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Abstract

A mixed-mode oscillation (MMO) is a complex waveform with a pattern of alternating small-
amplitude oscillations (SAOs) and large-amplitude oscillations (LAOs). MMOs have been observed
experimentally in many physical and biological applications, but most notably in chemical reactions.
We are interested in MMOs of an autocatalytic chemical reaction that can be modeled by a system
of three ordinary differential equations with one fast and two slow variables. This difference in
time scales provides a mechanism for generating small and large oscillations. Provided the time-
scale ratio ε is sufficiently small, Geometric Singular Perturbation Theory predicts the existence
of two-dimensional locally invariant manifolds called slow manifolds. Slow manifolds and their
intersections, which occur along so-called canard orbits, give great insight into the mechanisms for
generating SAOs. The mechanisms for LAOs are less well understood and involve analysis of the
global dynamics. We study the autocatalytic reaction model in a parameter regime with ε relatively
large and observe very complex behavior. We find that for larger values of ε, the structure of the
slow manifolds is more intricate than what is predicted by the theory for sufficiently small ε. Canard
orbits in this parameter regime are organized in pairs that have the same number of SAOs. Our
results suggest a mechanism where SAOs transform into LAOs and change the geometry of global
returns in MMOs.
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1 Introduction
A trajectory that exhibits a combination of small-amplitude oscillations (SAOs) and large-
amplitude oscillations (LAOs) is called a mixed-mode oscillation (MMO) [9]. Such oscilla-
tions have been observed in many applications, including semiconductor lasers [2, 27], neuron
models [14, 19, 28, 40] and chemical reactions [24, 35, 36]. Fig. 1 shows two examples of
periodic MMOs that are generated by the model studied in this paper; see already sys-
tem Eq. (1). Panel (a) shows an MMO with one LAO and four SAOs, and panel (b) shows
an MMO with one LAO followed by one SAO, another LAO, and then two SAOs. One says
that the signature of the MMO in panel (a) is 14, and that of the MMO in panel (b) is 1112.
Generally, a periodic MMO with signature L1

s1L2
s2 ..., consists of L1 LAOs, s1 SAOs, L2

LAOs, s2 SAOs and so on.
We are interested in MMOs that arise in systems with multiple time scales, more specifi-

cally, in systems with one fast and two slow variables. MMOs in such slow-fast systems have
been widely investigated in recent years; see the recent survey [9]. Geometric Singular Per-
turbation Theory (GSPT) exploits the separation of different time scales in order to explain
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Figure 1: Two different periodic MMOs for system Eq. (1), with time series of signature 14

for µ = 0.295 (a) and of signature 1112 for µ = 0.2975 (b).

the complex dynamics of slow-fast systems [4, 5, 7, 15, 25, 42, 44]. The approach taken is
geometric in nature and goes back to work by Fenichel [15] from 1979. Fenichel proved the
existence of slow manifolds as perturbations of the so-called critical manifold, which exists in
the singular limit as the time-scale ratio ε goes to 0; here it is assumed that ε is sufficiently
small. In systems with one fast and two slow variables, slow manifolds are locally invariant
two-dimensional manifolds that can be either attracting or repelling. Their intersections are
called canard orbits. A considerable amount of analysis of canard orbits has been performed,
e.g., in [7, 42, 44], and numerical methods to compute slow manifolds and their intersections
have been developed in [10, 11, 12]. The upshot is that mechanisms for generating SAOs can
be explained with methods from GSPT, but the mechanisms for LAOs need further analysis;
see also [9] as an entry point to the literature.

The focus of this paper is a prototypical model of an autocatalytic chemical reaction that
features one fast and two slow variables. This model was first introduced by Petrov, Scott,
and Showalter [36] as an extension of the classical two-dimensional autocatalator [16, 32].
Initial studies reported on the existence of chaotic dynamics, but the oscillations in this
system were later identified as MMOs [33, 34]. The underlying mechanisms for generating
the SAOs in the autocatalator model and their parameter dependence have also been studied
further in [22]. We are particularly interested in the autocatalator system because its critical
manifold has an unusual shape that does not provide an obvious explanation of how LAOs
are generated. Our goal is to study the transitions from SAOs to LAOs and explain in more
detail the geometry underlying the dependence of the MMO signature on parameters. The
autocatalator system is given by

ȧ = ε (µ (κ+ c)− a b2 − a),
ḃ = a b2 + a− b,
ċ = ε (b− c),

(1)

where we use the same notation as in [22]. The variables a, b, c ∈ R+ represent dimensionless
concentrations of abstract chemical reactants. The model is called the autocatalator because
the catalyst of the reaction, the substance b in Eq. (1), is also a product of the reaction;
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a catalyst is a substance that increases the rate of the chemical reaction without under-
going any permanent chemical change. The main bifurcation parameter µ > 0 represents
the dimensionless constant concentration of the so-called pool chemical species [38] and κ
represents the constant rate of the initiation reaction. The parameter ε is the time-scale
ratio that is chosen to have small positive values (0 < ε � 1); this implies that b is a fast
variable, and a and c are slow variables.

Milik and Szmolyan [33, 34] studied system Eq. (1) with κ = 2.5 and ε = 0.01, and we
use the same parameter values, except in Section 4 where we vary ε. They used GSPT and
blow-up techniques to prove the existence of canard orbits in Eq. (1) in the neighborhood of
a so-called folded singularity located on the curve along which the repelling and attracting
sheets of the critical manifold meet. Guckenheimer and Scheper [22] studied system Eq. (1) in
the same parameter regime. They investigated the transitions between MMOs as µ is varied
by constructing an induced return map defined on a one-dimensional domain near the folded
singularity; they found that this map captures the dynamics of the system qualitatively as
well as quantitatively.

We complement the previous studies by elucidating the local and global geometric mech-
anism for the observed MMOs in the three-dimensional phase space of system Eq. (1). The
novelty of our research is that we study the geometry of the interaction of two-dimensional
slow manifolds globally in phase space. Hence, we consider the canard orbits as part of
trajectories that may involve both slow and fast epochs. As a consequence, we find that
the time-scale ratio ε = 0.01 is too large for a straightforward application of known results
from GSPT; in particular, we find many more canard orbits than predicted by GSPT for
small ε. To understand the underlying geometric structure of the slow manifolds and canard
orbits, we use advanced numerical methods that are based on a boundary value problem
setup [10, 11, 12]. Our computations indicate that slow manifolds and canard orbits still
generate a mechanism for SAOs, but we also observe complex behavior that does not appear
for sufficiently small ε. In particular, we find that canard orbits are organized in pairs that
exhibit the same number of SAOs. We call such paired canard orbits twin canard orbits.
We also observe that twin canard orbits divide the attracting slow manifold into separate
regions that we call ribbons. Their significance is that all orbits on a ribbon have the same
number of SAOs; moreover, in between ribbons with successively larger numbers of SAOs,
we find further ribbons with more complicated signatures.

We present a new computational setup that enables us to detect all possible canard
orbits in a systematic way. In contrast to the standard approach of detecting intersections
between the repelling and attracting slow manifolds in a section near the folded singularity,
we compute orbit segments on the attracting slow manifold up to a section that lies far
away from the singularity and is transverse to the critical manifold; far away from the folded
singularity, the critical manifold is a good approximation of the repelling slow manifold, so
that the canard orbits are easily identified as those orbit segments that end on the critical
manifold. Far away from the folded singularity, it is also possible to choose the section such
that it is transverse to the flow locally near the critical manifold. This means that each
canard orbit is uniquely identified by its intersection point with the critical manifold.

It is straightforward to distinguish SAOs from LAOs in Fig. 1. However, there is no
standard criterion for determining whether the amplitude of a given oscillation is small or
large. Therefore, we introduce a practical heuristic criterion to distinguish between SAOs
and LAOs. We continue the canard orbits in ε in order to understand the mechanism behind
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the termination of twin canard orbits and the transitions between different MMO signatures,
that is, transitions from SAOs to LAOs. The continuation of canard orbits in ε has been
demonstrated for two other models [12, 20]. In this paper, we show that the overall structure
of the continuation of canard orbits of the autocatalator Eq. (1) is very complicated. Certain
canard orbits can be continued towards the limit of ε = 0, and we find that these have the
properties that are predicted by the known theory of folded singularities. When continuing
canard orbits in the other direction, we encounter fold bifurcations that give rise to twin
canard orbits; such fold bifurcations correspond to (generic) quadratic tangencies between
the attracting and repelling slow manifolds. We illustrate this type of tangency in the
combined phase and parameter space.

This paper is organized as follows. Section 2 briefly reviews earlier findings for sys-
tem Eq. (1) and then presents further analysis of the system. We start with the bifurcation
diagram, which shows the transitions between different signatures of MMOs as µ varies.
This is followed by a short review of GSPT with regard to system Eq. (1). In Section 3,
we present numerical results that reveal very complex objects which do not exist near the
limit of ε = 0. We construct a flow map in order to detect all canard orbits and capture
the global aspects of the dynamics. Section 4 gives details about the mechanism for termi-
nation/creation of twin canard orbits. We perform parameter continuation of the canard
orbits and show how twin canard orbits terminate at fold bifurcations. The mechanism for
this bifurcation is explained with a geometric illustration of how the attracting and repelling
slow manifolds interact in parameter space. Section 5 summarizes the main findings of the
paper and presents directions for future work.

2 Background on the autocatalator
We begin our analysis with exploring the bifurcation diagram of system Eq. (1) as µ is varied.
Figure 2 shows the L2-norm of equilibria (black curve) and periodic orbits (colored curves)
versus µ; solid and dashed curves indicate stable and unstable branches, respectively. Note
that there exists a single equilibrium for all values of µ. For 0 < µ < 0.290510, the equilibrium
is stable. It undergoes a supercritical Hopf bifurcation (HB1) at µ ≈ 0.290510 and becomes
unstable before regaining stability at another supercritical Hopf bifurcation (HB2) at µ ≈
0.796836. In Fig. 2(a), a primary branch of stable periodic orbits (blue) emanates from HB1
and terminates at HB2. The primary branch increases rapidly in amplitude in the short
interval (0.2940, 0.3004). The sharp gain in amplitude is due to the phenomenon of canard
explosion, which indicates that HB1 is a so-called singular Hopf bifurcation [6, 17]. We are
mainly interested in this parameter interval since it features mixed-mode oscillations (MMOs)
and canard orbits. Figure 2(b) shows an enlargement for µ ∈ (0.2937, 0.3008) where periodic
MMOs with different signatures coexist with the primary branch. The primary branch goes
through period-doubling bifurcations at µ ≈ 0.294449 and µ ≈ 0.300405; hence, it appears
dashed in the interval µ ∈ (0.294449, 0.300405). The first stable segment for 0.290510 <
µ < 0.294449, is labeled 01 because the corresponding periodic orbit has oscillations of small
amplitude only. The other stable segment, for 0.300405 < µ < 0.3008 is labeled 10 because
the corresponding periodic orbit has oscillations of large amplitude only. The branch that
emanates from the period-doubling bifurcations represents MMOs with signature 11 (cyan).
There are twelve different types of MMOs that lie on isolated closed branches (isolas) of
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Figure 2: One-parameter bifurcation diagram of system Eq. (1) showing the L2-norm
versus µ. The black curve is the branch of equilibria and colored curves are branches of
periodic orbits; the curves are solid when stable and dashed when unstable. Panel (b) is
an enlargement near HB1 that shows more branches which represent MMOs with different
signatures.

periodic orbits. These isolas are alternately colored green, purple and red. Note that the top
part of each branch is stable. Each isola goes through a number of saddle-node bifurcations
of periodic orbits and period-doubling bifurcations. Therefore, different types of stabilities
can be found along these isolas. Bistability can be found for some parameter values. For
increasing values of µ, the number of large-amplitude oscillations (LAOs) increases and
the number of small-amplitude (SAOs) decreases. Note that the signatures of the small
branches labeled 121111, 2111 and 1213 are combinations of signatures of the neighboring
branches [31, 43]. Stable branches of this bifurcation diagram were computed in [22] by
continuing an approximated return map; we found two more branches, namely, 121111 and
1213. We also show the unstable branches that organize the different MMOs into overlapping
isolas. Moreover, our calculations concern the actual periodic orbits of the full system Eq. (1).

The occurrence of SAOs in these periodic orbits can be explained by GSPT [15, 25, 42, 44].
We briefly review this theory here, where we use the stable MMO with signature 14 for
µ = 0.295 as a representative example; this MMO is denoted Γ.

First, the fast subsystem of system Eq. (1) is obtained by taking the limit as ε → 0,
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which gives 
ȧ = 0,
ḃ = a b2 + a− b,
ċ = 0.

(2)

Here, the slow variables a and c take the role of bifurcation parameters, and the dynam-
ics is determined by the one-dimensional differential equation of the fast variable b. The
equilibrium points of the fast subsystem define the critical manifold:

S :=
{

(a, b, c) ∈ R3
+

∣∣∣∣∣ a = b

b2 + 1

}
,

which is a two-dimensional surface in R3. Note that S does not depend on c. The value of a
is maximal when b = 1. Hence, S has two sheets, separated by the one-dimensional fold line

F :=
{

(a, b, c) ∈ R3
+

∣∣∣ b = 1, and a = 0.5
}
.

The critical manifold, or a submanifold of S, is normally hyperbolic if each point on it
corresponds to a hyperbolic equilibrium of the fast subsystem Eq. (2). We identify two such
normally hyperbolic submanifolds; the attracting sheet

Sa := S ∩ {0 < b < 1} , (3)

and the repelling sheet
Sr := S ∩ {b > 1} . (4)

The dynamics of the slow variables is obtained by taking the limit as ε→ 0 after a time
rescaling t 7→ ε t, which gives 

ȧ = µ (κ+ c)− a b2 − a,
0 = a b2 + a− b,
ċ = b− c,

where the differentiation is now with respect to the rescaled time. This is a system of
differential algebraic equations that can be reduced to an explicit two-dimensional system
on the critical manifold S in terms of the variables b and c. The equation for b is obtained
via implicit differentiation of the algebraic equation, which is actually the equation for S.
Hence, we have {

−(2 a b− 1) ḃ = (b2 + 1) (µ (κ+ c)− a b2 − a),
ċ = b− c, (5)

where a = b/(b2 + 1). System Eq. (5) is called the reduced system. It is singular when
2 a b − 1 = 0, which is precisely when S has a fold with respect to the fast variable b. We
desingularize system Eq. (5) via a non-constant time rescaling t 7→ −(2 a b−1)−1t and obtain
the desingularized reduced system{

ḃ = (b2 + 1) (µ (κ+ c)− a b2 − a),
ċ = (−2 a b+ 1) (b− c), (6)
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with a = b/(b2 + 1), as before. The effect of the desingularization is that the direction of
the flow is reversed on the repelling sheet Sr of S. Equilibria of system Eq. (6) that lie
on the fold F of S are folded singularities; they are not equilibria of system Eq. (5). The
(strong) stable manifold of such an equilibrium of system Eq. (6), if it exists, corresponds to
a solution of system Eq. (5) that crosses from the attracting sheet Sa to the repelling sheet
Sr; this solution is called the (strong) singular canard.

The term singular canard refers to a trajectory that crosses from Sa to Sr in the singular
limit ε = 0. Singular canards give rise to a family of canard orbits for ε > 0 [4, 5], which are
referred to as maximal canards in the literature and defined as the intersections between an
attracting and a repelling slow manifold [42, 44]. We prefer the term canard orbit, because
the term canards is generally reserved specifically for periodic orbits; see also [9].

For the remainder of the paper we consider Eq. (1) in the equivalent form
ȧ = ε (µ (κ+ c)− 102Ba− a),
Ḃ = (10Ba+ a 10−B − 1)/ ln(10),
ċ = ε (10B − c).

(7)

where we use B = log(b) with base 10; this rescaling was also used in [22] to show the time
series of the autocatalator. There are several advantages for using the rescaling B = log(b).
First, it makes it more convenient to visualize the dynamics and allows for nicer presentations
of manifolds. Moreover, this rescaling is very practical for computations because the variables
a, B and c have about the same magnitude; this improves the stability of the computations.
Note that the scaling does not have any influence on the qualitative nature of the phase
portraits and, hence, on the location of bifurcations.

Figure 3 shows the critical manifold S (gray folded surface), which is divided by the fold
line F into attracting and repelling sheets, Sa and Sr, respectively. Overlaid is the stable pe-
riodic orbit Γ (black) with its single LAO and four SAOs. The mechanism for SAOs of Γ is ex-
plained with GSPT by relating the dynamics of system Eq. (1) to the reduced system Eq. (5)
and the corresponding desingularized system Eq. (6). For µ = 0.295, the desingularized sys-
tem Eq. (6) has an attracting equilibrium p := {(a, b, c) | a = 0.5, b = 1, c = 0.88983}, called
a folded node, which lies on F . The strong stable manifold of p is the strong singular canard
ξs, which is the green curve on Sa in Fig. 3. The folded node p (green dot) is located at
the intersection of ξs and F . GSPT predicts that SAOs arise from the fact that the periodic
orbit lands on Sa in the so-called funnel region, which is defined as the (smaller) wedge on
Sa bounded by ξs and F . For sufficiently small ε, the distance from ξs at which the MMO
lands on Sa in the funnel region determines the exact number of SAOs. However, Γ in Fig. 3
lands on Sa far to the right of the funnel region and does not appear to interact with p at all.
We conclude that ε = 0.01 is too large for applying known results from GSPT to predict the
number of SAOs of Γ. Hence, there must be another mechanism that organizes the SAOs of
Γ.

To understand the mechanism for generating SAOs for (the larger value) ε = 0.01, we
perform computations of slow manifolds. According to Fenichel’s theorem [15, 25], a normally
hyperbolic submanifold of S perturbs, under a sufficiently small perturbation ε > 0, to a
slow manifold with the same smoothness and stability properties. Hence, there exist locally
invariant perturbations of Sa and Sr, namely, attracting and repelling slow manifolds Saε
and Srε , respectively. We use a boundary value problem setup, implemented in AUTO [13],
to compute these slow manifolds; see [10, 11, 26] for more details. Each slow manifold is
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Figure 3: The periodic orbit Γ (black) with signature 14 plotted with the critical manifold
(gray) and the slow manifolds for system Eq. (1) with µ = 0.295. The attracting sheet
Sa and the repelling sheet Sr of the critical manifold meet at the fold F (gray line). The
attracting slow manifold Saε (red) and repelling slow manifold Srε (blue) are computed from
La and Lr, respectively, up to the planar section Σ1. The orbit ξs (green curve) is the strong
singular canard and intersects F at the folded node p (green dot).

represented as a family of orbit segments that start on a line on S far away from F and end
at a planar section transverse to F . Fenichel theory does not apply in the vicinity of F ⊆ S,
but the slow manifolds extend under the flow as manifolds, and typically spiral around F
(more specifically, around the weak eigendirection of p) [10, 42].

Figure 3 also illustrates the setup for computing the slow manifolds Saε (red surface)
and Srε (blue surface). Both manifolds are computed as families of orbit segments that end
in the planar section Σ1 := {(a,B, c) | c = 1} (green) transverse to F . The section Σ1 is
chosen further to the right of p so that we can detect as many canard orbits as possible. The
attracting slow manifold Saε starts on the line segment

La := {(a,B, c) | a = 0.0799375, B = −1.094447} ⊆ Sa,

which is chosen parallel to F such that Γ∩La 6= ∅, that is, La contains the intersection point
of Γ with Sa. The repelling slow manifold Srε starts (in backward time) on the line segment

Lr := {(a,B, c) | a = 0.191352, B = 0.705596} ⊆ Sr,

which was chosen as follows. We tested different trajectories that start on Sr near F and
end on Sr far away from F . We found that the trajectory that spends the longest time near
Sr has a maximum with respect to B of B ≈ 0.705596; we use this value to define Lr. These
choices for La and Lr remain fixed when ε is varied in Section 4.
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Figure 4: Panel (a) shows an enlargement of Fig. 3 with five canard orbits ξ3–ξ7 along with
the strong singular canard ξs. Panel (b) shows the intersection curves of Saε (red curve) and
of Srε (blue curve) with Σ1. These two intersection curves intersect in a number of points,
and the five intersection points ξ3–ξ7 are highlighted by five different colors. Each such
intersection point in panel (b) corresponds to a canard orbit that is shown in panel (a) in
the respective color.

Since La contains the intersection point of the periodic orbit Γ with Sa, we made sure
that an entire segment of Γ lies on our approximation of Saε as it begins its four SAOs before
making a large excursion. The orbit Γ crosses the repelling sheet Sr of the critical manifold
well above Lr and connects back to itself on Sa. In the limit as B →∞, the eigenvectors of
the equilibria of the fast subsystem align with the tangent space of Sr. As a consequence,
for any given fixed ε > 0 (e.g., ε = 0.01), the repelling slow manifold Srε ceases to exist
beyond sufficiently large finite values of B; see [23, 29, 33] for more details. This allows large
oscillations to cross Sr eventually, leading to a global return to Saε .

Figure 4 shows details of the interaction of Saε and Srε . Panel (a) is an enlargement of
Fig. 3. The five colored curves labeled ξ3–ξ7 are intersections of Saε and Srε , that is, they are
canard orbits. Figure 4(b) shows the intersection curves of Saε and Srε with the section Σ1.
Note that the curve Saε ∩ Σ1 (red) intersects the curve Srε ∩ Σ1 (blue) transversely in many
points. Each point corresponds to a canard orbit lying on both Saε and Srε . Five of these
intersection points are marked with differently colored dots. These points correspond to the
canard orbits ξ3–ξ7 shown in Fig. 4(a). A given canard orbit is labeled ξi if it makes i SAOs
in the vicinity of the fold F . Also, shown is the strong singular canard ξs (green) which does
not lie on Saε but rather on Sa. Note that canard orbits ξ3–ξ7 lie outside the funnel region;
namely, they lie to the right of the strong singular canard. Nevertheless, Γ clearly lies on Saε
in between ξ3 and ξ4, which suggests that GSPT explains why Γ has four SAOs. Based on
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Figure 5: An extension of the attracting slow manifold Saε (red) up to the section Σ2 for
the same parameter values as in Fig. 3. The eight canard orbits ξ0–ξ7 are shown in different
colors.

the eigenvalues of the folded node p, the theory predicts that this folded singularity gives rise
to two primary canard orbits and 29 secondary canard orbits near the singular limit [42, 44].
However, as we will discuss in Section 3, we find many more canard orbits for ε = 0.01; in
fact, there are at least 68 canard orbits for this value of ε. Our findings suggest again that
ε = 0.01 is too large for applying known results from GSPT to predict the total number of
canard orbits.

3 Twin canard orbits and ribbons of the attracting slow
manifold

We aim to explore the underlying complex behavior of system Eq. (7) and investigate how
canard orbits are organized for relatively large values of ε. In order to detect all canard
orbits in a systematic way, we extend the attracting slow manifold Saε up to the section
Σ2 :=

{
(a,B, c) ∈ R3

+| B = 0.705596
}
, which is transverse to Sr and contains Lr far away

from F . Figure 5 shows the extended manifold Saε computed from La up to Σ2. Here,
canard orbits are detected as the trajectories on Saε that terminate at Lr, which includes the
canard orbits ξ3–ξ7 shown in Fig. 4. We show eight canard orbits in Fig. 5 that are labeled
ξ0–ξ7, based on their number of SAOs. In particular, ξ0 is the primary strong canard, which
corresponds to the strong singular canard ξs in the limit as ε → 0; namely, it separates
trajectories on Saε that make at least one rotation around F from those that escape the fold
region without making any rotations. In other words, the canard orbit ξ0 is the boundary
between the region in which the attracting slow manifold Saε has no rotations (jump region)
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Figure 6: Ribbons of the extended attracting slow manifold Saε of system Eq. (7) for the
same parameter values as in Fig. 3. Panel (a) shows seven ribbons R1–R7 in different colors.
Panel (b) shows the intersection curves of these ribbons with Σ2 in their respective colors.

and the region with at least one rotation (no-jump region). Note that the primary strong
canard ξ0 as well as the secondary canard orbits ξ1 and ξ2 were not be detected with the
standard computational approach presented in Fig. 4. On the other hand, all canard orbits
ξ0–ξ2 are easily detected as trajectories that connect La ⊆ Sa to Lr ⊆ Sr.

The extended slow manifold Saε shown in Fig. 5 is not a single surface, but rather consists
of separate surface segments that we call ribbons. Each ribbon is computed individually by
starting from a canard orbit and sweeping along La until another canard orbit is detected.
Figure 6 shows seven separate ribbons, denoted R1 to R7, of the extended attracting slow
manifold Saε in different shades of colors; the ribbons R1–R7 are shown individually in Fig. 7.
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Each ribbon Ri is a family of trajectories that lie on Saε and make i SAOs in the vicinity
of the fold F . Figure 6(a) illustrates the global geometry of these ribbons. The ribbons
are plotted up to Σ2; however, note that the lower boundary of the figure is well above La.
As the ribbons complete their respective number of SAOs they move away from F and fold
over, reaching Σ2 as doubled strips that are extremely close together. Figure 6(b) shows the
intersection curves of the ribbons R1–R7 with Σ2 in their respective colors. Here, we use the
rescaled variable

ĉ = 10(c− (−0.97(a− 0.26) + 1.2)) (8)

to make the intersection curves distinguishable. Note also that the horizontal axis increases
to the left, which is consistent with the view in panel (a). The intersection curves shown in
panel (b) are folded and nested, so that the folded curve that corresponds to Ri lies inside
the folded curve corresponding to Ri+1. The end points of the folded intersection curves lie
on Lr and have very close values of c. The end points of each curve Ri ∩Σ2 correspond to a
pair of canard orbits ξi and ξ′i that exhibit the same number of SAOs and bound the ribbon
Ri; see Fig. 7. We use the term twin canard orbits to describe such pairs ξi and ξ′i. Figure 7
shows the geometry of the individual ribbons R1–R7. Note that each pair of twin canard
orbits ξi and ξ′i come very close together after making i SAOs. Each ribbon Ri rotates as a
surface around F and makes i SAOs before reaching Σ2.

The ribbons are more precise representatives for ε = 0.01 of the so-called rotational
sectors defined in the GSPT literature for the singular limit as ε → 0. A rotational sector
Ii lies on the attracting sheet of the critical manifold and indicates the regime where orbit
segments make i SAOs near F . For example, rotational sectors are used in [9, Section 3.1.1] to
guarantee the existence of periodic MMOs with a particular signature 1s1 that consist of one
LAO and s1 SAOs. To date, any rotational sector Ii has been thought of as being bounded by
canard orbits ξi and ξi−1 [9, 11, 40]. However, the boundary between two rotational sectors
is more intricate and involves canard orbits with more complicated signatures; for example,
see [9, Section 3.1.1]. As will be discussed next, in the present context, this translates to
intermediate ribbons in between the ribbons of Figs. 6 and 7.

3.1 Global properties of ribbons
Now we consider the behavior of ribbons of the attracting slow manifold after crossing Σ2.
Figure 8 shows the global return of ribbon R4; here R4 was computed by extending the
orbit segments in the family so that all have the same large arclength. Panel (a) shows the
interaction between R4 (red surface) with Σ2 (green section) and how R4 returns, as a surface,
back to the vicinity of the attracting slow manifold near La. The red curve on Σ2 is the
closed intersection curve R4∩Σ2 and it lies almost on a straight line. Note that the extended
ribbon R4 forms a cap above Σ2. After intersecting Σ2 twice, R4 make a global return to the
vicinity of itself. The twin canard orbits ξ4 and ξ′4 (red orbits) bound the ribbon R4. The
periodic orbit Γ (black) lies on R4 and intersects Σ2 in two points. Figure 8(b) shows the
intersection R4∩Σ2 (red curve) with the rescaled variable ĉ on the horizontal axis so that the
nature of the intersection curve becomes clear. It is important to realize that, for our choice
of Σ2, the line segment Lr ⊆ Σ2 is the tangency locus that separates the two regions of Σ2
where the flow is pointing transversally up (�) and down (⊗) [30]. The red segment above
Lr in Fig. 8(b) consists of the first returns of R4 to Σ2; the red segment below Lr consists
of the second returns of R4 to Σ2, and it is the image of the upper red segment under the
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Figure 7: Individual ribbons R1–R7 of Fig. 6. Each ribbon Ri is bounded by twin canard
orbits ξi and ξ′i (thick curves).

flow. The intersection points of R4∩Σ2 with Lr correspond to the twin canard orbits ξ4 and
ξ′4. The two black dots mark the intersection points of the periodic orbit Γ with Σ2, which
lie very close to the two local maxima of ĉ; it is not clear whether this is a coincidence or
not. The behavior shown in Fig. 8 is representative of the other ribbons: ribbons R1–R7 also
intersect Σ2 in closed curves after their second returns (not shown). These closed curves are
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Figure 8: Global return of ribbon R4 from Fig. 6. Panel (a) shows the extended ribbon R4
(red). The two highlighted red orbits are the twin canards ξ4 and ξ′4, and the black orbit is
the periodic orbit Γ. The red curve in the green section Σ2 is the closed intersection curve
of R4 with Σ2. Panel (b) shows this curve using the rescaled variable ĉ. The line segment
Lr is the tangency locus that separates the regions in which the flow is pointing up (�) and
down (⊗). The brown and green dots on Lr correspond to ξ4 and ξ′4, respectively, and the
two black dots correspond to Γ.

nested such that any closed curve that corresponds to Ri lies inside the curve corresponding
to Ri+1; compare with Fig. 6(b), which shows only the curves of the first intersections.

In order to understand the global features of ribbons, Fig. 9 shows R4 (red surface)
extended up to its second intersection with Σ2, as well as ribbon R7 (green surface) extended
up to its fourth intersection with Σ2. Panel (a) shows how the extended ribbon R7 makes a
global return to the vicinity of R4. The green curve on R7 is a closed curve that is almost
a straight line in Σ2, and it corresponds to the third and fourth returns of R7 to Σ2. As
before, twin canard orbits ξ4 and ξ′4 (red orbits) bound the ribbon R4, and the periodic orbit
Γ (black) lies on R4. Note that R7 crosses Σ2 twice before making a global return to the
vicinity of R4 and then intersects Σ2 two more times. Panel (b) shows the intersection curves
of R4 (red) and R7 (green) with Σ2. Note that we again show the rescaled variable ĉ on the
horizontal axis to make the intersection curves distinguishable. The red intersection curve
R4 ∩ Σ2 is that from Fig. 8(b). The black dots correspond to the stable periodic orbit Γ.
The closed green curve consists of the third and fourth intersections of R7 with Σ2, and it is
extremely close to R4 ∩Σ2; panel (c) shows a schematic sketch of panel (b), illustrating that
the green curve is actually closed and nested inside the closed red curve. Moreover, we found
that the third and fourth returns of all ribbons R1–R7 are also extremely close to R4 ∩ Σ2,
as are the fifth to eighth returns of R7. This is because trajectories of ribbons R1–R7 are
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Figure 9: The extended ribbons R7 and R4. Panel (a) shows a part of R7 (green) calculated
up to its fourth return to Σ2. The green curve corresponds to the third and fourth returns
of the green surface to Σ2. Also shown are R4 (red) calculated up to its second return to
Σ2, the twin canards ξ4 and ξ′4 (red curves), and the periodic orbit Γ (black). Panel (b)
shows the computed intersection curves of R4 and R7 with Σ2, where we used the rescaled
variable ĉ; panel (c) is a sketch that shows the location of R7 ∩Σ2 relative to the computed
intersection R4 ∩ Σ2. The red curve segments above and below Lr correspond to the first
and second returns of R4 to Σ2, respectively. The green curve segments above and below
Lr correspond to the third and fourth returns of R4 to Σ2, respectively. The two black dots
correspond to Γ.

converging to the attracting periodic orbit Γ ⊆ R4.

3.2 Intermediate ribbons
Guckenheimer and Scheper [22] studied the return map of system Eq. (1) to a section Σµ :={

(a, b, c) ∈ R3
+| b = 5µ/(2− 2µ)

}
that contains the equilibrium of system Eq. (1); they used

this one-dimensional map extensively to study the transitions between different MMOs. They
were successful in constructing approximate one-dimensional return and induced maps due
to the strong contraction to the attracting slow manifold. In the same spirit, we construct
a flow map Ψ : c0 → a1, where c0 denotes the c-coordinates of the initial points on La and
a1 denotes the a-coordinates of the end points on Σ2. This flow map is computed by finding
the actual orbit segments that satisfy the corresponding boundary conditions. Since one end
point lies on La, such orbit segments lie on the extended attracting slow manifold. Therefore,
we can use the map Ψ to understand the global structure of the ribbons on the extended
attracting slow manifoldfs, each of which corresponds to a branch of Ψ. The flow map Ψ
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Figure 10: The graph of the flow map Ψ. Plotted are the first returns to Σ2 versus the
initial points on La. Panel (a) shows the branches b1–b7 corresponding to the ribbons R1–R7.
The horizontal line Lr represents the a-value of the tangency locus of Σ2. Panel (b) shows
all main branches b1–b35. Panel (c) shows seven of the intermediate branches b3a–b3g that lie
in between b3 and b4.

is also useful for understanding the mechanism of creating the LAOs. Figure 10(a) shows
the graph of Ψ; that is, the a-values a1 of first returns to Σ2 are plotted versus the c-values
c0 of initial points on La. The black horizontal line Lr represents the locus of tangency
of Σ2, which lies at a1 = 0.191352. Plotted are seven branches b1–b7 that correspond to
ribbons R1–R7; compare with figures 6 and 7. The branches b1–b7 do not overlap and each
branch is bounded by a corresponding pair of twin canard orbits which are the end points
of these branches. Note that the branches b1–b7 have already been shown in Fig. 6(b) but in
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ξ′3b ξ3b ξ′3d ξ3d ξ′3f ξ3f

Figure 11: Three intermediate ribbons R3b, R3d and R3f that lie in between R3 and R4 and
correspond to the branches b3b, b3d and b3f shown in Fig. 10(b), respectively. These ribbons
are also bounded by twin canard orbits (thick curves).

a different way, namely, as intersection curves in Σ2.
We find more than 35 ribbons, each bounded by a pair of twin canard orbits. Figure 10(b)

shows 35 branches of Ψ that correspond to 35 main ribbons. The colored branches are those
shown in panel (a), and branches b8–b35 are alternately colored black and gray. Note that a
part of b35 includes negative values of c0, which violates the physical restriction c > 0. In
between every two neighboring branches in Fig. 10(b), there is a gap. In each such gap, we
find additional branches of Ψ, which we call intermediate branches. These branches do not
correspond to any of the main ribbons shown in panel (b). Note that an intermediate branch
has a relatively small domain, namely, one that is well smaller than that of b1. Figure 10(c)
shows seven of the intermediate branches b3a–b3g of Ψ, alternately colored cyan and gray,
that lie in between b3 and b4. These intermediate branches were computed individually by
starting from La between b3 and b4 and ending on Σ2. Between every two intermediate
branches, there also exist more branches. Each intermediate branch corresponds to a family
of trajectories of Saε that have a certain number of SAOs and form a ribbon that is bounded
by a pair of twin canard orbits. Note that b3g ends at the black dot, which has the same
c0-value as the end point of b3 and represents its second return to Σ2. In other words, when
extending the canard orbit corresponding to the end point of b3, it makes a global return to
the attracting slow manifold and then makes three SAOs before intersecting Σ at the black
dot. The dashed part of b3g represents the third returns of b3 to Σ2 for some c0-interval.
For this interval, trajectories of the dashed branch actually make two SAOs followed by one
LAO and then three SAOs before intersecting Σ2.

Figure 11 illustrates the three intermediate ribbons R3b, R3d and R3f in between R3 and
R4 that correspond to the branches b3b, b3d and b3f shown in Fig. 10(c). These ribbons
have six, five and six SAOs, respectively, in the vicinity of the fold. Hence, the number of
SAOs does not change monotonically when moving between different intermediate ribbons.
Furthermore, an orbit with i SAOs does not necessarily belong to the main ribbon Ri. The
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Figure 12: Illustration of a chaotic trajectory Γ̃ for µ = 0.29628, where black, blue and
red correspond to segments with signatures 12, 13 and 14, respectively. Panel (a) is the time
series and panel (b) shows Γ̃ together with ribbons R2 and R3 in (a, c, B)-space.

twin canard orbits (thick curves) bounding these ribbons lie very close to each other along
Saε and Srε but are well separated near F . The SAOs exhibited by the intermediate branches
are relatively large. Nevertheless, we call them SAOs according to the following practical
criterion. An oscillation with a maximum in B that is lower than Σ2 is referred to as a
SAO; otherwise we call it a LAO. Thus, trajectories of b3a, b3c, b3e and b3f have seven SAOs,
trajectories of b3b and b3g have six SAOs and trajectories of b3d have five SAOs.

The ribbons of the extended attracting slow manifold play a very important role in
organizing the patterns of MMOs. Note from Fig. 2 that there are seven different coexisting
unstable periodic orbits for µ = 0.295. We found that these periodic orbits are guided
by the ribbons of the extended attracting slow manifold. For example, a periodic orbit of
type 1i stays close to a ribbon Ri and makes i SAOs before making a large excursion and
returning to the vicinity of Ri when closing. We also found that the ribbons of the extended
attracting slow manifold persist for other values of µ and observed that they are associated
with the corresponding signatures of MMOs. For instance, there exists a stable MMO with
signature 1112 for µ = 0.2975; see Fig. 1(b). This MMO stays close to R1, makes one
SAO, then a global return to R2 exhibiting two SAOs, and finally a global return back to
R1 to close the orbit. Moreover, as we vary µ, we find that intermediate ribbons can be
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associated with chaotic behavior. Figure 12 shows a chaotic trajectory Γ̃ for µ = 0.29628
that alternates irregularly between signatures 12, 13 and 14. Panel (a) shows the time series
of Γ̃, which was produced after a long forward integration to allow transients to die down.
The segments of the trajectory corresponding to signatures 12, 13 and 14 are colored black,
blue and red, respectively. Panel (b) shows the same chaotic trajectory Γ̃ in the three-
dimensional (a, c, B)-space. Also shown are the ribbons R2 and R3 of the attracting slow
manifold computed for µ = 0.29628. We find that trajectory segments with signatures 12

and 13 indeed stay extremely close to R2 and R3, respectively. We also find that trajectory
segments with signature 14 stay very close to the intermediate ribbons in between R2 and
R3.

4 Termination/creation of twin canard orbits at fold
bifurcations

We now investigate how twin canard orbits of system Eq. (7) depend on ε, and what the
mechanism is for terminating/creating twin canard orbits. To this end, we continue each
canard orbit with the same boundary value problem setup as in [12], that is, as an ε-
dependent family of orbit segments that start on La and end on Lr; here La and Lr do not
change with ε. Figure 13 shows the results of the continuation of canard orbits ξ1–ξ7 in ε,
where we set µ = 0.295 in system Eq. (7) as before. Panel (a) shows the continuation, in
both directions, of the canard orbit ξ4 only. The vertical axis is the L2-norm of the orbit
segment with respect to the coordinates a, B and c. We start from the green dot at ε = 0.01,
which corresponds to ξ4 shown in Fig. 7. In slight abuse of notation, we use ξ4 and ξ′4 to
denote the ε-dependent branches that correspond to the main twin canard orbits with four
SAOs. The lower and upper red branches in panel (a) represent ξ4 and ξ′4, respectively,
for different ε-values. First, as ε is decreased, the lower branch ξ4, converges to the strong
singular canard near the singular limit and the amplitudes of the SAOs go to zero; as soon as
ε is small enough, the folded node p, discussed in section 2, and its associated funnel region
are responsible for the creation of ξ4, as is expected from the theory [42, 44].

When continuing the red branch from the green dot for increasing ε, the branch ξ4
encounters a fold and meets ξ′4 along the upper part of the red branch. Hence, the pair of
twin canard orbits ξ4 and ξ′4 merge at a fold bifurcation for ε ≈ 0.0107408 and cease to exist
for larger ε-values. The upper branch ξ′4 terminates at the black dot labeled (b2) in Fig. 13.
To illustrate the termination of this branch, we select the canard orbits at the black dots
labeled (b1), (b2) and (b3) and show each of them in the (c, B)-plane in the correspondingly
labeled panels of Fig. 13. Panel (b1) shows the canard orbit ξ′4 for ε = 8.6× 10−3. Note that
the fourth SAO is already larger than the other three SAOs. Panel (b2) shows the canard
orbit for ε ≈ 6.63471×10−3, where the fourth SAO has increased so much in amplitude that
it touches Σ2. At this moment, we say that the fourth SAO has become a LAO, according
to the criterion given in Section 3.2. Recall that Lr is the tangency locus in Σ2. By our
choice of Lr, the moment at which ξ′4 has a (local) B-maximum that is tangent to Σ2, this
maximum must lie on Lr ⊆ Σ2. We no longer refer to the orbit shown in panel (b2) as the
twin canard ξ′4. Rather, this orbit is now a concatenation of a canard orbit with three SAOs,
as ξ3, and a canard orbit similar to ξ0 with no SAOs. We refer to this type of orbit as a
composite canard, defined as an orbit consisting of two canard segments that are connected
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Figure 13: Continuation in ε of canard orbits ξ1–ξ7 with µ = 0.295 in system Eq. (7). Panel
(a) shows the continuation of ξ4, where the L2-norm is plotted versus ε. The red branch
represents the main twin canard orbits ξ4 and ξ′4. The blue and cyan branches represent
intermediate twin canards which also exhibit four SAOs. The black branch represents canard
orbits with different numbers of small oscillations. The green dot corresponds to the canard
orbit ξ4 shown in Fig. 7. From left to right, panel (b) shows the canard orbit in the (c, B)-
plane for ε = 8.6 × 10−3 before, ε = 6.63471 × 10−3 approximately at, and ε = 4.6 × 10−3

after the occurrence of the composite canard, where a SAO becomes a LAO. The green and
black lines are the projection of Σ2 and La, respectively. Panel (c) shows the continuation
of ξ1–ξ7 up to their respective termination points, where the L2-norm is plotted versus ε.

by a fast segment [12, 37]. In other words, at point (b2) in Fig. 13(a), the twin canard ξ′4
ceases to exist and the corresponding orbit segment becomes a composite canard that has a
LAO. We refer to such a point as the termination point of the twin canard, in this case of
ξ′4.

Finally, Fig. 13(b3) shows the canard orbit for ε = 4.6 × 10−3, which clearly crosses Σ2
makes a large excursion and a global return to the attracting slow manifold. As we decrease
ε past (b3) in Fig. 13(a), the black branch encounters a number of termination points (not
labeled). Hence, the oscillations of the continued canard orbit grow and shrink in size along
the black branch, and have a mix of SAOs and LAOs. The precise sequence of transitions
that occur along this branch is very complicated and are beyond the scope of this paper.
However, there is a large diversity of coexisting canard orbits for ε > 0.002.

Note that there are two other branches of canard orbits, colored blue and cyan in
Fig. 13(a1). Each of these branches corresponds to a pair of intermediate twin canard
orbits that also have four SAOs. The intermediate twin canard orbits of the blue and cyan
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branches lie in between ribbons R2 and R3, and in between R1 and R2, respectively. Both
branches exhibit a fold bifurcation for ε = O(10−2) and end at termination points (black
dots) at which a SAO becomes tangent to Lr ⊆ Σ2. More details on the continuation of
intermediate canard orbits will be presented in Section 4.3.

Figure 13(c) shows the continuation of the seven canard orbits ξ1–ξ7, where we stopped
each run at the respective termination point of the twin canard (black dots) where one of the
SAOs becomes tangent to Lr ⊆ Σ2. Note that the bifurcation structure is the same for all
canard orbits shown. All branches can be continued to ε = 0 and the corresponding canard
orbits all converge to the strong singular canard ξs as ε→ 0. Furthermore, all branches ex-
hibit a fold bifurcation for ε = O(10−2) at which twin canard orbits are terminated/created.
For each branch, twin canard orbits exist in the parameter interval between the fold and the
respective termination point. Hence, the associated ribbons of the attracting slow manifold
only exist in this parameter interval.

Continuation in ε of canard orbits have also been performed for the reduced Hodgkin-
Huxley model and the self-coupled FitzHugh-Nagumo model [12, 20]. In both studies, it was
found that, for decreasing ε, the canard orbits also converge to the strong singular canard
as ε → 0. Moreover, the canard orbits also exhibit fold bifurcations as ε is increased. In
particular, sets of twin canard orbits have been reported in [20, Figure 3].

4.1 The mechanism for the tangency of slow manifolds
To gain a better understanding of the termination/creation of twin canard orbits, it is useful
to study the local geometry of the attracting and repelling slow manifolds Saε and Saε , respec-
tively, near the fold of canard orbits. To this end, we consider a different section transverse
to Lr, namely, Σ3 :=

{
(a, b, c) ∈ R3

+ | c = 1.1
}
. Figure 14 illustrates the interaction of Saε and

Srε with the section Σ3, for ε = 0.010724 before, ε ≈ 0.0107408 at, and ε = 0.010756 after
the fold of canard orbits, in panels (a), (b) and (c), respectively. The top row shows local
pieces of Saε (red surface) and Srε (blue surface) and the section Σ3 (green). The bottom row
shows the corresponding intersection curves Saε ∩Σ3 (red) and Srε ∩Σ3 (blue) in Σ3. Panel (a)
illustrates how Saε and Srε intersect transversely in two curves. These curves are the twin
canard orbits ξ4 (brown) and ξ′4 (green), both of which have four SAOs. The canard orbit
ξ4 is taken from the data shown in Fig. 13(a), and it was also used as an initial orbit for
the computed orbits of both Saε and Srε . Panel (b) displays the local interaction between Saε
and Srε at the fold of canard orbits, where these manifolds are tangent to each other along
the canard orbit ξ∗4 (black orbit) with four SAOs. In panel (c), the surfaces Saε and Srε scroll
around each other without intersecting.

The evolution of the curves Saε ∩ Σ3 and Saε ∩ Σ3 can be visualized in (ε, a, B)-space
as an interaction between two-dimensional surfaces (Saε ∩ Σ3)(ε) and (Srε ∩ Σ3)(ε). This
different view of the tangency of slow manifolds is provided in Fig. 15 by showing the surfaces
(Saε ∩ Σ3)(ε) (red) and (Srε ∩ Σ3)(ε) (blue) for the interval ε ∈ [0.01065, 0.01075]. Note that
the two surfaces intersect transversally in a nice parabolic curve (black). This parabolic
nature of the curve corresponds to the intersection points of the twin canard orbits ξ4 and ξ′4
with Σ2. The parabolic nature of the curve indicates that the fold bifurcation corresponds
to a generic quadratic tangency of the two slow manifolds, as expected. Figure 15 also shows
representative curves of (Saε ∩Σ3)(ε) (magenta) and (Srε ∩Σ3)(ε) (cyan) for constant ε before,
at, and after the fold bifurcation of canard orbits.
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Figure 14: Illustration of the fold bifurcation of ξ4 and ξ′4, and Saε and Srε . Shown are
local interactions between Saε and Srε for ε = 0.010724 before (a), ε ≈ 0.0107408 at (b), and
ε = 0.010756 after (c) the fold. The top row shows the interactions between Saε (red surface)
and Srε (blue surface). The green plane is the section Σ3. Green, brown and black curves
are intersections of Saε and Srε (canard orbits). The bottom row shows the corresponding
intersection curves Saε (red) and Srε (blue) with Σ3. Red and blue curves represent Saε ∩ Σ3
and Srε ∩ Σ3, respectively. Here, we fix µ = 0.295.

4.2 Continuation of all main canard orbits
For ε = 0.01, we found 35 main ribbons that are bounded by twin canard orbits; see
Fig. 10(b). We continued all of these canard orbits in ε. As before, the continuation was
done in both directions and the computation was stopped at the respective termination
points. Figure 16 shows the branches of canard orbits ξ0–ξ28. The colored branches ξ1–ξ7
are those shown in Fig. 13(c), and branches ξ8–ξ28 are alternately colored black and gray;
the termination points are marked by black dots. We find that the branches of canard orbits
ξ1–ξ20 can all be continued to ε = 0, and the respective canard orbits all converge to the
strong singular canard orbit ξs in the limit as ε→ 0. Computationally, the branches ξ21–ξ28
do not reach the singular limit. However, theoretically, we expect all of these branches to
end at ε = 0 and their corresponding canard orbits also converge to ξs. Figure 16 also shows
a the branch associated with the primary strong canard ξ0 from Fig. 5 that has no SAOs.
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Figure 15: Continuation of local intersection curves of the attracting Saε (red) and repelling
Srε (blue) slow manifolds with Σ3 for different values of ε. The black curve is the ε-dependent
intersection curve between Saε ∩ Σ3(ε) and Srε ∩ Σ3(ε). The magemta and cyan curves are
representative intersection curves Saε ∩ Σ3 and Srε ∩ Σ3, respectively, for ε = 0.01075 before,
ε ≈ 0.0107408 at, and ε = 0.01065 after the fold bifurcation of canard orbits; compare with
Fig. 14. Here, we fix µ = 0.295.

This branch extends all the way to large values of ε without going through any folds. We
remark that, for sufficiently large ε, the orbit segment corresponding to this branch loses its
slow-fast nature and no longer stays close to the critical manifold.

Figure 17(a) shows the continuation of ξ29–ξ35. As ε is increased, all branches exhibit fold
bifurcations and then termination points where the continuation is stopped. For decreasing
ε, branches ξ29–ξ35 again exhibit fold bifurcations before diverging in norm. Recall that
canard theory [42, 44] predicts the existence of 29 secondary canard orbits for µ = 0.295
near the singular limit of ε. We indeed find that ξ30–ξ35 do not exist near the singular
limit for this value of µ. Our numerical results suggest that when continuing the branch
of ξ29 for decreasing ε, this branch also goes through a fold bifurcation without converging
to the singular limit. To investigate the mechanism for this fold bifurcation, panels (b)–
(d) of Fig. 17 show the canard orbits that correspond to the three labeled points on the
branch ξ29 for ε = 0.005411 before, ε = 0.00470645 at, and ε = 0.00476068 after the left
fold bifurcation. The first and second rows of panels (b)–(d) show the transformed canard
orbit on the (c, B)-plane and on the (a,B)-plane, respectively. In order to understand the
transformation of the canard orbit, we do not enforce the restriction c > 0. Panel (b)
shows the canard orbit ξ29 before the fold bifurcation. The orbit follows the attracting slow
manifold and then makes 29 SAOs before reaching Lr. Here, at the starting point of ξ29,
the sign of ȧ is positive. Hence, the canard orbit is initially increasing in B and then follows
the attracting slow manifold. Panel (c) shows the canard orbit ξ29 at the fold bifurcation.
Here, the canard orbit starts at the intersection point of La with the a-nullcline (ȧ = 0),
namely, at (a,B, c) ≈ (0.0799375,−1.094447,−2.22727). Therefore, this fold bifurcation is
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Figure 16: Continuation in ε of canard orbits ξ0–ξ28, with µ = 0.295 in system Eq. (7).
Continuation branches of ξ1–ξ7 are shown in different colors as in Fig. 13(c). Branches of
ξ8–ξ28 are alternately colored black and gray.

due to a tangency between the canard orbit and the a-nullcline at the starting point of the
canard orbit. The orbit in panel (c) initially appears to be flat in both B- and a-directions
(tangent to La), but eventually increases in B and follows the attracting slow manifold.
Panel (d) shows the transformed canard orbit after the fold bifurcation. The canard orbit
starts at a point with ȧ < 0. Hence, the canard orbit initially moves to the other side of
the critical manifold and decreases in B along the slow flow. It then crosses the critical
manifold at B ≈ −1.450973 and increases in B following the attracting slow manifold. As
we follow the branch ξ29 past the point labeled (c) in Fig. 17(a), the corresponding orbits
initially decrease in B before crossing the critical manifold and forming canard orbits with
29 SAOs; see Fig. 17(d). This transition through a fold bifurcation is representative of the
other branches ξ30–ξ35 of panel (a).

4.3 Continuation of the intermediate canard orbits
We now discuss the continuation of intermediate canard orbits which bound intermediate
ribbons in Fig. 11. Figure 18 shows the continuation of two branches of intermediate canard
orbits. The black dots correspond to termination points. At these dots, one of the SAOs
of the canard orbits become large and the canard orbit deforms into a composite canard
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Figure 17: Continuation in ε of canard orbits ξ29–ξ35, with µ = 0.295 in system Eq. (7).
Panel (a) shows the continuation branches of ξ29–ξ35, alternately colored black and gray. Pan-
els (b)–(d) show the transformed canard orbits ξ29 for ε = 0.005411 before, ε = 0.00470645
at and ε = 0.00476068 after the left fold bifurcation, as labeled in panel (a). The first and
second rows of panels (b)–(d) show the transformed orbits in the (c, B)- and (a,B)-planes,
respectively.

orbit; see, for example, Fig. 13(b2). Panel (a) shows the continuation of the intermediate
canard orbits ξ3f and ξ′3f , which have six SAOs and bound the ribbon R3f in Fig. 11 that
lies in between ribbons R3 and R4. Here, we started the continuation from ξ3f of Fig. 11
which is represented by the green dot in Fig. 18. We find that the continuation branch goes
through a number of fold bifurcations before coming back to the starting point to form an
isolated branch (isola). The upper and lower parts of the blue branch correspond to the
intermediate twin canards ξ′3f and ξ3f , respectively. The cyan curve represents another pair
of intermediate twin canards that also have six SAOs. We find that these twin canard orbits
bound an intermediate ribbon that lies in between ribbons R2 and R3.

Figure 18(b) shows the continuation of intermediate canard orbits ξ3d and ξ′3d that have
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Figure 18: Continuation in ε of intermediate canard orbits ξ3f and ξ3d from Fig. 11, with
µ = 0.295; the L2-norm is plotted versus ε. The black dots correspond to termination points.
The blue branches correspond to the intermediate canard orbits ξ3f in panel (a) and ξ3d in
panel (b). The cyan branches correspond to other intermediate canard orbits. The yellow
branch corresponds to the main twin canard orbits ξ5 and ξ′5.

five SAOs and bound the ribbon R3d in Fig. 11, which also lies in between ribbons R3 and
R4. Note that the bifurcation diagram has the same qualitative structure as that for ξ4 in
Fig. 13(a), but here, the computation corresponds to the continuation of branch ξ5, which
was started from the intermediate canard orbit (green dot). The upper and lower parts of
the blue curve correspond to the intermediate twin canards ξ′3d and ξ3d. The cyan curve
corresponds to another pair of intermediate twin canards which also have five SAOs. These
twin canard orbits bound an intermediate ribbon that lies in between ribbons R2 and R3.
The yellow curve is the same branch of the twin canards ξ5 and ξ′5 shown in Fig. 13 and
Fig. 16. For the blue and cyan branches, the respective intermediate canard orbits merge
at fold bifurcations and cease to exist at termination points where a SAO becomes tangent
to Σ2. In both cases, we find that the branches of intermediate twin canards connect with
branches of other twin canards with the same number of SAOs.

5 Conclusions and Discussion
We studied an autocatalytic chemical reaction model [22, 33, 36], which takes the form of a
dynamical system with an explicit parameter ε that describes the time-scale ratio between
one fast and two slow variables. Our goal was to investigate the mechanisms that underlie
mixed-mode oscillations in a parameter regime where ε is too large to the immediate ap-
plication of established results from the theory of slow-fast systems [7, 15, 25, 42, 44]. By
computing slow manifolds and the associated canard orbits, we found that the system fea-
tures twin canard orbits, which are co-existing canard orbits that exhibit the same number
of small-amplitude oscillations. Twin canard orbits arise due to tangencies of attracting and
repelling slow manifolds and do not exist near the singular limit (ε = 0). Twin canard orbits
divide the (extended) attracting slow manifold into ribbons. These ribbons and their asso-
ciated bounding twin canard orbits are characterized by their given number of SAOs. We
distinguish between the main ribbons that have relatively large domains and intermediate
ribbons that exist in the small gaps between neighboring main ribbons. The complicated
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structure of the ribbons and the associated canard orbits organizes the underlying patterns
of MMOs.

Overall, we obtained a comprehensive picture of the geometry of MMOs for larger values
of ε. Specifically, we found a total of 70 (main) canard orbits bounding main ribbons as
well as further canard orbits bounding intermediate ribbons. Continuations of these canard
orbits for decreasing ε revealed that 29 of them converge to the strong singular canard
in the limit as ε → 0, while the other canard orbits cannot be continued to the singular
limit. When continuing them in the other direction, we found that the canard orbits exhibit
fold bifurcations. These folds correspond to quadratic tangencies between the attracting
and repelling slow manifolds, which is the mechanism that gives rise to a pair of canard
orbits. Such fold bifurcations are a generic feature. They have been reported before in the
self-coupled FitzHugh-Nagumo model [12, 20] and the reduced Hodgkin-Huxley model [12],
but their significance in generating twin canard orbits was not recognized. For the self-
coupled FitzHugh-Nagumo model [12, 20], these twin canard orbits only exist in the region
of phase space where the model is not valid. For the reduced Hodgkin-Huxley model [12] it
seems that all twin canard orbits can be continued back to the singular limit ε = 0, during
which they transform into composite canards, where one SAO has become a LAO. For the
autocatalator model Eq. (1), we similarly find that the twin canard orbits transform into
composite canards, but the branch does not return to the singular limit ε = 0. Rather, there
are additional folds that ‘undo’ this transition so that there are co-existing segments on the
continuation branch where the (twin) canard orbits have the same signatures.

In the context of MMOs, it is a general challenge to provide an appropriate definition for
when an oscillation has a small or large amplitude, respectively. We proposed a practical
criterion for distinguishing between SAOs and LAOs in systems with one fast and two slow
variables. We considered a fixed section transverse to the critical manifold sufficiently far
away from the fold curve that separates the attracting and repelling sheets. Throughout the
paper, oscillations that are below and above this threshold section were referred to as SAOs
and LAOs, respectively. A transition between SAOs and LAOs occurs when an oscillation
becomes tangent to the considered threshold section, which also determines the termination
points of twin canard orbits. Although the choice of its position is not unique, moving the
threshold section slightly will affect the results only quantitatively but not qualitatively. In
particular, folds and termination points of twin canard orbits will persist. The section was
chosen to contain the line used in the computation of the repelling slow manifold, which
was in turn chosen so that the orbit segments stay close to the critical manifold the longest
before reaching the fold curve. It turned out that this is a good choice for distinguishing
between SAOs and LAOs.

The numerical techniques used in this paper are based on the definition of suitable two-
point boundary value problems [26], which are then solved by the collocation method imple-
mented in the continuation software package AUTO [13]. More specifically, we use this setup
to compute suitable families of orbit segments. Our calculations have the advantage of giving
robust results despite the sensitivity and stiffness due to the difference in time scales. We
represented slow manifolds by families of orbit segments that start on the critical manifold
sufficiently far away from the fold. Detecting canard orbits was challenging because there
are multiple transversal intersections of slow manifolds with any section transverse to the
fold curve. To overcome this challenge, we extended the attracting slow manifold up to a
fixed section transverse to the critical manifold sufficiently far away from the fold curve. In
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this way, we successfully detected all canard orbits and associated ribbons in a systematic
way.

It would be an obvious next step to revisit the continuations of canard orbits for the
self-coupled FitzHugh-Nagumo model [12, 20] and the reduced Hodgkin-Huxley model [12].
Many realistic models of slow-fast systems feature more than three variables [1, 3, 8, 14, 24,
35, 39, 41, 45] and/or a different splitting of time scales. Therefore, an interesting direction
for future work is to investigate such systems with different combinations of fast and slow
variables; for example, systems with two fast and one slow, two fast and two slow or with
a combination of fast, intermediate and slow variables. In particular, we believe that the
idea of representing slow and invariant manifolds by families of orbit segments can also be
applied in higher-dimensional slow-fast systems. While computing attracting and repelling
slow manifolds in these situations is already quite a challenging task, such systems may also
feature slow manifolds of saddle type with stable and unstable manifolds. Guckenheimer
and Kuehn [21] presented an algorithm for computing one-dimensional slow manifolds of
saddle type. In ongoing research, we are developing methods for computing one- and two-
dimensional saddle slow manifolds, and their stable and unstable manifolds. Finally, many
slow-fast systems have no explicit time-scale separation and may contain various regions with
different splittings of time scales. The approach presented in this paper may also be helpful
for the investigation of such more general systems.
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