re(z), Im(z),Arg(z))-space in Figure 1(c). Finally, in the third step, this double-covered annulus
is translated by c as shown Figure 1(d) in the z-plane. Hence, the images of D2(0)\J0 under the map (1) is
{z + c : 1 − λ < |z| ≤ 1 − λ + λ2a} and its inner bound (the green circle in panel (d)) is the critical circle
J1 = ∂D1−λ(c).

Points in C\D1−λ(c) have two preimages under map (1), which are symmetric under rotation by π. We call
the branch of preimages in the upper half plane and the positive real line the first preimage, denoted f−1

0 , and
the branch in the lower half plane and the negative real line the second preimage, denoted f−1

1 . For a, λ ∈ (0, 1),
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c ∈ C and each point z ∈ C\D1−λ(c), they are given by

f−1
0 (z) = +

(
|z − c| − 1 + λ

λ

)1/a √
z − c

|z − c|

and f−1
1 (z) = −

(
|z − c| − 1 + λ

λ

)1/a √
z − c

|z − c|
.

(6)

Where it is defined, the k-th preimage f−k(z) of z consists of 2k points; each of these points is given as a
sequence of preimages

f−k
sk···s1(z) := f−1

sk
◦ · · · ◦ f−1

s1 (z),

where (sl)1≤l≤k ∈ {0, 1}k.
Though map (1) is not defined at the critical point J0, we could think of the critical circle J1 as the

multivalued image of J0 by looking at the limit{
lim
r→0

f(reiφ) | φ ∈ [0, 2π)
}
=

{
(1− λ)ei2φ + c | φ ∈ [0, 2π)

}
= J1.

In particular, angles at J0 correspond to points on J1: For each φ ∈ [0, 2π) the ”image“ of the angles φ/2 and
φ/2 + π at J0 is the point (1− λ)ei2φ + c on J1.

For |c| > 1− λ, map (1) maps the disk DR(0) inside itself, where R := 2|c|/(1− λ). Since J1 ⊂ DR(0), the
entire forward critical set J + is bounded inside DR(0). Furthermore, the circles in J + are elongated closed
curves that contain segments with very high curvature. On the other hand, the backward critical set J− is
unbounded.

Figure 2(a) illustrates the critical set J for the parameter values a = 0.8, λ = 0.8 and c = 1.3. Here, we plot
the circles J1, . . . , J17 ⊂ J + and the points J0, J

0
−1, J

1
−1, J

00
−2, J

01
−2, J

10
−2, J

11
−2, J

000
−3 , J111

−3 , J0000
−4 , J1111

−4 ∈ J−.
For k = −1,−2,−3,−4, these points in J−k are labeled according to a sequence of preimages of J0, written as
Jsk···s1
−k := f−k

sk···s1(J0) with (sl)1≤l≤k ∈ {0, 1}k. The critical point J0 and its first and second preimages J0
−1 and

J1
−1 lie on the imaginary axis. All four points in the set J−2 are shown, where the points J00

−2 and J10
−2 are the

first and second preimages of J0
−1 and the points J01

−2 and J11
−2 are the first and second preimages of J1

−1. Of
the higher-order preimages, only the next two first preimages J000

−3 and J0000
−4 of the point J00

−2 and the next two
second preimages J111

−3 and J1111
−4 of the point J11

−2 are shown. At these parameter values, all other points in J−

lie outside the region shown in Figure 2.

2.2 The Stable and Unstable Sets

The unstable set Wu(p) of the saddle point p of map (1) was defined in eq. (5). We denote the sides of Wu(p)
that start in p and go towards the upper or lower half plane with Wu

+(p) and Wu
−(p), respectively. Analogously

to J +, Wu(p) stays bounded in the disk DR(0) if |c| > 1− λ.
Figure 2(b) shows the critical set J (green), the saddle point p (black cross), the two sources q+ and q− (red

squares) and the unstable set Wu(p) (red) of the map (1) at the same parameter values as in Figure 2(a). The
saddle point p is located at approximately 3.85 on the real axis, the sources q± lie at approximately 0.85±1.22i.
The two sides Wu

+(p) and Wu
−(p) of W

u(p) are shown up to arclength 45 each. Since c = 1.3 ∈ R, Wu
±(p) and

q± are symmetric under complex conjugation, respectively. At these parameter values, Wu(p) is an immersed
manifold, because it does not intersect itself.

The stable set W s(p) of p was defined in eq. (4). There is a unique branch of W s(p) that contains the fixed
point p, which we call the primary manifold W s

0 (p). Note that the local stable manifold W s
loc(p) is contained in

W s
0 (p). Since W

s(p) is formed by all preimages of W s
loc(p) or W

s
0 (p) and the map (1) has two preimages, W s(p)

consists of infinitely many branches. Furthermore, it is unbounded and an infinite number of its branches go
to infinity. If a, λ ∈ (0, 1) are sufficiently close to 1 and Im(c) is sufficiently small, the primary manifold W s

0 (p)
intersects the critical circle J1. Then, W s

0 (p) goes from J0 through p to infinity and the critical point J0 lies
in the closure of W s

0 (p). Therefore, J− lies in the closure of W s(p) and, more specifically, the points in J−

act as branch points of W s(p): at each point in J− at least four branches of W s(p) connect. If the primary
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Figure 2: Organization of the phase plane in the nonchaotic parameter regime for a = 0.8, λ = 0.8 and c = 1.3.
Panel (a) shows the forward critical set J + (green curves) and the backward critical set J− (green dots);
panel (b) shows the critical set J = J + ∪ J−, the saddle fixed point p (black cross), the sources q+ and q−

(red squares) and the unstable set Wu(p); panel (c) shows J , the fixed points p, q+ and q− and the stable set
W s(p) (blue curves); panel (d) shows the fixed points p, q+ and q− and the sets J , W s(p) and Wu(p) together.

manifold W s
0 (p) does not intersect J1, it goes from one of the sources q+ or q− through p to infinity or from

infinity through p to infinity. We will discuss this case in more detail in Section 5.4.
Figure 2(c) shows the critical set J (green), the saddle point p, the sources q± and the stable set W s(p)

(blue) at the same parameter values as in Figures 2(a) and (b). Since c = 1.3 ∈ R, the primary manifold
W s

0 (p) is the positive real axis and W s(p) is symmetric under rotation by π and under complex conjugation.
The primary manifold W s

0 (p) intersects the critical circle J1 in the two points c + 1 − λ = c + (1 − λ)e0 and
c− 1 + λ = c+ (1− λ)eiπ; hence the preimages of W s

0 (p) in W s(p) connect to J0 with the slopes e0, eiπ/2, eiπ
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and e3π/2. Correspondingly, all other points in J− each connect four branches of W s(p).
Figure 2(d) shows J , W s(p), Wu(p) and the fixed points p, q+ and q− together. At this set of parameters,

the sets J , W s(p) and Wu(p) interact with each other only in the intersection of W s
0 (p) and J1 mentioned

above. The intersection points of J + and W s
0 (p) accumulate on p and the circles in the forward critical set J +

accumulate on Wu(p), correspondingly.
Figure 2(d) is shown in normal coordinates; in order to study the global behavior of map (1), some figures

in Sections 3, 4 and 5 will show a compactification of C to the Poincaré disk via the transformation

T : C ∪ {∞} → D1(0)

z 7→ z

1 + |z|
.

(7)

This transformation maps the origin to itself and infinity onto the unit circle.

3 Initial tangency bifurcations

In the transition from nonchaotic to wild chaotic dynamics in map (1) the forward critical set J +, the backward
critical set J−, the stable set W s(p) and the unstable set Wu(p) interact with each other in four types of local
tangency bifurcations; see the list in Section 1. Since J + accumulates on Wu(p) and, after the first homoclinic
tangency, Wu(p) and W s(p) accumulate on themselves, we will encounter infinite sequences of all types of
tangency bifurcations. Globally, these sequences of bifurcations lead to the appearance of homoclinic orbits,
reconnections of the stable set W s(p), self-intersections of the unstable set Wu(p) and, as a consequence, to a
reorganization of the phase space; see sections 3.3 and 4.3.

In this section we explain the local behavior and the global consequences of the first three types of tangency
bifurcations, that appear when the parameters a = 0.8 and λ = 0.8 are fixed and c is decreased along the real
line from c = 1.3. For c = 1.3 the map (1) is not chaotic, the stable set W s(p) and the unstable set Wu(p) do
not intersect and Wu(p) does not intersect itself; see Figure 2.

3.1 The homoclinic tangency

At a homoclinic tangency the unstable set Wu(p) is tangent to the stable set W s(p). An intersection point
of W s(p) and Wu(p) is called a homoclinic point. It belongs to a homoclinic orbit, which converges to the
saddle point p under forward and backward time. Since map (1) has two preimage branches, this means that
a homoclinic point has a sequence of preimages converging to p. However, the homoclinic tangency does not
involve the critical set J , so that it is essentially the same as for diffeomorphisms; see [26] and [49].

Ŵ
s

Ŵ
u

(a)

Ŵ
s

Ŵ
u

(b)

Ŵ
s

Ŵ
u

(c)

Figure 3: Local pictures of a segment Ŵ s of the stable set W s(p) (blue curve), a segment Ŵu of the unstable
set Wu(p) (red curve) and their intersection points (black dots) for a = 0.8 and λ = 0.8, at c = 1.27 before
the first homoclinic tangency in panel (a), at c ≈ 1.266 at the tangency in panel (b), and at c = 1.26 after the
tangency in panel (c).

Figure 3 shows the local unfolding of the first homoclinic tangency of a segment Ŵ s of the stable set W s(p)

and a segment Ŵu of the unstable set Wu(p). Panel (a) shows Ŵ s and Ŵu before the homoclinic tangency
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where they do not intersect. Panel (b) shows the moment of the bifurcation when Ŵ s and Ŵu are tangent at
the homoclinic point indicated by a black dot. This homoclinic point belongs to a nongeneric homoclinic orbit.
At c = 1.26 after the bifurcation this homoclinic point has split up into two homoclinic points marked by the
two black intersection points of Ŵ s and Ŵu in panel (c), which belong to two generic homoclinic orbits.

All images of a homoclinic tangency and the sequence of its preimages that stays on Wu(p) are homoclinic
tangencies as well. Therefore, at a homoclinic tangency, one single homoclinic orbit is born and splits into two
homoclinic orbits after the bifurcation.

Since the two sides Wu
+(p) and Wu

−(p) of W
u(p) are separated by the primary manifold W s

0 (p) of the stable
set W s(p), Wu(p) does not intersect itself before the first homoclinic tangency. This means that each point of
Wu(p) has one unique sequence of preimages converging to the saddle point p. After or at the first homoclinic
tangency Wu

+(p) and Wu
−(p) start interacting with each other in an unstable tangency. This type of tangency

gives rise to points on Wu(p) that have two distinct sequences of preimages converging to p that lie on the
two sides of Wu(p). It can only occur in noninvertible maps, since the unstable sets in diffeomorphisms are
immersed manifolds and, therefore, are free of self-intersections.

Ŵ
u

1

Ŵ
u

2

(a) Ŵ
u

1

Ŵ
u

2

(b) Ŵ
u

1

Ŵ
u

2

(c)

Figure 4: Local pictures of two segments Ŵu
1 and Ŵu

2 of the unstable setWu(p) (red curve) and their intersection
points (black dots) for a = 0.8, λ = 0.8, at c = 1.27 before the first unstable tangency in panel (a), at c ≈ 1.266
at the tangency in panel (b) and at c = 1.26 after the tangency in panel (c).

Figure 4 shows the local unfolding of the first unstable tangency of two segments Ŵu
1 ⊂ Wu

+(p) and Ŵu
2 ⊂

Wu
−(p) for the same parameter values as the unfolding of the first homoclinic tangency shown in Figure 3.

Panel (a) shows Ŵu
1 and Ŵu

2 at c = 1.27, before the first unstable tangency. Before the bifurcation, Ŵu
1 and

Ŵu
2 do not intersect. Panel (b) shows the moment of the bifurcation when Ŵu

1 and Ŵu
2 are tangent at the

point indicated by a black dot. After the bifurcation this point has split up into two intersection points shown
as black dots in panel (c). Each of these points now has one sequence of preimages converging to p on Wu

+(p)
and one sequence of preimages converging to p on Wu

−(p).
All images, but only a finite sequence of preimages of an unstable tangency are unstable tangencies as

well; the preimages of an unstable tangency are only unstable tangencies as long as the sequences of preimages
coincide. This finite sequence of preimages ends in the point of self-intersection of Wu(p) that has its two
preimages on the two sides of Wu(p). Therefore, at an unstable tangency, two orbits are born that converge
to p under backward iteration and coincide from some point under forward iteration. After the bifurcation,
these orbits split into four orbits that converge to p under backward iteration and each two corresponding orbits
coincide from some point under forward iteration.

For real c, the two sides Wu
+(p) and Wu

−(p) are complex conjugated, and, therefore, at each homoclinic
tangency of Wu

+(p) and W s
0 (p), we also have a tangency of Wu

−(p) and W s
0 (p); see Figure 4. In particular, for

c ∈ R, the first homoclinic and the first unstable tangency take place at the same time. For c ∈ C\R, however,
homoclinic tangencies and unstable tangencies generally occur at different parameter values and, in particular,
the first unstable tangency occurs after the first homoclinic tangency, because W s

0 (p) separates the two sides of
Wu(p).

As we will discuss in Section 6.3, the unstable tangency does not correspond to any bifurcation in the
underlying n-dimensional vector field, but only occurs due to the reduction to the two-dimensional map (1).
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Figure 5: Local pictures of the stable set W s(p) (blue curve) with the critical circle J1 (green circle) in the
first row and the corresponding preimages with the critical point J0 (green dot) in the second row before,
approximately at and after a forward critical tangency. The parameter values are a = 0.8, λ = 0.8 and c = 1.25
in column (a), c ≈ 1.234 in column (b), and c = 1.22 in column (c). The top row shows a segment Ŵ s ⊂ W s(p)

near J1 and the bottom row shows its preimages f−1
0 (Ŵ s) (blue) and f−1

1 (Ŵ s) (light blue) in W s(p) near J0.

Therefore, we do not see it as a crucial ingredient in the transition to wild chaos and will focus our analysis on
the other four tangency bifurcations.

3.2 The forward critical tangency

We now consider the forward critical tangency where a branch of the stable set W s(p) is tangent to a circle
in the forward critical set J +; as a consequence, certain higher-order preimage branches each split into two
disconnected segments at points in the backward critical set J−.

Figure 5 shows how the forward critical tangency unfolds with images before, at and after a forward critical
tangency. The panels in the top row of Figure 5 show a local segment Ŵ s ⊂ W s(p) near J1; the bottom row

shows its preimages f−1
0 (Ŵ s) (dark blue) and f−1

1 (Ŵ s) (light blue) near J0. Figure 5(a) shows the situation

before the forward critical tangency; here, Ŵ s does not intersect J1 and its two preimages f−1
0 (Ŵ s) and f−1

1 (Ŵ s)

are not connected to J0. At the moment of bifurcation, Ŵ s is tangent to J1, shown in panel (b1). Therefore,

f−1
0 (Ŵ s) and f−1

1 (Ŵ s) connect up with J0; more precisely, the segment Ŵ s intersects J1 in exactly one point,

namely, at (1− λ)eiφ + c for some φ ∈ [0, π); as a consequence, f−1
0 (Ŵ s) and f−1

1 (Ŵ s) consist of two segments
each that form cusps at J0 at angles φ/2 and φ/2 + π, respectively; see panel (b2). At c = 1.22 after the

bifurcation Ŵ s intersects J1 in two points, shown as black dots in Figure 5(c1). The segment of Ŵ s between

these points does not have a preimage. Hence the two segments of f−1
0 (Ŵ s) and the two segments of f−1

1 (Ŵ s)
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open up their angle at J0 according to the location of the two intersection points on J1; see panel (c2).
All images of a forward critical tangency between W s(p) and a circle in J + are forward critical tangencies,

but only a certain finite sequence of preimages form forward critical tangencies. As a consequence of the
tangency between W s(p) and J1, preimages of the corresponding segment of W s(p) split up into two segments
not only at J0, but at all points in the backward critical set J−. This way, a forward critical tangency gives
rise to a reconnection of the stable set W s(p) at all points in the backward critical set J−.

3.3 Global consequences of the initial tangency bifurcations

Recall that, if the primary manifold W s(p) intersects the critical circle J1, the forward critical set J + accu-
mulates on the unstable set Wu(p). In addition, after the first homoclinic tangency, Wu(p) accumulates on
itself: The points on the homoclinic orbits accumulate on the saddle fixed point p on Wu(p) and the segments
of Wu(p) between these points accumulate on Wu(p), accordingly. For the same reason, the stable set W s(p)
accumulates on itself after the first homoclinic tangency.

This complicated accumulation of J + and Wu(p) on Wu(p) and W s(p) on itself leads to complicated
accumulating sequences of bifurcations: Immediately after the first homoclinic tangency, an infinite sequence
of homoclinic tangencies accumulates on each homoclinic tangency, an infinite sequence of unstable tangencies
accumulates on each unstable tangency and an infinite sequence of forward critical tangencies accumulates on
each homoclinic tangency. Globally these infinitely many bifurcations reorganize the dynamics of map (1) on
the entire complex plane. We illustrate this for a series of decreasing values of c.

Figure 6 shows the three fixed points p, q+ and q− the stable set W s(p), the unstable set Wu(p) and the
critical set J on the Poincaré disk for a = 0.8 and λ = 0.8 and c = 1.3, 1.27, 1.26 and 1.23 in panels (a)–(d),
respectively. We show W s(p) up to the 13th preimage of the primary manifold W s

0 (p). Panel (a) shows the
situation at the same parameter values as in Figure 2; this is well before the first homoclinic tangency. Here,
W s(p) and Wu(p) do not intersect, the only intersection points of W s(p) with J + are the two intersection
points of each Jk ⊂ J + with W s

0 (p), and four branches of W s(p) connect up accordingly with J−k ∈ J−.
Panel (b) shows the situation at c = 1.27 immediately before the first homoclinic tangency. We note that
Wu(p) lies closer to W s(p). Panel (c) shows the situation at c = 1.26 shortly after the first homoclinic and the
first unstable tangency. In between the first homoclinic tangency at c ≈ 1.266 and c = 1.26 an infinite sequence
of homoclinic tangencies, an infinite sequence of unstable tangencies and an infinite sequence of forward critical
tangencies occurred leading to all branches in W s(p) connecting up with each point in J− in the way shown in
Figure 5. Panel (d) shows the sets at c = 1.23, well after the first homoclinic tangency. Between c = 1.26 and
c = 1.23, infinitely many additional homoclinic, unstable and forward critical tangencies occurred, where each
of the latter ones led to two additional intersection points of W s(p) with each curve in J + and four additional
branches of W s(p) connecting up at each point in J−.

4 Subsequent tangency bifurcations

In this section we introduce two types of subsequent bifurcations that occur when c is decreased further along
the real line. The first is the backward critical tangency, which is caused by the interaction of the unstable set
Wu(p) with the backward critical set J−. The other is the forward-backward tangency that is generated by
the interaction of the forward critical set J + with the backward critical set J−.

4.1 The backward critical tangency

At a backward critical tangency a segment of the unstable set Wu(p) moves over a point in the backward critical
set J−. After the bifurcation, there are two distinct points on this segment that map to the same point under
an iterate of (1). As a consequence, the higher-order images of this segment have self-intersections and form
loops around the circles in the forward critical set J +.

Figure 7 shows how the backward critical tangency unfolds with images before, at and after a backward
critical tangency. The panels in the top row of Figure 7 show the critical point J0, a segment Ŵu ⊂ Wu(p) and
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(a) (b)

(c) (d)

Figure 6: The stable set W s(p) (blue curves), unstable set Wu(p) (red curve) and critical set J (green) on the
Poincaré disk for a = 0.8, λ = 0.8, at c = 1.3 (a), at c = 1.27 (b), at c = 1.26 (c) and at c = 1.23 (d).

its rotationally symmetric partner −Ŵu, which is defined by

−Ŵu := {z : −z ∈ Ŵu} = f−1
1 (f(Ŵu)).

Note that −Ŵu is not contained in Wu(p). The bottom row shows the critical circle J1 and the image f(Ŵu) =

f(−Ŵu) ⊂ Wu(p). We associate a direction with Ŵu, indicated by the arrows, which imposes a direction for

f(Ŵu). The first column shows the position of J0, J1, Ŵ
u and −Ŵu before the bifurcation. In Figure 7(a1),

Ŵu and −Ŵu do not intersect, so in panel (a2) f(Ŵu) does not intersect itself. Notice that f(Ŵu) goes around
J1 clockwise as indicated by the arrows. The second column shows the bifurcation at the moment of tangency
for c ≈ 1.143. The critical point J0 now lies on Ŵu and is the only point in the intersection of Ŵu and −Ŵu;
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Ŵu
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f(Ŵu)
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Figure 7: Local pictures of the unstable set Wu(p) (red curve), its negative −Wu(p) (gray curve) and the critical
point J0 (green dot) in the first row and Wu(p) and the critical circle J1 (green circle) in the second row before,
approximately at and after the backward critical tangency. The parameter values are a = 0.8, λ = 0.8 and
c = 1.144 in column (a), c = 1.143 in column (b) and c = 1.142 in column (c). The top row shows a segment

Ŵu ⊂ Wu(p) near J0, its negative −Ŵu and their intersection points (black dots); the bottom row shows their

image f(Ŵu) ⊂ Wu(p) near J1 and the image of the intersection points (black dot).

see panel (b1). As a consequence, the image f(Ŵu\J0) consists of two branches that form a cusp at J1. If e
iφ

is the tangent vector of Ŵu at J0 for some φ ∈ [0, π), then the cusp of f(Ŵu) at J1 is at the point ei2φ+ c. The

direction on f(Ŵu\J0) is the same as before the bifurcation. The third column shows the position of J0, J1, Ŵ
u

and −Ŵu at c = 1.142, after the bifurcation. The segments Ŵu and −Ŵu now intersect in two points (black
dots) in panel (c1). These two points map to the same point (denoted by the black dot) under the map (1) in

panel (c2). The image f(Ŵu) now intersects itself at this point and forms a loop around J1. The directions of

f(Ŵu) below the point of self-intersection are locally the same as before the bifurcation, but f(Ŵu) now goes
around J1 anti-clockwise, as indicated by the arrows.

If a point in the backward critical set J− lies on Wu(p) in a backward critical tangency, its images up to J0
lie on Wu(p) as well and it has a unique infinite sequence of preimages in J− lying on Wu(p). As a consequence,
Wu(p) forms cusps at all the circles in the forward critical set J + and, after the bifurcation, Wu(p) forms loops
around all circles in J +.

Before the first backward critical tangency, Wu
+(p) and Wu

−(p) are immersed manifolds. Immediately after-
wards, at least one of them exhibits loops around all the curves in J + and is no longer an immersed manifold.
The self-intersections of Wu(p) generated in a backward critical tangency are of a different nature than the
ones generated in an unstable tangency: in an unstable tangency, two intersections of Wu

+(p) and Wu
−(p) are

born, which each corresponds to two sequences of preimages converging to p on Wu
+(p) and Wu

−(p), respectively.
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Figure 8: Local pictures of the forward critical set J + (green curves), its negative −J + (gray curves) and the
critical point J0 (green dot) in the first row and J + and the critical circle J1 (green circle) in the second row
before, approximately at and after the forward-backward critical tangency. The parameter values are a = 0.8,
λ = 0.8 and c = 1.143 in column (a), c = 1.13953 in column (b) and c = 1.137 in column (c). The top row
shows a segment of the circle J12 ⊂ J + near J0, a segment of its negative −J12 and their intersection points
(black dots), the bottom row shows their image segment on the circle J13 ⊂ J + near J1 and the image of the
intersection points (black dot).

In a backward critical tangency, one self-intersection of either Wu
+(p) or Wu

−(p) is born, which corresponds to
two sequences of preimages converging to p on the same side Wu

+(p) or W
u
−(p). Furthermore, as we will discuss

in Section 6.3, the backward critical tangency corresponds to a heteroclinic bifurcation in the underlying n-
dimensional vector field, whereas the unstable tangency only occurs due to the reduction to the two-dimensional
map (1).

4.2 The forward-backward critical tangency

At a forward-backward critical tangency a circle in J + passes over a point in J−, which results in the images
of this circle to form loops around all circles in J +. The forward-backward critical tangency is similar to the
backward critical tangency, except that J− interacts with J + instead of Wu(p).

Figure 8 shows the unfolding of a forward-backward critical tangency with images before, at and after the
bifurcation. The panels in the top row of Figure 8 show the critical point J0, segments of the circle J12 in J +

and its rotational symmetric partner −J12, which is defined by

−J12 := {z : −z ∈ J12}.

The bottom row shows the critical circle J1 and segments of the image J13 = f(J12) = f(−J12). Note that
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Figure 9: Local pictures of the stable set W s(p) (blue), the backward critical set J− (green dots) and the
critical circle J1 (green circle) before, approximately at and after the forward-backward critical tangency. The
parameter values are a = 0.8, λ = 0.8 and c = 1.1396 in column (a), c = 1.13953 in column (b) and c = 1.1395
in column (c). The top row shows four points J0···0

−12 , J
10···0
−12 , J1···1

−12 , J
01···1
−12 ∈ J− near J0, the bottom row shows

the point J0···0
−11 ∈ J− near J1.

−J12 ̸⊂ J +. The green direction markers indicate which sides correspond to the region bounded by the circles
J12 or J13. The first column shows the situation at c = 1.143 before the bifurcation. In panel (a1) we see that
J12 and −J12 do not intersect and J0 lies outside J12. Thus, in panel (a2), there is no self-intersection of J13
and J1 lies outside J13, as indicated by the direction markers. Panels (b1) and (b2) show the corresponding
curves and J0 at the bifurcation at c ≈ 1.13953. The critical point J0 now lies in the intersection of J12 and
−J12 as shown in panel (b1). Hence, the image J13 = f(J12\J0) = f(−J12\J0) forms a cusp on J1. If eiφ is
the tangent vector of J12 at J0 for some φ ∈ [0, π), then the cusp of J13 at J1 is at the point ei2φ + c. Column
(c) shows the positions of the curves with respect to J0 and J1 at c = 1.137, after the bifurcation. The circles
J12 and −J12 intersect in two points, shown as black dots in panel (c1), both of which map to the point of
self-intersection of J13, denoted by a black dot in panel (c2). The image J13 is no longer a topological circle,
because the point of self-intersection leads to an additional closed loop around the critical circle J1. Note that
J0 now lies inside the circle J12 and J1 lies inside the additional loop of J13.

The forward-backward critical tangency illustrated in Figure 8 also has consequences for the 12-th preimages
J−12 and J−11 of J0 and J1, respectively. The illustration in Figure 9 before, at and after the forward-backward
critical tangency shows that certain points in J−11 move inside J1. The panels in the bottom row show the
point J0···0

−11 ∈ J−11 near J1 whereas the top row shows its two preimages J0···0
−12 , J10···0

−12 ∈ J−12 together with
J1···1
−12 , J01···1

−12 ∈ J−12 near J0. We also plot W s(p), because all points in J−11 and J−12 are branch points of
W s(p). Figure 9(a) shows the situation at c = 1.1396, before the bifurcation. The point J0···0

−11 lies outside
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(a)

J13

J1

(b)

J13

J1

(c)

J13

J1

Figure 10: Local pictures of the circle J13 (dark green curve) and the critical circle J1 (green circle) for a = 0.8,
λ = 0.8, at c = 1.14 before a pair of forward-backward critical tangencies in column (a), at c = 1.1393 between
the tangencies in column (b) and at c = 1.138 after both tangencies in column (c). The interior of J13 is shaded
green.

the area bounded by J1 and its preimages are at a certain distance from J0. At the moment of bifurcation,
at c ≈ 1.13953, the point J0···0

−11 lies on J1 and its preimages have disappeared into J0; see column (b). At
c = 1.1395, after the bifurcation, J0···0

−11 lies inside J1. Hence, all possible sequences of preimages of J0 that pass
through J0···0

−11 end in J0···0
−11 and are finite orbits in forward time. At the same time, the branches of W s(p) that

connected the points in the sequences of preimages of J0···0
−11 have disappeared.

Since the circles in J + are elongated closed curves with very sharp corners, we expect forward-backward
critical tangencies to occur in pairs. For example, when J0 enters J12 as above, we expect J0 to exit J12 on the
other side for a nearby parameter value. When J0 exits J12 on the other side, J0···0

−11 exits J1 on the other side
and the sequences of preimages going through J0···0

−11 become infinite again in forward time.
Figure 10 shows J1 and J12 before, between and after a pair of forward-backward critical tangencies when

J0 enters and then again leaves the circle J11. The interior of J12 is shaded green. Panel (a) shows the situation
at c = 1.14 before both tangencies, when J12 does not intersect itself and J1 lies outside J12. At c = 1.11393
between the two bifurcations, J0 is inside J11, there is one point of self-intersection of J12 and J1 lies inside the
additional loop of J12; see panel (b). Panel (c) shows the situation at c = 1.138, after the two bifurcations. The
critical circle J1 lies outside J12 again and J12 now has four points of self-intersection.

There is a first backward critical tangency but no first forward-backward critical tangency. However, for
Im(c) sufficiently small, there is a “last” forward-backward critical tangency: At |c| = 1− λ, the critical point
J0 enters the critical circle J1. After this bifurcation the backward critical set J− consists only of the critical
point J0 and the circles in the forward critical set J + are nested, i.e., Jk lies inside Jk+1 for all k ≥ 1.

4.3 Global consequences of the subsequent tangency bifurcations

Similar to the sequence of initial bifurcations, the sequence of subsequent bifurcations has a complicated accu-
mulating structure: Due to the accumulation of J + and Wu(p) on Wu(p) and W s(p) on itself, immediately
after the first backward critical tangency, an infinite sequence of backward critical tangencies accumulates on
each backward critical tangency and an infinite sequence of forward-backward critical tangencies accumulates
on each backward critical tangency.

Globally, the backward and forward-backward critical tangencies change the asymptotic behavior of se-
quences of points in J−. Since the points in J− act as branch points of the stable set W s(p), the dynamics on
the entire plane changes. In addition, the backward critical tangencies change the ”direction“ of the dynamics
on the unstable set Wu(p) near J + in the way indicated by the direction markers in Figure 7. We now illustrate
the consequences for the global dynamics of the map (1).
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Figure 11: The critical set J (green) and the unstable set Wu(p) (red curve) for a = 0.8, λ = 0.8, with c = 1.16
in panel (a), c = 1.144 in panel (b), c = 1.142 in panel (c) and c = 1.13 in panel (d); compare Figure 12.

Let us first discuss the consequences of backward and forward-backward critical tangencies for the critical
set J and the unstable set Wu(p). Figure 11 shows the transitions of these sets for a = 0.8 and λ = 0.8 and
four different values of c, namely, c = 1.16, c = 1.144, c = 1.142 and c = 1.13 in panels (a)–(d), respectively.
Panel (a) shows J and Wu(p) for c = 1.16, well before the first backward critical tangency. In this parameter
regime, the critical point J0, the sequence of its first preimages {J0···0

−k }k≥0 and the sequence of its second
preimages {J1···1

−k }k≥0 lie outside the region bounded by Wu(p). The two sides Wu
+(p) and Wu

−(p) intersect
each other (due to unstable tangencies), but not themselves. Panel (b) shows the situation at c = 1.144, just
before the first backward critical tangency. The two sequences {J0···0

−k }k≥0 and {J1···1
−k }k≥0 have come closer to

Wu(p); e.g. the eleventh first preimage J0···0
−11 and the eleventh second preimage J1···1

−11 of J0 have emerged on the
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(a) (b)

(c) (d)

Figure 12: The stable set W s(p) (blue curves), unstable set Wu(p) (red curve) and critical set J (green) on
the Poincaré disk for a = 0.8, λ = 0.8, at c = 1.16 (a), at c = 1.144 (b), at c = 1.142 (c) and at c = 1.13 (d);
compare with Figures 6 and 11.

right-hand side of panel (b). The situation at c = 1.142, just after the first backward critical tangency, is shown
in panel (c). In between the first backward critical tangency at c ≈ 1.143 and c = 1.142 an infinite sequence
of backward critical tangencies and an infinite sequence of forward-backward critical tangencies occurred. As a
consequence, {J0···0

−k }k≥0, {J1···1
−k }k≥0 and infinitely many other sequences of preimages of J0 have moved inside

the area bounded by Wu(p) and have passed through the interior of infinitely many circles in J +; compare
Figures 7 (c1) and 8 (c1). For example, the eleventh preimages J0···0

−11 and J1···1
−11 of J0 are now located between

the circles J2 and J3; this means that they each have had a pair of forward-backward critical tangencies with
each circle in the forward critical set J +. At the same time, Wu(p) and the circles in J + have formed infinitely
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many loops around the circles in J +; see, for example, just above and below the critical circle J1 and compare
Figures 7 (c2) and 8 (c2). As a consequence, there exist infinitely many self-intersections of J +, Wu

+(p) and
Wu

−(p). In each of the backward critical tangencies, the direction of the dynamics on Wu(p) near the curves in
J + has changed (compare with Figure 7). Panel (d) shows the sets at c = 1.13, well after the first backward
critical tangency. Infinitely many more backward and forward-backward critical tangencies have occurred. The
critical point J0 has moved well inside the region bounded by Wu(p) and, thus, the loops of Wu(p) created in
the first backward critical tangency are now well separated from the circles in J + they revolve around. Also,
the eleventh preimages J0···0

−11 and J1···1
−11 of J0 are now located between J0 and J0

−1 or J1
−1, respectively.

Figure 12 shows the fixed points p, q+ and q− and the sets J , W s(p) and Wu(p) on the Poincaré disk for
the same parameter values as Figure 11; compare with Figure 6. In panel (a), well before the first backward
critical tangency, all sequences of points in J− go to infinity. As an example, the sequence of first preimages
{J0···0

−k }k≥0 of J0 go to infinity. Due to earlier forward critical tangencies, eventually the points in this sequence
are connected to J0 by branches of the stable set W s(p). Therefore, these branches of W s(p) go to infinity
as well. Immediately before the first backward critical tangency, in panel (b), Wu(p) and the points in J−,
which are the branch points of W s(p), have come closer together. Figure 12(c) shows the sets at c = 1.142,
immediately after the first backward critical tangency. There has been an infinite sequence of backward and
forward-backward critical tangencies leading to infinitely many sequences of points in J− entering the region
bounded by Wu(p) and becoming finite and infinite again in forward time while moving through the circles in
J +. At the same time the other sequences of points in J− do not converge to infinity any longer but stay in
the compact regions that are the corresponding preimages of the region bounded by Wu(p). Panel (d) shows
the situation at c = 1.13 well after the first backward critical tangency; there have been infinitely many more
backward and forward-backward critical tangencies.

Figure 13 shows the fixed point p and the sets J , W s(p) and Wu(p) for a = 0.8, λ = 0.8 and c = 0.8 to
illustrate the geometry of wild chaos for c ∈ R. As we will discuss in Section 5, our numerical calculations
suggest that these parameter values lie in the wild chaotic parameter regime, i.e., where all four types of
tangency bifurcations have occurred infinitely many times. For Figure 13, we computed W s(p) with higher-
order preimages of W s

0 (p) and Wu(p) up to a longer arclength than in Figures 6 and 12 to emphasize the
complicated and self-accumulating nature of W s(p) and Wu(p) on the plane in the wild chaotic regime for
c ∈ R.

5 Bifurcation diagrams

We now discuss the organization of two-parameter bifurcation diagrams that we obtain by following the tangency
bifurcations introduced in sections 3 and 4 in two parameters.

5.1 The symmetric case of c ∈ R
Recall that for c ∈ R map (1) is symmetric under complex conjugation: the saddle fixed point p is real, its
primary manifold W s

0 (p) is the positive real line and the fixed points q± and the sets W s(p), Wu(p) and J are
symmetric under complex conjugation. Therefore, all bifurcations of their parts above W s

0 (p) occur at the same
parameter values as the bifurcations of their parts below W s

0 (p).
Figure 14 shows the bifurcation diagram of map (1) in the (a, λ)-plane for c = 1, which is the parameter

region considered in [9]. Panel (a) shows only the local bifurcations (black) of the fixed points. The curve NS
is the curve of Neimarck-Sacker bifurcations of q+ and q−; these points are sinks for parameter values (a, λ) to
the left of NS and sources to the right. At a = 1, another source appears at infinity on the positive real line,
which only exists for a > 1. Since one can think of this bifurcation as a branch point at infinity, we denote it
by BP. This source disappears with the saddle point p in a fold bifurcation on the limit point curve LP. The
curves LP and BP both end in the bifurcation point LPBP at (a, λ) = (1, 1), at which p disappears with the
source at infinity.

Figure 14(b) shows a global view of the (a, λ)-plane of the local bifurcations from panel (a) together with
the global bifurcations of the sets W s(p), Wu(p) and J . The magenta curve H0 is the first homoclinic tangency
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Figure 13: The fixed point p (black cross), its stable set W s(p) (blue curves), its unstable set Wu(p) (red curve)
and the critical set J (green) on the Poincaré disk for a = 0.8, λ = 0.8 and c = 0.8; compare with Figures 6
and 12.

of W s(p) and Wu(p). To the right of H0 lie the dark magenta and purple curves H1 and H2 as labeled in the
enlargements in panels (c) and (d); they are curves of homoclinic tangencies that belong to the sequence of
homoclinic tangencies accumulating on H0 (see Section 3.1). The red curve labeled B0 is the first backward
critical tangency of Wu(p) and J−. The two orange curves B1 and B2 to its right are backward critical
tangencies that belong to the sequence of backward critical tangencies accumulating on B0 (see Section 4.1).
The five blue curves Fk, k ∈ {8, 10, 12, 14, 16}, are forward critical tangencies of the circles Jk with the part of
W s

0 (p) between J0 and J1. They belong to the sequence of forward critical tangencies accumulating on H0 (see
Section 3.2). The curve FB10 denotes a forward backward critical tangency of J10 with J1. It belongs to the
sequence of forward-backward critical tangencies accumulating on B0 (see Section 4.2). FB10 is a topological
circle that corresponds to a pair of forward-backward critical tangencies as was shown in Figure 10. The curves
H0, H1, H2, B0, B1, B2 and Fk, k ∈ {8, 10, 12, 14, 16}, when followed in the direction of decreasing λ, all end
at different points on LP, because on LP the sets W s(p) and Wu(p) disappear together with p. The closed
curve FB10 continues to the right of LP, because it only involves the critical set J . The other end points of Fk,
k ∈ {8, 10, 12, 14, 16} also lie on LP and they accumulate on the point LPBP. The other end points of H0, H1,
H2, B0, B1 and B2 extend beyond λ > 1. At λ = 0 and λ = 1, map (1) changes from folding the plane in a
2-to-1-fashion to folding it in a 4-to-1-fashion, and the analysis of the bifurcations in these parameter regimes
lies beyond the scope of this paper.
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Figure 14: The bifurcation diagram in the (a, λ)-plane for c = 1. Panel (a) shows the local bifurcations of the
fixed points in black; these are the Neimarck-Sacker bifurcation NS of q±, the bifurcation BP in which a source
appears at infinity on the positive real line, the fold bifurcation LP of this source with p and the bifurcation point
LPBP at (a, λ) = (1, 1), at which p disappears with the source at infinity. Panel (b) shows, in addition, the global
bifurcations of W s(p), Wu(p) and J . These are the first homoclinic tangency H0 (magenta), two further homo-
clinic tangencies (dark magenta and purple), five forward critical tangencies Fk (blue), k ∈ {8, 10, 12, 14, 16},
the first backward critical tangency B0 (red), two further backward critical tangencies (orange) and the forward-
backward critical tangency FB10. Panels (c) and (d) show enlargements of the bifurcation diagram in panel (b)
inside the black boxes (a, λ) ∈ [0.567, 0.9]× [0.8, 1] and (a, λ) ∈ [0.6482, 0.6538]× [0.8533, 0.8567].

Figures 14(c) and (d) show enlargements of the bifurcation diagram in panel (b) inside the black boxes
(a, λ) ∈ [0.567, 0.9]×[0.8, 1] and (a, λ) ∈ [0.6482, 0.6538]×[0.8533, 0.8567], respectively, showing the arrangement
of curves in more detail. The first homoclinic bifurcation curve H0 is the left most curve in these enlargements,
and to its right follow the forward critical tangency curves F16 and F14, the homoclinic tangency curves H1

(twice), H2 (four times) and H1 (twice), and the backward critical tangency curves B0, B1 and B2. The
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Figure 15: The bifurcation diagram in the (Re(c), λ)-plane for a = 0.8 and Im(c) = 0. Panel (a) shows the local
bifurcations of the fixed points p, q±, the critical point J0 and the critical circle J1. These are the pitchfork
bifurcation PF (black) of p and q±, the Neimarck-Sacker bifurcation NS (black) of q±, the ”last“ forward-
backward critical tangency FB0 (green) of J0 and J1 and the bifurcation points FBF at (Re(c), λ) = (0, 1)
and OC at (Re(c), λ) = (1, 0). Panel (b) shows, in addition, the global bifurcations of W s(p), Wu(p) and J .
These are the first homoclinic tangency H0 (magenta), two further homoclinic tangencies (dark magenta and
purple), seven forward critical tangencies Fk (blue), the first backward critical tangency B0 (red) and three
further backward critical tangencies (orange). Panel (c) shows an enlargement of the bifurcation diagram in
panel (b) inside the black box (Re(c), λ) ∈ [1.206, 1.362] × [0.807, 0.878]. Compare with Figures 6 and 12 for
the corresponding transitions in phase space for fixed λ = 0.8 and decreasing Re(c).

homoclinic tangency curves H1 and H2 are crossed several times when a or λ are increased because they make
sharp turns (not visible in the figures), which correspond to the sharp turns ofWu(p) due to its self-accumulating
nature.

The transitions discussed in Sections 3 and 4 were for decreasing c ∈ R with (a, λ) = (0.8, 0.8) fixed. Let
us now consider what the bifurcation diagram looks like if we vary c ∈ R. Figure 15 shows the bifurcation
diagram in the (Re(c), λ)-plane for a = 0.8 and Im(c) = 0, i.e. map (1) is still symmetric under rotation by π.
The line Re(c) = 1 corresponds to the line a = 0.8 in Figure 14. Panel (a) shows the local bifurcations of the
fixed points p, q+ and q−, the critical point J0 and the critical circle J1. The black curve NS is the curve of
Neimarck-Sacker bifurcations of q+ and q− that also occurs in (a, λ)-plane for c = 1 (see Figure 14(a)). These
points are sinks for parameter values (Re(c), λ) to the right of NS and sources to the left. The black curve PF
is a pitchfork bifurcation of p, q+ and q− that occurs due to the conjugational symmetry of the map (1) for
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Im(c) = 0. For (Re(c), λ) above PF, p is a saddle and q± are sinks and below PF, p is a sink and q± have
disappeared. The green curve FB0 is the curve of ”last“ forward-backward critical tangencies, at which J0 lies
on J1, and it is given analytically by c = 1−λ. When J0 enters J1 at FB0, all preimages of J0 in J− disappear
and all images of J1 in J + lie nested in each other. At the same time, the fixed points q+ and q− disappear
into the critical point J0. The curves FB

0, NS and PF all intersect at the point OC at (Re(c), λ) = (1, 0). Here,
map (1) is given as f(z) = (z/|z|)2+1 and the entire punctured plane C∗ is mapped to ∂D1(1), which coincides
with J1. Therefore, p, q

+, q− and J0 all lie on J1. Since PF and FB0 only exist for c ̸= 1, these bifurcations do
not appear in the (a, λ)-plane for c = 1 in Figure 14(a). Similarly, the curves BP and LP in Figure 14(a) lie at
a ≥ 1 and are therefore absent in the (Re(c), λ)-plane for a = 0.8 in Figure 15(a).

Figure 15(b) shows a global view of the (Re(c), λ)-plane of the local bifurcations from panel (a) together with
the global bifurcations of the sets W s(p), Wu(p) and J . As in Figure 14(b), H0 (magenta), H1 (dark magenta)
and H2 (purple) are the first and two further homoclinic tangencies, and B0 (red), B1 (dark orange) and B2

(orange) are the first and two further backward critical tangencies. Furthermore, F k, k ∈ {3, 5, 7, 9, 11, 13, 15},
are forward critical tangencies of the circles Jk with the part of W s

0 (p) between J0 and J1. Instead of starting
at different points on the curve LP as in Figure 14(b), here, the curves H0, H1, H2, B0, B1, B2 and F k,
k ∈ {3, 5, 7, 9, 11, 13, 15}, all emanate from the point OC, which appears to be an organizing center of the
bifurcations in the (Re(c), λ)-plane. At OC, the image of map (1) is ∂D1(1), and increasing λ from OC to
λ > 0 “unfolds” the image of map to C\D1−λ(c). Finally, we note that the other end point of each curve F k,
k ∈ {3, 5, 7, 9, 11, 13, 15}, is the point FBF at (Re(c), λ) = (0, 1): Here, J1 is a point and coincides with J0 so
that all images of J1 in J + have disappeared.

Figure 15(c) shows an enlargement of the bifurcation diagram in panel (b) inside the black box (Re(c), λ) ∈
[1.206, 1.362] × [0.807, 0.878] showing the arrangement of curves in more detail. The curve of first homoclinic
tangencies H0 can be seen at the bottom right, followed to its left by the forward critical tangency curves F15

(close to H0, hardly visible) and F13, the homoclinic tangency curves H1 (twice), H2 (four times) and H1 (twice),
and the backward critical tangency curves B0, B1 and B2. As in Figure 14, the homoclinic tangency curves H1

and H2 are crossed several times when λ is increased or Re(c) is decreased, because they form very sharp turns
(not visible in the figure) due to the self-accumulating nature of Wu(p).

5.2 The general case of c ∈ C
We now investigate how the bifurcation structure observed in Figures 14 and 15 for c ∈ R changes if we
allow general c ∈ C, so that the conjugational symmetry of map (1) is broken. In general, we will find the
same tangency bifurcations for the upper and lower parts of W s(p), Wu(p) and J , but they occur at different
parameter values.

Figure 16 shows the bifurcation diagram in the (Re(c), Im(c))-plane for a = 0.8 and λ = 0.8. The locus
Im(c) = 0 corresponds to the locus λ = 0.8 in Figure 15. Figure 16(a) shows the local bifurcations of p, q±,
J0 and J1: at the fold bifurcations LP+ and LP− (black), q+ and q− disappear with p, respectively. LP+

and LP− form a single curve that intersects the real line at (Re(c), Im(c)) ≈ (−0.23, 0). At these parameter
values, both q+ and q− are on the negative real line and switch roles. The black curves NS+ and NS− are
the Neimarck-Sacker bifurcations of q+ and q−, respectively, and their intersection at (Re(c), Im(c)) ≈ (1.35, 0)
corresponds to the curve NS in (Re(c), λ)-plane shown in Figure 15(a). To the right of NS±, the points q± are
sinks, and to the left they are sources. The curves NS± end on LP±, because q± disappear with p. The “last”
forward-backward critical tangency FB0 (green) corresponds to the curve FB0 in Figure 15(a).

Figure 16(b) shows a global view in the (Re(c), Im(c))-plane of the local bifurcations from panel (a) together
with the global bifurcations of the upper and lower parts of W s(p), Wu(p) and J . Here we show fewer curves
than in Figures 14(b) and 15(b) to make the diagram clearer. The complex conjugated curves H0

± (magenta) and
B0

± (red) are the first homoclinic and backward critical tangencies of Wu
±(p), respectively, and they correspond

to H0 and B0 in Figures 14(b) and 15(b) for Im(c) = 0. The blue curves Fk
±, k ∈ {3, 7, 13} are curves of forward

critical tangencies of the upper or lower parts of the circles Jk with W s
0 (p) near J0, respectively. The upper and

lower part of Jk, k ≥ 1, are the (k− 1)-th image of the upper and lower half circle of J1, respectively. The blue
curves F∗

+ and F∗
− are the curves of “first” forward critical tangencies in the following sense: thus far, we have

only looked at parameter values, where one side of the primary manifold W s
0 (p) of the stable set W s(p) goes
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Figure 16: The bifurcation diagram in the (Re(c), Im(c))-plane for a = 0.8 and λ = 0.8. Panel (a) shows the
local bifurcations of p, q±, J0 and J1. These are the ”last“ forward-backward critical tangency FB0 (green),
the fold bifurcations LP+ and LP− (black) of p with q+ and q− and the Neimarck-Sacker bifurcations NS+ and
NS− (black) of q+ and q−. Panel (b) shows, in addition, the main global bifurcation curves of the upper/lower
parts of W s(p), Wu(p) and J . These are the first homoclinic tangencies H0

± (magenta), the first backward
critical tangencies B0

± (red) of Wu
±(p) and the forward critical tangencies F∗

±, F
3
±, F

7
± and F13

± of the upper/lower
parts of curves in J +, respectively. The black dots FBF± are bifurcation points on FB0. Panel (c) shows an
enlargement of the black box (Re(c), Im(c)) ∈ [1.0407, 1.426]× [−0.0902, 0.0902] in panel (b).

to infinity and the other side intersects the critical circle J1 and ends in the critical point J0. However, this
is only the case for parameters (Re(c), Im(c)) inside the region bounded by FB0, F+

+ and F∗
−. On the curves

F∗
±, the stable set W s

0 (p) is tangent to the upper or lower half circle of J1, respectively, and for parameters
(Re(c), Im(c)) above the curve F∗

− or below the curve F∗
+, W

s
0 (p) does not intersect J1 and, therefore, does

not end in J0. The curves F∗
± and Fk

±, k ∈ {3, 7, 13}, all start in the points FBF± on FB0 and end on other
bifurcation curves. The points FBF+ and FBF− play similar roles as the bifurcation point FBF in Figure 15:
J0 lies on each circle in J + and they are all tangent to W s(p) in J1. The curves B0

± start on LP± and end on
LP∓. The curves H

0
± start on LP∓ and end at the intersection of B0

± and F∗
±: parameters (Re(c), Im(c)) on H0

+

approaching B0
±∩F∗

± correspond to the tangency between W s
0 (p) and Wu

± approaching the upper/lower side of
J1. In the limit, it becomes a tangency between W s

0 (p) and the upper/lower side of J1 and then disappears.
Figure 16(c) shows an enlargement of the bifurcation diagram in panel (b) inside the black box (Re(c), Im(c)) ∈

[1.0407, 1.426]× [−0.0902, 0.0902] to emphasize that the bifurcations are crossed in the same order for decreasing
Re(c) as in the previous bifurcation diagrams, if we choose paths in between the curves F∗

+ and F∗
−: We first
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Figure 17: The bifurcation diagram in the (Re(c), λ)-plane for a = 0.8, Im(c) = 0.2. Panel (a) shows the local
bifurcations of p, q±, J0 and J1. These are the ”last“ forward-backward critical tangency FB0 (green), the fold
bifurcation LP− (black) of p with q− and the Neimarck-Sacker bifurcations NS+ and NS− (black) of q+ and
q−. Panel (b) shows, in addition, the main global bifurcation curves of the upper/lower parts of W s(p), Wu(p)
and J . These are the first homoclinic tangencies H0

± (magenta), the first backward critical tangencies B0
± (red)

of Wu
±(p), respectively, and the forward critical tangencies F8

+ and F10
+ of the upper parts of curves in J +. The

black dot OC at (Re(c), λ) = (
√
0.96, 0) is a bifurcation point on FB0. Panel (c) shows an enlargement of the

black box (Re(c), λ) ∈ [1.122, 1.178]× [0.717, 0.743] in panel (b); compare Figure 15 for Im(c) = 0.

encounter NS+ and NS−, then H0
+ and H0

−, and then B0
+ and B0

−. Immediately above F∗
− or below F∗

+, these
six curves are crossed in a different order, but still the two sequences of curves NS±, H

0
± and B0

± corresponding
to the upper/lower part Wu

±(p) are crossed in the same order, respectively. We observe in panel (b) that this
order persists until the curves H0

+ and B0
+ and the curves H0

− and B0
− intersect at (Re(c), Im(c)) ≈ (1.31,±0.21).

Above/below this intersection, B0
± is crossed before H0

±.
Figure 17 shows the bifurcation diagram in the (Re(c), λ)-plane for a = 0.8 and Im(c) = 0.2. The line

λ = 0.8 corresponds to the line Im(c) = 0.2 in Figure 16. We show fewer curves than in Figure 15 for Im(c) = 0
to make the diagram easier to understand. Figure 17(a) shows the local bifurcations of p, q±, J0 and J1. The
curve FB0 corresponds to the “last” forward-backward critical tangency FB0 also occurring for Im(c) = 0 in
Figure 15(a) and λ = 0.8 in Figure 16(a). It is defined by the condition (1− λ)2 = Re(c)2 + Im(c)2. The curve
LP− (black) is the curve of fold bifurcations in Figure 17(a), at which p and q− disappear. For parameter values
(Re(c), λ) to the right of LP−, the fixed point q+ is the only fixed point of map (1). The curve LP− corresponds
to the curve PF of pitchfork bifurcations in Figure 15(a), which one could think of as fold bifurcations of q+
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and q− that occur at the same parameter values for Im(c) = 0 due to the additional symmetry. The two curves
NS+ and NS− (black) are the curves of Neimarck-Sacker bifurcations of q+ and q−, respectively. To the right
of NS±, the points q± are sinks and to the left, they are sources. The curves NS± correspond to the curve NS
in Figure 17(a), where the Neimarck-Sacker bifurcations of q+ and q− occur at the same parameter values due
to the symmetry. Similar to Figure 15(a), the curves FB0, LP− and NS+ end in the point OC at (

√
0.96, 0),

which is where λ = 0 on FB0. However, the curve NS− ends on LP−, at which q− disappears with p.
Figure 17(b) shows a global view of the (Re(c), λ)-plane of the local bifurcations from panel (a) together with

the global bifurcations of the sets W s(p), Wu
±(p) and J . The curves H0

± (magenta) and B0
± (red) in Figure 17(b)

are the first homoclinic and backward critical tangencies of the upper and lower sides Wu
±(p), respectively, for

Im(c) = 0.2. They correspond to the curves H0 and B0 in Figure 15(b) for Im(c) = 0. Our computations
indicate that these curves in Figure 17(b) end at different points on LP−, where q− and p disappear, rather
than at OC as in Figure 15(b). Therefore, for Im(c) = 0.2, the point OC is no longer an organizing center for
the global bifurcations in the (Re(c), λ)-plane.

Figure 17(c) shows an enlargement of the black box (Re(c), λ) ∈ [1.122, 1.178] × [0.717, 0.743] shown in
panel (b) to emphasize the change in order in which the bifurcations are crossed for decreasing Re(c) or increasing
λ. The curves H0

+ and B0
+ intersect at (Re(c), λ) ≈ (1.15, 0.73). This intersection plays the same role as the

intersection of H0
+ and B0

+ in Figure 16: for Im(c) = 0.2, decreasing Re(c) and fixed λ above this intersection,
H0

+ is crossed before B0
+ (as for Im(c) = 0 in Figure 15(c)), but below this intersection, one encounters B0

+

before H0
+ (as for (Re(c), Im(c)) above or below F∗

− and F∗
+ in Figure 16(c)).

Overall, we see that, for decreasing Re(c) in (Re(c), λ)-plane for Im(c) = 0.2, the upper and lower sidesWu
±(p)

and corresponding upper and lower parts of J + each undergo essentially the same sequences of bifurcations as
for Im(c) = 0, but the sequence involving Wu

+(p) and the upper part of J + starts before the sequence involving
Wu

−(p) and the lower part of J +.

5.3 Regions of wild chaos

Recall, that Bamón, Kiwi and Rivera-Letelier proved the existence of a wild Lorenz-like attractor in map (1)
for c = 1 and a, λ ∈ (0, 1) both sufficiently close to 1. In the bifurcation diagram in the (a, λ)-plane shown
in Figure 14(b), this corresponds to parameter values (a, λ) to the left of BP that are sufficiently close to
the bifurcation point LPBP at (a, λ) = (1, 1). In the proof, the authors make assumptions that restrict this
parameter regime to a very small neighborhood of LPBP. However, our numerical computations suggest that the
area of existence of this attractor extends to a much larger set of parameters, namely, to the open region bounded
by LP, B0 and λ = 1. For parameter values (a, λ) below the curve H0, the system is nonchaotic. Starting with
H0, the system undergoes an infinite sequence of homoclinic tangencies (including H1 and H2), accumulating on
each other as the parameter values (a, λ) are moved towards LPBP. Due to the homoclinic tangle caused by these
tangencies, the system becomes chaotic; this happens via the same mechanisms as in planar diffeomorphisms,
which are free of wild chaos. However, the map (1) also undergoes an infinite sequences of forward critical
tangencies (including Fk, k ∈ {8, 10, 12, 14, 16}). In fact, each of the infinitely many homoclinic tangencies is
accumulated by an infinite sequence of forward critical tangencies. These bifurcations lead to infinitely many
branches of W s(p) connecting up at each point in J−. This corresponds to a local change of W s(p) near each
point in J−. Therefore, forward critical tangencies do not affect the occurrence of homoclinic tangencies until
J− interacts with Wu(p) in the first backward critical tangency B0. For (a, λ) above B0, the system undergoes
infinite sequences of backward critical tangencies (including B1 and B2) and forward-backward critical tangencies
(including FB10) accumulating on each backward critical tangency. Therefore, immediately above B0, all four
types of tangency bifurcations occur. Since these tangency bifurcations are pairwise interactions of the four sets
W s(p), Wu(p), J + and J−, their occurrences influence one another. For example, forward critical tangencies
and backward critical tangencies influence the occurrence of homoclinic tangencies as described above. Overall,
we view the complicated accumulating structure of the four tangency bifurcations as the creating mechanism
of wild chaos. Therefore, we suggest that the regime of existence of the wild Lorenz-like attractor is the open
region bounded by the curves B0, LP, and λ = 1. The transition shown in Figures 6 and 12 is an example of
this sequence of bifurcations.

The same sequences of bifurcations occur in the (Re(c), λ)-plane shown in Figure 15(b) for a = 0.8 and
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Im(c) = 0 by moving (Re(c), λ) towards the bifurcation point FBF at (Re(c), λ) = (0, 1). Therefore, we suggest
that the regime of existence of the wild Lorenz-like attractor extends to parameters (Re(c), λ) inside the open
region bounded by B0, FB0 and λ = 1 in Figure 15.

As we have seen in Figures 16 and 17, for |Im(c)| sufficiently large and decreasing Re(c), one encounters
the first backward critical tangency B± of the upper/lower side Wu

±(p) of Wu(p) before the first homoclinic
tangency H0

±. Past H0
±, all four types of tangencies still occur in infinite sequences, which we see as evidence

that the regime of existence of the wild Lorenz-like attractor even extends to those values of Im(c). In the
case of the bifurcation diagram in the (Re(c), Im(c))-plane for a = 0.8 and λ = 0.8, shown in Figure 16(c),
this refers to the open annulus bounded by FB0 on the inside and the following curve segments on the outside:
the segment of LP− between the negative real line and the starting point of H0

+, the segment of H0
+ until its

intersection with B0
+, the segment of B0

+ until its intersection with B0
− on the real line, and the corresponding

complex conjugates of these curve segments. In the case of the bifurcation diagram in the (Re(c), λ)-plane
for a = 0.8 and Im(c) = 0.2, shown in Figure 17(b), this refers to the open region bounded by FB0, the line
segment {(0, λ) | 0.8 ≤ λ ≤ 1}, the line segment λ = 1 until its intersection with B0, the segment of B0 until its
intersection with H0, and H0 until the point OC= (

√
0.96, 0).

The curves FB0, B0, H0 and λ = 1 in Figures 14 and 15 correspond to two-dimensional surfaces in the
(Re(c), a, λ)-space with Im(c) = 0. Here, we expect the wild chaos to exist in the region bounded by FB0, B0

and λ = 1.
In the full (Re(c), Im(c), a, λ)-space, the bifurcations FB0, B0

±, H
0
±, LP± and λ = 1 form three-dimensional

hypersurfaces with the following properties: B0
+ and H0

+ intersect B0
− and H0

− in the two-dimensional surfaces
B0 and H0 at Im(c) = 0. The hypersurfaces LP− and LP+ only exist for Im(c) > 0 or Im(c) < 0, respectively,
and meet at the two-dimensional surface PF at Im(c) = 0. H0

± ends on LP∓ on one side. Also, B0
+ and B0

−
intersect H0

+ and H0
− in two-dimensional surfaces for Im(c) > 0 or Im(c) < 0, respectively. Therefore, we expect

the region of existence of wild chaos in (Re(c), Im(c), a, λ)-space to be bounded by the corresponding parts of
FB0, λ = 1, LP±, H0

± and B0
±.

5.4 Transition for Im(c) = 0.2

We discussed the transitions on the plane that occur when Re(c) is decreased in the (Re(c), Im(c))-plane in
Figure 16 and the (Re(c), λ)-plane in Figure 17 to illustrate the different transitions in the upper and lower
parts of Wu(p) and W s(p) when the conjugational symmetry is broken. Figure 18 shows p, q±, W s(p), Wu(p)
and J on the Poincaré disk for a = 0.8, λ = 0.8 and c = 1.32+ 0.2i, 1.315+ 0.2i, 1.311+ 0.2i and 1.3+ 0.2i in
panels (a)–(d), respectively; compare with Figures 11 and 12, which illustrate the sequences of bifurcations for
the case Im(c) = 0. Note that the primary manifold W s

0 (p) through p does not intersect the critical circle J1,
because the parameter values lie above the curve F∗

− in Figure 16. In this parameter range of Re(c), the lower
fixed point q− is still a sink, whereas the upper fixed point q+ has already turned into a source in the Neimarck-
Sacker bifurcation NS+. Panel (a) shows the situation at c = 1.32+0.2i just before the first homoclinic tangency
H0

+ of the upper side Wu
+(p) with W s(p). Panel (b) shows the situation at c = 1.315 + 0.2i just after H0

+, but
before the first backward critical tangency B0

+. Now, Wu
+(p) accumulates on itself and W s(p) accumulates on

itself from one side. Recall, that for Im(c) = 0, each homoclinic tangency implies an unstable tangency; see
Section 3.1. For Im(c) ̸= 0, however, the two sides Wu

+(p) and Wu
−(p) are not symmetric and, therefore, are in

general not tangent to W s
0 (p) at the same parameter values. Panel (c) shows the situation at c = 1.311 + 0.2i,

just before B0
+. The unstable set Wu(p) does not have any self-intersections yet. Panel (d) shows the sets at

c = 1.3+0.2i, that is, just after B0. Now, the upper side Wu
+(p) intersects itself in infinitely many loops around

circles in J +. The two sides Wu
+(p) and Wu

−(p) still do not intersect each other because there has not been an
unstable tangency.

We continue the series of global pictures on the Poincaré disk in Figure 19 where Re(c) is decreased further.
In this parameter range of Re(c), both fixed points q+ and q− have turned into sources; i.e. Re(c) lies to the
left of NS+ and NS−. Panel (a) shows the situation at c = 1.07+0.2i, just before the first homoclinic tangency
H0

− of the lower side Wu
−(p) with W s(p). This parameter value is after the first unstable tangency, at which

Wu
+(p) and Wu

−(p) are tangent for the first time. Panel (b) shows the situation at c = 1.05 + 0.2i, just after
H0

−, but before the first backward critical tangency B0
−. Now, Wu

−(p) accumulates on itself as well, so that
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(a) (b)

(c) (d)

Figure 18: The stable set W s(p) (blue curves), unstable set Wu(p) (red curve) and critical set J (green) on the
Poincaré disk for a = 0.8, λ = 0.8, at c = 1.32 + 0.2i (a), at c = 1.315 + 0.2i (b), at c = 1.311 + 0.2i (c) and at
c = 1.3 + 0.2i (d); compare with Figures 6, 12 and 17.

the entire unstable set Wu(p) accumulates on itself. Also, W s(p) now accumulates on itself from both sides.
Panel (c) shows the situation at c = 0.97 + 0.2i, just before B0

−. Note that the lower side Wu
−(p) does not have

any self-intersections yet. Panel (d) shows the sets at c = 0.89+0.2i, that is, just after B0
−. As expected, Wu

−(p)
forms loops around all circles in J + and intersects itself in infinitely many points, correspondingly.

Figure 20 shows the fixed point p and the sets W s(p), Wu(p) and J for a = 0.8, λ = 0.8 and c = 0.7+ 0.2i.
Comparing with Figure 13 for c ∈ R, we see that W s(p) and Wu(p) also accumulate on themselves and Wu(p)
and J + also form infinitely many loops around all circles in J +, but in Figure 20 the holes in the closure
of Wu(p) induced by the circles in J + are not symmetric, and have moved up along the upper side Wu

+(p).
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(a) (b)

(c) (d)

Figure 19: The stable set W s(p) (blue curves), unstable set Wu(p) (red curve) and critical set J (green) on the
Poincaré disk for a = 0.8, λ = 0.8, at c = 1.07 + 0.2i (a), at c = 1.05 + 0.2i (b), at c = 0.97 + 0.2i (c) and at
c = 0.89 + 0.2i (d); compare with Figures 6, 12, 17 and 18.

Furthermore, we note that the parameter values in Figure 20 lie above the curve F ∗
− in the bifurcation diagram

in Figure 16, so that the primary manifold W s
0 (p) spirals towards q

− without being connected to J0 (which is
obscured by J + and Wu(p) in Figure 20). Therefore, the preimages of W s

0 (p) spiral towards the preimages
of q− without being connected to points in J−; see, e.g., the spiraling branch of W s(p) underneath the first
intersection of Wu

+(p) and Wu
−(p) near the negative imaginary axis. As argued in Section 5.3, we believe that

the parameters values for Figure 20 lie in the wild chaotic parameter regime and, therefore, this figure illustrates
the geometry of wild chaos for c ∈ C\R in a similar fashion as Figure 13 shows the geometry of wild chaos for
c ∈ R.
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Figure 20: The fixed point p (black cross), its stable set W s(p) (blue curves), its unstable set Wu(p) (red curve)
and the critical set J (green) on the Poincaré disk for a = 0.8, λ = 0.8 and c = 0.7 + 0.2i; compare with
Figures 13, 18 and 19.

6 Role of the bifurcations in the formation of the wild Lorenz-like
attractor

In this section, we explain the construction of the Lorenz-like attractor in the n-dimensional vector field in [9],
for n ≥ 5. We then discuss how the tangency bifurcations in map (1) relate to bifurcations in this vector field.

6.1 Geometric Lorenz-attractor in R3

Let us first recall the classical construction of a Lorenz-like attractor in R3. An attractor of a three-dimensional
vector-field is called a geometric Lorenz-attractor if it has the following properties [3, 27]:

1. The attractor contains an equilibrium x that has two stable eigenvalues λ1 < λ2 < 0 and one unstable
eigenvalue λ3 > 0 such that λ3 > −λ2.

2. There is a two-dimensional Poincaré cross-section Σ, such that the two-dimensional Poincaré return map
f̂ defined on Σ\Ĵ0 is smooth. The curve Ĵ0 is the last intersection (in forward time) of the stable manifold
of x with Σ: Points on Ĵ0 go to x and do not return to Σ under the flow of the vector field.
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3. The Poincaré cross-section Σ admits a smooth stable invariant foliation that is uniformly contracted by f̂ .
The leaves of this foliation are curves, including Ĵ0, and the associated quotient space of Σ is a compact
interval I.

4. The two-dimensional invertible Poincaré return map f̂ can be reduced to a one-dimensional noninvertible
map f by taking the quotient map of f̂ acting on the quotient space I. The map f is smooth and uniformly
expanding on I\{J0} and it is discontinuous and has unbounded derivative at J0, where J0 := Ĵ0 ∩ I is
the critical point of f .

The Lorenz attractor itself is a geometric Lorenz attractor [54] and, as mentioned in the introduction, geometric
Lorenz attractors are typical attractors in three-dimensional vector fields [43].

6.2 Lorenz-like Construction of the Map

There is a trivial way to construct Lorenz-like attractors in any dimension by embedding a three-dimensional ge-
ometric Lorenz-attractor into a transversally contracting three-dimensional submanifold of a higher-dimensional
manifold. However, this construction leads to the same dynamical behavior as in the three-dimensional case.
Therefore, in order to obtain richer dynamical behavior, the unstable dimension of the singularity should be at
least two.

In [9], Bamón, Kiwi and Rivera-Letelier construct an attractor in an n-dimensional vector field, for n ≥ 5,
that has an equilibrium with unstable dimension two. Here, the idea is to create a higher-dimensional analogue
of the geometric Lorenz-attractor in dimension n ≥ 5: As in the three-dimensional construction, the equilibrium
x contained in the attractor has two stable eigenvalues λ1 < λ2 < 0 and one unstable eigenvalue λ3 > 0. But
here, the multiplicity of the unstable eigenvalue is two and the multiplicity of the strong stable eigenvalue is n−3.
Further, in addition to λ3 > −λ2, they require −λ1 > λ3. Correspondingly, the Poincaré cross-section Σ and the
Poincaré return map f̂ are (n− 1)-dimensional and the first intersection Ĵ0 of the stable manifold of x with Σ
is (n− 3)-dimensional. The uniformly contracting foliation on Σ\Ĵ0 now consists of (n− 3)-dimensional leaves.
The quotient space of Σ by the foliation in the n-dimensional construction in [9] is a compact two-dimensional

set B. As a consequence, the quotient map f of f̂ by this foliation is a two-dimensional noninvertible map
acting on B. This map is discontinuous and has unbounded derivative at the critical point J0 = Ĵ0 ∩B and it
is smooth and uniformly expanding on B\J0.

In [9] the authors construct a Lorenz-like attractor with these properties starting from the two-dimensional
noninvertible map f given by (1) for c = 1 and then extend it to an (n − 1)-dimensional diffeomorphism that
is contracting on the other n − 3 variables. In particular, for n > 5, this n-dimensional vector field is an
embedding of the five-dimensional vector field into a transversally contracting five-dimensional submanifold of
the n-dimensional space. Therefore, it is sufficient to study the properties of the Lorenz-like attractor for the
case n = 5, which we will do from now on.

The construction of the five-dimensional vector field from the map (1) is made as follows. The Poincaré
section Σ is defined as

Σ := B × D1(0),

where B := D2/(1−λ)(0), and Ĵ0 is given as

Ĵ0 := J0 × D1(0),

where J0 = {0} is the critical point of map (1). Then, the four-dimensional local diffeomorphism f̂ is defined as

f̂ : B\J0 × D1(0) → B × D1(0)

(z, w) 7→
(
f(z),

z

2|z|
+ β|z|b |z|

z
w

)
,

(8)

where f : B\J0 → B is given by map (1) for c = 1, a := −λ2/λ3 < 1, b := −λ1/λ3 > 1 and β > 0 is arbitrarily

small such that f̂ is well defined and injective. This definition of f̂ is a lift of the two-dimensional noninvertible
map f to a four-dimensional invertible map f̂ .
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The Poincaré section Σ = B × D1(0) is foliated by the foliation

{{z} × D1(0)}z∈B.

This foliation consists of two-dimensional leaves, including Ĵ0. By construction, the map f̂ is uniformly con-
tracting on this foliation. Furthermore, the quotient space of Σ by this foliation is the compact two-dimensional
set B and the map f : B\J0 → B defined by (1) is the quotient map of f̂ acting on the quotient space B.

To suspend the map f̂ to a vector field X, the authors of [9] first construct a vector field X̃ defined on
[−2, 3] × B × D1(0) that has an equilibrium x̃ with the eigenvalues λ1, λ2 and λ3 with multiplicities two, one

and two, respectively, as required above and that has f̂ as a Poincaré map. They then map X̃ to a vector field
X defined on the five-dimensional torus T5 := R/Z×D4, that has an equilibrium x with the same eigenvalues
and multiplicities as x̃; here, D4 is the four-dimensional closed unit ball in R4. Note that the fixed point p of
the map f does not correspond to the equilibrium x of the vector field X, but to a periodic orbit Γ of X; the
equilibrium x of X does not lie in the Poincaré section Σ.

6.3 Consequences of the tangency bifurcations for the vector field

We now explain the consequences of the bifurcations of the planar map (1) for the five-dimensional vector field
X. Let us first take a closer look at the meaning of the invariant sets of map (1) for the vector field X.

We denote the stable and unstable sets of the saddle fixed point p by W s
f (p) and Wu

f (p) to emphasize that
they belong to the two-dimensional noninvertible map f defined on B\J0.

The four-dimensional Poincaré return map f̂ has a corresponding saddle fixed point

p̂ :=

(
p,

1

2(1− β|p|b)

)
∈ (B\J0)× D1(0).

This fixed point p̂ has two eigenvalues given by the stable and unstable eigenvalues of p, and one additional
strong stable eigenvalue with multiplicity two. Therefore, it has a three-dimensional stable manifold W s

f̂
(p̂) and

a one-dimensional unstable manifold Wu
f̂
(p̂) in Σ. Note that these sets are immersed manifolds, because f̂ is a

diffeomorphism. The saddle p̂ of the four-dimensional map f̂ gives rise to a saddle periodic orbit Γ of the vector
field X, which has stable and unstable manifolds W s

X(Γ) and Wu
X(Γ) of dimensions four and two, respectively.

Therefore, for some smooth h : B → D, we get

W s
X(Γ) ∩ Σ = W s

f̂
(p̂) = W s

f (p)× D1(0) (9)

and Wu
X(Γ) ∩ Σ = Wu

f̂
(p̂) = {(z, h(z))|z ∈ Wu

f (p)}. (10)

The existence of the equilibrium x of X manifests itself through the forward and backward critical sets J +

and J− in the map f . Hence, for the five-dimensional vector field X, these sets also correspond to invariant
manifolds, namely, the stable and unstable manifolds of the equilibrium x of X, denoted W s

X(x) and Wu
X(x),

respectively. In particular, by construction, Ĵ0 = J0 × D1(0) is the last intersection of W s
X(x) with Σ before

W s
X(x) does not return to Σ under the flow of X. Consequently, the entire set of intersections of W s

X(x) with

Σ is given by the set of points on Σ that eventually do not return to Σ, i.e., all preimages of Ĵ0 under f̂ .
Analogously to the construction for f , we define this set as the backward critical set

Ĵ− := ∪k≥0f̂
−k(Ĵ0)

of the map f̂ . It can also be written as the product of the backward critical set J− of map (1) with the disk
D1(0), and so we get

W s
X(x) ∩ Σ = Ĵ− = J− × D1(0). (11)

The critical circle J1 of the two-dimensional map f given by (1) can be constructed as the multi-valued image
of the critical point J0, defined as the limit

J1 =
{
lim
r→0

f(reiφ) | φ ∈ [0, 2π)
}
=

{
(1− λ)ei2φ + 1 | φ ∈ [0, 2π)

}
.
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2D noninvertible map 4D invertible Poincaré map 5D vector field

f : B\J0 → B f̂ : B\J0 × D1(0) → B × D1(0) X : T5 → T5 constructed s.t.

z 7→ (1− λ+ λ|z|a)
(

z
|z|

)2

+ 1 (z, w) 7→
(
f(z), z

2|z| + β|z|b |z|z w
)

f̂ Poincaré map, x equilibrium

p saddle fixed point p̂ saddle fixed point Γ saddle periodic orbit
W s

f (p), of dimension one W s
f̂
(p̂), of dimension three W s

X(Γ), of dimension four

Wu
f (p), of dimension one Wu

f̂
(p̂), of dimension one Wu

X(Γ), of dimension two

x equilibrium

J−, isolated points Ĵ−, of dimension two W s
X(x), of dimension three

J +, of dimension one Ĵ +, of dimension one Wu
X(x), of dimension two

homoclinic tangency of p homoclinic tangency of p̂ homoclinic bifurcation of Γ
W s

f (p) ∩Wu
f (p) W s

f̂
(p̂) ∩Wu

f̂
(p̂) W s

X(Γ) ∩Wu
X(Γ)

forward critical tangency heteroclinic bifurcation of x to Γ

W s
f (p) ∩ J + W s

f̂
(p̂) ∩ Ĵ + W s

X(Γ) ∩Wu
X(x)

backward critical tangency heteroclinic bifurcation of Γ to x

Wu
f (p) ∩ J− Wu

f̂
(p̂) ∩ Ĵ− Wu

X(Γ) ∩W s
X(x)

forw. backw. critical tangency homoclinic bifurcation of x

J− ∩ J + Ĵ− ∩ Ĵ + W s
X(x) ∩Wu

X(x)

Table 1: Correspondences between the invariant sets of f , the invariant sets of f̂ and invariant manifolds of Γ
and x of X and the resulting correspondences between the tangency bifurcations of these sets.

In the same fashion, we can construct a set Ĵ1 as the limit

Ĵ1 :=
{
lim
r→0

f̂(reiφ, w) | φ ∈ [0, 2π), w ∈ D1(0)
}
=

{(
(1− λ)ei2φ + 1,

1

2
eiφ

) ∣∣∣∣ φ ∈ [0, 2π)

}
,

and think of it as the multi-valued image of the set Ĵ0. Just as Ĵ0 consists of all points that do not come back
to Σ, but end up at x ∈ X, we can think of Ĵ1 as the set of points that come from x and do not come back to
Σ under the inverse flow of the vector field X. Hence, the set Ĵ1 is the first intersection of the two-dimensional
unstable manifold Wu

X(x) of x with Σ. As before, the entire set of intersections of Wu
X(x) with Σ is given by

the set of points on Σ that eventually do not come back to Σ under the inverse flow; i.e., all images of Ĵ1 under
f̂ . Again, analogously to the construction for f , we define this set as the forward critical set

Ĵ + := ∪k≥0f̂
k(Ĵ1)

of the map f̂ . Hence, we get
Wu

X(x) ∩ Σ = Ĵ + ⊂ J + × D1(0). (12)

Note that Ĵ− is equal to J− ×D1(0) in (11), but Ĵ + is a proper subset of J + ×D1(0) in (12) by construction

of f̂ .
Table 1 summarizes the invariant manifolds and sets, along with their bifurcations that correspond to the

stable, unstable and critical sets of the fixed point p of the two-dimensional map f . As shown in the table,
the tangency bifurcations of these sets for the map f have the following consequences for the vector field X: A
homoclinic tangency between W s

f (p) and Wu
f (p) corresponds to a tangency of the manifolds W s

f̂
(p̂) and Wu

f̂
(p̂)

on the Poincaré section Σ. Hence, it corresponds to a homoclinic bifurcation of the stable manifold W s
X(Γ) and

the unstable manifold Wu
X(Γ) of the periodic orbit Γ in the five-dimensional vector field X; see equalities (9)

and (10). Similarly, a forward-backward critical tangency between a point in J− and a circle in J + corresponds
to a homoclinic tangency between the stable and unstable manifolds W s

X(x) and Wu
X(x) of the equilibrium x;

see equalities (11) and (12). In the same manner, a forward critical tangency of a circle in J + and W s
f (p) on
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the plane leads to the birth of a heteroclinic orbit that connects from x to Γ in the five-dimensional vector field
X; see equalities (12) and (9); and, a backward critical tangency of a point in J− and Wu

f (p) corresponds to
the birth of an heteroclinic orbit that connects from Γ to x; see equalities (11) and (10).

Note that the unstable tangency, that is, a tangency of Wu
f (p) with itself, does not correspond to a tangency

of Wu
f̂
(p̂) with itself in Σ. The unstable sets Wu

f (p) ⊂ B and Wu
f̂
(p̂) ⊂ Σ are both one-dimensional, but Wu

f̂
(p̂)

is an immersed manifold and, therefore, cannot have self-intersections. Hence, the self-tangency of Wu
f (p) only

occurs in the projection of Σ onto B along the uniformly contracted foliation, and has no meaning for the
four-dimensional diffeomorphism f̂ or the five-dimensional vector field X.

In Section 5.3, we identified infinite accumulating sequences of homoclinic, forward critical, backward critical
and forward-backward critical tangencies as the creating mechanism of wild chaos in map (1). For the vector
field X, they correspond to the birth of infinitely many coexisting homoclinic and heteroclinic orbits connecting
x and Γ with each other and themselves.

7 Conclusions

In this paper, we investigated the transition to wild chaos in the dynamics of the two-dimensional noninvertible
map (1). The authors of [9] proved the existence of wild chaos in the noninvertible map f given by (1) for
parameters c = 1 and a, λ ∈ (0, 1) sufficiently close to (a, λ) = (1, 1). The saddle point p lies in the hyperbolic
set that becomes wild when the parameters are moved into this regime. Therefore, the homoclinic tangencies
of the stable and unstable sets of p indicate how the wild chaos appears geometrically. We have discovered,
that these homoclinic tangencies are deeply intertwined with three other types of tangency bifurcations of the
map, namely, the forward critical, backward critical and forward-backward critical bifurcations (Sections 3 and
4). All four types of tangency bifurcations appear in infinite sequences that accumulate on each other. First,
there is an initial sequence of bifurcations that starts with a first homoclinic tangency and consists of an infinite
sequence of homoclinic and an infinite sequence of forward critical tangencies accumulating on each homoclinic
tangency. Then, in addition, there is a subsequent sequence of bifurcations that starts with a backward critical
tangency and consists of an infinite sequence of backward critical and an infinite sequence of forward-backward
critical tangencies accumulating on each backward critical tangency.

By following the bifurcations in two parameters, we find essentially the same bifurcation structure for
a, λ ∈ (0, 1) and c ∈ C when the parameters are moved towards a = 1, λ = 1 and c = 0 and, therefore, we see it
as the generating mechanism of wild chaos in this map. Our numerical calculations suggest that the parameter
region of wild chaos in the four-dimensional (Re(c), Im(c), a, λ)-space is bounded by parts of the hypersurfaces
of ”last“ forward backward critical tangencies, first backward critical tangencies, first homoclinic tangencies,
fold bifurcations and λ = 1. In [9], the authors impose strong assumptions on the parameter regime to prove
the existence of wild chaos in map (1), which means that their proof only guarantees wild chaos in a very small
parameter region near the point (a, λ, c) = (1, 1, 1). Our results indicate that the geometric ingredients, which
we believe are sufficient for existence of wild chaos, are present in a much larger parameter region.

The stable and unstable sets of the fixed point p of the map correspond to stable and unstable manifolds
of the periodic orbit Γ of the underlying five-dimensional vector field X. The forward and backward critical
sets correspond to stable and unstable manifolds of the equilibrium x of X. Therefore, the homoclinic, forward
critical, backward critical and forward-backward critical tangencies of the map correspond to homoclinic and
heteroclinic bifurcations of x and Γ in the vector fieldX, respectively. In particular, in the wild chaotic parameter
regime, infinitely many homoclinic orbits of x and Γ and infinitely many heteroclinic cycles between x and Γ
are born that accumulate on each other. Since x and Γ lie in the wild hyperbolic set, these bifurcations are
characteristic for the bifurcations of the stable and unstable manifolds of the entire hyperbolic set. Therefore,
we believe that these infinitely many homoclinic tangencies of the hyperbolic set accumulate on each other in
such a dense way, that they are robust.

In future work, we plan to investigate if the regime of existence of the wild Lorenz-like attractor extends to
other parameter regimes of the map; e.g., near a = 2 and λ = 1, where (1) is the quadratic map z 7→ z2 + c.
Furthermore, we want to find out if map (1) admits (robust) heterodimensional cycles, e.g. between the fixed
points q± and the saddle point p, and how they relate to the robust homoclinic tangencies in this map.
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A Numerical Methods

In this section we explain the numerical methods we use for computing the stable and unstable sets W s(p) and
Wu(p) and how we adapt the methods for finding and continuing homoclinic tangencies in two parameters to
find and continue the forward critical, backward critical and forward-backward critical tangencies.

A.1 Computation of the Stable and the Unstable Set

The stable and unstable sets of the map (1) do not admit an analytical expression. Hence, we compute them
numerically. For the computation of the unstable set Wu(p) we use the method proposed in [34] for calculating
one-dimensional (un)stable manifolds. This method has been implemented in the DsTool environment [8, 18, 35].
Each side ofWu(p) is approximated by a piecewise-linear approximation Lin(p, z1, . . . , zN ) given by line segments
between consecutive points of (p, z1, . . . , zN ), which are obtained in the following way. The first two points are
the saddle fixed point p and a point z1 in its unstable eigenspace at some small distance δ0 from p. If the
points (p, z1, . . . , zk), k ≥ 1, in the approximation of Wu(p) have already been calculated, the next point zk+1

is taken at distance δk from zk such that zk+1 = f(z) for some z ∈ Lin(p, z1, . . . , zk). If the angle between the
points zk−1, zk and zk+1 satisfies a certain angle condition, the point zk+1 is accepted. Otherwise, this step is
repeated for a smaller value of δk, to ensure an appropriate representation of the manifold where Wu(p) has
large curvature.

For diffeomorphisms the stable manifold can be computed with the same algorithm by computing the
unstable manifold of the inverse map. Unfortunately, this does not work for the stable set W s(p) of map (1),
because the map has no unique inverse and W s(p) consists of infinitely many branches. However, we can define
a local inverse f−1

loc near the saddle point p of (1), such that f−1
loc (p) = p. This will be one of the two preimages

f−1
0 or f−1

1 defined in (6). We then use DsTool to calculate the primary manifold W s
0 (p) of f as the unstable

manifold of f−1
loc .

In order to compute the remainder of the stable set W s(p) from the primary manifold W s
0 (p), we make use

of the fact that we know the two inverse maps f−1
0 and f−1

1 explicitly; see equation (6). The preimages of
W s

0 (p) build up the entire stable set W s(p). If Im(c) is such that W s
0 (p) does not intersect the critical circle

J1, we approximate the stable set directly by taking all preimages of W s
0 (p) up to a certain order. However, if

we used this method for the case that W s
0 (p) intersects J1, we would recalculate parts of the primary manifold

in each step. Therefore, we take the preimages of −W s
0 (p) ∪ WJ0J1

instead, where −W s
0 (p) is the symmetric

counterpart of the primary manifold in the left-half plane and WJ0J1 is the segment of W s
0 (p) that connects the

critical point J0 to the critical circle J1. The union of these preimages (together with W s
0 (p)) also make up the

entire stable set W s(p), and each part is calculated only once.
Let W0 be an approximation of W s

0 (p) or −W s
0 (p) ∪ WJ0J1 depending on Im(c), as calculated with the

method in [34]. Furthermore, assume that W0,W−1, . . . ,W−k, where W−j is an approximation of f−1(W−(j−1))
for 1 ≤ j ≤ k, have already been calculated. Note that W−j consists of the approximations of 2j curve segments.
The next preimage approximation W−(k+1) is taken as the two preimages f−1

0 (W−k) ∪ f−1
1 (W−k) of W−k. We

accept W−(k+1) if the angles between three consecutive points satisfy certain conditions. Otherwise, we add
points to W−k using interpolation and recalculate W−(k+1). This step is repeated a couple of times, if necessary.
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A.2 Numerical continuation of the critical tangency bifurcations

In order to detect and continue the tangency bifurcations, we start by transforming the map (1) to a map
f : R2\(0, 0)×A → R2 with real coordinates, that is, for z = (x, y) and α = (λ, a,Re(c), Im(c)),

f(z, α) :=

(
(1− λ+ λ

√
x2 + y2

a
)
x2 − y2

x2 + y2
+Re(c), (1− λ+ λ

√
x2 + y2

a
)

2xy

x2 + y2
+ Im(c)

)
.

The homoclinic tangency: Let p = p(α) be the corresponding saddle fixed point of f with f(p(α), α) = p(α).
Recall that ẑ is a homoclinic point for p if it converges to p under forward iteration of f and has a sequence of
preimages converging to p; i.e, limn→∞ fn(ẑ) = p and there is a sequence {ẑk}k≥0 with ẑ0 = ẑ, ẑn = f(ẑn+1)
for n ≥ 0 and limn→∞ ẑn = p. The corresponding homoclinic orbit is then given as {ẑk}k≥0 ∪ {fk(ẑ)}k≥1.
Following the method suggested by Beyn and Kleinkauf in [10], this homoclinic orbit can be approximated by a
finite orbit segment {z1, . . . , zN} that, together with the saddle fixed point z0 := p, satisfies the boundary value
problem:

f(z0, α)− z0 = 0 (fixed point condition), (13)

f(zk, α)− zk+1 = 0, k = 1, . . . , N − 1 (orbit condition), (14)

(z1 − z0)q
T
u = 0 (left boundary condition), (15)

(zN − z0)q
T
s = 0 (right boundary condition). (16)

Here, qs and qu are the stable and the unstable eigenvector of the saddle point z0, respectively. For Z =
(z0, z1, . . . , zN , α), let FH(Z,α) be the left-hand side of the boundary value problem (13)–(16) such that the
problem is equivalent to solving FH(Z,α) = 0. A regular solution of this equation corresponds to a transversal
homoclinic orbit and, therefore, can be continued in one parameter. At a homoclinic tangency, however, the
solution additionally satisfies the rank 1 deficiency condition

det(DZF
H(Z,α)) = 0 (tangency condition). (17)

The boundary value problem (13)–(17) consists of 2N+3 equations with 2(N+1) unknowns, namely, z0, z1, . . . , zN .
Therefore, continuation in two parameters gives us a one-dimensional branch of solutions. The detection
and continuation of homoclinic tangencies with this method is implemented in the Matlab software package
Cl MatContM [15, 22, 25]. Here, the initial segments of manifold to detect a transversal homoclinic points as
their intersection points are computed with the method from [34]. These homoclinic points are then used as
seeds in Newtons method to get an initial solution of (13)–(16). This solution can be followed in one parameter
until (17) is satisfied to get an initial solution of (13)–(17).

We adapt the boundary value problem (13)–(17) and the corresponding Cl MatContM code to continue in
two parameters also the forward critical, backward critical, forward-backward critical and unstable tangencies
that we found in map (1). To this end, we keep the fixed point condition (13) and the orbit condition (14), but
change the boundary and tangency conditions (15), (16) and (17).

The forward critical tangency: In the forward critical tangency, the stable set W s(p) is tangent to the critical
circle J1 = ∂D1−λ(c), so the boundary value problem to follow it in two parameters becomes

f(z0, α)− z0 = 0 (fixed point condition), (18)

f(zk, α)− zk+1 = 0, k = 1, . . . , N − 1 (orbit condition), (19)

||z1 − c|| − 1 + λ = 0 (left boundary condition), (20)

(zN − z0)q
T
s = 0 (right boundary condition), (21)

det(DZF
F (Z,α)) = 0 (tangency condition).. (22)

Here, FF (Z,α) is the left-hand side of (18)–(21). An initial solution of (18)–(22) can be found by using an
intersection point of J1 and W s(p) as an initial solution of (18)–(21) and following it in one parameter until
(22) is satisfied.
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The backward critical tangency: In the backward critical tangency, the critical point J0 = {0} lies on the
unstable set Wu(p), so there are two boundary conditions, but no tangency condition. The boundary value
problem is

f(z0, α)− z0 = 0 (fixed point condition), (23)

f(zk, α)− zk+1 = 0, k = 1, . . . , N − 1 (orbit condition), (24)

(z1 − z0)q
T
u = 0 (left boundary condition), (25)

zN = 0 (right boundary condition). (26)

Recall that zN ∈ R2, so that the right boundary condition (26) is a two-dimensional equation. Therefore, this
boundary value problem (23)–(26) consists of 2N + 3 equations with 2(N + 1) unknowns as before. An initial
solution can be found by using the point on Wu(p) closest to J0 and a sequence of its preimages on Wu(p) as
a seed for Newtons method.

The forward-backward critical tangency: In the forward-backward critical tangency, an iterate of the critical
point J0 = {0} lies on the critical circle J1. Again, there is no tangency condition, but two boundary conditions
of which the right boundary condition is a two-dimensional equation. The boundary value problem becomes:

f(z0, α)− z0 = 0 (fixed point condition) (27)

f(zk, α)− zk+1 = 0, k = 1, . . . , N − 1 (orbit condition) (28)

||z1 − c|| − 1 + λ = 0 (left boundary condition) (29)

zN = 0 (right boundary condition). (30)

An initial solution can be found in the same manner as for the case of a backward critical tangency, by starting
on a circle Jk ∈ J + instead of on Wu(p).
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