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Abstract

Many physiological phenomena have the property that some variables evolve much faster than
others. For example, neuron models typically involve observable differences in time scales. The
Hodgkin–Huxley model is well known for explaining the ionic mechanism that generates the action
potential in the squid giant axon. Rubin and Wechselberger [Biol. Cyb. 97,5-32 (2007)] nondimen-
sionalized this model and obtained a singularly perturbed system with two fast, two slow variables,
and an explicit time-scale ratio ε. The dynamics of this system are complex and feature periodic
orbits with a series of action potentials separated by small-amplitude oscillations (SAOs); also re-
ferred to as mixed-mode oscillations (MMOs). The slow dynamics of this system are organized by
two-dimensional locally invariant manifolds called slow manifolds which can be either attracting or
of saddle type.

In this paper, we introduce a general approach for computing two-dimensional saddle slow
manifolds and their stable and unstable fast manifolds. We also develop a technique for detecting
and continuing associated canard orbits, which arise from the interaction between attracting and
saddle slow manifolds, and provide a mechanism for the organization of SAOs in R4. We first
test our approach with an extended four-dimensional normal form of a folded node. Our results
demonstrate that our computations give reliable approximations of slow manifolds and canard orbits
of this model. Our computational approach is then utilized to investigate the role of saddle slow
manifolds and associated canard orbits of the full Hodgkin–Huxley model in organizing MMOs and
determining the firing rates of action potentials. For ε sufficiently large, canard orbits are arranged
in pairs of twin canard orbits with the same number of SAOs. We illustrate how twin canard orbits
partition the attracting slow manifold into a number of ribbons that play the role of sectors of
rotations. The upshot is that we are able to unravel the geometry of slow manifolds and associated
canard orbits without the need to reduce the model.
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1 Introduction
In a wide variety of models, including of semiconductor lasers [1, 42], chemical reactions
[33, 56, 59] and neurons [26, 36, 44], one finds large differences in time scales. For example,
in neuron models, the action potential changes on a much faster time scale than ionic gating
variables. This yields various types of complex oscillatory behavior such as spiking, bursting
and mixed-mode oscillations (MMOs),which alternate between small-amplitude oscillations
(SAOs) and large-amplitude oscillations (LAOs) [9]. Those phenomena can be modelled by
a special class of dynamical systems called slow-fast systems, which have a group of fast and
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a group of slow variables, with a time-scale separation parameter ε. A common approach for
studying slow-fast systems is geometric singular perturbation theory (GSPT) [21, 38] which
exploits the time-scale differences and approximates a slow-fast system by a composition of
lower-dimensional slow and fast subsystems that are easier to analyse.

In the simplest case, slow-fast systems feature one fast and one slow variables. One famous
example is the FitzHugh–Nagumo model [22, 53], which is a simplistic two-dimensional
dynamical system that describes the evolution of the voltage potential and a single coupled
slow gating variable. The voltage nullcline corresponds to the so-called critical manifold. The
cubic shape of the critical manifold provides a mechanism for spike generation and relaxation
oscillations. The notion relaxation oscillation was fi rst introduced for the Van der Pol
oscillator [68] to describe periodic orbits with slow and fast segments. Parameter variations
may lead to transitions between an excitable rest state, small periodic orbits and large
relaxation oscillations. The transformation of small periodic orbits of the FitzHugh–Nagumo
model into large relaxation oscillations occurs within an exponentially small parameter range.
In this parameter range, periodic orbits known as canard cycles follow the middel (repelling)
branch of the critical manifold for a considerable amount of time. This phenomenon is called
‘canard explosion’ and was first discovered by the French mathematician Benoît in 1981 [3].
Canard analysis has since been prominent for understanding slow-fast systems.

Neuron models with one slow and two fast variables may feature high-frequency spikes
separated by quiescent periods. This behavior is denoted as bursting. Rinzel [61] intro-
duced a scheme for classifying bursting mechanisms based on the bifurcation structure of
the so-called fast subsystem where the slow variable is treated as a parameter. Based on
this structure, Izhikevich [37] attempted to classify all such bursting patterns. The criti-
cal manifold in bursting models with one slow and two fast variables is a one-dimensional
manifold of equilibrium points of the fast subsystem, and it often takes a cubic shape. In
this setting, canard orbits feature segments that stay close to the middle (saddle) branch
of the critical manifold for a significant amount of time. Canard orbits play a key role in
organizing bursting patterns; namely, they allow for an abrupt increase of amplitude in a
very small parameter range. This creates a mechanism for spike adding [67] in bursting
models [10, 19, 20, 24, 27, 44, 48, 55]. A different mechanism specifically for the transition
between spiking and bursting has been related to so-called torus canards which are orbit seg-
ments that connect the stable and unstable branches of periodic orbits of the fast subsystem
[6, 8, 39, 62, 69].

Systems with one fast and two slow variables may generate a robust mechanism for
MMOs. The critical manifolds of such systems are typically two-dimensional folded surfaces.
Attracting and repelling sheets of a folded critical manifold meet at fold curves. According to
well-established results from Fenichel [21, 38], normally hyperbolic sheets of the critical man-
ifold persist as two-dimensional slow manifolds, provided ε is sufficiently small. Intersections
of attracting and repelling slow manifolds in this setting correspond to canard orbits. They
provide a mechanism for SAOs in that canard orbits form boundaries between regions of
different numbers of SAOs [5, 66, 72]. Global return mechanisms and canard-induced SAOs
together generate MMOs for a wide range of mathematical and applied three-dimensional
models [10, 12, 14, 18, 35, 44, 45, 50, 51, 63, 64, 70, 71]. In support of theoretical work,
numerical methods were developed to reveal the geometry of two-dimensional attracting and
repelling slow manifolds, as well as canard orbits. These methods were employed to inves-
tigate numerous three-dimensional examples [11, 12, 13, 14, 25, 41, 51, 70]. For a more
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detailed survey of MMOs in slow-fast systems see [9].
Mechanisms of bursting and MMOs in three-dimensional vector fields are relatively well

understood Nevertheless, there are many three-dimensional slow-fast systems [18, 32, 63, 74]
that are actually reductions of higher-dimensional models. For example, the Hodgkin–Huxley
model is a four-dimensional vector field that was originally formed to explain the ionic mech-
anism that generates the action potential in the squid giant axon. Rubin and Wechselberger
[63] reduced this model to a three-dimensional vector field in order to understand the role
of slow manifolds and canard orbits in organizing the dynamics of the model. In certain
situations, the reduced models accurately capture the qualitative behavior of the original
higher-dimensional models. However, important aspects of the dynamics may be lost after
a reduction [4, 75]. Thus, it is very useful to be able to investigate a given system without
applying reduction techniques first.

As a natural step for studying higher-dimensional models, we focus on systems with two
fast and two slow variables. In particular, we aim to compute and visualize slow manifolds
and associated canard orbits in four-dimensional vector fields without the need for any re-
duction. To this end, we introduce a method for computing two-dimensional saddle slow
manifolds in R4. Computation of saddle slow manifolds is more challenging than that of
attracting and repelling slow manifolds due to the existence of both contracting and expand-
ing fast normal directions. This challenge can be overcome with a two-point boundary-value
problem (2PBVP) setup. Namely, we compute two-dimensional submanifolds of saddle slow
manifolds and their stable and unstable manifolds as families of orbits segments. An impor-
tant difference with previous studies, is that, in systems with two fast and two slow variables,
canard orbits are no longer intersections of slow manifolds. In this paper, we develop and
present a homotopy method for computing canard orbits as orbits segments on the attracting
slow manifold that stay close to the saddle slow manifolds for a significant amount of time.

We study two different four-dimensional vector fields that feature two-dimensional saddle
slow manifolds. The first is an extended version of the normal form of a folded node [25, 72],
where a fast variable with a stable fast direction is added. In this system, we implement
and test our 2PBVP-based approach for computing saddle slow manifolds, and their stable
and unstable fast manifolds, as well as associated canard orbits. We show that our methods
give reliable approximations of slow manifolds and canard orbits. As a second example, we
consider the four-dimensional Hodgkin–Huxley model [36]. Its dynamics are very complex
and feature periodic MMOs with a series of action potentials separated by subthreshold
oscillations. Rubin and Wechselberger [64] nondimensionalized the Hodgkin–Huxley model
and obtained a system with two fast and two slow variables, and a simple explicit time-scale
separation parameter ε. However, they then focused on a further reduced three-dimensional
version of this model. Here, we compute attracting and saddle slow manifolds, as well
as associated canard orbits directly in the nondimensionalized four-dimensional Hodgkin–
Huxley model. Indeed, we demonstrate that such computations can be done without the
need to reduce the system first. Our results confirm and illustrate how slow manifolds
and their associated canard orbits play a central role in organizing MMOs also in the four-
dimensional model.

The outline of the paper is as follows. Section 2 reviews ideas and concepts from GSPT
for systems with two fast and two slow variables. Section 3 begins with a 2PBVP setup for
computing orbit segments in four-dimensional vector fields. This is followed by a general
method for computing two-dimensional saddle slow manifolds, as well as subsets of their
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three-dimensional stable and unstable manifolds in systems with two fast and two slow vari-
ables. Our approach is then demonstrated and implemented for an extended four-dimensional
normal form of a folded node. In Section 4, we examine the interaction between attracting
and saddle slow manifolds. We also introduce a general approach for computing canard
orbits in R4 and then test it for the extended normal form of a folded node. In Section 5,
we investigate the underlying dynamics of the full four-dimensional Hodgkin–Huxley model.
A bifurcation analysis of MMOs and a short review of GSPT for this model are presented
first. Thereafter, we compute attracting and saddle slow manifolds and study their inter-
actions. For a relatively large ε, we illustrate the geometry of so-called ribbons and their
bounding twin canard orbits, as well as their role in organizing MMOs. Finally, we perform
a continuation analysis of canard orbits of the model. Conclusions, a summary of results
and directions for future work can be found in Section 6.

2 Background on geometric singular perturbation the-
ory

In this paper, we focus on four-dimensional slow-fast (singularly perturbed) systems that
can be written in the form {

ẋ = f(x,y, λ),
ẏ = εg(x,y, λ), (1)

with fast variables x ∈ R2, slow variables y ∈ R2, parameter vector λ ∈ Rp, a small
parameter 0 < ε � 1 representing the time-scale ratio, and sufficiently smooth functions
f : R2×R2×Rp 7→ R2 and g : R2×R2×Rp 7→ R2. The overdot denotes the derivative with
respect to the fast time scale t.

Geometric singular perturbation theory (GSPT) exploits the separation of different time
scales in order to explain the complex dynamics of slow-fast systems. The idea behind GSPT
is to analyse two lower-dimensional subsystems of the singular limit and gather information
from both subsystems to understand the behavior of the full system. Taking the singular
limit of (1) yields the two-dimensional fast subsystem (layer problem){

ẋ = f(x,y, λ),
ẏ = 0, (2)

where the slow variables y can be treated as bifurcation parameters. The flow of the fast
subsystem is called the fast flow. In contrast, the reduced system (slow subsystem) is obtained
by rescaling the time t of (1) to τ = εt and then taking the singular limit. Hence, the reduced
system is the two-dimensional system of differential algebraic equations{

0 = f(x,y, λ),
y′ = g(x,y, λ), (3)

where the prime denotes the derivative with respect to the slow time τ . The flow of the
reduced system (3) is called the slow flow.

Equilibrium points of the fast subsystem (2) define a two-dimensional manifold called
the critical manifold

S :=
{

(x,y) ∈ R2 × R2| f(x,y, λ) = 0
}
, (4)
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which is also the phase space of the reduced system (3). A submanifold Sm ⊆ S is normally
hyperbolic if and only if all points on Sm are hyperbolic equilibria with respect to the fast
variables; that is, the eigenvalues of the Jacobian matrix Dxf(x,y, λ, 0) at these points have
no zero real part. Depending on these eigenvalues, a corresponding submanifold Sm ⊆ S can
be attracting (Sa), repelling (Sr) or of saddle type (Ss). According to Fenichel theory, for ε
sufficiently small, normally hyperbolic submanifolds of the critical manifold persist as locally
invariant slow manifolds [21, 38]. A slow manifold Smε has the same smoothness and stability
properties as the corresponding submanifold Sm ⊆ S. Moreover, the stable and unstable
manifolds, W s(Sm) andW u(Sm), of a normally hyperbolic submanifold Sm persist as locally
invariant stable and unstable (fast) manifolds, W s(Smε ) and W u(Smε ), of the perturbed slow
manifold Smε , respectively. We also remark that the flow on the perturbed slow manifolds is
diffeomorphic to the associated slow flow on the critical manifold for sufficiently small ε.

We are interested in the case where an attracting sheet Sa meets a saddle sheet Ss at a
one-dimensional fold curve F . In this situation, the reduced system is singular (not normally
hyperbolic) at F . Nevertheless, one attains a description of the dynamics near F by rescaling
(3) to obtain the desingularized reduced system{

x′ = adj(Dxf(x,y, λ)) ·Dyf(x,y, λ) · g(x,y, λ),
y′ = −det(Dxf(x,y, λ)) · g(x,y, λ), (5)

where (x,y) ∈ S, and the prime now denotes the derivative with respect to the rescaled time
τ1 = −τ/det(Dxf(x,y, λ)). Here, adj(Dxf(x,y, λ)) and det(Dxf(x,y, λ)) are the adjoint
and determinant of the Jacobian matrix Dxf(x,y, λ), respectively. Note that this rescaling
causes a reversal of the flow on the saddle sheet Ss. Equilibrium points of the desingularized
reduced system (5) that lie on fold curves are called folded singularities; they can be nodes,
saddles or foci. In particular, the existence of a folded node on F allows for a whole sector of
trajectories of (3) to pass from Sa to Ss in the singular limit ε = 0. For ε sufficiently small,
this sector gives rise to a finite number of canard orbits, i.e., trajectories that stay close to
the attracting slow manifold Saε and saddle slow manifold Ssε for O(1) time on the slow time
scale [5, 66, 72].

3 Computing two-dimensional saddle slow manifolds
In this section, we introduce a general numerical framework for computing two-dimensional
saddle slow manifolds and their stable and unstable manifolds in the context of systems with
two fast and two slow variables. We also introduce a general method for computing and
continuing canard orbits in this setting. We then illustrate our methods throughout with an
extended version of the normal form of a folded node.

3.1 Two-point boundary-value problem setup for four-dimensional
slow-fast systems

To begin, we introduce a general setup for representing relevant parts of invariant manifolds
in R4 as families of orbit segments by defining suitable 2PBVPs. Throughout the paper, we
use this setup extensively to compute and continue invariant objects in systems of the form
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of (1). The first step for computing orbits segments as solutions of 2PBVPs is to rescale the
vector field (1) as

u̇ = TH(u, λ), (6)

where u ∈ R4 is the state, λ ∈ Rp is the parameter vector and H : R2 × R2 × Rp × R 7→ R4

is the right-hand side of (1). The parameter T is the total integration time of the computed
orbit segment and it is treated as a free parameter; the overdot now represents the derivative
with respect to the rescaled time Tt. Hence, the orbit segment u(t) is always defined over
the interval t ∈ [0, 1]. We define codimension-i and codimension-j hypersurfaces, Ξ0 and Ξ1,
where i+ j = 4 and then impose the boundary conditions{

u(0) ∈ Ξ0,
u(1) ∈ Ξ1.

(7)

Equation (6) with boundary conditions given by (7) yields a well-posed 2PBVP that defines
a one-parameter solution family of orbit segments representing part of a two-dimensional
manifold of interest. Furthermore, the solution family of this 2PBVP can be computed
reliably by employing pseudo-arclength continuation in combination with a 2PBVP solver,
such as collocation. A broader overview of this general 2PBVP setup can be found in [41].

Perhaps the simplest case of (7) is when i = 4 and j = 0, such that the corresponding
2PBVP effectively defines an initial value problem. For the case when i = 3 and j = 1,
the 2PBVP yields orbit segments that start from a one-dimensional curve and end at a
codimension-one submanifold. This case is commonly used to compute two-dimensional in-
variant manifolds as one-parameter families of orbit segments [41]. For systems of dimension
higher than three, one-parameter families of orbit segments can also be computed by starting
from a two-dimensional surface and ending at another two-dimensional surface. Implemen-
tation of the latter case, when i = 2 and j = 2, will be used to compute two-dimensional
saddle slow manifolds.

2PBVP methods are very versatile and can be applied to compute and continue locally
and globally invariant manifolds [11, 12, 13, 40], global bifurcations [15, 23, 57], transient
dynamics [19, 55, 65] and isochrons [34, 46, 47, 58]. In this paper, we use various 2PBVP
formulations to compute slow manifolds and their stable and unstable manifolds, as well as
canard orbits.

3.2 General approach for computing two-dimensional slow mani-
folds in R4

Computations of one-dimensional saddle slow manifolds and associated stable and unstable
manifolds were performed with a collocation method and numerical integration [27], iterative
methods [43] and two-point boundary-value problem (2PBVP) setup [19]. The flow on one-
dimensional saddle slow manifolds is very simple because it has only one degree of freedom.
In contrast, the flow on a two-dimensional saddle slow manifold may be quite intricate with
subsets of trajectories that have different properties. We now present a general approach
for computing suitable families of orbit segments to represent the relevant parts of two-
dimensional attracting and saddle slow manifolds in R4. We consider a system of the form
(1). We further assume that the critical manifold S of (1) has a two-dimensional attracting
sheet Sa and a two-dimensional saddle sheet Ss that meet at a generic fold curve F . As
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was described in Section 3.1, we first rescale the vector field (1) to obtain (6), where the
parameter T is the integration time associated with (1). We then implement a 2PBVP with
the boundary conditions given in (7), where Ξ0 and Ξ1 are codimension-i and codimension-j
hypersurfaces with i+ j = 4. The choice of Ξ0 and Ξ1 determines a one-parameter family of
solutions that represent a given two-dimensional invariant manifold.

3.2.1 Computing attracting and repelling slow manifolds in R4

We compute the attracting slow manifold Saε in systems of the form (1) by using the boundary
conditions {

u(0) ∈ La,
u(1) ∈ Σa,

(8)

where La is a one-dimensional curve on Sa sufficiently away from F , and Σa is a codimension-
one submanifold transverse to the flow. The computation of a repelling slow manifold can be
performed in the same way by reversing time. This approach of computing attracting and
repelling slow manifolds is a direct generalization to higher dimensions of the method used
in [11, 12, 35, 41]; it can also be used for computing attracting and repelling slow manifolds
in any system with two slow and an arbitrary number n ≥ 1 of fast variables.

3.2.2 Computing saddle slow manifolds in R4

Now we introduce a method for computing two-dimensional saddle slow manifolds in R4.
This is a challenge because one needs to take into account the nature of the flow on the
manifold. In addition, the existence of expanding and contracting fast normal directions
means that a saddle slow manifold is not uniformly attracting in either forward or backward
time. To deal with these issues, we define suitable 2PBVPs to compute different parts of
a given saddle slow manifold. To set up the method, one needs some information about
the behavior of the slow flow of the reduced system, as well as the stable and unstable
eigendirections associated with the saddle sheet of the critical manifold in the singular limit.

We aim to represent the saddle slow manifold Ssε in a system of the form (1) as a collec-
tion of one-parameter families of orbit segments that approach Ssε along its stable manifold
W s(Ssε) and leave via its unstable manifold W u(Ssε). This can be achieved by implementing
suitable 2PBVPs. Specifically, we represent each part of Ssε as orbit segments subject to the
following boundary conditions {

u(0) ∈ Σ̃0,

u(1) ∈ Σ̃1.
(9)

Here, Σ̃0 and Σ̃1 are suitably chosen two-dimensional (codimension-two) sections. In our ap-
proach, each section Σ̃i is defined as the intersection of two three-dimensional (codimension-
one) submanifolds: {

Σ̃0 := Σ̂0 ∩ Σ0,

Σ̃1 := Σ̂1 ∩ Σ1.
(10)

Here, Σ̂0 and Σ̂1 are three-dimensional submanifolds that are chosen transverse to the stable
manifoldW s(Ssε) and unstable manifoldW u(Ssε) of the saddle slow manifold Ssε , respectively;
their definitions are informed by the (local) eigendirections of the equilibria of the fast
subsystem that lie on Ss. In contrast, the three-dimensional submanifolds Σ0 and Σ1 are
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constraints that are tailored to the desired submanifold of Ssε to be computed. In this way,
we can represent a suitable submanifold of Ssε as a one-parameter family of orbit segments
that enter along W s(Ssε), and then stay extremely close to Ssε before exiting along W u(Ssε).

3.3 Extended normal form of a folded node
Our approach of computing two-dimensional saddle slow manifolds is general, but requires
some knowledge of the slow flow on the critical manifold. To illustrate it, we now introduce
a concrete example of a four-dimensional vector field to provide a case study. The normal
form of a folded node is a system with one fast and two slow variables [25, 72]. Here, we
introduce and consider the extended vector field given by

ẋ = ε(1
2µy − (µ+ 1)z),

ẏ = ε,
ż = x+ z2,
ẇ = z − w,

(11)

which includes a second fast variable w representing a stable fast direction. Since w does not
play a role in the dynamics of the other three variables, the dynamics of x, y and z of the
original model, including the slow flow on the critical manifold, remains unchanged. Hence,
this system is a good test-case model for computing two-dimensional saddle slow manifolds
in R4. The critical manifold of (11) is given by the two-dimensional parabolic surface

S :=
{

(x, y, z, w) | x = −z2, and z = w
}
, (12)

which has an attracting sheet Sa and a saddle sheet Ss that meet at a nondegenerate fold
curve F . More precisely, S is composed of:

Sa := {(x, y, z, w) ∈ S | z < 0} ,
F := {(x, y, z, w) ∈ S | z = 0} ,
Ss := {(x, y, z, w) ∈ S | z > 0} .

(13)

The reduced system of (11) is given by
x′ = 1

2µy − (µ+ 1)z,
y′ = 1,
0 = x+ z2,
0 = z − w.

(14)

It defines the slow flow, where the prime denotes the derivative with respect to the slow time
scale τ = εt. The slow flow on the saddle sheet Ss is the image of the slow flow on Sa under
the symmetry

(x, y, z, w) 7→ (x,−y,−z,−w). (15)

The origin is a folded singularity, which is an equilibrium of the desingularized reduced
system on F but not of the full system. Its eigenvalues as an equilibrium of the corresponding
desingularized reduced system are−µ and−1; thus, the folded singularity is a node for µ > 0.
In the calculations that follow, we first consider µ = 9.2.
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Figure 1: Critical manifold of (11) with the phase portrait of the reduced system (14) with µ = 9.2,
projected onto the (x, y, z)-space. The lower sheet Sa of the critical manifold (gray) is attracting
and the upper sheet Ss is of saddle type. The fold curve F (gray line) separates the two sheets. The
black dot at the origin is the folded node, and the magenta curve ξs is the strong singular canard.

Figure 1 illustrates the slow flow in the neighborhood of the folded node (black dot) on
the critical manifold (gray surface), which is projected onto the (x, y, z)-space. The fold
curve F (gray line) separates the attracting sheet Sa and the saddle sheet Ss of the critical
manifold. The magenta trajectory is the strong singular canard ξs, which divides Sa into a
funnel region and a jump region; see [72] for details. There are three types of trajectories
on Sa and Ss that behave differently. Orange and green trajectories on Sa, which lie in the
funnel region between ξs and F , move to Ss through the folded node in finite time. The
black trajectories on Sa move towards F and then jump in the fast direction. The black
and green trajectories on Ss move away from F all the way to infinity. On the other hand,
orange trajectories on Ss leave from the vicinity of the folded node and make a return to the
fold curve F , where they jump in the fast direction.

3.4 Slow manifolds of the extended normal form
Here, we illustrate our approach of computing attracting and saddle slow manifolds with
system (11). Since the flow on the attracting slow manifold Saε and the saddle slow manifold
Ssε , for ε small enough, is diffeomorphic to that on Sa and Ss, respectively, we use the nature
of the slow flow on the respective parts of the critical manifold shown in Fig. 1 as a guide for
selecting families of orbit segments that represent the slow manifolds. With this selection,

9



MMOs and twin canards C. R. Hasan, B. Krauskopf, H. M. Osinga

we compute the slow manifolds with the general approach introduced in Section 3.2.

3.4.1 Computing the saddle slow manifold of the normal form

We represent the saddle slow manfold Ssε of (11) as families of orbit segments that satisfy
the boundary conditions given by (9) and (10). The three-dimensional submanifolds Σ̂0
and Σ̂1 of (10) need to be transverse to the stable manifold W s(Ssε) and unstable manifold
W u(Ssε) of the saddle slow manifold Ssε , respectively. The extended normal form has the
special property that each equilibrium of the fast subsystem on Ss has the w-direction as its
stable eigendirection, whereas the unstable eigendirection is defined by (x, z) = (2z + 1, 1).
This property implies that, away from F , trajectories on W s(Ssε) always enter Ssε via the w-
nullcline, and trajectories on W u(Ssε) always move away from Ssε via the z-nullcline. Hence,
we choose {

Σ̂0 := {(x, y, z, w) | ẇ = 0} = {(x, y, z, w) | w = z} ,
Σ̂1 := {(x, y, z, w) | ż = 0} = {(x, y, z, w) | x = −z2} ,

(16)

which guarantees that Σ̂0 and Σ̂1 are transverse to W s(Ssε) and W u(Ssε), respectively. We
use these choices for Σ̂0 and Σ̂1 for all computed submanifolds of Ssε . On the other hand,
sections Σ0 and Σ1 determine the constraints that specify the computed submanifolds of Ssε .
They are different for each of the three families of orbit segments shown in Fig. 1. More
specifically, the submanifold of Ssε corresponding to the black orbit segments in Fig. 1 is
specified by {

Σ0 := {(x, y, z, w) | z = 0.1} ,
Σ1 := {(x, y, z, w) | z = 30} , (17)

so that we capture the start of these orbit segments near the fold curve F and follow them
up to z = 30. The submanifold of Ssε corresponding to the green orbit segments is specified
by {

Σ0 := {(x, y, z, w) | y = 0} ,
Σ1 := {(x, y, z, w) | z = 30} , (18)

because these orbit segments all start at y = 0 near the folded node. Finally, the submanifold
of Ssε corresponding to the the orange orbit segments is specified by{

Σ0 := {(x, y, z, w) | y = 0} ,
Σ1 := {(x, y, z, w) | z = 0.1} , (19)

because these orbits segments end close to F . The 2PBVPs of the three submanifolds
that constitute the computed saddle slow manifold are defined by Eq. (6) with boundary
conditions (9), (10) as specified by (16), and one of (17), (18) or (19).

Figure 2 shows the three computed submanifolds of the saddle slow manifold Ssε for
ε = 0.01. They correspond to the three different families of trajectories on Ss shown in
Fig. 1. The left column shows each submanifold, projected onto the (x, y, z)-space. The
sections Σ̃0 (light blue) and Σ̃1 (dark blue) used for the boundary conditions are also shown.
The right column of Fig. 2 shows the same submanifolds of Ssε , projected onto the (x, z)-
and (w, z)-planes. In these projections, the saddle branch Ss of the critical manifold corre-
spond to {(x, z)| x = −z2 and z > 0} and {(w, z)| z = w and z > 0}, respectively. In both
projections, it is notable that all computed orbit segments of Ssε stay extremely close to Ss;
this is an indication that they give an excellent approximation of the saddle slow manifold.
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Figure 2: Three computed submanifolds of Ssε of system (11) with µ = 9.2 and ε = 0.01. The
left column illustrates the three submanifolds, projected onto the (x, y, z)-space, together with the
corresponding boundary conditions Σ̃0 and Σ̃1 (light- and dark-blue sections). The right column
shows the three submanifolds, projected onto the (x, z)-plane and the (w, z)-plane, where we also
include stable (blue) and unstable (red) eigenvector directions at a selection of points on Ss.

In the (w, z)-plane, the short blue (red) segments are the directions of the stable (unstable)
eigenvectors associated with the equilibrium points of Ss at the singular limit ε = 0.

Figure 2(a) shows the computed orbit segments (black) of the first family of Ssε . The
green surface, which is a part of Ssε , has been rendered from these black orbit segments.
Indeed, the black family of orbit segments are topologically as the black trajectories on Ss
shown in Fig. 1. In Fig. 2(a1), the sections Σ̃0 (light-blue plane) and Σ̃1 (dark-blue line)
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correspond to the boundary conditions that define the computed black orbit segments. The
section Σ̃1 is actually two dimensional but it appears as a one-dimensional line in projection
onto the (x, y, z)-space because the corresponding equation does not depend on w. The
boundary conditions for the shown submanifold of Ssε are defined by (9), (10), (16), and
(17). As a result, the computed family of orbit segments start from the vicinity of the fold
curve F and end far away from F . Panels (a2) and (a3) of Fig. 2 show that this family of
Ssε is very close to Ss.

Observe from Fig. 2(a3) that the stable eigenvectors are aligned with the w-axis. Also note
that, sufficiently far away from F , the unstable eigenvectors are (almost) aligned with the z-
axis. These eigendirections illustrate why we force the computed orbit segments representing
this part of Ssε to start from the w-nullcline and end at the the z-nullcline; see (16). In this
way, we compute orbit segments of Ssε without including the fast segments of the associated
stable and unstable manifolds. However, as we will show later in Section 3.5, we are able
to change the boundary conditions and extend the orbit segments, in backward and forward
time, to include fast segments of W s(Ssε) and W u(Ssε), respectively.

Figure 2(b) shows the computed orbit segments (green) of the second family of Ssε . This
family is topologically as the green family of trajectories on Ss shown in Fig. 1. The green sur-
face, which is a part of Ssε , has been rendered from the shown green orbit segments. Sections
Σ̃0 (light-blue plane) and Σ̃1 (dark-blue line) illustrate the respective boundary conditions.
Here, the section Σ̃1 is also two dimensional but it again appears as a one-dimensional curve
in projection onto the (x, y, z)-space. The 2PBVP setup for this submanifold of Ssε is defined
by (9), (10), (16), and (18). The green orbit segments start from the neighborhood of the
folded node and terminate sufficiently far away from the fold curve. In both projections
shown in panels (b2) and (b3), the computed orbit segments lie extremely close to Ss, which
indicates that the computed orbit segments again provide a good approximation of the saddle
slow manifold.

Finally, Figure 2(c) shows the computed orbit segments (orange) of the third family of Ssε .
The boundary conditions for this submanifold are (9), (10), (16) and (19). The corresponding
orbits segments start from the neighborhood of the folded node and make a return to the fold
curve F . Panel (c3) shows that the orbit segments divert slightly from the critical manifold S
as they return to the vicinity of F . This is because the linearization of the unstable manifold
W u(Ss), which is given by (z, w) = (1 + 2z, 1), becomes more aligned with the slow flow on
the critical manifold as F is approached. In other words, the normal hyperbolicity of the
saddle slow manifold is lost near F . Nevertheless, the projections in panels (c2) and (c3)
indicate that the computed orbit segments still provide a good approximation of the saddle
slow manifold.

3.4.2 The overall geometry of slow manifolds

As was described in Section 3.2, we compute the attracting slow manifold Saε by starting
from a line away from the fold curve F and ending at a three-dimensional submanifold. More
specifically, we represent Saε as families of orbit segments that are subject to the boundary
condition given by (8), where the precise loci of La and Σa depend on the desired submanifold
of Saε to be computed. To represent the black, green and orange trajectories of Sa in Fig. 1
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as orbit segments of Saε , we choose{
u(0) ∈ La1 := {(x, y, z, w) | z = −30} ∩ Sa,
u(1) ∈ Σa

1 := {(x, y, z, w) | z = −0.1} , (20)

{
u(0) ∈ La1 := {(x, y, z, w) | z = −30} ∩ Sa,
u(1) ∈ Σa

2 := {(x, y, z, w) | y = 0} , (21)

and {
u(0) ∈ La2 := {(x, y, z, w) | z = −0.1} ∩ Sa,
u(1) ∈ Σa

2 := {(x, y, z, w) | y = 0} , (22)

respectively. These boundary conditions result in three families of orbit segments that cor-
respond to three submanifolds constituting the attracting slow manifold Saε .

?? shows the resulting approximations of the attracting slow manifold Saε (red surface)
and the saddle slow manifold Ssε (green surface) for ε = 0.01; also shown are the computed
orbit segments used to render the surfaces. Note that the flow on the slow manifolds is
qualitatively the same as the slow flow of the reduced system (ε = 0) shown in Fig. 1, as one
may expect for such a small perturbation of ε = 0.01. The saddle slow manifold Ssε is rendered
as a concatenation of the three families of orbit segments as shown in Fig. 2. Likewise, the
attracting slow manifold Saε is rendered as a concatenation of the three computed families
of orbit segments based on the boundary conditions (20), (21) and (22), respectively. The
flow on Saε is topologically equivalent to the slow flow on Sa in Fig. 1. Black trajectories of
Saε approach the fold curve F , near which they are expected to make a jump away from the
critical manifold. In contrast, green and orange trajectories of Saε terminate near the folded
node where they interact with the saddle slow manifold. The interaction between Saε and Ssε
will be discussed in Section 4.

3.5 Computing stable and unstable manifolds of saddle slow man-
ifolds

Two-dimensional saddle slow manifolds in R4 are associated with three-dimensional sta-
ble and unstable (fast) manifolds. It is very challenging to compute and visualize such
three-dimensional geometric objects. Nevertheless, we now present a general approach for
computing two-dimensional submanifolds of the three-dimensional stable manifold W s(Ssε)
and the three-dimensional unstable manifold W u(Ssε) of the saddle slow manifold Ssε . This
can be achieved by implementing suitable 2PBVPs to compute orbit segments that start
transversally to W s(Ssε) and end transversally to W u(Ssε). The basic idea of our approach is
inspired by the computation of two-dimensional (un)stable manifolds of a one-dimensional
saddle slow manifold, which is presented in [19].

Consider system (1) and assume that it features a two-dimensional saddle slow manifold
Ssε with associated stable manifold W s(Ssε) and unstable manifold W u(Ssε). Each normally
hyperbolic trajectory csε ⊂ Ssε on the saddle slow manifold is associated with two-dimensional
stable and unstable manifolds, W s(csε) and W u(csε), that approach the (slow) trajectory csε
at an exponential rate in forward and backward time, respectively. To compute the stable
manifold W s(csε) of a trajectory csε, we first extend csε by the flow in backward time to
include a fast stable segment. We then continue the resulting extended orbit segment as a
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one-parameter family of orbit segments subject to the boundary conditions{
u(0) ∈ Σs,
u(1) ∈ Ls, (23)

where Σs is a codimension-one submanifold far away from S and transverse to the stable
manifold of the trajectory csε. On the other hand, Ls is a line segment close to the saddle
sheet Ss and transverse to the unstable manifold of the trajectory csε.

We can also compute two-dimensional submanifolds of the stable manifold W s(Ssε) asso-
ciated with a one-dimensional curve on Ssε . This can be achieved by imposing the boundary
conditions {

u(0) ∈ Σs
0,

u(1) ∈ Σs
1,

(24)

where Σs
1 and Σs

0 are codimension-two submanifolds that are suitably chosen to be transverse
to W s(Ssε) and W u(Ssε), respectively.

Submanifolds of the unstable manifold W u(Ssε) can be computed with the same setup
after reversing time. The precise definition of the 2PBVPs given by (23) and (24) depends
on the desired computed submanifold, as will be described for our specific example in the
next section.

3.5.1 Stable and unstable manifolds of a trajectory on Ssε

Figure 3 shows the stable manifoldW s(csε) (blue surfaces) and unstable manifoldW u(csε) (red
surfaces) of a selected trajectory csε (green curve) on the saddle slow manifold Ssε , projected
onto the (w, y, z)-space. Figure 3(a) shows an approximation of the two-dimensional local
manifold W s(csε) (blue surface); also shown is a selection of orbit segments on W s(csε) (blue
curves). Each side of the local manifold corresponds to a one-parameter family of orbit
segments that satisfy the boundary conditions{

u(0) ∈ Σs := {(x, y, z, w) | z = w} ,
u(1) ∈ Ls := {(x, y, z, w) | x = −z2; z = 30; y = −73.8301} . (25)

Here, Σs is a codimension-one submanifold and Ls is a one-dimensional curve. The submani-
fold Σs is chosen to be transverse toW s(csε) and sufficiently far away from S. The curve Ls is
chosen to be transverse to W u(csε). This computational setup forces the solution segments to
move along W s(csε) before converging to the slow trajectory csε (in the direction of increasing
z).

Figure 3(b) shows the local manifold W u(Ssε) (red surfaces) of the same trajectory csε
(green curve), together with a selection of orbit segments on W u(csε) (red curves). Each side
of the local manifold corresponds to a one-parameter family of orbit segments that satisfy
the boundary conditions{

u(0) ∈ Lu := {(x, y, z, w) | z = w; z = 1; y = −75.5057} ,
u(1) ∈ Σu := {(x, y, z, w) | x = −z2} , (26)

where Lu and Σu are chosen to be transverse to W s(csε) and W u(csε), respectively. The com-
puted orbit segments move along the slow trajectory csε (again in the direction of increasing
z), before exiting via its two-dimensional unstable manifold W u(csε).
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Figure 3: A trajectory csε (green) on the saddle slow manifold Ssε and its stable manifold W s(csε)
(blue) and unstable manifold W s(csε) (red) in system (11) with µ = 9.2 and ε = 0.01. A selection
of orbit segments of W s(csε) and W s(csε) are shown in blue and red thick curves, respectively. Panel
(a) shows the stable manifold W s(csε), panel (b) shows the unstable manifold W u(csε) and panel (c)
shows both.

Figure 3(c) shows bothW s(csε) (blue) and W u(csε) (red) of the same trajectory csε (green).
Note that they are indeed aligned with the w- and z-axes, respectively; this is consistent
with the directions of the associated eigenvectors of the saddle sheet Ss, as expected for
small ε = 0.01; see Fig. 2.

3.5.2 Slices of stable and unstable manifolds of Ssε
To compute different parts of the three-dimensional manifolds W s(Ssε) and W u(Ssε), we
implement variations of suitable 2PBVPs. Figure 4 shows a two-dimensional piece of Ssε
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Figure 4: A selection of two-dimensional submanifolds of the three-dimensional manifolds W s(Ssε)
and W u(Ssε) of system (11) with µ = 9.2 and ε = 0.01. Panel (a) shows a piece of Ssε (green
surface) and associated two-dimensional submanifolds of W s(Ssε) (blue surface). Panel (b) shows a
piece of Ssε (green surface) and associated two-dimensional submanifolds of W u(Ssε) (red surface).
All surfaces are rendered from the respective thick orbit segments.
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(green surface), together with six two-dimensional submanifolds of the associated three-
dimensional stable manifold W s(Ssε) (blue surfaces) and unstable manifold W u(Ssε) (red
surfaces) of system (11). All surfaces are rendered from the respective computed orbit
segments (thick curves).

Figure 4(a) shows six two-dimensional submanifolds of W s(Ssε), each formed by a collec-
tion of particular orbit segments on W s(csε) for a family of slow trajectories csε on Ssε . More
precisely, each submanifold corresponds to a one-parameter family of orbit segments that
satisfy the boundary conditions{

u(0) ∈ Σs
0 := {(x, y, z, w) | ẇ = 0} ∩ {(x, y, z, w) | w = ws} ,

u(1) ∈ Σs
1 := {(x, y, z, w) | ż = 0} ∩ {(x, y, z, w) | z = 30} , (27)

where the sections Σs
0 and Σs

1 are two-dimensional constraints that are chosen to be transverse
to W s(Ssε) and W u(Ssε), respectively, and ws is a suitably chosen constant that identifies the
particular orbit segment on the submanifolds of W s(Ssε). The six selected submanifolds of
W s(Ssε) are defined by ws = −19,−10, 0, 20, 30, and 40.

Similarily, Figure 4(b) shows six two-dimensional submanifolds of the three-dimensional
unstable manifoldW u(Ssε). Each submanifold corresponds to a one-parameter family of orbit
segments that satisfy the boundary conditions{

u(0) ∈ Σu
0 := {(x, y, z, w)| ẇ = 0} ∩ {(x, y, z, w)| w = 1} ,

u(1) ∈ Σu
1 := {(x, y, z, w)| ż = 0} ∩ {(x, y, z, w)| z = zu} ,

(28)

where Σu
0 and Σu

1 are transverse to W s(Ssε) and W u(Ssε), respectively. The six shown sub-
manifolds of W s(Ssε) are selected by setting zu = 5, 15, 25, 35.7, 45.5, and 55.4, which again
specifies the different two-dimensional submanifolds of W u(Ssε) as the particular selection of
orbit segments on W u(Ssε) for a family of trajectories csε on Ssε .

4 Interaction between attracting and saddle slow man-
ifolds and canard orbits in R4

Slow manifolds can be extended by the flow up to a transverse section near a folded node
where they interact with each other. In systems of ordinary differential equations with one
fast and two slow variables, extended attracting and repelling slow manifolds may intersect
transversally in isolated canard orbits. In such systems, canard orbits can be detected
by placing a cross-section transverse to both manifolds near the folded node and tracking
their intersections; see also [11, 12, 41]. In systems with two fast and two slow variables,
attracting and saddle slow manifolds spiral around each other in forward and backward
time, respectively, in the vicinity of the folded node. However, their possible intersections do
not occur in a structurally stable manner R4. We now investigate the interaction between
two-dimensional attracting and saddle slow manifolds of the four-dimensional system (11).
Indeed, in the computations that follow, we set µ = 100.1 in order to obtain more interesting
dynamics near the folded node, that is, more canard orbits near ε = 0.

Figure 5 illustrates how the attracting slow manifold Saε and saddle slow manifold Ssε
interact with each other near the folded node (the origin) in system (11) with µ = 100.1 and
ε = 0.01. Panel (a) shows a submanifold of Saε (red surface) and a submanifold of Ssε (green
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Figure 5: Interaction between Saε and Ssε in system (11) with µ = 100.1 and ε = 0.01. Panel (a)
shows Saε (red) and Ssε (green) projected onto the (x, y, z)-space, and computed up to the three-
dimensional section Σ (blue); the gray surface is the critical manifold S and the gray line is the fold
curve F . Panel (b) shows the intersection curves Ŝaε = Saε ∪ Σ (red) and Ŝsε = Ssε ∪ Σ (green) in
the (x,w, z)-space of Σ. Panel (c1) shows the curves Ŝaε,z (red) and Ŝaε,w (orange) as projections of
Ŝaε onto the (x, z)- and (x,w)-planes, respectively, together with the intersection curve Ŝsε (green),
which is the same in both projections. Panel (c2) is an enlargement of panel (c1).

surface), computed up to the three-dimensional section Σ := {y = 0} (blue plane), which
contains the folded node at the origin; the figure shows a projection onto the (x, y, z)-space.
Each surface intersects Σ in a one-dimensional curve. Panel (b) shows the intersection curves
Ŝaε = Saε ∪ Σ (red) and Ŝsε = Ssε ∪ Σ (green) in the (x,w, z)-space representing Σ. The two
curves spiral around each other but do not actually intersect. Panel (c1) illustrates the same
two curves in simultaneous projections onto the (x, z)- and (x,w)-planes; and panel (c2) is
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an enlargement. The curves Ŝaε,z (red) and Ŝaε,w (orange) are the projections of Ŝaε onto the
(x, z)- and (x,w)-planes, respectively. The curve Ŝsε,z = Ŝsε,w (green) is the projection of Ŝsε ,
which is identical in both projections because it lies on Σ̃1 so that z = w. An intersection
between the two surfaces occurs when the three projected curves Ŝaε,z, Ŝaε,w and Ŝsε,z = Ŝsε,w
all coincide in a single point. Hence, panels (c1) and (c2) show that there is no transversal
intersection of Saε and Ssε , which represents the generic situation. On the other hand, there
are many near intersections, which implies that there should be a number of orbit segments
that lie on Saε , stay extremely close to Ssε for a finite time and then leave via W u(Ssε). Such
orbit segments are canard orbits as we discuss next.

4.1 General approach for computing canard orbits in R4

In systems with one fast and two slow variables, canard orbits are defined as transversal
intersections of slow manifolds [66, 72]. In systems with two fast and two slow variables,
on the other hand, attracting and saddle slow manifolds are two dimensional and generi-
cally do not intersect, as was demonstrated in the previous section. This does not mean,
however, that canard orbits do not exist in this higher-dimensional setting. Rather, canard
orbits are trajectories that follow attracting and saddle slow manifolds for O(1) time on the
slow time scale before exiting via the unstable manifold of the saddle slow manifold [73].
This well-known alternative definition of a canard orbit has the advantage that it does not
depend on the dimension of the slow manifold. Geometrically, canard orbits in the present
setting of systems with two fast and two slow variables are transversal intersections of the
two-dimensional attracting slow manifold Saε and the three-dimensional unstable manifold
W u(Ssε) of the saddle slow manifold Ssε . As such, we are able to propose a general approach
for computing and continuing canard orbits as orbit segments that follow Saε and stay close
to Ssε for a significant amount of time before leaving via W u(Ssε).

Consider system (1) and assume that the critical manifold has attracting and saddle
sheets, Sa and Ss, respectively, that meet at a generic fold curve F on which there is folded
node. We compute canard orbits as orbit segments that satisfy the boundary conditions{

u(0) ∈ La,
u(1) ∈ Σ̃1 := Σ̂1 ∩ Σ1.

(29)

Here, La is a one-dimensional curve on Sa sufficiently far away from F . The section Σ̃1
is the two-dimensional intersection of three-dimensional submanifolds Σ̂1 and Σ1, where Σ̂1
is chosen to be transverse to W u(Ssε), and Σ1 must be sufficiently far away from F . Note
that Σ̃1 is chosen in the same way as for computing the saddle slow manifold; see (10).
This computational setup forces the computed solution segments to follow Saε and then
Ssε for a sufficient amount of time before leaving via the unstable manifold W u(Ssε). Such
orbit segments provide excellent approximations of canard orbits, in the same spirit as those
computed in [35].

To obtain a solution segment that satisfies (29), one needs to perform a homotopy step.
The underlying idea is to start from an orbit segment with u(0) ∈ La and u(1) on either Σ̂1
or Σ1. We then continue this orbit segment until equation (29) is satisfied. Once detected,
canard orbits that are solutions of the well-posed 2PBVP with the boundary conditions given
by (29) can be continued in any system parameter.
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4.1.1 Detecting and continuing canards of the normal form

To detect canard orbits of system (11), we represent them as orbit segments that satisfy (29)
with the system-specific choice{

u(0) ∈ La1 = {z = −30} ∩ Sa,
u(1) ∈ Σ̃1 = {x = −z2} ∩ {z = 30} . (30)

Note that La1 is the same line as was used for computing the first and second submanifolds
of Saε , and Σ̃1 is the same section used for computing the first and second submanifolds of
Ssε . Nonetheless, solutions of (30) do not correspond to transversal intersections of Saε and
Ssε .

To detect a canard orbit ξi with i small-amplitude oscillations (SAOs), we start from an
orbit segment on Saε that exhibits i SAOs. We then extend this orbit segment by the flow
until the end point reaches the section Σ1 = {z = 30}. We then continue this orbit segment
by imposing the boundary conditions{

u(0) ∈ La1 = {z = −30} ∩ Sa,
u(1) ∈ Σ1 = {z = 30} , (31)

and letting u(0) vary along La1. This yields a one-parameter family of orbit segments on
Saε with i SAOs. As soon as u(1) lies on Σ̂1 = {ż = 0}, equation (30) is satisfied and the
corresponding orbit segment represents a canard orbit ξi.

Figure 6 illustrates this homotopy step for finding canard orbits in system (11) with
µ = 100.1 and ε = 0.01. Panels (a) and (b) show orbit segments with four SAOs that satisfy
conditions (31), in projection onto the (y, z)-plane and (x, z)-plane, respectively. These orbits
segments stay very close to Ssε for a certain amount of time before leaving viaW u(Ssε). Indeed,
all of these orbit segments can be identified as transversal intersections of Saε and W u(Ssε).
However, only the red orbit segment satisfies (30), so we regard it as the representative
canard orbit ξ4 with four SAOs. We also found that the red orbit segment, indeed, stays
close to Ssε for a longer time than all of the other computed orbit segments. This homotopy
step is an extension of the approach of detecting canard orbits in R3 that was presented in
[35].

4.1.2 Canard orbits of the extended normal form

For the parameter value µ = 100.1 and sufficiently small ε, the theory predicts the existence
of two primary canards and 50 additional secondary canards [72]. Each of these canard
orbits can be detected as solutions that satisfy (30), via the homotopy step discussed in
Section 4.1.1. Figure 7 shows nine selected canard orbits ξ0–ξ8 of system (11) with µ = 100.1
and ε = 0.01. Panel (a) shows the canard orbits in projection onto the (y, z)-plane, while
the top left and bottom right insets show projections onto the (x, z)- and (w, z)-planes,
respectively; panel (b) is an enlargement. The primary canard orbit ξ0 follows both Saε and
Ssε without making any rotation. This canard orbit is the equivalent of the strong singular
canard ξs at the singular limit ε = 0. Each canard orbit ξi, i > 0, makes i rotations around
the singular weak canard ξw (not shown). Observe that the projections of canard orbits in
the insets are close to those of the critical manifold S; see Eq. (4). This provides a strong
evidence that all of the computed canard orbits ξ0–ξ8 stay extremely close to both Sa and
Ss. This is a clear indication that the computed orbit segments are excellent approximations
of canard orbits.
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Figure 6: Homotopy step for detecting canard orbit ξ4 of system (11) with µ = 100.1 and ε = 0.01.
Panels (a) and (b) are projections onto the (y, z)-plane and (x, z)-plane, respectively, and show a
family of orbit segments of Saε that stay close to Ssε for a certain amount of time. The red orbit,
which stays close to Ssε for the longest time, is identified as the canard orbit ξ4 that satisfies (30).

4.1.3 Continuation of canard orbits

In this section, we perform an analysis of how the canard orbits depend on µ and ε. This is
readily achieved by continuing them as orbit segments that satisfy the boundary conditions
given by (30). Figure 8 shows the continuation of canard orbits ξ0–ξ8 in ε. We again use
ξi to denote the ε-dependent branches that correspond to canard orbits with i SAOs. Note
that all branches converge to the singular limit ε = 0. Indeed, we find that all canard
orbits accumulate on the strong singular canard ξs near the singular limit. This agrees with
predictions by the theory [72].

Figure 9 shows the continuation of canard orbits ξ0–ξ8 in µ for ε = 0.01. The vertical
lines are at the odd integer values of µ = 1, 3, ..., 17. The figure illustrates how the branches
ξ0–ξ8 terminate approximately at odd values of µ. More precisely, each branch ξi ceases to
exist at µ ≈ 2i + 1 for all shown branches. According to the literature [72], the branches ξi
are expected to terminate exactly at µ = 2i + 1 near the singular limit ε = 0. Again, our
numerical results are consistent with the theory, which is another indication of the reliability
of our computations.

5 Slow manifolds and canard orbits in the full Hodgkin–
Huxley model

In this section, we implement and demonstrate our numerical approach for computing two-
dimensional saddle slow manifolds and associated canard orbits in an example from neu-
roscience, namely, the Hodgkin–Huxley model. The Hodgkin–Huxley model was originally
formulated to describe the action potential of the squid giant axon [36]. We study a singu-
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Figure 7: Canard orbits ξ0–ξ8 of system (11) with µ = 100.1 and ε = 0.01. Panel (a) shows ξ0–ξ8
in projection onto the (y, z)-plane; and panel (b) is an enlargement. The insets show all computed
canard orbits in projection onto the (x, z)-plane and (w, z)-plane, illustrating how close they are to
the critical manifold S.

larly perturbed nondimensionalized version of the Hodgkin–Huxley model obtained by Rubin
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Figure 8: Continuation in ε of canard orbits ξ0–ξ8 for system (11) with µ = 100.1.
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Figure 9: Continuation in µ of canard orbits ξ0–ξ8 for system (11) with ε = 0.01.

and Wechselberger [63], given by:

v̇ = f1(v,m, h, n) := I/(kv.g)−m3h(v − ĒNa)
−ḡkn4(v − ĒK)− ḡl(v − ĒL),

ṁ = f2(v,m) := 1
τmtm(v)(m∞(v)−m),

ḣ = εg1(v, h) := ε
τhth(v)(h∞(v)− h),

ṅ = εg2(v, n) := ε
τntn(v)(n∞(v)− n),

(32)
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where v represents the action potential and m,h and n represent gating variables. The
parameter I > 0 is the injected current and ε is the time-scale separation parameter. The
steady-state functions m∞(v), h∞(v) and n∞(v), and time functions tm(v), th(v) and tm(v)
are standard from the Hodgkin–Huxley formalism, and they are given in the Appendix. In
this paper, we vary I and ε and keep the other parameters fixed as in Table 1; the given
parameter values are the same used in [63] and they correspond to the original Hodgkin–
Huxley model, except that we set τh = 2 instead of τh = 1 to obtain more interesting
dynamics. We initially set I = 9.74 and ε = 0.0083. For ε small, v and m can be regarded
as fast variables, and h and n as slow variables.

Table 1: Parameter values of (32).

τm τh τn ENa EK EL g gk gl kv
1 2 1 0.5 -0.77 -0.544 120 0.3 0.0025 100

Rubin and Wechselberger [63] applied a center manifold reduction to (32) by setting
m = m∞(v) to eliminate m and obtain a three-dimensional reduced model. They applied
methods from GSPT to prove the existence of relaxation oscillations, MMOs and canard
orbits in the three-dimensional reduced model. They also performed bifurcation analyses in
I and ε for various choices of τh and τn [64]. Desroches et al., [14] detected and continued
canard orbits for the same reduced three-dimensional model. Other versions of the full four-
dimensional Hodgkin–Huxley model have been investigated in previous studies [16, 17, 28,
30, 36]. Here, we study the nondimensionalized version of the full Hodgkin–Huxley model
(32) without applying any reduction. More specifically, we examine the role of slow manifolds
and associated canard orbits in organizing MMOs.

5.1 Bifurcation diagram of the four-dimensional Hodgkin–Huxley
model

We start our analysis with the bifurcation diagram of the Hodgkin–Huxley model (32) in the
parameter I for fixed ε = 0.0083. Figure 10 shows the L2-norm of equilibria (black curve)
and periodic orbits (colored curves) versus I; solid and dashed curves indicate stable and
unstable branches, respectively. Note that there is a single equilibrium point for I ∈ [0, 200].
It undergoes subcritical and supercritical Hopf bifurcations (black dots) at I ≈ 9.70009
and I ≈ 170.609 (labeled HB1 and HB2), respectively. In panel (a), the primary branch of
periodic orbits (blue curve) connects HB1 with HB2. Panel (b) shows an enlargement for
I ∈ [8.5986, 14.5045]; stability properties are not shown here. The primary branch undergoes
a period-doubling bifurcation (PD) at I ≈ 8.80514. The period-doubled branch (cyan) that
emanates from PD terminates at a branch point (BP) at I ≈ 14.4103. Figure 10(b) also shows
17 other branches of periodic orbits that are alternately colored gray, red and green; some
of these branches are isolas and some of them emanate from and terminate at BP. Panel (c)
shows an enlargement of panel (b) with stability properties shown. Each branch goes through
a number of saddle-node bifurcations of periodic orbits and period-doubling bifurcations.
Therefore, different types of stabilities can be found along these branches. The labels indicate
the MMO signatures of the stable parts at the top of the branches. For increasing values
of I, the number of large-amplitude oscillations (LAOs) increases and the number of small-
amplitude oscillations (SAOs) decreases. Note that the branches 1121, 1112, 1213, 1314 and
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Figure 10: One-parameter bifurcation diagram of the Hodgkin–Huxley model (32) showing the L2-
norm versus I. The black curve is the branch of equilibria and colored curves are branches of periodic
orbits; the curves are solid when stable and dashed when unstable. Panel (b) is an enlargement near
HB1 that shows more branches of periodic orbits; stability is not shown here. Panel (c) is a further
enlargement that shows the stability and the MMO signatures of the branches of periodic orbits.
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1415 are combinations of signatures of the neighboring branches [49, 67]. The periodic orbits
that lie on a given branch are topologically equivalent; however, the oscillations exhibited
by the periodic orbits vary in amplitude along that branch. For example, the branch labeled
51 also includes periodic orbits with signatures of type L1

s1L2
s2 ..., where ∑

i=1
Li + si = 6. It

is notable that some branches coexist for a range of parameter values. For instance, we find
at least 26 coexisintg periodic orbits for I = 9.74. For the remainder of this paper, we fix
I = 9.74 and investigate the structure of the slow manifolds and other dynamics of (32).

5.2 Slow-fast analysis of the four-dimensional Hodgkin–Huxley
model

To gain insight into the geometric mechanism of MMOs, we start with applying methods
from GSPT to the four-dimensional Hodgkin–Huxley model. Taking the singular limit ε = 0
of (32) yields the two-dimensional fast subsystem

v̇ = f1(v,m, h, n),
ṁ = f2(v,m),
ḣ = 0,
ṅ = 0,

(33)

where h and n can be treated as bifurcation parameters. Equilibrium points of (33) form
a two-dimensional surface corresponding to the critical manifold S, which is a cubic-shaped
smooth surface with two fold curves. Figure 11 shows the critical manifold for I = 9.74
in two different projections. The two fold curves F1 and F2 are generic fold (saddle-node)
bifurcations of (33), and they separate the critical manifold into three different sheets. Note
that the values of v andm hardly change along the upper fold curve F2. The lower and upper
sheets (Sa, S̃a) of the critical manifold are attracting since the corresponding two normal
eigenvalues of the equilibria are negative. The middle sheet Ss is of saddle type since the
corresponding equilibria have eigenvalues of opposite signs.

The reduced system of (32) is the two-dimensional system of differential algebraic equa-
tions: 

0 = f1(v,m, h, n),
0 = f2(v,m),
h′ = g1(v, h),
n′ = g2(v, n),

(34)

where the prime denotes the derivative with respect to the slow time scale τ = εt. With the
Implicit Function Theorem, the reduced system can be written in the form{

−
(
∂f1
∂v
− ∂f1

∂m
.(∂f2
∂v
/∂f2
∂m

)
)
v′ = ∂f1

∂h
g1(v, h) + ∂f1

∂n
g2(v, n),

h′ = g1(v, h).
(35)

Straightforward calculations show that system (35) is singular along the fold curves F1 and
F2. This problem can be avoided via time rescaling by the factor −(∂f1

∂v
− ∂f1

∂m
.(∂f2
∂v
/∂f2
∂m

)) to
obtain: {

v′ = ∂f1
∂h
g1(v, h) + ∂f1

∂n
g2(v, n),

h′ = −
(
∂f1
∂v
− ∂f1

∂m
.(∂f2
∂v
/∂f2
∂m

)
)
g1(v, h), (36)
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Figure 11: Critical manifold of the Hodgkin–Huxley model (32) with I = 9.74, projected onto the
(m,h, v)-space (a) and (n, h, v)-space (b).

where the prime now denotes the derivative with respect to the new rescaled time

τ1 = − τ /
(
∂f1
∂v
− ∂f1

∂m
.(∂f2
∂v
/∂f2
∂m

)
)
. (37)

System (36) is the desingularized reduced system, for which the orientation on the saddle
sheet Ss of the critical manifold is reversed. We found that, for I = 9.74, the desingularized
reduced system (36) features two equilibrium points. One equilibrium lies on the saddle
sheet Ss and corresponds to a saddle-focus equilibrium point q of the full system (32), given
by:

q = (v,m, h, n) ≈ (−0.596423, 0.973836, 0.405820, 0.401974). (38)

This equilibrium point has a two-dimensional stable manifold W s(q) and a two-dimensional
unstable manifold W u(q). The other equilibrium of (36) lies on the lower fold curve F1 and
corresponds to the folded node singularity:

p = (v,m, h, n) ≈ (−0.599361, 0.094301, 0.334475, 0.395965), (39)

The strong and weak stable manifolds of p in system (36) correspond to the strong singular ca-
nard ξs and the weak singular canard ξw. This allows for the existence of the two-dimensional
funnel region, on which solutions of system (35) move from the lower attracting sheet Sa
through p to the saddle sheet Ss in finite time; compare with Fig. 1. The eigenvalues of
p are approximately -0.003945 and -0.000125 and their ratio is 31.56. Based on this ratio,
the theory [72] predicts that the folded node gives rise to two primary canard orbits and 15
secondary canard orbit near the singular limit ε = 0.

Recall that, for ε sufficiently small, the sheets Sa and Ss perturb to attracting and sad-
dle slow manifolds Saε and Ssε , respectively. Additionally, the stable W s(Ss) and unstable
manifolds W u(Ss) of the saddle sheet Ss also persist as stable W s(Ssε) and unstable W u(Ssε)
fast manifolds of the saddle slow manifold Ssε . We aim to use the numerical techniques
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introduced in Section 3 to compute slow manifolds and associated canard orbits, and sub-
sequently examine the local and global influence of their geometry on the dynamics of the
Hodgkin–Huxley model (32).

5.3 Computing the attracting slow manifold
In order to understand the underlying dynamics of the Hodgkin–Huxley model (32), we
perform computations of the locally invariant slow manifolds. The attracting slow manifold
Saε of system (32) can be computed with the generalized setup for computing attracting and
repelling slow manifolds that was introduced in Section 3.2. More specifically, we represent
submanifolds of Saε as families of orbit segments that satisfy the 2PBVP setup given by
(8), where La is a line on the lower attracting sheet Sa sufficiently far away from the lower
fold curve F1, and Σa is a suitably chosen three-dimensional submanifold transverse to the
attracting slow manifold. Figure 12 shows two computed submanifolds of the attracting
slow manifold Saε associated with the lower attracting sheet Sa. Panel (a) shows the first
submanifold of Saε (red surface), which is rendered from a family of orbit segments (black)
that satisfy the system-specific boundary conditions{

u(0) ∈ La1 := {(v,m, h, n) | h = 0.1} ∩ Sa,
u(1) ∈ Σa := {(v,m, h, n) | v = −0.6} . (40)

Figure 12 (b) shows the second submanifold of Saε (red surface), which is rendered with a
different family of orbit segments (green), satisfying the boundary conditions{

u(0) ∈ La2 := {(v,m, h, n) | v = −0.754} ∩ Sa,
u(1) ∈ Σa := {(v,m, h, n) | v = −0.6} . (41)

Panel (c) shows the overall attracting slow manifold Saε near p consisting of the two computed
families of orbit segments shown in panels (a) and (b).

5.4 Computing the saddle slow manifold
We now implement the approach introduced in Section 3.2 to compute the two-dimensional
saddle slow manifold Ssε of (32) by representing it as a family of orbit segments computed with
the 2PBVP setup given by (9) and (10). As for Saε , we represent the saddle slow manifold
Ssε with two submanifolds, which are shown in Fig. 13. Panel (a) shows a green surface,
which is rendered from the first family of orbit segments (green). Panel (b) shows the second
submanifold of Ssε (green surface) rendered from a different family of orbit segments (black).
In panels (a) and (b), the sections Σ̃0 and Σ̃1 (blue planes) correspond to the boundary
conditions of the respective computed orbit segments. These sections are defined by (10),
where the three-dimensional submanifolds Σ̂0, Σ̂1, Σ0 and Σ1 are chosen as follows. The
sections Σ̂0 and Σ̂1 of (10) must be transverse to the associated stable manifold W s(Ssε) and
unstable manifold W u(Ssε), respectively. We use a different section Σ̂0 for each submanifold
of the computed saddle slow manifold to ensure that the corresponding orbit segments are
transverse to W s(Ssε). Specifically, we choose

Σ̂0 := {(v,m, h, n) | ṁ = 0} = {(v,m, h, n) | f2(v,m) = 0} (42)
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Figure 12: Computation of the lower attracting slow manifold Saε of the Hodgkin–Huxley model
(32) with ε = 0.0083 and I = 9.74. Panels (a) and (b) show two submanifolds of Saε (red surfaces)
together with their respective boundary conditions La1 and La2 (blue lines), and Σa (blue planes);
they are rendered from the orbit segments shown as thick curves (black and green, respectively).
Panel (c) shows both submanifolds of Saε together as a single surface.

for the black orbit segments, and
Σ̂0 := {(v,m, h, n) | v̇ = 0} = {(v,m, h, n) | f1(v,m, h, n) = 0} (43)
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Figure 13: Computation of the saddle slow manifold Ssε of the Hodgkin–Huxley model (32) with
ε = 0.0083 and I = 9.74. Panels (a) and (b) show two submanifolds of Ssε (green surfaces) together
with their respective boundary conditions Σ̃0 and Σ̃1 (blue planes); they are rendered from the orbit
segments shown as thick curves (black and green, respectively). Panel (c) shows both submanifolds
of Ssε together as a single surface.

for the green orbit segments. The section
Σ̂1 := {(v,m, h, n) | v̇ = 0} = {(v,m, h, n) | f1(v,m, h, n) = 0} (44)

30



MMOs and twin canards C. R. Hasan, B. Krauskopf, H. M. Osinga

is used for both submanifolds of Ssε , and it is chosen transverse to W u(Ssε). In contrast,
sections Σ0 and Σ1 determine the constraints of the computed submanifold of Ssε . More
specifically, for the green orbit segments, we choose{

Σ0 := {(v,m, h, n) | v = −0.55} ,
Σ1 := {(v,m, h, n) | v = −0.28} , (45)

so that these orbit segments start near the fold curve F1 and end at v = −0.28. For the
black orbit segments, we choose{

Σ0 := {(x, y, z, w) | h = 0.55} ,
Σ1 := {(x, y, z, w) | v = −0.28} , (46)

which means that these orbit segments start from h = 0.55 instead. Figure 13(c) shows both
submanifolds together, so that they form the entire surface, that is, the saddle slow manifold
Ssε .

5.5 Interaction between attracting and saddle slow manifolds
Attracting and saddle slow manifolds of system (32) can be extended by the flow in forward
and backward time, respectively, to study the SAOs that occur in the vicinity of the lower
fold curve F1. The mechanism for these SAOs can be explained by the combined presence of
the folded node p given by (39) and the saddle-focus equilibrium q given by (38). Figure 14
shows the computations of the attracting slow manifold Saε and the saddle slow manifold Ssε
extended up to the three-dimensional cross section Σ := {h = 0.4}. Panel (a) shows Saε (red)
and Ssε (green) in projection onto (n, h, v)-space. Panel (b) shows the intersection curves
Saε ∩ Σ (red) and Ssε ∩ Σ (green) in the (m,n, v)-space representing Σ. Since they are again
very close to each other, it is very challenging to know whether there are any intersections
between the two curves. Therefore, we use a different projection technique to gain a better
insight. Panel (c) shows the intersection curves Saε ∩Σ and Ssε ∩Σ, projected onto the (n, v)-
plane. Panel (d) illustrates the same intersection curves with the values of m color coded
as shown by the color bar; panels (e) and (f) are enlargements of panel (d). We find no
intersections between the curves Saε ∩ Σ and Ssε ∩ Σ, as is expected for two curves in R4.
Nevertheless, the colors show that there are again many near intersections. Hence, as before,
there should be orbit segments on Saε that stay extremely close to the saddle slow manifold
Ssε before leaving via its unstable manifold W u(Ssε). Such orbit segments are canard orbits
in R4, as was discussed Section 4.

5.6 Computing canard orbits of the Hodgkin–Huxley model
We now implement the general approach introduced in Section 4.1 to detect canard orbits of
system (32). More specifically, we compute them as orbit segments that lie on the attracting
slow manifold Saε and stay extremely close to the saddle slow manifold Ssε before leaving via
its unstable manifold W u(Ssε); see equations (29).

Here, we use a different homotopy step than the one used for system (11). To detect a
canard orbit ξi with i SAOs, we start from a solution that lies on Saε and exhibits i SAOs in
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Figure 14: Interaction between the slow manifolds Saε and Ssε of system (32) with ε = 0.0083 and
I = 9.74. Panel (a) shows Saε (red surface) and Ssε (green surface) computed up the section Σ.
Panel (b) shows the intersection curves Saε ∩ Σ (red) and Ssε ∩ Σ (green) in the (m,n, v)-space
representing Σ; panel (c) is a projection onto the (n, v)-plane. Panel (d) shows intersection curves
Saε ∩Σ and Ssε ∩Σ in projection onto the (n, v)-plane; here, the value of m is color coded as shown
by the color bar; panels (e) and (f) are enlargements.

the vicinity of the lower fold F1. We then continue this solution as a one-parameter family
of orbit segments subject to the boundary conditions{

u(0) ∈ La2,
u(1) ∈ Σ̂1.

(47)
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Figure 15: Approach for detecting canard orbits in the Hodgkin–Huxley model (32) with ε = 0.0083
and I = 9.74. Panel (a) shows the integration time T versus the v-values v1 of the end points
of orbit segments that satisfy (47); the black, gray and red dots correspond to a selection of the
computed orbits segments. Panel (b) shows these selected orbit segments from panel (a) in their
respective colors, in projection onto the (n, v)-plane.

Here, La2 is the line defined in (41) that we used for computing the second submanifold of
Saε , and Σ̂1 is the section as defined by (44). These boundary conditions (47) yield a family
of orbit segments on Saε that terminate at the v-nullcline, which is transverse to the unstable
manifold W u(Ssε). They also guarantee that the orbit segments exhibit exactly i SAOs.

Figure 15 shows this homotopy step for computing canard orbits for system (32). Panel (a)
illustrates how the integration time T depends on the v-coordinate v1 of the end points on
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Σ̂1 for a family of orbit segments that satisfy (47); the black, gray and red dots correspond
to a selection of the computed orbits segments. Panel (b) shows the orbit segments that
correspond to the dots of panel (a) in their respective colors, in projection onto the (n, v)-
plane. The shown orbit segments start from a very small interval on La2. More specifically,
their initial h-values along La2 agree to 6 decimal places, namely, h ≈ 0.135841. All shown
orbits follow Saε , exhibit four SAOs, and then follow Ssε for a certain amount of time before
leaving via W u(Ssε). Thus, these orbit segments are indeed transversal intersections of Saε
and W u(Ssε). The thick red orbit segment corresponds to the trajectory that stays close to
Ssε for the longest time, and as such, we regard it as the representative canard orbit ξ4.

We performed the same homotopy step to detect other canard orbits ξi with i SAOs in
system (32) and found that, for all i, the orbit segment that spends the longest time near Ssε
has a v-maximum of v ≈ −0.28 rounded to the second decimal place. Therefore, we compute
all canard orbits as orbit segments that satisfy (47) and have a v-maximum of v = −0.28.
More precisely, we compute all canard orbits of system (32) as orbit segments that satisfy
the boundary conditions {

u(0) ∈ La2,
u(1) ∈ Σ̃1 = Σ̂1 ∩ Σ1.

(48)

Note that Σ̃1 is the section we used for computing both submanifolds of Ssε ; see equations
(44), (45) and (46).

5.6.1 Selection of canard orbits for I = 9.74

Figure 16 shows six selected canard orbits (thick curves) together with the extended attract-
ing and saddle slow manifolds. The slow manifols Saε (red surface) and Ssε (green surface)
are extended by the flow to include the SAOs in the vicinity of the lower fold curve F1. The
primary canard orbit ξ0 separates trajectories on Saε that make at least one rotation around
F from those that escape the fold region without making any rotations. Each canard orbit ξi,
i > 0, makes i SAOs in the vicinity of the fold. Recall that there should exist 15 secondary
canard orbits for I = 9.74 near the singular limit ε = 0. Nevertheless, we detect more than
111 canard orbits for ε = 0.0083, and ξ111 is shown as part of the selection in Fig. 16.

5.7 Ribbons of the attracting slow manifolds
In [35], we showed that the signature of a given MMO in the three-dimensional autoacatalator
introduced in [60] is directly related to the nearby canard orbits and so-called ribbons of the
attracting slow manifolds. Such ribbons are separate surfaces, bounded by pairs of canard
orbits that exhibit the same number of SAOs. We use the term twin canard orbits to describe
a pair of canard orbits that bound a ribbon. We find a very similar structure of ribbons and
associated twin canard orbits in the four-dimensional Hodgkin–Huxley model (32).

Similar to the approach taken in [35], we extend Saε by the flow up to the three-dimensional
cross-section Σ1, which was chosen as part of the selected boundary conditions for computing
Ssε and associated canard orbits; see equations (45), (46), and (48). Figure 17 illustrates a
selection of ribbons of the attracting slow manifold Saε for system (32). Panel (a) shows five
ribbons R4–R8 of the extended attracting slow manifold Saε in five different colors. The inset
(a2) is an enlargement near the line La2 where the ribbons are easily distinguished. Each
ribbon Ri is computed individually as a family of orbit segments that start from La2, make i
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h

n

v

Ss
ε

Sa
ε

ξ0 ξ6 ξ17 ξ36 ξ75 ξ111

Figure 16: Selected canard orbits (thick curves) plotted together with Saε (red) and Ssε (green), in
projection onto the (v, h, n)-space, of the Hodgkin–Huxley model (32) with ε = 0.0083 and I = 9.74.

SAOs, and end at the cross-section Σ1. Figure 17(b) shows ribbon R6 (red surface) and the
bounding canard orbits ξ6 and ξ′6 (thick red curves). The inset (b2) is an enlargement near
La2. This ribbon R6 is representative of the other ribbons Ri, each of which is bounded by a
pair of canard orbits ξi and ξ′i that exhibit i SAOs. We again refer to the canard orbits ξi
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(a2) (b2)
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n

R8
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R6
R5

R4

R6

ξ6

ξ′6

Figure 17: Ribbons of the extended attracting slow manifold in the Hodgkin–Huxley model (32) with
ε = 0.0083 and I = 9.74. Panel (a) shows five ribbons R4–R8 of the extended attracting slow
manifold in five different colors, together with the associated canard orbits (thick curves); the inset
is an enlargement. Panel (b) shows the ribbon R6 with the bounding twin canard orbits ξ6 and ξ′6
(thick curves); the inset is again an enlargement.

and ξ′i as twin canard orbits. Moreover, each ribbon Ri rotates as a surface around the fold
curve F1 and makes i SAOs before reaching Σ1. Notice also from Fig. 17 that each ribbon
Ri folds over sharply in the process.

As mentioned before in Section 5.1, we find more than 26 periodic orbits for I = 9.74 with
different MMO signatures. We find that ribbons of the extended attracting slow manifold
and associated twin canard orbits give great insight into the mechanism of these different
MMO signatures. Figure 18 shows three different periodic MMOs with different signatures
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(a1) (b1) (c1)

(a2) (b2) (c2)

R6 R7 R8

16 17 18

ξ6

ξ′6

ξ7

ξ′7
ξ8

ξ′8

Figure 18: Periodic MMOs with signatures 16–18 of the Hodgkin–Huxley model (32) with ε = 0.0083
and I = 9.74, plotted together with their associated ribbons R6–R8 of the extended attracting slow
manifold. Panels (a)–(c) show the stable MMO 16 (black) and the unstable MMOs 17 and 18

(gray), respectively. The insets are enlargements near the line La2. Each ribbon Ri is bounded by
its respective pair of twin canard orbits ξi and ξ′i.

superimposed on the associated ribbons of the extended attracting slow manifold for (32)
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with I = 9.74. Panels (a), (b) and (c) show the stable periodic MMO with signature 16

(black orbit), and unstable periodic MMOs 17 and 18 (gray orbits), together with ribbons
R6, R7 and R8 (colored surfaces), respectively. The insets show enlargements near the line
La2 where the twin canard orbits ξi and ξ′i (thick curves) are labeled. Starting from the lower
part of a given periodic MMO 1i in all panels, the MMO stays very close to the ribbon Ri

in between the bounding twin canard orbits ξi and ξ′i and makes i SAOs before making a
large excursion back to its starting point. This mechanism of MMOs was also found for the
autocatalator system in [35].

5.8 Continuation of canard orbits
We now investigate the evolution of twin canard orbits as ε is varied. Once a canard orbit ξi
has been found as a solution of the well-posed 2PBVP with boundary conditions (48), it can
be continued in system parameters. Figure 19 shows the continuation of canard orbits ξ0–ξ15
in ε. We start from the canard orbits that we find for ε = 0.0083 and continue them in the
direction of decreasing ε. Panel (a) shows the L2-norm of the canard orbits versus ε. In slight
abuse of notation, we use ξi to denote the ε-dependent branches that correspond to canard
orbits with i SAOs. We find that the branches of canard orbits ξ0–ξ9 can all be continued to
the singular limit, and the respective canard orbits all converge to the strong singular canard
ξs in the limit as ε→ 0, as predicted by the theory [72]. Because of this accumulation onto
ξs, the continuation of canard orbits with larger numbers of SAOs becomes a very delicate
task numerically as ε decreases, which is why ξ10–ξ15 do not reach the singular limit ε = 0.

Panels (b)–(e) of Fig. 19 demonstrate the evolution of the canard orbit ξ6 in projection
onto the (h, v)-plane for ε = 0.0083, ε = 0.003, ε = 3.0×10−5 and ε = 1.0×10−8, respectively.
As the singular limit ε = 0 is approached, the mechanism for SAOs of the canard orbits is
clearly directly related to the folded node p, as is expected from the theory [66, 72]. More
precisely, the SAOs occur near p and away from q. Also, the amplitudes of the SAOs become
infinitely small as ε → 0. This is another indication that our computational technique is
reliable for computing canard orbits and saddle slow manifolds. The transition of canard
orbit ξ6 in panels (b)–(e) is representative of the other canard orbits ξ1–ξ15.

Figure 20(a) shows the continuation of canard orbits ξ′1–ξ′16; the branches of these canard
orbits all go toward ε = 0, but the orbit segments do not converge to the strong singular
canard ξs. This is illustrated in Fig. 20(b)–(e), where we demonstrate the evolution of the
canard orbit ξ′6 as ε decreases to 0. Here, ξ′6 is shown in projection onto the (h, v)-plane
for ε = 0.0083, ε = 0.003, ε = 3.0 × 10−5 and ε = 3.52578 × 10−8, respectively. Panel
(c) shows that the last SAO of the canard orbit ξ′6 has already become much larger than
the other SAOs. In panel (d), the last oscillation of ξ′6 becomes even larger and involves
concatenations of slow and fast segments. Note that the canard orbit ξ′6 now looks like a
canard orbit ξ5 followed by a fast return segment to a canard orbit ξ0. The amplitudes of
the first five SAOs become infinitely small in the limit as ε → 0. As a result, in the limit
ε = 0, the canard orbit ξ′6 is a concatenation of slow and fast segments of the reduced system
(34) and the fast subsystem (33), respectively. This difference in evolution, as compared to
ξ6, is representative for all twin canard orbits ξ′1 − ξ′16, and was also found in the reduced
three-dimensional Hodgkin–Huxley model; see [14].

Figure 21 shows the continuation of canard orbits ξ16–ξ21, ξ36, ξ75 and ξ111, as well as
ξ′17–ξ′21, ξ′36, ξ′75 and ξ′111. Panels (a) and (b) shows the L2-norm of the canard orbits versus ε.
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Figure 19: Continuation in ε of canard orbits ξ0–ξ15 in system (32) with I = 9.74. Panel (a) shows
the L2-norm of the canard orbit versus ε. Panels (b)–(e) show the canard orbit ξ6 for ε = 0.0083,
ε = 0.003, ε = 3.0× 10−5 and ε = 1.0× 10−8, respectively.

We find that the shown branches do not converge to the singular limit, as expected from the
theory [72]. Instead, the L2-norm of each branch increases asymptotically at a finite value
of ε. This also confirms that canard orbits ξ10 − ξ15 and ξ′10 − ξ′16 are qualitatively different
and should indeed go to the singular limit of ε. We remark that the limiting values of ε, for
a given pair ξi and ξ′i in Fig. 21(a)-(b), are close but different.

To understand this transition, panels (c1) and (d1) of Fig. 21 show the canard orbits ξ111
and ξ′111, respectively, in projection onto the (h, v)-plane for ε = 0.0083. Notice that the
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Figure 20: Continuation in ε of the twins ξ′1–ξ′16 of canard orbits ξ1–ξ16, for system (32) with
I = 9.74. Panel (a) shows the L2-norm of the canard orbits versus ε. Panels (b)–(e) show the
canard orbit ξ′6 for ε = 0.0083, ε = 0.003, ε = 3.0× 10−5 and ε = 2.39441× 10−8, respectively.

mechanism for SAOs of ξ111 and ξ′111 is directly related to the saddle focus q rather than the
folded node p. More specifically, these canard orbits approach q along the weak direction
of the two-dimensional stable manifold W s(q) and make 111 SAOs around q, due to the
rotational nature of the two-dimensional unstable manifold W u(q). The difference is that
ξ′111 has one final larger oscillation after the passage near q; compare (c1) and (d1). As ε
decreases during the continuation, both canard orbits approach W s(q) much more closely;
see Fig. 21(c2) and (d2). As a result, the respective starting points of the canard orbits
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Figure 21: Continuation in ε of canard orbits (a) ξ16–ξ21, ξ36, ξ75 and ξ111 and (b) ξ′17–ξ′21, ξ′36, ξ′75
and ξ′111 in system (32) with I = 9.74. Panels (a) and (b) shows the L2-norm of the canard orbits
versus ε. Panels (c1) and (c2) show the canard orbit ξ111 for ε = 0.0083 and ε = 7.43657× 10−3,
respectively. Panels (d1) and (d2) show the canard orbit ξ′111 for ε = 0.0083 and ε = 7.42810×10−3,
respectively.

lie on La at h ≈ −21.897, that is, far to the left, outside the range of the panels. As ε is
decreased further, the twin canard orbits ξ111 and ξ′111 converge to W s(q) and connect to q
along the weak stable eigendirection in the limit. Nevertheless, past q, the canard orbit ξ′111
still features the final larger oscillation.

When the twin canard orbits ξi and ξ′i are continued for increasing ε, we find that the
respective branches have folds but do not merge with one another. This is in contrast to the
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autocatalator system [35], where twin canard orbits are created at fold bifurcations. Further
investigation of the difference in the nature of twin canard orbits is beyond the scope of this
paper and left for future research.

6 Conclusions and directions for future work
We introduced a general method for computing two-dimensional saddle slow manifolds and
associated canard orbits in systems with two fast and two slow variables. Our approach is
based on the idea of choosing boundary conditions that define submanifolds transverse to
stable and unstable normal directions of the saddle slow manifold. Indeed, its novelty is to
define and solve two-point boundary-value problems (2PBVPs) with boundary conditions
corresponding to codimension-i and codimension-j hypersurfaces for any i and j, such that
i + j = 4. We employed and tested the resulting computational methods for an extended
normal form of a folded node. Taking into account the nature of the slow flow and its
normal direction, we were able to compute different relevant parts of attracting and saddle
slow manifolds in the neighborhood of a folded node. The flexibility of our method also
enabled us to compute two-dimensional submanifolds of the three-dimensional stable and
unstable manifolds of a saddle slow manifold.

Furthermore, we illustrated how the interaction between two-dimensional slow manifolds
in R4 is very similar to that found in R3; however, their intersections are no longer struc-
turally stable. This means that canard orbits can no longer be described as intersections
of two-dimensional slow manifolds. Rather, canard orbits exist as transversal intersections
of the attracting slow manifold and the unstable manifold of the saddle slow manifold. We
introduced a computational approach for detecting canard orbits in R4 by defining suitable
2PBVPs and employing a homotopy step to find a first solution. With this approach, we
systematically detected canard orbits and continued them in the time-scale parameter ε, as
well as the eigenvalue ratio µ of the folded node. Our findings demonstrate that the canard
orbits of the extended normal form in R4 behave according to what the theory predicts for
the three-dimensional normal form.

We demonstrated that our computational approach is also practical for studying complex
slow-fast dynamics that inherently appear in applications and especially in neuroscience.
Specifically, we investigated the dynamics of the full four-dimensional Hodgkin–Huxley model
without applying any reduction. The bifurcation diagram of this system features various
signatures of MMOs, which are organized by slow manifolds and associated canard orbits.
With our approach, we were also able to compute relevant submanifolds of the attracting
and saddle slow manifolds, as well as associated canard orbits in the four-dimensional phase
space of the system. We showed that, for ε sufficiently large, the extended attracting slow
manifold is subdivided into ribbons that are bounded by twin canard orbits in a similar
structure to that found for the three-dimensional autocatalator model [35]. Continuation
analysis of canard orbits in ε showed again that the relevant subset of these canard orbits
converges to the strong singular canard as the singular limit is approached.

When continuing canard orbits in ε in the four-dimensional Hodgkin–Huxley model, we
found that the twin canard orbit ξ′i+1, for 0 ≤ i < 16, has the same limit as the canard
orbit ξi, but with an additional large oscillation. When ξ′i+1 can be continued all the way
to the singular limit ε = 0, this large oscillation converges to the primary strong canard
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ξs composed with a fast return segment. This convergence process has also been found for
a selection of canard orbits in the three-dimensional Hodgkin–Huxley model [14]. On the
other hand, canard orbits ξi and ξ′i+1, for i ≥ 16, do not converge to the singular limit in the
four-dimensional Hodgkin–Huxley model, but connect to the saddle focus of the system as
ε is decreased.

Overall, the work presented in this paper shows that it is possible to provide comprehen-
sive insight into the organization of MMOs by examining the geometry of two-dimensional
slow manifolds, even when the number of fast variables exceeds one. The basis of this
achievement lies in a versatile construction of suitable selections of 2PBVPs, adapted to the
respective context. In this way, the organization of the phase space by slow manifolds of
four-dimensional slow-fast systems can be studied efficiently and comprehensively

Interactions between slow and invariant manifolds are known to play an important role
in the organization of MMOs. In particular, intersections of repelling slow manifolds and
unstable manifolds of saddle-focus equilibria may organize the large excursions of MMOs
[29, 31, 52]. Such connecting orbits can be found with a homotopy technique similar to that
used for detecting canard orbits in this paper. Understanding the nature of such intersec-
tions between different types of manifolds in the Hodgkin–Huxley model and other slow-fast
systems in R4 is an interesting direction for future work.

Many examples in applications involve more than two time scales [45, 54, 71]. Further-
more, many slow-fast systems have no explicit time-scale separation and may contain various
regions with different splittings of time scales [2, 7, 33, 56, 71]. In such systems, it will be
necessary to study different regions locally using a variety of 2PBVP setups. These regions
then need to be connected globally in order to understand the recurrent dynamics. The
computational methods presented in this paper may be of use also for the investigation of
such more general systems.

Appendix
The steady-state functions of system (32) are defined by

x∞(v) = αx(v)
αx(v) + βx(v) ,

for x ∈ {m,h, n}, where

αm(v) = (kvv + 40)/10
1− exp(−(kvv + 40)/10) ,

βm(v) = 4 exp(−(kvv + 65)/18),
αh(v) = 0.07 exp(−(kvv + 65)/20),

βh(v) = 1
1 + exp(−(kvv + 35)/10) ,

αn(v) = (kvv + 55)/100
1− exp(−(kvv + 55)/10) ,

and
βn(v) = 0.125 exp(−(kvv + 65)/80).
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Similarly, time functions of system (32) are defined by

tx(v) = px
αx(v) + βx(v) ,

for x ∈ {m,h, n}, where pm = 120, ph = 1, pn = 1. The other parameters are given in
Table 1; see Section 5. Note that the value of pm is different from that given in [64] so that
it agrees with the nondimensionalization performed in [63] and corresponds to the classical
parameter values of the original Hodgkin–Huxley model [36].
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