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Abstract

We study a nonanalytic perturbation of the complex quadratic family z 7→ z2 + c in the form of a
two-dimensional noninvertible map that has been introduced by Bamón, Kiwi, and Rivera-Letelier [arXiv
0508045, 2006]. The map acts on the plane by opening up the critical point to a disk and wrapping the
plane twice around it; points inside the disk have no preimage. The bounding critical circle and its images,
together with the critical point and its preimages, form the so-called critical set. For parameters away
from the complex quadratic family we define a generalised notion of the Julia set as the basin boundary
of infinity. We are interested in how the Julia set changes when saddle points along with their stable and
unstable sets appear as the perturbation is switched on. Advanced numerical techniques enable us to study
the interactions of the Julia set with the critical set and the (un)stable sets of saddle points. We find the
appearance and disappearance of chaotic attractors and dramatic changes in the topology of the Julia set;
these bifurcations lead to three complicated types of Julia sets that are given by the closure of stable sets of
saddle points of the map, namely, a Cantor bouquet, or what we call a Cantor tangle and a Cantor cheese.
We are able to illustrate how bifurcations of the nonanalytic map connect to those of the quadratic map
by computing two-parameter bifurcation diagrams that reveal a self-similar bifurcation structure near the
period-doubling route to chaos in the complex quadratic family.

1 Introduction

We study the dynamics of the two-dimensional noninvertible family of maps

f : C\{0} → C,

z 7→ (1− λ+ λ|z|2)

(
z

|z|

)2

+ c,
(1)

with c ∈ C and λ ∈ [0, 1]. For λ = 1, the family (1) reduces to the well-known complex quadratic family

f1 : C→ C,
z 7→ z2 + c,

(2)

where c ∈ C is the only parameter. We are interested in the question of whether, or in which form, the
well-known dynamics of the complex quadratic family (2) influences the dynamics of (1) for other values of
λ ∈ [0, 1]. The main question in this paper is what elements of the dynamics of (2) survive for λ < 1 and how
additional dynamical features appear. This study is in the same spirit as [Bielefeld et al.(1993),Devaney(2013),
Bruin & van Noort(2004),Blanchard et al.(2005),Marotta(2008), McMullen(1988), Peckham(1998), Peckham &
Montaldi(2000)], where other perturbations of the complex quadratic family (2) are considered; see Section 2.6
for a brief review of this literature.
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The complex quadratic family (2) wraps the plane twice around the origin and translates by c, while the
map (1) first opens up the origin to a circle with radius 1 − λ, wraps the plane around this circle twice and
translates it by c. In particular, (2) is defined on the entire complex plane and every point except c has two
preimages, whereas (1) is only defined on the punctured plane C\{0}, and only the points outside the circle
around c with radius 1 − λ have two preimages. For both maps we call the origin the critical point J0; its
image c under (2) is called the critical value, and we call the circle around c with radius 1 − λ the critical
circle J1 of (1), because it can be thought of as the multivalued image of J0. The backward iterates of J0 and
the forward iterates of J1 play a special role in the organisation of the dynamics of (1), and we call them the
backward critical set J− and the forward critical set J +, respectively. Together, they form the critical set J ;
see Section 2.2 for more details. At λ = 1 in (1), the critical circle J1 has radius 0 and coincides with the critical
value c of (2), and the forward critical set J + consists just of the orbit of c accordingly.

Another important difference between the maps (1) and (2) is that (2) is analytic, whereas (1) is nonanalytic
for λ ∈ [0, 1). In particular, this means that (2) admits only attracting and repelling fixed and periodic points,
whereas (1) also allows for the existence of saddle fixed and periodic points, their stable and unstable sets
and chaotic attractors. The stable and unstable sets of a saddle point are the generalisations of stable and
unstable manifolds for noninvertible maps, that is, they are formed by points that go to a saddle point under
forward iteration or that have a sequence of preimages converging to this point, respectively; see Section 2.3 for
definitions. As opposed to diffeomorphisms, for a noninvertible map these sets are, in general, not immersed
manifolds because the stable set can consist of infinitely many branches and the unstable set may have self-
intersections. How do these additional features appear in the dynamics of (1) when λ ∈ [0, 1] is decreased from
λ = 1?

The main ingredient in the dynamics of the complex quadratic family (2) is the Julia set. It can be defined
as the boundary of the basin of attraction of infinity, and we extend this definition to the map (1); see already
Section 2.5. The connectivity of the Julia set in (2) is governed by a fundamental dichotomy: it is connected
if the orbit of the critical value c is bounded, and it is totally disconnected if this orbit goes to infinity. This
dichotomy is encoded by the Mandelbrot set, which is the set of parameter values c, for which the corresponding
Julia set of (2) is connected; more details are given in Section 2.4. When considering the family (1) with λ < 1,
the orbit of c is replaced by all orbits in J +, which allows for an intermediate case, where some orbits in J +

stay bounded and other orbits in J + go to infinity. What does this mean for the properties of the Julia set
of (1)?

The map (1) is a subfamily of the more general family of maps

f : C\{0} → C,

z 7→ (1− λ+ λ|z|a)

(
z

|z|

)2

+ c,
(3)

with c ∈ C and a, λ ∈ (0, 1). This map was introduced by Bamón, Kiwi and Rivera-Letelier [Bamón et al.,
2006], who kept c = 1 fixed. For a, λ both sufficiently close to 1 and for c = 1, these authors proved the
existence of a wild Lorenz-like attractor in this map. A Lorenz-like attractor is a higher-dimensional analogue
of the geometric Lorenz attractor [Afrajmovich et al.(1977), Afrajmovich et al.(1983), Guckenheimer(1976),
Guckenheimer & Williams(1979)] in a three-dimensional vector field. More specifically, the Lorenz-like attractor
in [Bamón et al.(2006)] is constructed in a vector field of dimension n ≥ 5. It contains an equilibrium with two
unstable, one strong stable and n− 3 weak stable eigenvalues, such that the strong stable eigenvalue dominates
the unstable one and the unstable eigenvalue dominates the weak stable ones. Its Poincaré return map on a
(n − 1)-dimensional Poincaré section admits a strong stable foliation and the quotient map of the Poincaré
return map on the leaves of this foliation is the two-dimensional noninvertible map (3), which describes the
dynamics on the attractor in the underlying n-dimensional vector field. This Lorenz-like attractor is called
wild, because it contains a hyperbolic set that admits robust homoclinic tangencies, that is, there are C1-open
sets of parameters such that the corresponding hyperbolic set has a tangency between its stable and unstable
manifolds. We refer to the existence of a wild hyperbolic set as wild chaos.

In [Hittmeyer et al.(2013)], we introduced the parameter c ∈ C to the map (3) and studied the bifurcations of
the stable, unstable, forward critical and backward critical sets as the parameters are moved from the nonchaotic
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to wild chaotic parameter regime for a, λ ∈ (0, 1); see also [Osinga et al.(2013)]. We found that the following
four types of tangency bifurcations play a crucial role in the transition to wild chaos:

1. The homoclinic tangency, where the stable and unstable sets of a saddle fixed point are tangent;

2. The forward critical tangency, where the stable set of a saddle fixed point is tangent to the forward critical
set J +;

3. The backward critical tangency, where a sequence of points in the backward critical set J− lies on the
unstable set of a saddle fixed point;

4. The forward-backward critical tangency, where a sequence of points in the backward critical set J− lies
in the forward critical set J +.

Homoclinic tangencies are also encountered in diffeomorphisms, but the three critical tangency bifurcations are
new and specific to this type of noninvertible map. What role do these four tangency bifurcations play in the
dynamics of the map (1) near λ = 1?

In order to study these questions, we compute the phase portrait of the map (1) for different fixed values
of c ∈ R and decreasing values of λ ∈ [0, 1], starting with the phase portrait of (2) at λ = 1. For these phase
portraits we compute the fixed and periodic points up to a certain period, their stable and unstable sets, the
critical set and the Julia set. Note that (1) is orientation preserving for c ≥ 0 and orientation reversing for c < 0.
In Section 3 we choose c in the interior of the Mandelbrot set; more precisely, we choose c in the interior of the
main cardioid. Here, the complex quadratic family (2) admits an attracting fixed point, which attracts the orbit
of the critical value c. When we switch on the perturbation by decreasing λ, we find that the dynamics of (1) for
λ sufficiently close to 1 is qualitatively the same as that of (2). More specifically, the radius 1−λ of J1 is small
and all the orbits of points on the critical circle J1 are attracted by the attracting fixed point; the Julia set is a
Jordan curve, that is, a simple closed curve, and it bounds the basin of attraction of this attractor. However,
as λ decreases further, first saddle periodic points appear in pitchfork and period-doubling bifurcations and
the dynamics is then organised by their stable and unstable sets. As λ decreases further, we find the tangency
bifurcations listed above, but now the different invariant sets also interact with the Julia set. In particular, we
find an infinite sequence of forward-backward critical tangencies, which leads to the appearance of infinitely
many saddle points; their closure forms a chaotic attractor, which disappears when it interacts with the Julia
set in a saddle-node bifurcation. After this bifurcation the Julia set is given by the closure of the stable sets of
the saddle points. More precisely, depending on whether the critical point J0 lies inside the disk bounded by the
critical circle J1 or not, the Julia set has different topological properties. In the former case, the Julia set is a
Cantor bouquet, that is, a set of infinitely many arcs that emanate from a single point, called an explosion point ;
see also Section 3.2. The latter case leads to a set that also has infinitely many arcs, but now there are infinitely
many explosion point; we refer to this set as a Cantor tangle and provide more details and a precise definition
in Section 3.3. We remark, here, that Cantor bouquets have been found before in maps other than the complex
quadratic map [Aarts & Oversteegen(1993), Bula & Oversteegen(1990), Devaney & Krych(1984), Krauskopf &
Kriete(1998), Mayer(1990)], but this is the first example of a Cantor bouquet for which the explosion point is
finite.

We then consider in Section 4 the case that c is in the exterior of the Mandelbrot set. There, the complex
quadratic family (2) has no attracting fixed or periodic point, the orbit of the critical value c goes to infinity
and the Julia set is totally disconnected. For λ sufficiently close to 1 in the map (1), there is still no attractor,
all the orbits of points on the critical circle J1 go to infinity and the Julia set is still totally disconnected. As
λ decreases, we find a first interaction of the forward critical set J+ with the Julia set, which is accumulated
by an infinite sequence of forward-backward critical tangencies leading to the birth of infinitely many saddle
points. After this bifurcation the Julia set is again given by the closure of the stable sets of the saddle points
and is a Cantor tangle. As λ decreases further, a first attractor appears in a Neimarck–Sacker bifurcation and
the Julia set bounds components of the basins of both the finite attractor and infinity. We refer to this type of
Julia set as a Cantor cheese; see Section 4.

In order to find out how the transitions for the different values inside and outside the Mandelbrot set
are connected, we continue the respective bifurcations in the two parameters Re(c) and λ. We find that the
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bifurcation curves emanate from bifurcation points on the boundary and in the interior of the Mandelbrot set.
We detect curves of first homoclinic and first backward critical tangencies that lie very close together, and a
nearby accumulating sequence of forward-backward critical tangencies, that explains the sudden appearance of
infinitely many saddle points and the dramatic changes in the topology of the Julia set over a small parameter
range. Furthermore, we find that this bifurcation structure near the main cardioid repeats along the period-
doubling route to chaos on the line λ = 1.

This paper is organised as follows. In Section 2 we discuss the basic properties of the maps (1) and (2) and
define the critical, (un)stable and Julia sets for (1). In Section 3 we study the transition of the phase portrait of
map (1) for c in the interior of the Mandelbrot set. We start with the special case c = 0, where the critical point
J0 is a super-attracting fixed point, and then consider c = 0.1 and c = −0.25, which represent the orientation
preserving and reversing cases in (1), respectively. We discuss the transition for c outside the Mandelbrot set in
Section 4 for the representative value c = 0.28. In Section 5 we present and discuss the bifurcation diagram in
the (Re(c), λ)-plane for Im(c) = 0. We end with conclusions in Section 6, where we also extend the fundamental
dichotomy of (2) to the map (1) for λ ∈ (0, 1).

2 Notation and Definitions

The map (1) has several properties that are straightforward to derive. Here, we collect these properties, provide
the definitions of the critical set and of the stable and unstable sets, recall the basic facts of the complex
quadratic family (2), and extend the notion of the Julia set to the map (1) for λ < 1. A brief overview over the
literature on perturbations of (2) is also provided.

2.1 Basic properties of the map (1)

The map (1) maps the punctured plane C\{0} outside the disk D1−λ(c) in a 2-to-1-fashion, where Dr(z) denotes
the closed disk with radius r > 0 centred at z ∈ C. Therefore, the points in D1−λ(c) have no preimages and
every point in C\D1−λ(c) has two preimages. For all c ∈ C the map (1) is symmetric under rotation by π and
for c ∈ R it is also symmetric under complex conjugation. The first preimage f−10 is the preimage in the upper
half plane or the positive real line, whereas the second preimage f−11 is the preimage in the lower half plane or
the negative real line. For z ∈ C\D1−λ(c), they are given by

f−10 (z) = +

( |z − c| − 1 + λ

λ

)1/a√
z − c
|z − c| and

f−11 (z) = −
( |z − c| − 1 + λ

λ

)1/a√
z − c
|z − c| .

(4)

The kth preimage f−k(z) of z consists of up to 2k points; each of these points is given as a sequence of preimages

f−ksk···s1(z) := f−1sk ◦ · · · ◦ f−1s1 (z),

for (sl)1≤l≤k ∈ {0, 1}k.
Note that, if we decrease λ ∈ [0, 1] all the way to λ = 0, map (1) reduces to

f0 : C\{0} → C

z 7→
(
z

|z|

)2

+ c.
(5)

The map f0 maps the entire punctured plane C\{0} onto the critical circle J1 = ∂D1(c). The points on J1 have
infinitely many preimages, whereas the points in C\J1 have no preimages; see Section 3.1. For c = 0, the map (5)
restricted to the unit circle is the angle-doubling map. This map is transitive and the repelling periodic points
are dense in the unit circle. If c is varied and |c| < 1, the restriction of (5) to J1 still appears to be transitive and
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repelling periodic points seem to be dense in J1, but we did not investigate this in detail. The repelling periodic
points of the restriction (5) to J1 are (degenerate) saddle periodic points of the two-dimensional map (5).

For λ > 1 and λ < 0, the dynamics of (1) are more complicated. The origin has infinitely many preimages
and every other point inside the disk D|1−λ|(c) has four preimages. Therefore, for λ > 1 and λ < 0, the map (1)
becomes 4-to-1 or even ∞-to-1, and the analysis of this parameter regime lies beyond the scope of this paper.

2.2 The forward and backward critical sets

The point J0 := {0} is the critical point and the circle J1 := ∂D1−λ(c), which divides the plane into regions
with different numbers of preimages, is the critical circle of the map (1). At λ = 1 in (1), the circle J1 has
radius 0 and coincides with the critical value c of (2).

The forward and backward iterates of J0 and J1 play a special role in the organisation of the dynamics of
(1) on the punctured complex plane. The preimages J−k := f−k(J0), k ≥ 0, of J0 consist of up to 2k isolated
points and their union forms the backward critical set

J− := ∪k≥0J−k.

Each point in the backward critical set J− can be written according to its sequence of preimages, that is,
Jsk···s1−k := f−ksk···s1(J0) for some (sl)1≤l≤k ∈ {0, 1}k.

The images Jk := fk−1(J1), k ≥ 1, of J1 are closed curves and their union forms the forward critical set

J + := ∪k≥1Jk.

In the nonchaotic parameter regime, the Jk are topological circles and we will refer them as circles throughout
this paper. For λ = 1 in (1), the set J + consists only of the orbit of c. We call the union of the backward and
forward critical sets the critical set J := J− ∪ J +.

2.3 The stable and unstable sets

The dynamics of the map (1) on the plane is organised by the critical set J , the Julia set and the stable and
unstable sets of saddle fixed and periodic points. For a saddle fixed point p of the (1) and a neighbourhood V
of p, we define the local stable manifold W s

loc(p) as

W s
loc(p) := {z ∈ C : fk(z) ∈ V for all k ≥ 0}.

It is tangent to the stable eigenspace of p [Palis & de Melo(1982)]. The stable set W s(p) is defined as all
preimages of W s

loc(p); that is,

W s(p) :=
⋃
k≥0

f−k(W s
loc(p)). (6)

Due to the presence of multiple inverses for (1), the stable set consists of infinitely many disjoint branches
and, thus, is not an immersed manifold [Mira et al.(1996)]; the branch that contains p is the primary manifold
and we denote it W s

0 (p). The infinitely many branches of W s(p) are connected by the points in points in the
backward critical set J−, that is, W s(p) is not connected, but its closure W s(p) is connected and given by

W s(p) = W s(p) ∪ J−.

We define the local unstable manifold Wu
loc(p) of the neighbourhood V of p as the local stable manifold with

respect to the local inverse f−1loc of f that satisfies f−1loc (p) = p, that is,

Wu
loc(p) := {z ∈ C : (f−1loc )k(z) ∈ V for all k ≥ 0},

and it is tangent to the unstable eigenspace at p. The unstable set Wu(p) is defined as all images of the local
unstable manifold Wu

loc(p); that is,

Wu(p) :=
⋃
k≥0

fk(Wu
loc(p)). (7)
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For a diffeomorphism, the set Wu(p) is an immersed manifold, but for a noninvertible map, the images of
Wu

loc(p) form a single continuous curve that may have self-intersections. Due to the rotational symmetry of the
map (1), if for some z ∈ C\{0} the two points z and −z are both contained in Wu(p), then Wu(p) intersects
itself at the point f(z).

We define the stable and unstable sets of a k-periodic saddle point q as the union of the stable and unstable
sets of its orbit under the kth iterate fk of the map (1) [Palis & de Melo(1982)]; that is,

W s(q) :=
⋃

1≤l≤k
W s
fk(f l(q)) and

Wu(q) :=
⋃

1≤l≤k
Wu
fk(f l(q)).

We compute the unstable sets and the primary manifolds of the stable sets numerically with the method
proposed in [Krauskopf & Osinga(1998)] and implemented in the DsTool environment [Back et al.(1992),England
et al.(2004), Krauskopf & Osinga(2000)]; we then take successive preimages of the primary manifold to obtain
an approximation of the stable set; see [Hittmeyer et al.(2013)] for more details.

2.4 Properties of the complex quadratic family

We now recall some basic facts of the complex quadratic family (2) as needed in our study; see, for exam-
ple, [Blanchard(1984),Devaney(2003),Milnor(2006)] for more details and as an entry point to the literature. In
particular, for all definitions and properties given here for the map (2), we refer to [Blanchard(1984)], unless
specified otherwise. The origin is called the critical point and c is called the critical value of (2). Infinity is
attracting for all c ∈ C and we denote its basin of attraction by B(∞). For a fixed parameter value c ∈ C an
important object in the phase space of (2) is the Julia set, which we denote Y and define as

Y := ∂B(∞). (8)

Alternatively, Y can be characterised as the closure of the repelling periodic points of (2). We remark that the
Julia set is generally denoted J or J in the literature, which we use already for the critical set of (1); therefore,
we use the symbol Y, as motivated by the Russian version of the name Julia to denote the Julia set. The Julia
set Y is nonempty and invariant under (2), as well as the two preimages of (2). Furthermore, Y is perfect, that
is, every point in Y is accumulated by other points in Y. If there is another attractor, then it must contain the
critical value c in its basin of attraction, and Y also bounds this basin.

In fact, Y is either connected or totally disconnected, depending on the parameter c ∈ C. More precisely,
the Julia set Y and the orbit of the critical value c are related by a fundamental dichotomy: Y is connected if
and only if the orbit of the critical value c is bounded, and Y is totally disconnected if and only if the orbit of
c goes to infinity. If Y is connected, it bounds the open set C := C\(B(∞) ∪ Y). For the complex quadratic
family (2) this set is the interior of the so-called filled Julia set C\B(∞) and the set of bounded components
of the Fatou set C\Y [Carleson & Gamelin(1993)]. On the other hand, if Y is totally disconnected, then C is
always empty. Note that C may also be empty if Y is connected.

The central object of study in the parameter space C is the Mandelbrot set, which encodes this dichotomy.
It is denoted M and defined as

M := {c ∈ C : Y is connected}. (9)

Alternatively, M can be characterised as

M := {c ∈ C : fk1 (c) stays bounded for k →∞}. (10)

The Mandelbrot setM constitutes the bifurcation diagram of (2) in the c-plane that summarises the properties
of the corresponding Julia sets. The setM itself is connected and the interior int(M) ofM consists of cardioids
and bulbs; see already Figure 1(b).

For c in a bulb or cardioid in int(M) the corresponding map (2) admits a unique (hyperbolic) attractor
Pk = {p0k, . . . , pk−1k } of some period k, which attracts the orbit of c. Let B(Pk) denote the basin of attraction
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of Pk. The immediate basin of attraction of Pk, denoted B0(Pk), is the union of the k unique connected open
subsets of B(Pk) that contain plk for 0 ≤ l ≤ k − 1. The basin B(Pk) is the union of all preimages of B0(Pk)
and forms the set C. The Julia set Y is the boundary of B(Pk) and consists of a union of Jordan curves. The
Jordan curves that form Y typically contain no smooth arcs and are nowhere differentiable. Moreover, each
bulb or cardioid ofM contains one parameter value Ck in its interior, for which the critical value c = Ck ∈ Pk.
This value is called the centre of the bulb or the cardioid and the corresponding attractor has zero as a double
eigenvalue, that is, it is super-attracting.

For each c in the exterior ext(M) of M, the orbit of c goes to infinity. In this case, the complex quadratic
map (2) does not have any finite periodic attractors. Hence, the Julia set Y is no longer the boundary of a finite
basin and the set C is empty. Instead, Y is totally disconnected and perfect, which means that it is a Cantor
set.

For values c ∈ ∂M, the Julia set Y is connected and the orbit of c stays bounded. If c ∈ ∂M is pre-periodic,
Y is a dendrite, that is, a locally connected, compact and connected set that does not contain any Jordan curves.
However, the topology of Julia sets for c ∈ ∂M and the associated dynamics of (2) can be very different and
much more complicated; see, for example, [Carleson & Gamelin(1993)].

Figure 1 shows the bifurcation diagram of the complex quadratic family (2). Panel (a) shows the attractors
in the (c, z)-plane for c, z ∈ R. The colours green, cyan, red and blue correspond to periodic windows, where (2)
has attracting periodic orbits Pk of periods k = 1, 2, 3 and 4, respectively. We remark that, for c and z both
real, (2) is topologically conjugate to the logistic map x 7→ µx(1− x) with µ, x ∈ R. The points S1, P1 and P2

(black dots) are points of saddle-node and period-doubling bifurcations, respectively. When c is decreased along
the real line, the restriction of (2) to R undergoes a sequence of period-doubling bifurcations, which leads to the
appearance of a chaotic attractor in R. Figure 1(b) shows the Mandelbrot set M in the complex c-plane. The
main cardioid (green) corresponds to the existence of an attracting fixed point; the bulb containing C2 (cyan)
and the bulbs labelled 3 (red) and 4 (blue) correspond to the existence of attracting periodic points of periods
two, three and four, respectively; the black bulbs correspond to attracting periodic points of higher periods.
The points C1 = 0 and C2 = −1 (black dots) are the centres of the main cardioid and the period-two bulb,
respectively, where the critical point J0 is a super-attracting fixed point and period-two point, respectively.
Indeed, panel (a) corresponds to the one-dimensional cross section along the line Im(c) = 0 in panel (b).

2.5 Definition of the Julia set for λ < 1

Note that the bounded attractors of (1) may change drastically, but infinity is an attractor for all λ ∈ (0, 1].
Therefore, we define the Julia set of (1) for λ ∈ (0, 1] by property (8), that is, as the boundary of the basin
of attraction of infinity, and still denote it Y. For λ = 0, infinity is no longer attracting. As we will see in
Section 3.1, the basin B(∞) goes to infinity as λ goes to 0 and, therefore, we define the Julia set to be Y := {∞}
for λ = 0.

We believe that this definition of the extension of the Julia set Y to the family of maps (1) is suitable, because
our numerical investigations in Sections 3 and 4 indicate that Y retains its main properties. In particular, Y is
invariant under (1) and both its preimages and it is nonempty. Moreover, our results suggest that Y is closed
and perfect. However, as we will see in Section 4, for λ ∈ (0, 1) the Julia set Y, as defined by (8), is not
necessarily the closure of the repelling periodic points. For some λ ∈ (0, 1), a subset of Y lies in the interior of
the disk bounded by the critical circle J1. Since the points in this subset of Y have no preimage, they are not
in the closure of the repelling periodic points. On the other hand, this subset eventually appears to map to the
closure of the repelling periodic points. Therefore, we propose the alternative characterisation of the Julia set
Y of map (1) for λ ∈ [0, 1] as the closure of periodic and pre-periodic repelling points, that is, we conjecture
that

Y = {z ∈ C : ∃ k ∈ N such that fk(z) is a repelling periodic point}.
In particular, this alternative characterisation of Y also holds for λ = 1, that is, for the complex quadratic
family (2).
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Figure 1: The bifurcation diagram of the map (2) in the (c, z)-plane for c, z ∈ R (a) and in the c-plane for
c, z ∈ C (b). The colours green, cyan, red and blue correspond to the existence of attracting periodic points
of periods one, two, three and four, respectively. The points S1, P1 and P2 are points of saddle-node and
period-doubling bifurcations, respectively, and the points C1 and C2 are the centres of the main cardioid and
the period-two bulb, respectively.

2.6 Other perturbations of the complex quadratic family

The family (1) is a specific perturbation of the complex quadratic family (2); it is nonanalytic and has a singular-
ity at J0 = 0 for λ 6= 1. Moreover, (1) remains in the class of quadratic maps and admits infinitely many critical
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orbits, namely, the orbits of all points on the critical circle J1. Other perturbations of the complex quadratic fam-
ily (2) have been studied, for example, in [Bielefeld et al.(1993),Devaney(2013),Bruin & van Noort(2004),Blan-
chard et al.(2005),Marotta(2008),McMullen(1988),Peckham(1998),Peckham & Montaldi(2000)]. In [Blanchard
et al.(2005), Devaney(2013), Marotta(2008), McMullen(1988)] the map (2) is perturbed to a rational map with
a pole at J0 = 0 by adding the term α/zm for m ∈ N with m ≥ 1. For α 6= 0, the perturbed maps are rational
maps of degree 2 + m and analytic on C\{0}. For m = 1, m = 2 and m ≥ 3 and certain α, c ∈ C the Julia
set of the perturbed map is homeomorphic to a so-called Sierpinski gasket, a Sierpinski carpet or a Cantor set
of circles, respectively. The Sierpinski gasket is constructed by dividing a triangular region of the plane into
four equal-sized subtriangles, removing the open middle triangle and repeating this step with the remaining
triangles infinitely many times. Similarly, the Sierpinski carpet is constructed by dividing a square into nine
equal-sized subsquares, removing the open middle square and repeating this step with the remaining squares
infinitely many times. A Cantor set of circles is a union of infinitely many nested Jordan curves such that their
intersection with a line is a Cantor set.

In [Bielefeld et al.(1993), Bruin & van Noort(2004)] the map z 7→ |z|2α−2z2 + c is considered near α = 1,
which is, in fact, map (3) for λ = 1 and a = 2α; the perturbed map is nonanalytic, is no longer quadratic
and has a singularity at J0 = 0. In [Peckham(1998), Peckham & Montaldi(2000)] the map (2) is perturbed
to a nonanalytic map by adding the term Az with A ∈ C near A = 0. In [Bielefeld et al.(1993), Bruin &
van Noort(2004),Peckham(1998),Peckham & Montaldi(2000)] the bifurcation diagram of the perturbed maps is
studied in the c-plane, that is, the analogue of the Mandelbrot setM, for different α ∈ R near α = 1 and A ∈ C
near A = 0, respectively. They find saddle-node, period-doubling and Neimarck–Sacker bifurcation curves,
which give rise to resonance tongues and invariant circles near the cusp point C1, the period-doubling point P1

and the point between the main cardioid and the period-three bulb of the unperturbed map. In [McDonald
et al.(1985a), McDonald et al.(1985b)] nonanalytic quadratic maps of the plane are considered, where chaotic
attractors interact with their fractal basin boundaries; however, they consider a parameter regime far away
from (2). All of these perturbations of the complex quadratic map have in common that they admit only one
critical orbit and are either nonanalytic or have a singularity at J0.

3 The parameter c in the main cardioid of the Mandelbrot set M
In this section we consider three different fixed values of c in the interior of the main cardioid of the Mandelbrot
set M. We first consider the special case c = 0 in Section 3.1, because for λ = 1 the origin of (2) is super-
attracting and the Julia set Y is simply the unit circle. In the sections that follow, we choose c = 0.1 > 0 and
c = −0.25 < 0, so that (1) is orientation preserving and orientation reversing, respectively. For all choices of c,
we start from λ = 1 and investigate the changes in the phase portrait of map (1) for decreasing λ ∈ [0, 1].

3.1 The special case c = 0

First, we consider the special case c = 0, which is the centre of the main cardioid ofM, meaning that c = f(c) = 0
is a super-attracting fixed point of (2).

Figure 2(a) is the phase portrait of (1) for c = 0 and λ = 1, that is, of the complex quadratic map (2), which
is defined for all z ∈ C. The critical point J0 = 0 (green dot) is mapped to the critical value J1 = 0 (green dot)
of (2). Therefore, J0 is equal to the fixed point p1 (blue triangle), which is super-attracting. The points inside
the unit circle form the basin of attraction B(p1) (white) and B(∞) (grey) consists of all points outside the unit
circle. The grey scale corresponds to sets with different escape times to a neighbourhood of infinity, chosen to
be the set of points {z ∈ C : |z| > 2r}, where r is the maximum value of Re(z) shown in the phase portrait.
The unit circle forms the boundary between B(p1) and B(∞) and, hence, is the Julia set Y (black). Restricted
to Y, the map (1) with (c, λ) = (0, 1) is the angle-doubling map θ 7→ 2θ (mod 1). Therefore, (1) is chaotic on Y
and repelling periodic points are dense in it [Devaney(2003)]. We show only fixed points and period-two points
in Figure 2(a). The map has a repelling fixed point s1 = 1 ∈ Y (red square) on the real line and two repelling
period-two points s±2 = ± exp(2πi/3) ∈ Y (red squares) above and below the real line, respectively. Since p1
and infinity are the only attractors, the set C = C\(B(∞) ∪ Y) is simply the basin B(p1).

9



(a)

J0 = p1

s+2

s−2

s1

(b) (c)

(d) (e) (f)

Figure 2: The transition of the phase portrait for c = 0 in [−1.1, 1.1] × [−1.1, 1.1] in panels (a)–(d) and
[−2.5, 2.5] × [−2.5, 2.5] in panels (e) and (f), respectively; shown are the Julia set Y (black), the critical set
J (green), the fixed points p1 (blue triangle/black cross) and s1 (red square), the period-two points p±2 (black
crosses) and s±2 (red squares), the stable sets W s(p1) (dark blue) and W s(p±2 ) (light blue), respectively, and
the chaotic attractor A (magenta). Panels (a)–(f) are for λ = 1, λ = 0.9, λ = 0.6, λ = 0.5, λ = 0.3 and λ = 0,
respectively.

Figures 2(b) and (c) are the phase portraits for λ = 0.9 and λ = 0.6, respectively. As λ is decreased from
λ = 1, the critical value J1 = 0 opens up to the critical circle J1 (green) with radius 1 − λ around 0. The
Julia set Y is still the unit circle and contains the repelling points s1 and s±2 along with other repelling periodic
points. However, the period-one attractor p1 is now a saddle point (black cross) on the positive real line and
the map has two period-two saddle points p+2 and p−2 above and below the real line, respectively. All saddles lie
on a circle with radius (1−λ)/λ around J0 (magenta), which we call A. The images of J1 in the forward critical
set J + are concentric circles that accumulate on A. One can show that the circle A is invariant under (1), that
it attracts all points inside Y, and that the restriction of (1) to A is the angle-doubling map. Therefore, A is
a chaotic attractor and saddle periodic points of (1) are dense in it. Its basin B(A) (white) is bounded by Y.
In other words, for the special case c = 0 we obtain a chaotic attractor, namely, the circle of radius (1 − λ)/λ
around J0, for any λ ∈ (0.5, 1). The saddle points p1 and p±2 have one-dimensional stable sets, denoted W s(p1)
(dark blue) and W s(p±2 ) (light blue), respectively. The primary branches W s

0 (p1) and W s
0 (p±2 ) are arcs that go

through p1 and p±2 and connect to J0 on one side and to s1 and s±2 on the other, respectively. The sets W s(p1)
and W s(p±2 ) consist of infinitely many straight lines, which go through the preimages of p1 and p±2 on A and
extend to J0 on one side and to the preimages of s1 and s±2 on Y on the other, respectively. These infinitely
many branches all connect up at J0, but they have no other branch points, because J0 lies inside J1.
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As λ decreases further, the radius of A increases until, for λ = 0.5, it equals 1 and A and Y coincide.
Figure 2(d) is the phase portrait for λ = 0.5. We observe that the fixed points p1 and s1 and the period-two
points p±2 and s±2 meet in a transcritical bifurcation; they have one eigenvalue equal to 1. This bifurcation is
highly degenerate, because all saddle periodic points in A have transcritical bifurcations with corresponding
repelling periodic points in Y at the same time. Note that A still attracts all points bounded by Y, including
the circles in J +, but the attraction is no longer exponential. In particular, A is not an attractor, because we
cannot find a neighbourhood, in which all points converge to A.

Past the degenerate transcritical bifurcation, A and Y move apart again. However, now the chaotic attractor
A is the unit circle and Y is the circle with radius (1−λ)/λ around 0. (Note that the radius of Y must be equal
or larger than the radius of A, because infinity is attracting for all λ ∈ (0, 1].) Figure 2(e) is the phase portrait
for λ = 0.3. The dynamics of map (1) for λ ∈ (0, 0.5) are qualitatively the same as the dynamics for λ ∈ (0.5, 1),
that is, A and Y are circles around J0 and the stable sets W s(p1) and W s(p±2 ) are formed by infinitely many
straight lines between J0 and the preimages of s1 and s±2 on Y, respectively. Note that the range shown in
Figure 2 varies from [−1.1, 1.1]× [−1.1, 1.1] in panels (a)–(d) to [−2.5, 2.5]× [−2.5, 2.5] in panel (e) due to the
increased radius of Y.

Finally, as λ → 0, the radius 1 − λ of J1 goes to 1 and the radius (1 − λ)/λ of Y goes to infinity, while
A remains the unit circle. The phase portrait for λ = 0 is shown in Figure 2(f), where map (1) reduces to
z 7→ (z/|z|)2, which is (5) for c = 0; the range shown is the same as in panel (e). The forward critical set J +

consists only of the critical circle J1, which coincides with the chaotic attractor A. Its basin B(A) is the entire
punctured plane, which is mapped onto A in an ∞-to-1 fashion. Note that the stable sets W s(p1) and W s(p±2 )
are still defined as in equation (6) in Section 2.3. More specifically, W s(p1) and W s(p±2 ) are straight lines from
J0 through the preimages of p1 and p±2 in A; each such line extends to infinity and each point on it immediately
maps to p1 or p±2 , respectively.

3.2 Global transitions for c = 0.1

We now consider an orientation-preserving case inM; namely, we choose c = 0.1 to the right of the centre c = 0
of the main cardioid of M. As before, we study the changes in the phase portrait of map (1) when λ ∈ [0, 1] is
decreased from λ = 1; the corresponding phase portrait is shown in Figure 3(a). As c = 0.1 lies in the interior
of the main cardioid of M, the map has a fixed-point attractor on the real line, denoted p1 (blue triangle);
the Julia set Y (black) is a Jordan curve and coincides with the closure of the repelling periodic points. We
computed Y by plotting up to the third preimage of approximately three thousand repelling periodic points with
periods up to 24. The map has a repelling fixed point (red square), denoted s1, which lies on the intersection
of Y with the real line. The basin B(p1) (white) of the attractor p1 is the set C = C\(B(∞) ∪ Y). The basin
B(∞) is show in grey. The backward critical set J− (green dots) is shown up to the sixth preimage J−6 of the
critical point J0; it accumulates on the Julia set Y. The forward critical set J + (green dots) is shown up to the
fifth image J6 of the critical value J1 = 0.1 (green dot) of (2); it converges to p1.

As soon as λ < 1, the critical circle J1 becomes a proper circle with radius 1 − λ; note that this circle is
now centred at c = 0.1. Figure 3(b) shows the phase portrait for λ = 0.95. The critical circle J1 has radius
1 − λ = 0.05 and the forward critical set J + consists of closed curves accordingly. The map (1) is no longer
analytic, but the dynamics of the key objects are qualitatively the same as for λ = 1 in panel (a): the attractor
p1 and the repellor s1 are the only fixed points, the circles in the forward critical set J + accumulate on p1, the
backward critical set J− accumulates on Y, which is a Jordan curve bounding C = B(p1). Since the orbits of
all points on J1 are attracted by p1, one could still think of J1 as the image of J0 and so the entire critical set
J lies in C = B(p1). Here, Y can still be viewed as the closure of the repelling periodic points.

As λ decreases, p1 destabilises in a pitchfork bifurcation at λ ≈ 0.9375. The fixed point p1 becomes a saddle
and two attracting fixed points q±1 are born, which are each others symmetric counterparts under complex
conjugation. Figures 3(c) for λ = 0.93 and (d) for λ = 0.91 show two phase portraits after the pitchfork
bifurcation. The saddle p1 (black cross) has one-dimensional stable and unstable sets W s(p1) (blue) and
Wu(p1) (red), respectively. The primary branch W s

0 (p1) of W s(p1) is the open interval (J0, s1) on the real line.
The stable set W s(p1) consists of infinitely many branches, formed by the preimages of W s

0 (p1), which contain
the preimages of p1 and end at the preimages of s1 in Y. In contrast to the case c = 0, where all branches of
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Figure 3: First step in the transition of the phase portrait for c = 0.1 in [−1.1, 1.1] × [−1.1, 1.1]; shown are
the Julia set Y (black), the critical set J (green), the fixed points p1 (blue triangle/black cross), s1 (red
square) and q±1 (blue triangles), the period-two points p±2 (black crosses) and s±2 (red squares), and their stable
and unstable sets, denoted W s(p1) (dark blue), W s(p±2 ) (light blue), Wu(p1) (red), and Wu(p2) (purple),
respectively. Panels (a)–(f) are for λ = 1, λ = 0.95, λ = 0.93, λ = 0.91, λ = 0.9, and λ = 0.85, respectively.

W s(p1) emanate from J0, W s(p1) now has a tree structure: the branches of W s(p1) are connected at points in
J− such that each point in J− connects four branches of W s(p1). The unstable set Wu(p1) lies outside the
critical circle J1; its two sides are curves that end at q±1 . The circles in the forward critical set J + accumulate
on the closure of Wu(p1), that is, on Wu(p1) ∪ {q±1 }. Note, however, that individual orbits of points on J1
converge to either p1, q+1 or q−1 . More precisely, the two points in J1 ∩ R lie in W s(p1), but all other points on
J1 lie in one of the basins of q±1 , denoted B(q±1 ). The Julia set Y is still a Jordan curve, but the set C is no
longer the basin of a single attractor. Instead, C now consists of the two basins B(q±1 ), as well as the backward
critical set J− and the stable set W s(p1), which form the boundary between the two basins B(q±1 ).

As λ decreases further, map (1) undergoes a first homoclinic tangency of the stable and unstable sets W s(p1)
and Wu(p1) at λ ≈ 0.900085 and a first backward critical tangency of the backward critical set J− and Wu(p1)
at λ ≈ 0.90006. At a backward critical tangency Wu(p1) contains J0 and a sequence of its preimages in J−;
after such a tangency Wu(p1) forms self-intersecting loops around the circles in J +. The first homoclinic
tangency is accumulated by an infinite sequence of homoclinic tangencies and an infinite sequence of forward
critical tangencies, that is, tangencies between J + and W s(p1). Similarly, the first backward critical tangency
is accumulated by an infinite sequence of backward critical tangencies and an infinite sequence of forward-
backward critical tangencies, that is, tangencies between J + and J−; see [Hittmeyer et al.(2013)] for more
details.
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Figure 3(e) is the phase portrait for λ = 0.9, where J1 has radius 1 − λ = 0.1, such that the critical point
J0 lies on the critical circle J1 in a forward-backward critical tangency. This bifurcation is the “last” forward-
backward critical tangency. All points in J− have disappeared into J0 and J0 no longer has any preimages.
Accordingly, the infinitely many branches of W s(p1) now all connect at J0, which means that the tree structure
of W s(p1) has collapsed into J0. Similar to the case c = 0, the stable set W s(p1) consists of infinitely many arcs
extending to J0 at one end and to the preimages of p1 in Y at the other; compare with Figure 2. Since J0 ∈ J1,
the circle J2 contains J1 and, similarly, we have Jl ⊂ Jk for all 1 ≤ l ≤ k. The attractors q±1 have disappeared
into J0 and the unstable set Wu(p1) intersects itself in several points on the real line. Let Wu

0 (p1) be the closed
segment of Wu(p1) containing p1 up to the first intersection point of the two sides of Wu(p1). Then the circles
in J + and the entire unstable set Wu(p1) are bounded by Wu

0 (p1). As we will show in Figure 4, our numerical
calculations suggest that the closure of Wu(p1) is now a chaotic attractor A and saddle periodic points are
dense in it. In Figure 3(e), the set C is the basin of attraction B(A) of A. In particular, since p1 is contained
in A, its stable set W s(p1) is contained in the basin B(A).

Figure 3(f) is the phase portrait for λ = 0.85, after the forward-backward critical tangency of J0 and J1.
Note that J0 now lies inside the disk bounded by J1. Two saddle period-two points (black crosses), denoted
p±2 , which are symmetric under complex conjugation, have appeared near J0, but outside J1. They have one-
dimensional stable and unstable sets W s(p±2 ) (light blue) and Wu(p2) (purple), respectively. The stable set
W s(p±2 ) consists of infinitely many branches connecting J0 to the preimages of two period-two repelling points
s±2 in Y. The unstable set Wu(p2) accumulates on the chaotic attractor A. Overall, the dynamics are somewhat
similar to that of the special case c = 0 with λ ∈ (0, 0.5)∪ (0.5, 1) in Figure 2, but, the chaotic attractor A and
the Julia set Y are not circles.

Details of the last forward-backward critical tangency

We now look closer at how the critical set J changes and how fixed and periodic points appear or disappear in
the forward-backward critical tangency of the critical point J0 and the critical circle J1 at λ = 0.9; see panels (e)
and (f) of Figure 3. Figure 4 shows images before the bifurcation in column (a), at the bifurcation in column (b)
and after the bifurcation in column (c), namely for λ = 0.904, λ = 0.9 and λ = 0.89, respectively. The top row
shows J0 and its preimages J1

−1, J00
−2, J01

−2, J10
−2, J20

−2 ∈ J− (green points), and J1 and its image J2 ∈ J + (green
curves); the middle row shows enlargements near J0, q±1 and p±2 ; and the bottom row shows, in addition, the
saddle point p1, its unstable set Wu(p1) and all saddle periodic points up to period 20.

Figure 4(a) illustrates the situation before the forward backward critical tangency; here, the point J0 lies
outside the disk bounded by J1 and, accordingly, J1 lies outside the region bounded by J2. From (1) it is not
hard to find that the attractors q±1 lie in the intersection of two circles, one around c with radius c and the

other around 0 with radius
√

(c− 1 + λ)/λ. Therefore, q±1 lie outside the critical circle J1 and its images. The
points q±1 are the only attractors and the point p1 is the only saddle.

At λ = 0.9, at the moment of bifurcation, J0 lies on J1, as shown in panels (b1) and (b2). Therefore, J1 ⊂ J2
and the preimages J0

−1, J1
−1, J00

−2, J01
−2, J10

−2, J20
−2 of J0 disappear. Furthermore, the circle around J0 with radius√

(c− 1 + λ)/λ shrinks to the point J0 and, thus, q±1 also disappear into J0. Since Wu(p) extends to q±1 , the
critical point J0 now lies on the unstable set Wu(p1) in a last backward critical tangency, as shown in panel (b3).
This backward critical tangency is degenerate because it coincides with the last forward critical tangency and,
as a consequence, Wu(p1) does not form cusps at the circles in J +. This panel also shows saddle periodic points
with periods 3 ≤ k ≤ 20, but the saddle periodic points with periods 3 ≤ k ≤ 8 are very close to J0. There
is an infinite sequence of forward-backward critical tangencies between the first backward critical tangency at
λ ≈ 0.90006 and the last forward-backward critical tangency at λ = 0.9; see [Hittmeyer et al.(2013)] for more
details. We believe that each of these forward-backward critical tangencies gives rise to a saddle periodic orbit
near J0 and, as a result, (1) admits infinitely many saddle periodic points of arbitrarily high periods at λ = 0.9.
Since these saddle periodic points accumulate on Wu(p1), and Wu(p1) is bounded, the closure of Wu(p1) is a
chaotic attractor A.

After the bifurcation, J0 lies in the interior of the disk bounded by J1; see panels (c1) and (c2). Because
of the angle doubling of (1), the closed curve J2 goes around J1 twice and intersects itself on the negative real
line. This means that the curves in the forward critical set J + lie nested. Two period-two saddle points p±2
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Figure 4: The effect of the “last” forward-backward critical tangency at λ = 0.9; row one and two show J0 and
its preimages J0

−1, J1
−1, J00

−2, J01
−2, J10

−2, J11
−2 ∈ J− (green), J1 (dark green) and its image J2 ∈ J + (green), the

attracting fixed points q±1 (blue triangles) and the period-two points p±2 (black crosses); row three shows, in
addition, the saddle point p1 (black cross), its unstable set Wu(p1) (red) and all saddle periodic points up to
period 20. The parameter values are λ = 0.904 before the tangency in column (a), λ = 0.9 at the tangency in
column (b) and λ = 0.89 after the tangency in column (c).

have appeared near J0, which lie between the outer and the inner closed curve of J2; see panel (c2). The saddle
points p±2 were created in the last forward-backward critical tangency with the same mechanism by which the
infinitely many saddles with periods k ≥ 3 were created in the preceding infinite sequence of forward-backward
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Figure 5: Second step in the transition of the phase portrait for c = 0.1 in [−1.2, 1.2] × [−1.2, 1.2]; shown are
the Julia set Y (black), the critical set J (green), the fixed points p1 (black cross) and s1 (red square), the
period-two points p±2 (black crosses) and s±2 (red squares), and their stable and unstable sets W s(p1) (dark
blue), W s(p±2 ) (light blue), Wu(p1) (red), and Wu(p2) (purple), respectively. Panels (a)–(f) are for λ = 0.8,
λ = 0.78, λ = 0.779129, λ = 0.75, λ = 0.7 and λ = 0.6, respectively.

critical tangencies.
This complicated transition in the small interval λ ∈ [0.89, 0.904] generates infinitely many saddle points,

which lie dense in the closure of the unstable set Wu(p1); hence, we have indeed a chaotic attractor A, which
is the only attractor other than infinity.

Transition through the first saddle-node bifurcation

As for c = 0, the attractor A grows larger as λ decreases further and the saddle periodic points on A come
closer to the repelling periodic points on Y. Figure 5 shows phase portraits illustrating further changes in the
dynamics of map (1) for six decreasing values of λ ∈ [0.6, 0.8] in panels (a)–(f), respectively. Panels (a) and
(b) are the phase portraits for λ = 0.8 and λ = 0.78, where the dynamics are qualitatively the same as in
Figure 3(f), but the points p1 and p±2 and their unstable sets Wu(p1) and Wu(p2) lie further away from J0
and the point p1 in A lies closer to the point s1 in Y. At λ = (11 +

√
21)/20 ≈ 0.779129, the fixed points

p1 and s1 meet, as shown in Figure 5(c). In contrast to the case c = 0, this is not a transcritical bifurcation,
but a saddle-node bifurcation. The chaotic attractor A meets its basin boundary Y, but now only in the point
p1 = s1. Note that the preimages of p1 = s1 lie in Y, but not on the attractor A.

After the saddle-node bifurcation, the fixed points p1 and s1 and the sets W s(p1) and Wu(p1) have disap-
peared. Figures 5(d)–(f) show the dynamics for parameter values λ ∈ (0.3208, 0.779129), after the saddle-node
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bifurcation, with phase portraits for λ = 0.75, λ = 0.7 and λ = 0.6, respectively. Now that p1 is gone, the
unstable set Wu(p2) and the forward critical set J + are no longer bounded by Wu(p1). Instead, Wu(p2) and
J + intersect the Julia set Y and the basin B(∞), which means that they are now unbounded. Hence, the
closure of the saddle periodic points is not a chaotic attractor, but a chaotic saddle, which we denote by S.
The critical circle J1 contains points that go to infinity, for example, the point c+ 1− λ, and points that stay
bounded under iteration of map (1), for example W s

0 (p±2 ) ∩ J1. Therefore, J1 must also contain points that lie
in Y; note that J0 now lies in Y as well.

Before we discuss the Julia set Y in this parameter regime, let us first study the effect of the saddle-node
bifurcation on the stable and unstable sets W s(p1) and Wu(p1) and the saddle periodic points in more detail.

Details of the first saddle-node bifurcation

Figure 6 shows the phase portraits for λ = 0.8 in column (a), λ = 0.779129 in column (b) and λ = 0.75 in
column (c) before, approximately at, and after the saddle-node bifurcation, respectively. The top row shows
the fixed points p1 and s1, the stable sets W s(p1) and W s(p±2 ), the critical point J0 and the Julia set Y in the
positive quadrant of the complex plane; the bottom row shows J0, J1, the unstable set Wu(p1) and all saddle
periodic points up to period 15. Before the bifurcation, as shown in panel (a1), the primary branch W s

0 (p1)
contains p1, extends to J0 on one side and to s1 on Y on the other. The saddle periodic points are dense in
the chaotic attractor A and the unstable set Wu(p1) accumulates on A; see panel (a2). The set C is the basin
B(A), which is open and connected and its boundary Y is a Jordan curve.

At the saddle-node bifurcation of p1 and s1, the preimages of p1 in W s(p1) are equal to the preimages of s1 in
Y. Here, C is still B(A) and Y is still a Jordan curve; see panel (b1). The fixed point p1 = s1 has one eigenvalue
at 1 and, therefore, the contraction to p on W s(p) is no longer exponential. The point p1 lies on the attractor
A and the point s1 lies on its basin boundary Y, so this bifurcation is a boundary crisis of A; see [McDonald
et al.(1985a),McDonald et al.(1985b)] for more details on boundary crisis of fractal basin boundaries.

After the saddle-node bifurcation, the stable set W s(p1) has disappeared together with p1 and s1; see
panel (c1). Furthermore, the chaotic attractor A and its basin B(A) have disappeared; see panel (c2). Points
on the entire positive real line and its preimages (grey curves) now go to infinity, while W s(p±2 ) stays bounded
under iteration of (1). The closure of the saddle periodic points forms the chaotic saddle S that induces transient
chaos [Kaplan & Yorke(1979)]: immediately after the bifurcation, the set S is chaotic and orbits of points in
the former basin B(A) are initially all attracted by S, but eventually most diverge to infinity.

After the bifurcation, map (1) has no attractor and the set C = C\(B(∞) ∪ Y) is empty. However, the
closures of W s(p±2 ) and the stable sets of all other saddle periodic points stay bounded under iteration and,
hence, must be contained in Y. On the other hand, the closure of the stable sets consists of infinitely many arcs
that have the pre-periodic repelling points as their end points. Therefore, we conclude that Y now coincides
with the closure of the stable sets of all saddle points. This means that Y is compact, connected and does not
contain any Jordan curves. Furthermore, it is locally connected only in the point J0, so it is not a dendrite.
Note that this is the first time that the Julia set of map (1) is neither a union of Jordan curves, nor a Cantor
set, nor a dendrite. All together, our numerical investigations suggest, that Y is a so-called Cantor bouquet.
This is an infinite union of arcs that emanate from one point, such that the end points of these arcs are dense
in the set [Aarts & Oversteegen(1993), Bula & Oversteegen(1990)]. The Cantor bouquet is locally connected
only at the point of connection of the arcs, which is J0 in this case. Furthermore, the set of end points of the
arcs together with the point of connection of the arcs is a connected set, whereas the set without this point
is totally disconnected; such a point is called an explosion point [Mayer(1990)]. Cantor bouquets have been
found in the study of Julia sets of the exponential map z 7→ λ exp(z) for λ < e−1, where the explosion point is
at infinity; see [Aarts & Oversteegen(1993), Bula & Oversteegen(1990), Devaney & Krych(1984), Krauskopf &
Kriete(1998),Mayer(1990)] for more details.

Transition through a second saddle-node bifurcation of p1

As λ decreases further, the fixed points p1 and s1 and the sets W s(p1) and Wu(p1) reappear in a second saddle-
node bifurcation, which induces the transition shown in Figure 5, but in reverse order. Figure 7 shows changes in
the phase portraits for six decreasing values of λ ∈ [0, 0.4] in panels (a)–(f). Note that panels (a)–(d) are shown
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Figure 6: The effect of the saddle-node bifurcation of the fixed points p1 and s1 at λ = 0.779129; the top
row shows J0 (green), the saddle point p1 (black cross), the repellor s1 (red square), the stable sets W s(p1)
(blue) and W s(p±2 ) (light blue) and the Julia set Y; the bottom row shows the critical point J0 (green), the
critical circle J1 (green), all saddle periodic points up to period 15 and the unstable set Wu(p1) (red). The
parameter values are c = 0.1 and λ = 0.8 before the bifurcation in column (a), λ = 0.779129 approximately at
the bifurcation in column (b) and λ = 0.75 after the bifurcation in column (c).

in the range [−2.5, 2.5]× [−2.5, 2.5], whereas panels (e) and (f) are shown in the range [−4.3, 4.3]× [−4.3, 4.3],
because the basin B(A) extends in the course of the transition, as was the case for λ < 0.5 and c = 0. Panels (a)
and (b) show the situation at λ = 0.4 and λ = 0.35, respectively, where the dynamics are qualitatively the same
as in Figures 5(d)–(f): there are no fixed points, Wu(p2) is unbounded and we believe that the Julia set Y is a
Cantor bouquet with explosion point J0. Panel (c) is the phase portrait for λ = 0.3208, approximately at the
second saddle-node bifurcation at which p1, s1 and the chaotic attractor A reappear; compare with Figure 5(c).
Figures 7(d) and (e) are the phase portraits for λ = 0.3 and λ = 0.2, after the second saddle-node bifurcation;
compare with Figures 5(b) and (a).

Figure 7(f) is the phase portrait for λ = 0, where map (1) reduces to (5) for c = 0.1; compare with Figure 2(f).
As for c = 0, the stable set W s(p1) and W s(p±2 ) are straight lines, which extend from J0 to infinity, each point
in these sets immediately maps to p1 and p±2 , respectively, and the chaotic attractor A (magenta) is the critical
circle J1, but now J1 is centred around c = 0.1. Saddle periodic points still seem to be dense in A and, therefore,
we believe that (1) restricted to A for c = 0.1 is a one-dimensional chaotic map that is topologically equivalent
to the angle-doubling map on the unit circle.
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Figure 7: Last step in the transition of the phase portrait for c = 0.1 in [−2.5, 2.5]× [−2.5, 2.5] (panels (a)–(d))
or [−4.3, 4.3]× [−4.3, 4.3] (panels (e)–(f)); shown are the Julia set Y (black), the critical set J (green), the fixed
points p1 (black cross) and s1 (red square), the period-two points p±2 (black crosses) and s±2 (red squares), and
their stable and unstable sets W s(p1) (dark blue), W s(p±2 ) (light blue), Wu(p1) (red), and Wu(p2) (purple),
respectively. Panels (a)–(f) show phase portraits for λ = 0.4, λ = 0.35, λ = 0.3208, λ = 0.3, λ = 0.2 and λ = 0,
respectively.

3.3 Global transitions for c = −0.25
We now consider an orientation-reversing case, namely, we choose c = −0.25 to the left of the centre in the main
cardioid of M. Some of these results were also part of the MEng project by Madeleine Jones at the University
of Bristol. For c = −0.25 and λ ∈ [0, 1] decreasing from 1 for map (1), we encounter a similar sequence of
bifurcations as for c = 0.1 in Section 3.2. However, the transition is preceded by a period-doubling bifurcation
and the sequence of bifurcations described in Section 3.2 occurs for the emanating period-two orbit instead of
the fixed point. We start with the phase portrait of (1) for λ = 1 in Figure 8(a). As for c = 0.1, the map
has an attracting fixed point p1 (blue triangle) and a repelling fixed point s1 (red square) on the real line, the
Julia set Y (black) is a Jordan curve bounding the basin B(p1) = C, the backward critical set J− (green dots)
accumulates on Y and the forward critical set J + (green dots) accumulates on p1; compare with Figure 3(a).
Note that, p1 now lies on the negative real line and the points J0

−1 and J1
−1 and infinitely many higher-order

preimages of the critical point J0 in J− lie on the real line. Since the map is orientation reversing, the points
Jk ∈ J + lie to the right (left) of p1 if k > 0 is even (odd).

As λ < 1, initially, J1 becomes the circle with radius 1 − λ around c = −0.25 and the images of J1 in J +

become closed curves accordingly but, otherwise, the phase portrait is unchanged; see Figure 8(b) for the phase
portrait for λ = 0.95. As λ decreases further, the fixed point p1 destabilises in a period-doubling bifurcation
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Figure 8: First step in the transition of the phase portrait for c = −0.25 in [−1.4, 1.4]× [−1.4, 1.4]; shown are
the Julia set Y (black), the critical set J (green), the fixed points p1 (blue triangle/black cross) and s1 (red
square), the period-two points p±2 (blue triangles/black crosses), q±2 (blue triangles), r±2 (blue triangles) and
s±2 (red squares), their stable and unstable sets W s(p1) (dark blue), W s(p±2 ) (light blue), Wu(p1) (red), and
Wu(p2) (purple), respectively, and the period-four points pk4 , 1 ≤ k ≤ 4 (black crosses). Panels (a)–(f) are for
λ = 1, λ = 0.95, λ = 0.9, λ = 0.88, λ = 0.8737, and λ = 0.85, respectively.

at λ ≈ 0.94286, where the period-two attractors p±2 are born and p1 becomes a saddle fixed point. Figure 8(c)
is the phase portrait for λ = 0.9, immediately after the period-doubling bifurcation. The saddle fixed point p1
has one-dimensional stable and unstable sets W s(p1) (blue) and Wu(p1) (red) and the two sides of Wu(p1) end
at p+2 and p−2 . Similar to what happened after the pitchfork bifurcation for c = 0.1, the stable set W s(p1) has
a tree structure with the points in J− as branch points. However, infinitely many points in J− now lie on the
real line; compare with Figure 3(c). The set C is the union of the sets B(p±2 ), W s(p1) and J−.

As λ decreases further, the period-two points p±2 destabilise in a pitchfork bifurcation at λ ≈ 0.88993, at
which two pairs of period-two attracting points, denoted q±2 and r±2 , are born. Figure 8(d) is the phase portrait
for λ = 0.88, after the pitchfork bifurcation of p±2 . The period-two points p±2 (black crosses) are saddles with
one-dimensional stable and unstable sets W s(p±2 ) (light blue) and Wu(p±2 ) (purple). As before, the stable set
W s(p±2 ) consists of all preimages of the primary branches W s

0 (p±2 ), which extend to the period-two repellors
s±2 ∈ Y on one side and to J0 on the other. The two sides of Wu(p±2 ) end at q±2 and r±2 , respectively. The
unstable set Wu(p1) accumulates on the closure of Wu(p2) and the circles in J + accumulate on the closure of
Wu(p1). However, typical points on Wu(p1) and J1 (not on W s(p±2 )) are attracted by q±2 or r±2 . The set C is
the union of basins B(q±2 ) and B(r±2 ), the stable sets W s(p1) and W s(p±2 ) and J−.

At λ ≈ 0.8738, Wu(p2) andW s(p1) become tangent in a first heteroclinic tangency and, shortly after, Wu(p2)
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and J− become tangent in a first backward critical tangency. This bifurcation induces an infinite sequence of
forward-backward critical tangencies, which leads to the appearance of infinitely many saddle periodic points
via the mechanism we discussed for Figure 4.

Figure 8(e) is the phase portrait for λ = 0.8737, where J0 lies on J2 and J1
−1 lies on J1 in a forward-backward

critical tangency. Similar to the forward-backward critical tangency for J0 and J1, the preimages of J1
−1 have

disappeared into J0, but J + still contains all preimages of J0
−1. Here, the circles in J + form two nested sets

Jk ⊂ Jk+2 for all k ∈ N, because J1
−1 ∈ J1and J0 ∈ J2. At the same time, the period-two attractors q±2 and

r±2 disappear into J0 and J1
−1 and the unstable set Wu(p2) intersects itself. The sets Wu(p1) and Wu(p2) are

bounded by the two closed segments of Wu(p2) containing p±2 up to their first intersection. Similar to the
closure of Wu(p1) for c = 0.1, we believe that the closure of Wu(p2) for c = −0.25 is a chaotic attractor A, that
saddle periodic points lie dense in A, and that the basin B(A) is the set C; compare with Figure 6(b).

Figure 8(f) is the phase portrait for λ = 0.85, after the forward-backward critical tangency of J0 and J2.
Four saddle period-four points pk4 , 1 ≤ k ≤ 4, (black crosses) have appeared near J0 and J1

−1. They have
one-dimensional stable and unstable sets and corresponding repelling period-four points sk4 in Y (not shown).

Transition through a pair of saddle-node bifurcations of p±2

For c = −0.25, map (1) undergoes two saddle-node bifurcations of the period-two saddle points p±2 , at which
the chaotic attractor A disappears and reappears. Figure 9 shows nine more phase portraits that illustrate the
transition through these two saddle-node bifurcations. Note that we show ranges from [−1.5, 1.5] × [−1.5, 1.5]
in panel (a) to [−3.1, 3.1]× [−3.1, 3.1] in panel (g) and [−6.4, 6.4]× [−6.4, 6.4] in panel (h), due to the expansion
of the basin B(A). Panel (a) is the phase portrait for λ = 0.81, where the dynamics are qualitatively as in
Figure 8(f), in the sense that the closure of Wu(p2) is the chaotic attractor A, the saddle points p1 and pk4 ,
1 ≤ k ≤ 4, and their unstable sets lie on A and the basin B(A) is the set C. Figure 9(b) is the phase portrait
for λ = 0.8, where p±2 and s±2 meet in the first saddle-node bifurcation. As for the first saddle-node bifurcation
of p1 for c = 0.1, the chaotic attractor A hits its basin boundary Y in a boundary crisis, but here A and Y meet
in the two points p±2 = s±2 .

Figure 9(c) is the phase portraits for λ = 0.76 after the saddle-node bifurcation of p±2 and s±2 . The points p±2
and s±2 , their stable and unstable sets W s(p±2 ) and Wu(p±2 ), the chaotic attractor A and its basin of attraction
B(A) = C have disappeared. Similar to what happened after the first saddle-node bifurcation for c = 0.1, the
remaining sets Wu(p1) and J + are now unbounded and intersect both Y and the basin B(∞). Therefore, orbits
of some points on J1 stay bounded and orbits of other points on J1 go to infinity. Since the intersection of J1
and Y is now nonempty and Y is backward invariant and closed, J0 and all its preimages in J− now lie in Y.
As before J− accumulates on Y and, hence, J− is now a dense subset of Y. At the same time, as for c = 0.1,
the Julia set Y is the closure of the union of the stable sets of all saddle periodic points. However, our numerical
calculations suggest that Y is not a Cantor bouquet: even though Y consists of infinitely many arcs, such that
the set of end points of these arcs is dense, these arcs are locally connected at more than one point, namely,
in the dense subset J−. Therefore, Y has a dense set of explosion points and we refer to this type of set as a
Cantor tangle.

As λ decreases, J0 enters J1 in a forward-backward critical tangency at λ = 0.72, where all preimages of J0
in J− disappear into J0. Figure 9(d) is the phase portrait for λ = 0.7 after this bifurcation. The Julia set Y is
now a Cantor bouquet, because Y is the closure of W s(p1), the branches of W s(p1) are now all connected to
J0, and the set J− of explosion points contains only the point J0.

As λ decreases further, the period-four points pk4 and sk4 , 1 ≤ k ≤ 4 disappear and reappear in a pair of saddle-
node bifurcations at λ ≈ 0.6897 and λ ≈ 0.3578; Figure 9(e) is the phase portrait for λ = 0.4 between these
bifurcations. In fact, as we will see in the bifurcation diagram in Section 5, in the course of this transition, (1)
undergoes further pairs of saddle-node bifurcations of other saddle periodic points in A. However, we do not
include these points or the points pk4 and sk4 in the following phase portraits, because they do not contribute to
changes in the dynamics of map (1).

Figure 9(f) is the phase portrait for λ = 0.3077, where the period-two points p±2 and s±2 and the chaotic
attractor A reappear in a second saddle-node bifurcation of p±2 . Here, the dynamics are qualitatively the same
as in panel (b), in the sense that A meets its basin boundary Y in the points p±2 = s±2 and the set C is the basin
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Figure 9: Last step in the transition of the phase portrait for c = −0.25 in [−1.5, 1.5]× [−1.5, 1.5] (panels (a)–
(d)), [−2.3, 2.3]×[−2.3, 2.3] (panel (e)), [−2.9, 2.9]×[−2.9, 2.9] (panel (f)) and [−3.1, 3.1]×[−3.1, 3.1] (panel (g))
and [−6.4, 6.4] × [−6.4, 6.4] (panels (h)–(i)); shown are the Julia set Y (black), the critical set J (green), the
fixed points p1 (black cross) and s1 (red square), the period-two points p±2 (black crosses) and s±2 (red squares),
their stable and unstable sets W s(p1) (dark blue), W s(p±2 ) (light blue), Wu(p1) (red), and Wu(p2) (purple),
respectively, and the period-four points pk4 , 1 ≤ k ≤ 4 (black crosses). Panels (a)–(f) are for λ = 0.81, λ = 0.8,
λ = 0.76, λ = 0.7, λ = 0.4, λ = 0.3077, λ = 0.29, λ = 0.15 and λ = 0, respectively.

of attraction B(A). Figures 9(g) and (h) are the phase portraits for λ = 0.29 and λ = 0.15 after the second
saddle-node bifurcation of p±2 and s±2 , respectively. Compared with panel (f), the points p±2 and s±2 , and the
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sets A and Y lie further apart.
Finally, Figure 9(i) is the phase portrait for λ = 0, where, as for c = 0 and c = 0.1, the chaotic attractor A

is the critical circle J1, the stable sets W s(p1) and W s(p±2 ) are straight lines from J0 to infinity and the Julia
set Y is infinity.

4 The parameter c outside the Mandelbrot set M
In this section we consider an orientation-preserving case outside M, but close to the boundary of M, namely
the value c = 0.28. As before, we decrease λ ∈ [0, 1] from λ = 1.

4.1 Global transitions for c = 0.28

Figure 10(a) shows the phase portrait of map (1) for λ = 1. Since c = 0.28 lies outside the Mandelbrot set M,
the Julia set Y (black) is a Cantor set, and the map has no attractor other than infinity. Therefore, the set
C = C\(B(∞)∪Y) is empty. The forward critical set J + (green dots) consists of the images of the critical value
J1 = 0.28 and goes to infinity along the positive real line, whereas the backward critical set J− (green dots)
accumulates on Y. The map has two complex-conjugate repelling fixed points q+1 and q−1 (red squares) in Y.

Figures 10(b) and (c) are the phase portraits for λ = 0.95 and λ = 0.93, respectively. The dynamics are
qualitatively the same as in panel (a), but the critical circle J1 is now a proper circle with radius 1−λ > 0. The
set J + consists of closed curves accordingly, and lies entirely in the basin B(∞). Hence, Y is still a Cantor set.
As λ is decreased further, the Julia set Y starts to interact with the forward critical set J +. It is difficult to
find the value of λ that corresponds to the first interaction of Y and J +, because Y is a Cantor set before this
interaction. However, after the bifurcation, J− lies dense in Y and, therefore, this bifurcation is accumulated
by an infinite sequence of forward-backward critical tangencies between J + and J−. Figure 10(d) is the phase
portrait for λ = 0.92031, where J + and J− meet in a forward-backward critical tangency that seems to be very
close to the first interaction of J + and Y. At this parameter value, the point Js−17 ∈ J− lies on the critical
circle J1, where the sequence of preimages is s = 10100010 . . . 0, as defined in Section 2.4. We will discuss this
bifurcation and its consequences for the Julia set Y and the backward critical set J− in more detail in Figure 11.

Figure 10(e) is the phase portrait for λ = 0.91 after the forward-backward critical tangency between Js−17 ∈
J− and J1. Large subsets of Y and J− are enclosed by circles in J +. Therefore, orbits of some points in
the disk enclosed by J1 stay bounded and orbits of other points go to infinity. Since Y is closed and backward
invariant, J0 and all its preimages in J− lie in Y. Moreover, J− still accumulates on Y and so the backward
critical set J− is dense in Y. Furthermore, (1) has infinitely many saddle periodic points (not shown) that were
born in the infinite sequence of forward-backward critical tangencies after the first interaction of Y and J−.
These saddle periodic points and their stable sets must lie in Y, because the set C is empty. Therefore, as for
c = −0.25 between the first saddle-node bifurcation and the last backward critical tangency, the Julia set Y is
a Cantor tangle with a dense set J− of explosion points.

As λ is decreased further, the fixed points q±1 undergo a Neimarck–Sacker bifurcation at λ ≈ 0.89287, where
they become attractors. Figure 10(f) is the phase portrait at λ = 0.89, after this bifurcation. The set C (white)
is the union of the basins B(q±1 ), which are formed by all preimages of the immediate basins B0(q±1 ). Since
B0(q±1 ) are bounded by Jordan curves, the boundary Y of C is now the closure of a union of infinitely many
Jordan curves. We believe that Y is still connected, because Y was connected before this bifurcation and the
bifurcation “replaces” every point in a dense subset of in Y with a Jordan curve. The infinitely many saddle
periodic points can neither lie in the basins B(q±1 ) nor in the basin B(∞). Hence, they and their stable sets
must still lie in Y. All together, the numerical evidence suggests that Y shares some properties with the Julia
set for bounded J +, for example, it is the closure of a union of Jordan curves, but it also shares some properties
with the Cantor tangle, for example, J− is dense in Y. Therefore, Y can be thought of as a “Cantor tangle”
containing a dense set of Jordan curves that bound the basins of finite attractors and we refer to this type of
set as a Cantor cheese. It is unclear to us if the bounded components of B(∞), for example, the open region
near the imaginary axis between J0 and J0

−1, are bounded by Jordan curves. If this was the case then the Julia
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Figure 10: First step in the transition of the phase portrait for c = 0.28 in [−1.2, 1.2]× [−1.2, 1.2]; shown are the
Julia set Y (black), the critical set J (green) and the fixed points q±1 (red squares/blue triangles). Panels (a)–(f)
are for λ = 1, λ = 0.95, λ = 0.93, λ = 0.92031, λ = 0.91, and λ = 0.89, respectively.

set could be a Sierpinski carpet or a Sierpinski gasket. As mentioned earlier, these types of Julia sets have been
found in the study of singular perturbations of the complex quadratic map, namely, for the maps z 7→ z2+α/zm

for m = 1, 2 [Devaney(2013),Blanchard et al.(2005),Marotta(2008)]. A more detailed study of the topology of
the Julia set Y of (1) in this parameter regime lies beyond the scope of this paper.

Details of the forward-backward critical tangency

We now look closer at the changes of the Julia set Y and the backward critical set J− induced by the forward-
backward critical tangency of J1 and Js−17 at λ = 0.92031 with s = 10100010 . . . 0; compare panels (c)–(e)
in Figure 10. Figure 11 shows images before the bifurcation in column (a), approximately at the bifurcation
in column (b), and after the bifurcation in column (c), namely for λ = 0.925, λ = 0.92031 and λ = 0.915,
respectively. The top row shows Y (black), J1 (green), J− (green) and Js−17 (dark green) and the bottom
row shows, in addition, J0 and J0s

−18 (dark green). Column (a) is the phase portrait for λ = 0.925 before the
bifurcation; panel (a1) illustrates that the point Js−17 and the rest of J− lie outside critical circle J1; panel (a2)
shows that the first preimage J0s

−18 of Js−17 and the rest of J− lie correspondingly away from J0. Column (b)
is the phase portrait for λ = 0.92031, approximately at the bifurcation; the point Js−17 lies on J1 and J0s

−18 has
disappeared into J0 accordingly. At the same time, two repelling period-18 points s±18 ∈ Y have disappeared
into J0 (not shown); this means that J0 now lies in Y and, therefore, also in the closure of J−. Column (c)
is the phase portrait for λ = 0.915 after the bifurcation; the point Js−17 and a neighbourhood containing other
points in J− as well as points in Y, lie well inside the disk bounded by J1; see panel (c1). In particular, this
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Figure 11: The effect of the forward-backward critical tangency of the critical circle J1 and a point in the
backward critical set J− at λ = 0.92031; the top row shows the Julia set Y (black), the backward critical set
J−, the critical circle J1 (green), the point Js−17 ∈ J− (dark green), where s = 10100010 . . . 0; the bottom row
shows the Julia set Y (black), the backward critical set J− (green), the critical point J0 (dark green), the point
J0s
−18 ∈ J− (dark green) and the critical circle J1 (green). The parameter values are c = 0.28 and λ = 0.925

before the bifurcation in column (a), λ = 0.92031 approximately at the bifurcation in column (b) and λ = 0.915
after the bifurcation in column (c).

neighbourhood no longer has a preimage; see panel (c2). As a result, the Julia set Y is no longer the closure of
repelling periodic points, but it is still the closure of the periodic and pre-periodic repelling points. Recall, that
we computed Y by plotting up to the third preimage of approximately three thousand repelling periodic points.

Transition through the last forward-backward critical tangency and a saddle-node bifurcation

In Figure 12 we show six more phase portraits that illustrate the changes in the dynamics of map (1) for c = 0.28
when λ is decreased further. Panel (a) is the phase portrait for λ = 0.8, where the dynamics are qualitatively
as in Figure 10(f), but the basins B(q±1 ) have expanded. Figure 12(b) is the phase portrait for λ = 0.72, at the
last forward-backward critical tangency, where J0 lies on J1. At the same time, the attractors q±1 , their basins
B(q±1 ), and the preimages of J0 in J− disappear into J0. Therefore, C is empty, Y is the closure of the stable
sets of all saddle periodic points, and the only explosion point is J0; hence, the Julia set Y is a Cantor bouquet.

As λ is decreased further, the dynamics of map (1) undergoes a similar transition as for c = 0.1 and λ < 0.5,
namely, there is a saddle-node bifurcation leading to the appearance of a saddle fixed point p1 and a chaotic
attractor A; compare with Figure 5. Figures 12(c)–(d) are the phase portraits for λ = 0.7 and λ = 0.3, after
the forward-backward critical tangency of J0 and J1, but before the saddle-node bifurcation of p1. Map (1) has
two period-two saddle points p±2 (black crosses) with stable and unstable sets W s(p±2 ) (light blue) and Wu(p2)
(purple), respectively; the Julia set Y is a Cantor bouquet.

Figures 12(e) and (f) are the phase portraits for λ = 0.2405 and λ = 0.2, that is, approximately at and after
the saddle-node bifurcation of p1, respectively. The dynamics is qualitatively as that at and after the second
saddle-node bifurcation for c = 0.1, respectively, in the sense that the stable set W s(p1) is formed by straight
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Figure 12: Last step in the transition of the phase portrait for c = 0.28 in [−1.25, 1.25]×[−1.25, 1.25] (panels (a)–
(c)), [−3.2, 3.2]×[−3.2, 3.2] (panel (d)), [−3.7, 3.7]×[−3.7, 3.7] (panel (e)) and [−4.4, 4.4]×[−4.4, 4.4] (panel (f)),
respectively; shown are the Julia set Y (black), the critical set J (green), the fixed points q±1 (blue triangles), p1
(black cross) and s1 (red square), the period-two points p±2 (black crosses) and s±2 (red squares), and their stable
and unstable sets W s(p1) (dark blue), W s(p±2 ) (light blue), Wu(p1) (red), and Wu(p2) (purple), respectively.
Panels (a)–(f) are for λ = 0.8, λ = 0.72, λ = 0.7, λ = 0.3, λ = 0.2405 and λ = 0.2, respectively.

lines from J0 to s1 and its preimages in Y, the closure of Wu(p1) forms a chaotic attractor A and saddle periodic
points are dense in A.

We do not show the phase portrait at λ = 0, because it is qualitatively the same as for c = 0, c = 0.1 and
c = −0.25, that is, Y is only the point infinity, the chaotic attractor A is the circle J1 and the stable sets consist
of straight lines extending from J0 to infinity; see Figures 2(f), 7(f) and 9(h).

5 Bifurcation diagram in the (Re(c), λ)-plane

In Sections 3 and 4 we discussed the transitions when decreasing λ ∈ [0, 1] from λ = 1 for three different fixed
values of c in the main cardioid of the Mandelbrot setM and one outside ofM. We now investigate how these
individual transitions are linked to each other by also varying the parameter c, where we take c ∈ R as before.
Hence, we study the bifurcation diagram of map (1) in the (Re(c), λ)-plane with Im(c) = 0 fixed.

We continue the bifurcations in two parameters using the method from [Hittmeyer et al.(2013)]. This method
is an adaptation of the boundary value setup in [Beyn & Kleinkauf(1997)] for following homoclinic or heteroclinic
tangencies, which is implemented it in Cl MatContM [Dhooge et al.(2003), Ghaziani et al.(2009), Govaerts
et al.(2008)]; our method also follows the three critical tangency bifurcations.
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5.1 Bifurcation diagram near the main cardioid of M
First, we consider c ∈ R in the range [−0.75, 1.25], that is, inside the main cardioid of M, for the segment
[−0.75, 0.25], and outside of M for c > 0.25. The value c = 0.25 corresponds to the saddle-node bifurcation S1

at the cusp point on the boundary of the main cardioid, and c = −0.75 is the first period-doubling bifurcation P1

on the boundary ∂M between the main cardioid and the period-two bulb ofM; see Figure 1. Figure 13 shows the
bifurcation diagram of the map (1) in the (Re(c), λ)-plane for Re(c) ∈ [−0.75, 1.25] and λ ∈ [0, 1]. We construct
the bifurcation diagram in steps: panel (a) shows the bifurcations of the fixed points p1, q±1 and s1, of the period-
two points p±2 , q±2 , r±2 and s±2 , of the critical point J0, and of the critical circle J1 and its image J2; panel (b)
shows an enlargement of the bifurcation diagram in panel (a) in the range (Re(c), λ) ∈ [0.06, 0.36]× [0.7, 1]; and
panel (c) shows the bifurcation diagram of panel (a) together with loci of saddle-node bifurcations of saddle
points with higher periods and loci of forward-backward critical tangencies of J0 with higher-order images of
J1 in J +.

The line λ = 1 in Figure 13(a) corresponds to the line Im(c) = 0 in the bifurcation diagram of the complex
quadratic family (2) in Figure 1(b); the points S1, C1 and P1 on this line are the saddle-node bifurcation of p1
and s1 of (2) at (0.25, 1), the centre of the main cardioid of M at (0, 1), and the period-doubling bifurcation
of p1 at (−0.75, 1), respectively. We also already considered slices along the lines c = 0, c = 0.1, c = −0.25
and c = 0.28 in Sections 3.1, 3.2, 3.3 and 4.1, respectively. The curve FB1 (green) denotes the curve of last
forward-backward critical tangencies, that is, of forward-backward critical tangencies of J0 and J1, and is given
by {(Re(c), λ) : Re(c) = ±(1 − λ)}. For Re(c) > 0, the attractors q±1 exist for (Re(c), λ) above the curve FB1

and the period-two saddles p±2 exist below; for Re(c) < 0, the saddle point p1 lies on the negative real axis for
(Re(c), λ) above FB1 and on the positive real line below it. The curve FB1 emanates from the centre C1, which
is also the starting point of another curve of forward-backward critical tangencies, labelled FB2 (green). This
is the curve of forward-backward critical tangencies between J2 and J0. The period-two attractors q±2 and r±2
exist for (Re(c), λ) above the curve FB2 and the period-four saddles pk4 , 1 ≤ k ≤ 4, exist below it.

Three further bifurcation curves emanate from the point C1: the curve PF1 (blue) of pitchfork bifurcations
of p1, the curve PD1 (magenta) of period-doubling bifurcations of p1, and the curve PF2 (blue) of pitchfork
bifurcations of p±2 . The curve PF1, to the right of C1, corresponds to the orientation-preserving case. The point
p1 is an attractor for (Re(c), λ) above PF1 and a saddle below it, and the two period-two attractors q±1 exist
only below PF1. The curves PD1 and PF2, to the left of C1, correspond to the orientation-reversing case. For
(Re(c), λ) above PD1, the point p1 is an attractor, and below PD1 it is a saddle; between PD1 and PF2, the
period-two points p±2 are attractors, and below PF2, they are saddles; and the period-two attractors q±2 and r±2
exist only below PF2.

The curve PF1 ends at the point S1 to the right of C1. Two further bifurcation curves emanate from S1;
these are the curve NS1 (red) of Neimarck–Sacker bifurcations of q±1 and the curve L1 (black) of saddle-node
bifurcation of p1 and s1. The points q±1 are repellors for (Re(c), λ) to the right of NS1 and attractors to its
left. The curve NS1 seems to be tangent to the curve FB1 at (Re(c), λ) = (0.5, 0.5), but, in fact, NS1 consists
of two segments that end in points on FB1 very close to (0.5, 0.5). The curve L1 is given analytically by
{(Re(c), λ) : λ = (1+Re(c)±

√
Re(c)(Re(c) + 2))/2} and has asymptote λ = 0 as Re(c)→∞. The fixed points

p1 and s1 exist only for (Re(c), λ) to the left of L1. The curve NS1 always appears to stay above L1 and also
goes to λ = 0 for Re(c)→∞ (not shown).

The curve PD1 ends at the point P1 to the left of C1. One further bifurcation curve emanates from P1,
namely, the curve NS2 (red) of Neimarck–Sacker bifurcations of the symmetric period-two points q±2 and r±2 .
The points q±2 and r±2 are attractors for (Re(c), λ) below NS2 and repellors above. As for NS1 and FB1, the
curve NS2 seems to be tangent to FB2, but, in fact, it consists of two segments that end at two points on FB2

which lie very close together. The right segment of NS2 and the curve PF2 both end at the same point on the
curve L2 (black) of saddle-node bifurcations of p±2 and s±2 . The curve L2 emerges from a point on the curve

PD1; it is given analytically by {(Re(c), λ) : λ = (2−Re(c)±2
√
−Re(c))/(Re(c)2+4)} and has asymptote λ = 0

for Re(c) → −∞. Note that the curves L1 and L2 are tangent to each other at the point (Re(c), λ) = (0, 0.5),
which is the transcritical bifurcation of all saddle and repelling periodic points for c = 0; see Section 3.1.

Close to the two intersection points of the curves L1 and FB1, we find the curves H0 (magenta) of first
homoclinic and B0 (red) of first backward critical tangencies of p1. The unstable set Wu(p1) has a homoclinic
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Figure 13: The bifurcation diagram of (1) in the (Re(c), λ)-plane for Im(c) = 0. The points S1, C1 and P1 for
λ = 1 are the right boundary, the centre and the left boundary of the main cardioid of the Mandelbrot set M,
respectively. Panel (a) shows the main bifurcations of the fixed points p1 and q±1 , the period-two points p±2 and
q±2 , and the circles J1 and J2; these are the period-doubling bifurcation PD1 (magenta) of p1; the pitchfork
bifurcations PF1 and PF2 (blue) of p1 and p±2 , respectively; the saddle-node bifurcations L1 and L2 (black) of
p1 and p±2 with s1 and s±2 , respectively; the Neimarck–Sacker bifurcations NS1 and NS2 (red) of q±1 , q±2 and r±2 ,
respectively; the first homoclinic tangency H0 (magenta) of p1; the first backward critical tangency B0 (red) of
p1; and the forward-backward critical tangencies FB1 and FB2 (green) of J1 and J2, respectively. Panel (b) is
an enlargement of the bifurcation diagram in panel (a). Panel (c) shows, in addition, the curves of saddle-node
bifurcations Lk (black) of period-k points for 3 ≤ k ≤ 9 and of forward-backward critical tangencies FBk (green)
and FBk10... (dark green).

tangle with the stable set W s(p1) between H0 and L1, and Wu(p1) has self-intersections between B0 and L1.
An enlargement of these curves for λ > 0.5 is shown in Figure 13(b). Note that B0 lies between H0 and L1.
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Numerically, we found that the curves H0 and B0 each connect a point on FB1 to a point on L1.
Figure 13(c) shows, in addition, the curves Lk (grey), 3 ≤ k ≤ 9, of saddle-node bifurcations of period-k

saddle and repelling periodic orbits. These curves are all tangent to each other at the point (Re(c), λ) = (0, 0.5)
and, hence, this point acts as an organising centre for the dynamics of (1). Panel (c) also shows more curves of
forward-backward critical tangencies of the critical point J0 with curves Jk ⊂ J + for some k with 3 ≤ k ≤ 50.
The curves FBk (green) denote forward-backward critical tangencies between Jk and J0 that correspond to
forward-backward critical tangencies between J1 and J0...0

−(k−1). The curves FBk10... (dark green) denote forward-
backward critical tangencies between Jk and J0 that correspond to forward-backward critical tangencies between
J1 and J10...0

−(k−1). The curves FBk and FBk10... form a complicated structure of closed curves that all appear to

emerge from the point C1 for λ ≥ 0.5 and the point (Re(c), λ) = (1, 0) for λ ≤ 0.5. Both sequences FBk and
FBk10... accumulate on the curves B0 of first backward critical tangencies; however, here, they also accumulate
on L1 to the right of the end points of H0 on L1; see also already Figure 14(a).

Overall, we see that the bifurcation diagram in Figure 13 reflects the transitions for decreasing λ ∈ [0, 1]
for the four cases of c we discussed in Sections 3 and 4. The case c = 0 starting at the centre C1 of M
is highly degenerate, in the sense that the chaotic attractor A is created at once for λ < 1 and that the
transcritical bifurcation at (Re(c), λ) = (0, 0.5) is an organising centre that gives rise to infinitely many saddle-
node bifurcations. The case c = 0.1 represents the orientation-preserving case for c ∈ (0, 0.25) in the following
sense: for decreasing λ from 1, the attractor p1 becomes the first saddle point in the pitchfork bifurcation PF1,
the attractors q±1 turn into the period-two saddle points p±2 in the last forward-backward critical tangency FB1

and p1 disappears at the saddle-node bifurcation L1; on the way, an infinite sequence of forward-backward
critical tangencies (including FBk and FBk10...) is passed leading to the appearance of infinitely many saddle
periodic points; finally, the saddle point p1 reappears at the saddle-node bifurcation L1; compare with the
transition in Figures 3, 5 and 7. Similarly, the case c = −0.25 represents the orientation-reversing case for
c ∈ (−0.75, 0) in the following sense: for decreasing λ from 1, the attractor p1 becomes the first saddle point
in the period-doubling bifurcation PD1, which is followed by either the pitchfork bifurcation PF2, where p±2
become the first period-two saddles, or by the Neimarck–Sacker bifurcation NS2, where q±2 and r±2 turn into
attractors; the points q±2 and r±2 turn into the period-four saddle points pk4 , 1 ≤ k ≤ 4, in the forward-backward
critical tangency FB2 and p±2 disappear at the saddle-node bifurcation L2; as for c = 0.1, we pass an infinite
sequence of forward-backward critical tangencies leading to the appearance of infinitely many saddle periodic
points (not shown); the saddle point p1 moves over J0 in the last forward-backward critical tangency FB1;
finally, the period-two saddle points p±2 reappear at the saddle-node bifurcation L2; compare with the transition
in Figures 8 and 9. For c /∈ M, we find two fundamentally different cases. The case c = 0.28 represents the
orientation-preserving case for c ∈ (0.25, 1) in the following sense: for decreasing λ from 1, an infinite sequence
of forward-backward critical tangencies is passed, which we believe accumulates on the first interaction of the
Julia set Y and J +; the fixed points q±1 become the first attractors in this transition at the Neimarck–Sacker
bifurcation NS1; they turn into period-two saddle points p±2 at the last forward-backward critical tangency FB1;
finally, the first saddle fixed point appears at the saddle-node bifurcation L1; compare with the transition in
Figures 10 and 12. For fixed c > 1 and decreasing λ from 1, map (1) initially undergoes the same transition
as for c /∈ M and c < 1, but it does not pass the last forward-backward critical tangency FB1 and, hence, the
repellors q±1 persist until λ = 0.

The saddle-node bifurcation L1, the last forward-backward critical tangency FB1 and the Neimark-Sacker
bifurcation NS1 are the main bifurcations involved in the topological changes of the Julia set Y in the phase
space for c > 0, as discussed in Sections 3.2 and 4.1. To understand how they relate to each other and to other
nearby bifurcations, we show in Figure 14 four enlargements of the bifurcation diagram in Figure 13(c) near L1,
FB1 and NS1. Figure 14(a) is an enlargement showing that the curves FBk and FBk10... of forward-backward
critical tangencies accumulate on the curve B0 of first backward critical tangencies and on the curve L1 of
saddle-node bifurcations of p1 and s1 to the right of the end point of B0 on L1. Note that the curves FBk10...
extend further than FBk towards the curve NS1 and some even intersect NS1.

Figures 14(b)–(d) are three enlargements along the curve NS1 showing curves L8, L15 and L7 of saddle-node
bifurcations of periodic points of periods 8, 15 and 7, respectively. These curves form resonance tongues that
start at the resonance points on NS1 with rotation numbers 1/8 < 2/15 < 1/7, that is, where the fixed points q±1
have eigenvalues exp(i2πp/q) for p/q = 1/8, 2/15 and 1/7, respectively. The curves L8, L15 and L7 each consist
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Figure 14: The bifurcation diagram of (1) in the (Re(c), λ)-plane for Im(c) = 0. Panel (a) is an enlargement of
the bifurcation diagram in Figure 2(c) near the curves NS1, PF1 and FB1. Panels (b)–(d) are enlargements of
the bifurcation diagram in panel (a) near regions of 1:8, 2:15 and 1:7 resonances.

of three segments connected at three cusp points, where one of them is the corresponding resonance point on
NS1. The two segments that connect at these resonance points on NS1 correspond to saddle-node bifurcations
of a repelling and a saddle orbit of the corresponding periods, which form an invariant circle with phase locking
around q±1 for (Re(c), λ) inside these resonance tongues. The middle segments (opposite the resonance points on
NS1) correspond to saddle-node bifurcations of the repelling orbit with another saddle periodic orbit that is not
on the invariant circle. Note that the curves L7 and L15 intersect the curves FB7 and FB15 of forward-backward
critical tangencies. At the bifurcations FB7 and FB15, the 7-periodic or 15-periodic saddle orbit that does not
lie on the invariant circle moves over J0 and a sequence of its preimages in phase space. This bifurcation is
similar to FB1 for Re(c) < 0 in Figure 13(a), where the saddle point p1 lies to the left of J0 for (Re(c), λ) above
FB1, and to the right of J0 below it; compare with Figures 9(c) and (d).

5.2 Bifurcation diagram near the period-doubling sequence

Recall that the complex quadratic family (2) undergoes a sequence of period-doubling bifurcations as c is
decreased along the real line and that it admits a period-three window near λ = −1.75; see Figure 1. We now
investigate the bifurcation structures along the sequence of period-doubling bifurcations and the period-three
window in M. Figure 15(a) shows the bifurcation diagram of map (1) in the (Re(c), λ)-plane for (Re(c), λ) ∈
[−1.38, 0.3] × [0.84, 1] near the main cardioid and the bulbs of periods two and four in M; panel (b) is an
enlargement in the range (Re(c), λ) ∈ [−1.3681,−1.25] × [0.992, 1] near the bulb of period four in M; and
panel (c) shows the bifurcation diagram for (Re(c), λ) ∈ [−1.76853,−1.75] × [0.9969, 1] near the cardioid of
period three inM. The bifurcation structures near the period-two and four bulbs and the period-three cardioid
are very similar to the bifurcation structure near the main cardioid. Along the line λ = 1 we labelled the
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Figure 15: The bifurcation diagram of (1) in the (Re(c), λ)-plane for Im(c) = 0. Panel (a) shows the main
bifurcations of the fixed points and the periodic points of periods two, four and eight near the main cardioid
and the bulbs of periods two, four and eight in the Mandelbrot set M. Panel (b) is an enlargement of the
bifurcation diagram in panel (a) near the bulb of period four in M. Panel (c) shows the main bifurcations of
the periodic points of periods three and six near the cardioid of period three in M.

following bifurcation points. As in Figure 13, the points S1, P1 and C1 are the right and left boundaries and
the centre of the main cardioid in M∩ R, respectively. Similarly, in Figure 15 the points P2 = (−1.25, 1) and
P4 = (−1.3681, 1) and the points C2 = (−1, 1) and C4 = (−1.3107, 1) are the left boundaries and centres of the
bulbs of periods two and four in M∩ R, respectively, and the points S3 = (−1.75, 1), P3 = (−1.76853, 1) and
C3 = (−1.754875, 1) are the right and left boundaries and the centre of the cardioid of period three in M∩ R,
respectively; see also Figure 1. In particular, the points S1 and S3 are points of saddle-node bifurcations, the
points P1, P2, P4 and P3 are points of period-doubling bifurcations and the points C1, C2, C4 and C3 are
points, where the critical point J0 is super-attracting, corresponding to periods one, two, four and three along
the period-doubling route to chaos of (2).

In the same way as the curves FB1, FB2, PF1, PF2 and PD1 of bifurcations of fixed and period-two points
emanate from the point C1 at the centre of the main cardioid, in Figure 15(a) the corresponding curves FB2

and FB4 (green) of forward-backward critical tangencies, PF2 and PF4 (blue) of pitchfork bifurcations and PD2

(magenta) of period-doubling bifurcations of period-two and period-four points emanate from the point C2 at
the centre of the period-two bulb in M; compare with Figure 13. Correspondingly, the curve L4 (dark grey) of
saddle-node bifurcations emanates from a point on PD2, the curve NS4 (red) of Neimarck–Sacker bifurcations
emanates from P2 and ends at a point on L4 together with PF4, the curve PF2 ends at P1 and the curve PD2

ends at P2. The same bifurcation structure repeats near the period-four bulb in Figure 15(b) for the curves FB4

and FB8 (green), PF4 and PF8 (blue), PD4 (magenta), NS8 (red) and L8 (grey) of corresponding bifurcations
of period-four and period-eight points, and near the period-three cardioid in Figure 15(c) for the curves FB3

and FB6 (green), PF3 and PF6 (blue), PD3 (magenta), NS6 (red) and L6 (grey) of corresponding bifurcations
of period-three and -six points. In addition, the point S3 gives rise to the curves NS3 and L3 in the same way
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as S1 gives rise to NS1 and L1.
Note that the curves L1, L2, L4 and L8 are all tangent at the point (Re(c), λ) = (0, 0.5) of transcritical

bifurcation, as shown in Figure 13(c). However, the curves L3 and L6 in Figure 14 intersect each other transver-
sally. Recall that NS1 and NS2 each consist of two segments ending on FB1 and FB2; see Figure 13. Similarly,
in Figure 15 the curves NS4, NS8 and NS6 also consist of two segments each ending on FB4, FB8 and FB6.
However, we were able to find only one segment of the curve NS3, which goes from S3 to FB3 in Figure 15(c).

Overall, we see that the bifurcation diagram in Figure 15 has a self-similar structure that repeats along the
period-doubling route to chaos on the line λ = 1, where (1) is equivalent to the complex quadratic family (2).

6 Conclusions

We studied global transitions of the dynamics of the map (1) when decreasing the parameter λ ∈ [0, 1] from
λ = 1, where (1) is the complex quadratic family (2), for different values of c ∈ R in the main cardioid or
outside the Mandelbrot set M. We found the tangency bifurcations from [Hittmeyer et al.(2013)] and, in
addition, different interactions of the Julia set with the forward and backward critical sets and the stable and
unstable sets of saddle fixed and periodic points of (1). These led to drastic changes of the Julia set; see
Sections 3 and 4. The first saddle points are created by pitchfork, period-doubling or forward-backward critical
tangency bifurcations. By following these and other critical tangency bifurcations in the two parameters c ∈ R
and λ ∈ [0, 1], we found that the same sequences of bifurcations occur for periodic points of higher periods along
the period-doubling route to chaos on the line λ = 1.

For λ = 1 the fundamental dichotomy for the quadratic map (2) states that the Julia set Y is connected
or totally disconnected, depending on whether the orbit of c is bounded or goes to infinity. Our numerical
investigations in Sections 3–5 enable us to extend this dichotomy to λ < 1 in the following way. The topology
of the Julia set Y of the complex quadratic map (2) persists for λ < 1 if all orbits in J + behave the same,
that is, if they either all stay bounded or all go to infinity. However, there is also an intermediate case, which
corresponds to some orbits in J + staying bounded and others going to infinity. More specifically, our careful
numerical observations suggest the following three cases for λ ∈ (0, 1), distinguished by properties of the basin
B(∞), the Julia set Y and the set C = C\(B(∞) ∪ Y):

1. If all orbits in J + are bounded, then B(∞) is simply connected, Y is a connected union of Jordan curves,
there is at least one finite (periodic or chaotic) attractor, and C is not empty; see Figures 2(a)–(e), 3, 5(a)–
(c), 7(c)–(e), 8, 9(a)–(b) and (f)–(h), and 12(e)–(f).

2. If all orbits in J + go to infinity, then B(∞) is connected, but not simply connected, Y is a Cantor set,
and C is empty; see Figures 10(a)–(c).

3. If some orbits in J + stay bounded and other orbits in J + go to infinity, we find three different scenarios:

(a) If there is no finite attractor and J0 lies in the disk bounded by J1, then C is empty, B(∞) is simply
connected, and Y is a Cantor bouquet with explosion point J0; see Figures 5(d)–(f), 7(a)–(b), 9(d)–(e)
and 12(c)–(d).

(b) If there is no finite attractor and J0 lies outside the disk bounded by J1, then C is empty, B(∞) is
not connected, but consists of a countably infinite number of components, and Y is a Cantor tangle,
that is, similar to a Cantor bouquet, but with the dense set J− as explosion points; Y has infinitely
many “holes”, which are given by the bounded components of B(∞); see Figures 9(c) and 10(d)–(e).

(c) If there is at least one finite hyperbolic attractor, then C is not empty and B(∞) is not connected;
both C and B(∞) consist of a countably infinite number of components; Y is a Cantor cheese with
the dense set J− as explosion points, that is, it is effectively a Cantor tangle with infinitely many
additional “holes” given by the components of C; see Figures 10(f) and 12(a).

In the transitions of the map (1) away from the complex quadratic family (2), we found the first example
of a nonanalytic map with a Julia set that is a Cantor bouquet. In particular, this Cantor bouquet has a finite
explosion point, whereas the examples in the literature, such as the exponential function z 7→ λ exp(z), have
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infinity as the explosion point [Aarts & Oversteegen(1993),Bula & Oversteegen(1990),Devaney & Krych(1984),
Krauskopf & Kriete(1998),Mayer(1990)]. Furthermore, we find two other types of interesting Julia sets, which
we called the Cantor tangle and the Cantor cheese. These sets have complicated topological structures, which
need further analytical and numerical analysis to be fully understood. In particular, these three types of Julia
sets have in common that they are given by the closure of stable sets of saddle fixed and periodic points of the
map; this is impossible for Julia sets in complex analytic maps, but seems to be a new phenomenon specific to
this type of nonanalytic map. The perturbation of the two-dimensional quadratic map considered in [Romero
et al.(2009)] also admits a Julia set that is given by the closure of the stable set of a saddle point, but the
unperturbed map is already nonanalytic; further research is necessary to determine if this Julia set shares other
properties with the Cantor bouquet, Cantor tangle or Cantor cheese we found in the map (1).

We only considered real c, but we expect to find a similar bifurcation structure if c has a small imaginary
part. More specifically, we expect the last forward-backward critical tangency to become one smooth curve, the
pitchfork bifurcations to turn into saddle node bifurcations and the curves of homoclinic tangencies, backward
critical tangencies and Neimarck–Sacker bifurcations to split up in two curves each. Furthermore, for a fixed
nonzero imaginary part of c, there is no longer a super-attracting case and the points of saddle-node and period-
doubling bifurcations on the boundary of the Mandelbrot set are replaced by other points on the boundary.
Therefore, we expect that the end points of the bifurcation curves that lie in the interior of the Mandelbrot set
for c ∈ R move away from the line λ = 1 as the imaginary part of c is increased, and that other bifurcation
curves emanate from the boundary of the Mandelbrot set. Further research is needed to understand how these
curves connect with each other, and how this relates to the complicated bifurcation scenarios on the boundary
of the Mandelbrot set.

Recall that, for a ∈ (0, 1) and c = 1, the map (3) was constructed in [Bamón et al.(2006)] as the reduction
of a Lorenz-like attractor in an n-dimensional vector field for n ≥ 5. The homoclinic, forward critical, backward
critical and forward-backward critical tangencies of (3), which organise its transition to wild chaos, correspond
to homoclinic and heteroclinic bifurcations of an equilibrium and a periodic orbit in the vector field. In the
construction of the map (3), the parameter a is defined as a := −λ2/λ3, where λ2 < 0 is the weak stable
eigenvalue and λ3 is the unstable eigenvalue of the equilibrium in the underlying vector field. One of the
conditions of the Lorenz-like attractor is that the attractor is expanding, that is, a < 1. Therefore, if a = 2,
the map (3) no longer corresponds to a Lorenz-like attractor, but to a so-called contracting Lorenz attractor or
Rovella-like attractor ; see [Keller & Pierre(2001), Rovella(1993)] for studies in three-dimensional vector fields
and [Araújo et al.(2011)] for a higher-dimensional analogue. These are singular attractors that can be reduced
to a one- or two-dimensional noninvertible map in the same way as the geometric Lorenz attractor or higher-
dimensional Lorenz-like attractors, respectively, but that are contracting instead of expanding.

In [Hittmeyer et al.(2013)] we concluded that the map (3) exhibits wild chaos in the (Re(c), λ)-plane for fixed
a = 0.8 and Im(c) = 0 between the first backward critical tangency, the last forward-backward critical tangency
and the line λ = 1. Therefore, for a = 2 in the map (3), the geometric ingredients for wild chaos appear to
be present in the two regions between the first backward critical tangency, the last forward-backward critical
tangency and the saddle-node bifurcation of the fixed point (see Figure 13) and corresponding regions near the
other bulbs and cardioids in the Mandelbrot set M. One of the assumptions in the proof of existence of wild
chaos in [Bamón et al.(2006)] is that the map (3) is area-expanding in a neighbourhood of the attractor. For
a ∈ (0, 1) the map (3) has unbounded derivative near J0 and, therefore, it is area-expanding on a subset of the
attractor after the first backward critical tangency. In [Hittmeyer et al.(2013)] we conjectured that this partial
area-expansiveness on a large subset of the attractor is sufficient for the existence of wild chaos. However, for
a = 2 the map (3) no longer has unbounded derivative near the critical point and, hence, it is not necessarily
area-expanding in a neighbourhood of this point. However, we can find a neighbourhood of the intersection
point of the curves of last forward-backward critical tangencies and saddle-node bifurcations in the (Re(c), λ)-
plane, in which (3) is area-expanding at the saddle fixed point p1. Although it is unclear to us if the arguments
from the proof of existence of wild chaos in [Bamón et al.(2006)] can be extended to this parameter regime, our
numerical evidence suggests the existence of complicated dynamics in this parameter regime, and we conjecture
the existence of a wild Rovella-like attractor in this regime.

In future research, we also plan to investigate the connection between the regime near the complex quadratic
family for a = 2 in map (3) and the regime of wild chaos for a < 1. Bielefeld et al. [(1993)] and Bruin and
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van Noort [(2004)] already give us information on this connection for fixed λ = 1 and a ∈ (1, 2). They found
attracting periodic points that do not attract the critical orbit and they found curves of Neimarck–Sacker, saddle-
node, period-doubling and heteroclinic tangency bifurcations. However, for λ < 1, the dynamics of (3) is more
complicated, because the critical value c gets perturbed to the critical circle J1 and, therefore, admits infinitely
many critical orbits. This allows for more different scenarios of complicated dynamics, such as forward-backward
critical tangencies and the intermediate cases, where some critical orbits go to infinity and other critical orbits
stay bounded. Moreover, the Julia set, which we defined as the boundary of the basin of infinity, no longer
coincides with the closure of periodic and pre-periodic repelling points, because infinity is repelling. Since there
are finite repelling periodic points, we expect that some parts of the Julia set go to infinity, whereas other parts
stay bounded. A thorough investigation of the bifurcations of the invariant sets in the regime a ∈ (0, 2] and
λ ∈ [0, 1] remains a task for future research.

Overall, we have seen in this paper that the presence of the Julia set for a = 2 in the map (3) allows
for even more complicated bifurcations than the four tangency bifurcations. In particular, bifurcations of the
Julia set in (3) correspond to additional homoclinic and heteroclinic bifurcations in the underlying vector field.
More specifically, a saddle periodic point of (3) corresponds to a saddle periodic orbit with a four-dimensional
stable and a two-dimensional unstable manifold in the five-dimensional vector field; see [Hittmeyer et al.(2013)]
for more details. Similarly, a repelling periodic point of (3) corresponds to a saddle periodic orbit with a
three-dimensional stable and a three-dimensional unstable manifold. Therefore, the Julia set, which is the
closure of the set of periodic and pre-periodic repelling points, and the chaotic attractor, which is the closure
of the set of saddle points, correspond to two hyperbolic sets with different stable and unstable dimensions; the
interactions of their stable and unstable manifolds correspond to heteroclinic bifurcations in the vector field.
It is yet unclear what the consequences are in the vector field when the Julia set is the closure of stable sets
of saddle periodic points of the map. We expect these bifurcations to be one ingredient in the formation of
so-called heterodimensional cycles, that is, heteroclinic cycles between these two hyperbolic sets with different
stable dimensions. Wild chaos seems to play a role in the generation of (robust) heterodimensional cycles,
but the exact nature of their interrelation is still an active area of research [Bonatti & Dı́az(2008), Gonchenko
et al.(2008),Shinohara(2011a),Shinohara(2011b)]. Understanding the bifurcations of the Julia set of (3) in the
vector field and their role in the formation of heterodimensional cycles in more detail remains a challenging task
for future research.

Another approach to investigate the interrelation between wild chaos and heterodimensional cycles is to
study the vector field proposed in [Zhang et al.(2012)] in the same spirit. Zhang et al. developed a numerical
method for the detection and continuation of heterodimensional cycles in vector fields. With this method they
established the existence of a heterodimensional cycle in a four-dimensional vector field model of intracellular
calcium dynamics. The advantage is that the proposed system is given by an explicit vector field. In future work
we plan to study the bifurcations that occur near the detected heterodimensional cycle in this vector field. We
expect that this will provide evidence for the robustness (or nonrobustness) of the existence of heterodimensional
cycles in this system. Furthermore, comparing the dynamics near (robust) heterodimensional cycles in this
vector field to the route to wild chaos in map (3) will give further insight into the interplay between these two
phenomena.
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