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Invariant manifolds are key objects in describing how trajectories partition the phase spaces of
a dynamical system. Examples include stable, unstable and center manifolds of equilibria and
periodic orbits, quasiperiodic invariant tori and slow manifolds of systems with multiple timescales.
Changes in these objects and their intersections with variation of system parameters give rise to
global bifurcations. Bifurcation manifolds in the parameter spaces of multi-parameter families of
dynamical systems also play a prominent role in dynamical systems theory. Much progress has been
made in developing theory and computational methods for invariant manifolds during the past 25
years. This article highlights some of these achievements and remaining open problems.

Computer investigations of dynamical systems have
become a indispensable tool throughout the sciences.
These studies often focus upon the geometry of the
phase space of the system. Based upon the concepts
of genericity and transversality, dynamical systems the-
ory describes typical behaviors. These descriptions in-
volve invariant manifolds of dimension larger than one,
such as the stable and unstable manifolds of equilibrium
points and periodic orbits. Tangency of pairs of invari-
ant manifolds has been shown to be a key ingredient in
some types of global bifurcations in a system. This brief
survey describes a few examples of this phenomenon.
It highlights numerical methods that identify invariant
manifolds and locate their intersections. The examples
center around aspects of the FitzHugh-Nagumo equation
that has become a prototype for studying traveling waves
in dynamical systems described by partial differential
equations.

I. INTRODUCTION

Dynamical systems theory embodies a geometric view
of solutions to ordinary differential equations of the
form

ẋ = f(x, η), x ∈ Rn, η ∈ R`,

where Rn is the phase space and R` the parameter
space. In creating the subject, Poincaré emphasized
the planar case n = 2 and generic properties that are
typical among the set of all such equations. He de-
scribed their phase portraits, which show how solution
trajectories partition R2. Stable and unstable manifolds
of saddles are key entities in the phase portrait of a

generic planar system. Each is a pair of trajectories
that approach the saddle as t→ ±∞.

Figure 1 displays phase portraits of the FitzHugh-
Nagumo vector field [1], given by{

v̇ = w + v − v3

3 ,
ẇ = −ε (a v + b+ cw),

(1)

for three different values of the system parameter ε and
fixed suitable choices of a,b and c. There are three equi-
libria in Fig. 1(a)–(c): the upper-left equilibrium is a
sink, the lower-right equilibrium is a source, and the
middle eqilibrium is a saddle, denoted p; moreover there
is also an outer stable periodic orbit throughout. Panel
(b) shows the situation when there is a homoclinic orbit
Γ0, which is simultaneously in the stable and unstable
manifold of p. At this homoclinic bifurcation, an unsta-
ble periodic orbit Γ emerges from the homoclinic orbit
Γ0 as ε is decreased. The periodic orbit Γ supplants the
stable manifold of p as the boundary between the two
attractor basins: points near the source are in the basin
of attraction of the sink in Fig. 1(a), and they are in the
basin of attraction of the outer stable periodic orbit in
Fig. 1(c).

This example illustrates the role of invariant man-
ifolds and their intersections in organizing the phase
portraits of dynamical systems. The stable and unsta-
ble manifolds of a planar saddle are easy to find: each is
formed from just two trajectories that can be computed
with standard initial value solvers. However, the geom-
etry and the numerical analysis quickly become much
more complicated when multiple timescales are involved
or the dimension of the system increases.

The limit ε = 0 of the FitzHugh-Nagumo vector field
is singular with a whole curve of equilibrium points.
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FIG. 1. Phase portraits near a homoclinic bifurcation of the FitzHugh-Nagumo vector field (1) for (a, b, c) = (1.0, 0.05, 1.2);
panel (a) for ε = 0.38 is before, panel (b) for ε = 0.375149 is approximately at, and panel (c) for ε = 0.37 is after the
homoclinic bifurcation. Shown are equilibria (black dots), the stable manifold (blue curves) of the saddle p, the unstable
manifold (red curves) of p, and periodic orbits (green curves).

With the change of timescale t 7→ t ε, the resulting
slow-fast singularly perturbed system is a differential-
algebraic equation (DAE) in the limit ε = 0. When
b = c = 0, the system reduces to the Van der Pol
equation [2] whose relaxation oscillations have inspired
much of the development of singular perturbation the-
ory for dynamical systems with multiple timescales. A
fundamental aspect of the subject is the presence of in-
variant slow manifolds along which trajectories evolve
on the slow timescale. ‘Stiff’ numerical methods have
been developed to compute trajectories along attract-
ing slow manifolds more efficiently than is done with
explicit ‘non-stiff’ methods. However, trajectories may
come to places where they leave an attracting slow man-
ifold, and the stiff methods no longer are the ones of
choice. Geometric, analytic and numerical methods are
all needed in order to develop a full understanding of
the dynamics in these circumstances.

Vector fields in dimensions larger than two exhibit
a vastly larger range of phenomena than planar vec-
tor fields. Beginning in the 1950’s with the work of
Kolmogorov [3], KAM theory has shown that invariant
tori are quite common in both conservative and dissi-
pative dynamical systems. Enormous effort has gone
into studying chaotic dynamics since Smale’s discov-
ery in 1960 of the geometric example called the horse-
shoe [4, 5]. As important as both invariant tori and
chaotic dynamics are in dynamical systems theory, nei-
ther is discussed here. Our emphasis is upon invariant
manifolds that arise as either stable or unstable man-
ifolds of equilibrium points of a vector field or as slow
manifolds of a system with multiple timescales. New
computational methods have been developed to visual-
ize these objects, and new theory has been developed to
explain their role in organizing the dynamics of systems.
As in the FitzHugh-Nagumo example, non-transversal

intersections of invariant manifolds can be regarded as
global bifurcations that separate parameter regions of
a system with different qualitative behaviors. The de-
tection of these phenomena has been important in un-
derstanding puzzling observations that were difficult to
explain in other ways.

Beyond bifurcations, there are circumstances in
which non-generic dynamical behavior is important in
applications. As an example, we discuss traveling-wave
profiles for infinite dimensional dynamical systems de-
fined by partial differential equations (PDEs). The
traveling waves are solutions of an equation with the
property that they translate spatially in time. These
spatial profiles of associated traveling waves are found
as homoclinic orbits of a reduction of the PDE to an
ordinary differential equation. They arise, for exam-
ple, in the context of the Hodgkin–Huxley model [6]
of action potentials for nerve cells. This model is one
of the landmark achievements of 20th century biology,
and it motivated significant developments in dynamical
systems theory, including the example discussed here.
One version of the FitzHugh-Nagumo model is a PDE
that has been used to study propagation of such action
potentials along nerves.

We have chosen to organize this brief overview of de-
velopments in this area by means of three examples that
build upon the FitzHugh-Nagumo vector field intro-
duced above. The first example, an inclination-flip bi-
furcation, illustrates some of the complexity that occurs
with homoclinic bifurcations in three-dimensional vec-
tor fields. The second example introduces slow-fast sys-
tems with two slow and one fast variable. Here, folded
singularities are a new phenomenon that gives rise to
surprising dynamical phenomena such as mixed-mode
oscillations. Finally, we study the traveling-wave pro-
files of the FitzHugh-Nagumo PDE. Interspersed with
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the examples are sections that provide minimal back-
ground material for establishing the mathematical set-
ting of our discussion. Following the examples we give
a brief overview of some of the numerical methods used
in this work.

II. BACKGROUND

Manifolds are defined as locally Euclidean topologi-
cal spaces. The manifolds discussed in this paper are
submanifolds of the state spaces and parameter spaces
of dynamical systems. Submanifolds of the state space
are invariant if they are unions of trajectories. We also
consider submanifolds with boundary that are locally
invariant : trajectories enter or leave the submanifold
only through its boundary. In topology, submanifolds
are often defined implicitly as the set of solutions to a
system of equations. In contrast, the invariant mani-
folds of dynamical systems such as stable manifolds are
frequently defined by asymptotic properties of trajec-
tories as t → ±∞. Consequently, theoretical questions
concerning the existence and smoothness of invariant
manifolds of dynamical systems are subtle, and the de-
velopment of numerical algorithms for computing them
is hardly straightforward. Each type of invariant man-
ifold presents its own set of issues: we give examples
that illustrate current research in this area.

Basic theory of manifolds can be viewed as a general-
ization of linear algebra. The implicit function theorem
gives conditions that guarantee that the set of solutions
S to a system of m equations g(x) = 0 in Rn form a
manifold of dimension n−m, namely, the derivative Dg
must have maximal rank m at all points of S. The in-
teger m is the codimension of S and the null space of
Dg(x) is the tangent space of S at x ∈ S. Two subman-
ifolds S1 and S2 are transverse if their tangent spaces
span Rn. Transverse intersections of submanifolds are
again submanifolds. Manifolds can also be defined by
coordinate charts, atlases and transition functions that
glue together coordinate charts on their overlaps. Nu-
merically, continuation methods based upon the implicit
function theorem have become a standard tool for com-
puting one-dimensional manifolds. These methods are
based on the observation that the curve S defined by
a regular system of n − 1 equations g(x) = 0 in Rn

is a trajectory of vector fields that are tangent to the
null space of Dg on S. Methods for higher-dimensional
manifolds are far less common and their development is
an active area of research; see, for example, Ref. [7].

III. HOMOCLINIC ORBITS IN HIGHER
DIMENSIONS

The homoclinic bifurcation of the FitzHugh-Nagumo
model (1) shown in Fig. 1 is typical of planar vector

fields, where a single periodic orbit bifurcates from the
homoclinic orbit and its stability depends on the rela-
tive strengths of the two real eigenvalues of the equi-
librium involved. At a generic codimension-one homo-
clinic bifurcation of an equilibrium the dimensions of
the stable and unstable manifolds necessarily add up to
the dimension of the phase space. Hence, in the plane
they are both one-dimensional objects, and they have
branches which coincide at the homoclinic bifurcation.

In higher dimensions this is no longer the case: at
least one of the two invariant manifolds is of dimension
larger than one and, at a homoclinic bifurcation, the
stable and unstable manifolds of the equilibrium do not
coincide, instead intersecting in a single trajectory —
the homoclinic orbit Γ0. The behaviors associated with
homoclinic orbits depend upon the types and magni-
tudes of the eigenvalues of the equilibrium (through the
saddle quantity that determines the stability of nearby
periodic orbits), as well as twisting of the flow around
the homoclinic orbit. Already in R3, the case we dis-
cuss in this paper, the dynamics near a homoclinic orbit
may be very complicated and surprising. The overall
dynamics is organized by invariant surfaces, in partic-
ular, by two-dimensional stable manifolds of equilibria
and saddle periodic orbits.

The classical example of Shilnikov [8, 9] considers a
saddle focus p of a vector field in R3 with a homoclinic
orbit Γ0, where one branch of the one-dimensional un-
stable manifold Wu(p) lies in the two-dimensional sta-
ble manifold W s(p) and, hence, spirals back into p.
When the saddle quantity is negative so that Γ0 is at-
tracting, then a single stable periodic orbit bifurcates
from Γ0. However, when the saddle quantity is positive
and Γ0 is not attracting then there exists a chaotic in-
variant set of saddle type near Γ0; or, equivalently, there
are Smale horseshoes in a suitable Poincaré section.
This celebrated result by Shilnikov shows that chaotic
dynamics can be located by finding a codimension-one
homoclinic bifurcation in R3; here, an important ingre-
dient is the spiraling nature of the flow near the saddle
focus p due to the existence of complex-conjugate eigen-
values. As a result, the stable manifold W s(p), when
followed backwards along the homoclinic orbit Γ0, forms
a helix with infinitely many twists as it returns to p; see
also Ref. [10].

Homoclinic bifurcations in R3 to saddle points p with
two real stable eigenvalues are also typical and can
found in many applications. One can ask if and when
chaotic dynamics are found near such a homoclinic bi-
furcation, as in the Shilnikov case. The crucial geo-
metric ingredient to answer this question lies again in
how the two-dimensional stable manifold W s(p) twists
when it returns back to p along Γ0. Under suitable
genericity conditions, W s(p) accumulates on the one-
dimensional strong stable manifold W ss(p) ⊂W s(p) at
the homoclinic bifurcation. Near Γ0 the surface W s(p)
either forms a cylinder, which is orientable, or a Möbius
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strip, which is nonorientable. In both cases a single pe-
riodic orbit bifurcates from Γ0 that is either orientable
(has two positive Floquet multipliers) or nonorientable
(has two negative Floquet multipliers); depending on
the eigenvalues of p, the bifurcating periodic orbit may
be attracting, of saddle type or repelling. In short, one
does not find chaotic dynamics near a codimension-one
homoclinic bifurcation to a real saddle in R3.

However, it turns out that chaotic dynamics can
be found near codimension-two homoclinic bifurca-
tions called flip bifurcations, where the stable mani-
fold W s(p) changes from orientable to nonorientable.
This happens when one of the genericity conditions of
a codimension-one homoclinic bifurcation is no longer
satisfied. The theory of flip bifurcations is reviewed in
Ref. [11], where further references can be found. There
are two types, called inclination flip and orbit flip bi-
furcations, and they come in three cases each, denoted
A, B and C, as defined by conditions on the eigenval-
ues of p. Importantly, case C features the existence
of a chaotic saddle. Flip bifurcations have been found
in a number of systems, including the Hindmarsh-Rose
model of a class of neuronal cells [12], a Van der Pol-
Duffing model [13], and in reaction-diffusion systems
with nonlocal coupling [14]. Finding a flip bifurcation
in a given system not only requires the detection of
the homoclinic orbit Γ0, but also the determination of
whether W s(p) is orientable or not. The capability of
detecting flip bifurcations, via the formulation of well-
defined test functions (that use the adjoint of the vector
field), has been incorporated into the Homcont [15] part
of the package AUTO [16]; see also Sec. VI.

A. Inclination flip bifurcation of type A

We now show how the stable manifold W s(p) at a ho-
moclinic orbit can suddenly change from being a cylin-
der to being a Möbius strip. To this end we consider
an inclination flip of type A, which can be found and
studied conveniently[17] in the model vector field
ẋ = a x+ b y − a x2 + (µ̃− α z) (2− 3x)x+ δ z,

ẏ = b x+ a y − 3
2 b x

2 − 3
2 a x y − (µ̃− α z) 2y − δ z,

ż = c z + µx+ γ x z + αβ (x2 (1− x)− y2),

(2)
which was constructed and introduced in Ref. [18] to
feature different kinds of codimension-two homoclinic
bifurcations in an accessible way. The origin 0 is an
equilibrium of (2) and, for the choice of parameters

a = −0.05, b = 1.05, c = −1.2, α = 0,
β = 1, γ = 0, δ = 0, µ = 0, µ̃ = 0,

(3)

with α = αA ≈ 0.860183 there is a homoclinic orbit Γ0

to 0 that satisfies all the conditions of a codimension-
two inclination flip bifurcation IF of type A. When the

parameter α is varied from α = αA, the homoclinic or-
bit Γ0 persists. However, it changes from an orientable
homoclinic orbit for α < αA, denoted Ho, to a nonori-
entable (or twisted) homoclinic orbit for α > αA, de-
noted Ht.

Figure 2 illustrates how the two-dimensional stable
manifoldW s(0), when followed along the homoclinic or-
bit Γ0, returns to the origin 0. In this figure the (x, y, z)-
space of (2) has been transformed so that the eigen-
vectors of this saddle are the coordinate axes; hence,
the one-dimensional unstable manifold Wu(0) is tan-
gent at 0 to the vertical axis and the two-dimensional
stable manifoldW s(0) is tangent to the horizontal plane
through 0. On W s(0) we also show the strong sta-
ble manifold W ss(q) and a weak trajectory ωs

− tangent
to the weak stable eigenvector. Note that there is a
second equilibrium q, which is a saddle focus, and its
one-dimensional stable manifold W s(q) is also shown in
Fig. 2.

The organization of phase space by W s(0) at the
moment of homoclinic bifurcation is presented in
Fig. 2(a1), (b) and (c1). To illustrate the orientability
of W s(0), this surface is divided along the homoclinic
orbit Γ0 and ωs

− into a solid part and a transparent part.
In panels (a1) and (c1), when it is followed (backward in
time) along Γ0, the stable manifold W s(0) accumulates
on the strong stable manifold W ss(0), meaning that
it satisfies the genericity conditions of a codimension-
one homoclinic bifurcation. In Fig. 2(a1) the solid half
returns on the solid side and the transparent half re-
turns on the transparent side. Here W s(0) forms an ori-
entable surface, namely a cylinder, and we are dealing
with an orientable homoclinic bifurcation Ho. Notice
that the cylinder surrounds the secondary equilibrium
q and its one-dimensional stable manifold W s(q). In
Fig. 2(c1), on the other hand, the solid half of W s(0)
returns back along Γ0 on the side of the transparent
half, and vice versa, so that W s(0) forms a Möbius
strip and we are dealing with a nonorientable homo-
clinic bifurcation Ht. Notice further that, when W s(0)
is nonorientable, it is a much more complicated surface
in R3; in particular, W s(0) now accumulates on the
curve W s(q).

The transition between the two cases Ho and Ht of
codimension one takes place at the codimension-two in-
clination flip bifurcation IF shown in Fig. 2(b). Here,
the surface W s(0) does not close up along W ss(0), but
instead aligns along the orbit ωs

−, that is, it returns
tangent to the weak stable eigendirection. Hence, the
surface W s(0) is neither orientable nor nonorientable
but ‘in between’ the two cases.

In order to understand the properties of W s(0) at Ho

and Ht it is very helpful to consider its intersection set

Ŵ s(0) of W s(0) with a sufficiently large sphere that
contains Γ0 in its interior. Figure 2(a2) and (c2) show
stereographic projections of such a sphere, and panels
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FIG. 2. Transition along a curve of homoclinic bifurcation through an inclination flip IF of type A of (2). Shown are W s(0)
(blue surface and curves), Wu(0) (red curve), Γ0 (red curve), W ss(q) (cyan curve and dots), and the weak trajectory ωs

−
(light blue curve and dots) at the orientable homoclinic bifurcation Ho for α = 0.7 in row (a), at the inclination flip IF for
α = 0.860183 in (b), and at an nonorientable homoclinic bifurcation Ht for α = 1.0 in row (c); the other parameters are
as in (3). Panels (a1), (b) and (c1) show the situation in R3; intersection sets of invariant objects with a sufficiently large
sphere are shown in stereographic projection in panels (a2) and (c2), and are sketched in panels (a3) and (c3), at Ho and
Ht, respectively. Images from Ref. [17]. c©2013 Society for Industrial and Applied Mathematics. Reprinted with permission.
All rights reserved.

(a3) and (c3) are respective topological sketches. At Ho

the set Ŵ s(0) consists of a single curve whose two end
points connect up to the curve at the intersection points

Ŵ ss
− and Ŵ ss

+ of W ss(0) with the sphere; see Fig. 2(a2)

and (a3). The resulting two closed curves (one on each
side of the sphere) are the intersection set of the cylin-
der formed by W s(0) along Γ0. What the intersection
set of the stable manifold W s(0) with the sphere looks
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like when W s(0) forms a Möbius strip containing Γ0

is less obvious and probably somewhat surprising. As
Fig. 2(c2) and (c3) show, at a nonorientable homoclinic

bifurcation Ht the intersection set Ŵ s(0) consists of
a single closed curve with two arcs that connect the

points Ŵ ss
− and Ŵ ss

+ in a spiraling fashion to Ŵ s
−(q)

and Ŵ s+(q), respectively.
The associated two-parameter unfoldings of the

codimension-two homoclinic flip bifurcations of type A
can be found in Ref. [17]. The study of how W s(0) orga-
nizes the phase space near inclination flip bifurcations of
type B is ongoing; it involves bifurcating periodic orbits
of saddle type and their stable and unstable manifolds,
which may be orientable or nonorientable. Finding the
structure of invariant manifolds for the most compli-
cated type C of inclination flip bifurcations, involving
saddle hyperbolic sets with infinitely many saddle peri-
odic orbits, remains an interesting challenge.

IV. SLOW-FAST SYSTEMS AND THEIR
INVARIANT MANIFOLDS

The FitzHugh–Nagumo vector field (1) is an exam-
ple of a system with multiple timescales when the pa-
rameter ε is small. Many aspects of the behavior of
such slow-fast systems, particularly in dimensions three
and higher, have only recently become better under-
stood through developments in geometric singular per-
turbation theory [19]. Here, we highlight the analysis
of folded singularities in systems with two slow and one
fast variables as an example of the essential role of in-
variant manifolds in dynamical systems.

Slow-fast systems are written in their slow timescale
as {

ε x′ = f(x, y, η, ε),
y′ = g(x, y, η, ε),

(4)

where x ∈ Rk are the fast variables, y ∈ R(n−k) are the
slow variables, ε is the ratio of timescales and η ∈ R`

are other system parameters. The critical manifold is
the set of solutions of the equation f(x, y, η, 0) = 0, and
y′ = g(x, y, η, 0) defines the slow flow as a differential-
algebraic equation (DAE) when restricted to the critical
manifold. Where Dxf is regular, the implicit function
theorem gives x = h(y, η) on the critical manifold and
the DAE reduces to an ODE. Furthermore, where Dxf
is hyperbolic, stable manifold theory [20] guarantees the
existence of locally invariant slow manifolds close to the
critical manifold for small ε > 0. Points on the critical
manifold where Dxf is singular are folds and the slow
flow of the critical manifold is no longer defined. Where
folds are simple, the slow flow can be desingularized at
the expense of changing the direction of time on sheets
of the critical manifold where det(Dxf) < 0. In the full

system with ε > 0, trajectories that approach a simple
fold ‘jump’ along the fast direction.

Consider now three-dimensional systems with two
slow variables. In these systems, the critical manifold is
a two-dimensional surface with attracting and repelling
sheets. Trajectories that flow from an attracting sheet
to a repelling sheet are canard orbits that play a dra-
matic role in the dynamics. Because repelling slow man-
ifolds are unstable on the fast timescale, the slow-time
evolution near these manifolds seems to be discontin-
uous as trajectories on either side turn away abruptly.
Canard orbits appear near folded singularities, points
on the fold curve where the desingularized system has
an equilibrium.

Benôıt [21] analyzed the intersections of the attract-
ing and repelling slow manifolds at folded saddles, prov-
ing that invariant extensions of the manifolds intersect
transversally along canard orbits with an angle that
is O(ε). In the singular limit ε = 0, the stable manifold
of a folded saddle separates trajectories on the attract-
ing slow manifold that flow all the way to the fold curve
and then jump, from trajectories that turn away from
the fold before reaching it. When ε > 0, some trajecto-
ries immediately adjacent to the stable manifold form
canard orbits that flow onto the repelling slow manifold
before jumping. The separation of trajectories along
the canard orbits is abrupt and creates the stretching
that is characteristic of chaotic invariant sets. Indeed,
Haiduc [22] proved that this mechanism explains the
landmark results of Littlewood [23–25] on the forced
Van der Pol equation [2] that demonstrated the exis-
tence of chaotic dynamics in an explicit dissipative sys-
tem for the first time.

The geometry that is associated with folded nodes
is even more complicated and surprising than that of
folded saddles. Benôıt showed that the attracting and
repelling slow manifolds twist as they approach a folded
node, creating multiple canard orbits in the process.
Benôıt [26] and Wechselberger [27] analyzed the amount
of twisting that occurs and the bifurcations that pro-
duce increasing numbers of canard orbits. The twist-
ing is manifest in small-amplitude oscillations of trajec-
tories that flow past a folded node. When these tra-
jectories have a global return to the region around the
folded node, they give examples of mixed-mode oscilla-
tions (MMOs).

A. The self-coupled FitzHugh–Nagumo equation

Recently, there has also been increasing interest in
MMOs that are observed in the context of neural mod-
els. As an example of an MMO that is organized by
a folded-node singularity, we consider the FitzHugh–
Nagumo equation with synaptic coupling back to itself
as a model of single-cell dynamics that is influenced by
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external electrical signals due to connections to other
cells. This model three-dimensional system

v̇ = h− v3 − v + 1

2
− γ s v,

ḣ = −ε (2h+ 2.6 v),

ṡ = βH(v) (1− s)− ε δ s,

(5)

was introduced by Wechselberger [27]. Here, the third
variable, denoted s, describes the synaptic coupling,
which occurs through voltage v. The parameter γ is
the coupling strength. The dynamics of s consists of
an activation term, determined by the parameter β,
and a deactivation term, controlled by the decay rate δ.
Activation is only occurring in the active phase, when
v > 0, as indicated by the Heaviside function H(v); in
the silent phase, when v < 0, the synaptic coupling s
decays on the same timescale as the gating variable h.
The presence of the Heaviside function greatly simpli-
fies the analysis of the silent phase, for which system (5)
is a slow-fast system with v the fast and h and s the
slow variables.

Figure 3(a)–(b) illustrates the response of system (5)
for β = 0.035, γ = 0.5, δ = 0.565 and ε = 0.015.
For these parameters, there exists a stable MMO peri-
odic orbit Γ5 that exhibits five small-amplitude oscilla-
tions, which constitute subthreshold oscillations in the
silent phase, followed by one large action potential; its
v-time series is shown in panel (a). Since H(v) = 0
in the subthreshold regime, the structure of slow man-
ifolds for system (5) is independent of β and can be
analyzed separately. Slow manifolds of system (5) have
also been studied in Ref. [28]. The critical manifold
S of system (5) is a cubic surface and a folded node
at (v, h, s) ≈ (−0.4900, 0.6176, 0.2797) exists relatively
far away from the cusp point at (v, h, s) = (0, 12 , 1), on
the side of the fold curve with smallest v. Figure 3(b)
shows how the intersections between the attracting and
repelling slow manifolds of system (5) organize the sub-
threshold oscillations near the folded node. These slow
manifolds were computed with the method explained
in Sec. VI. The repelling slow manifold Sr

ε comprises
the family of orbit segments that start in the plane
Σ := {s = 0.2797} and end on the line Lr := {(v, h, s) ∈
S | v = 0} = {(0, 12 , s)}. Similarly, the attracting slow
manifold Sa

ε comprises the family of orbit segments that
start on the line La := {(v, h, s) ∈ S | h = −6} and end
in Σ. The slow manifolds Sr

ε and Sa
ε intersect in canard

orbits, two of which, namely, ξ4 and ξ5, are highlighted
in Fig. 3(b). These canards make four and five small-
amplitude oscillations, respectively. As can be seen in
Fig. 3(b), the value of β is such that the periodic orbit
Γ5 lands (approximately) on Sa

ε in between the two ca-
nard orbits ξ4 and ξ5, which determines the signature
of this MMO.

One advantage of our procedure for computing in-
tersections between attracting and repelling slow man-
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FIG. 3. (a) Mixed-mode oscillation of system (5) for γ =
0.5, δ = 0.565, ε = 0.015 and β = 0.035. (b) Associated
attracting and repelling slow manifolds, Sa

ε (red surface)
and Sr

ε (blue surface); also shown are the two canard orbits
ξ4 (magenta curve) and ξ5 (orange curve); reproduced from
Ref. [28]. (c) Continuation in ε of the canard orbit ξ5 (while
assuming H(v) ≡ 0); (d1)–(d4) Projections of ξ5 onto the
(s, v)-plane at the correspondingly labeled points along the
branch.
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ifolds is that we can continue such canard orbits in a
system parameter. A particularly interesting parame-
ter is the timescale ratio ε; see also Ref. [29]. Geomet-
ric singular perturbation theory predicts the existence
and characterization of slow manifolds and canard or-
bits provided ε is small enough. The numerical meth-
ods, on the other hand, work for a large range of values
of ε that extends well beyond the known theory. We
have found that these computations yield new predic-
tions about the nature of different canard orbits.

Figure 3(c) illustrates such a numerical exploration
with the continuation in ε of the canard orbit ξ5 from
panel (b). We plot the L2-norm of the continued ca-
nard orbit ξ5; the insets (d1)–(d4) show projections
onto the (s, v)-plane of four selected canard orbits along
the branch. When ε is decreased from ε = 0.015,
we find that ξ5 accumulates onto the strong canard at
ε = 0, as predicted by the theory. In the other direc-
tion, as ε is increased, an interesting transition occurs
at ε ≈ 0.0305, which is close to where the branch has
a minimum in the L2-norm: the canard orbits change
from having s > 0 decreasing, as shown in Fig. 3(b),
to having s < 0 increasing; the canard orbits past this
transition, including those shown in Fig. 3(d1)–(d4), all
satisfy s < 0. We disregarded the activation term in the
equation for s during this continuation; notice that the
restriction v ≤ 0 is not satisfied everywhere along these
computed canard orbits, so that their interpretation in
the context of MMOs is not straightforward. The con-
tinuation branch undergoes three folds, at ε ≈ 0.0385,
ε ≈ 0.0363 and ε ≈ 0.0412, respectively; panels (d1)
and (d2) show two coexisting canard orbits for ε = 0.037
on either side of the first fold, and panels (d3) and (d4)
show coexisting canard orbits for ε = 0.04 on either
side of the third fold. Note that the transition across
the third fold has the effect that ξ5 transforms into a
canard orbit with only four oscillations; such transi-
tions have been observed in other systems as well [29].
Figure 3(d3) indicates that any trajectory of system (5)
that starts on Sa

ε near a solution on the branch segment
in between the second and third fold would exhibit only
one small-amplitude oscillation before producing (pos-
sibly more than) one action potential (when v becomes
positive).

V. TRAVELING WAVES OF PDES

In many applications, localized traveling waves play
an important role: they may, for instance, represent ac-
tion potentials that propagate in a neuronal axon, light
blips that travel through an optical fiber, or solitary wa-
ter waves in a channel. Instead of describing the most
general type of PDE models, we focus here on systems
of reaction-diffusion equations of the form

ut = Duxx + f(u), (6)

where x ∈ R, u ∈ X = C0(R,Rn), and D is a non-
negative diagonal diffusion matrix. Traveling waves are
solutions of the form

u(x, t) = v(x− ct), (7)

where v = v(z) describes the profile, and c is the se-
lected wave speed. Substituting this ansatz into (6), we
see that traveling-wave profiles satisfy the ODE

Dvzz + cvz + f(v) = 0, (8)

where the wave speed c enters as a free parameter. We
can rewrite (8) as the first-order system

Vz = F (V, c) (9)

and use dynamical-systems methods to analyze it. If
f(0) = 0, we can seek localized traveling waves of (6)
with profiles v(z) that converge to zero exponentially
as |z| → ∞. Localized traveling waves correspond,
therefore, to homoclinic orbits V (z) of (9) that lie in
the intersection of the stable and unstable manifolds
of the equilibrium V = 0. Without additional struc-
ture in the underlying ODE, homoclinic orbits arise as
codimension-one phenomena: the wave speed c supplies
a free parameter, which suggests that localized traveling
waves arise for a discrete set of wave speeds c. Under
appropriate genericity conditions, Melnikov theory [11]
shows that the stable and unstable manifolds of V = 0
will unfold transversally along a homoclinic orbit V∗(z)
upon changing c near the selected wave speed c∗, pro-
vided

M :=

∫
R
〈ψ(z), Fc(V∗(z))〉dz 6= 0, (10)

where ψ(z) is the unique nontrivial bounded solution of
the adjoint variational equation

Wz = −FV (V∗(z))
∗W.

Localized traveling waves of (6), which are also re-
ferred to as pulses, can be found as homoclinic orbits
of the associated traveling-wave ODE (9). Construct-
ing homoclinic orbits is a challenging problem that can
often be addressed only through numerical computa-
tion. However, when an additional slow-fast structure
is present, geometric singular perturbation theory pro-
vides a very effective tool to construct pulses. Once a
pulse has been identified, homoclinic bifurcation theory
can be used to study whether this localized traveling
wave can give rise to multi-pulse solutions, which are
traveling waves with profiles that resemble several well-
separated copies of the original pulse; these travel at
wave speeds close to that of the original pulse.

Once the existence of a pulse v∗(z) with wave speed
c∗ has been shown, one may want to determine whether
the resulting solution u(x, t) = v∗(x − c∗t) is stable as
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FIG. 4. (a) Stationary solutions of the PDE (11) are one-
parameter families that depend on the location of their cen-
ter of mass. (b) The spectrum σ(L∗) of a stable localized
traveling wave.

a solution of the original PDE (6). A typical approach
consists of transforming (6) into the moving coordinate
frame (z, t) = (x− c∗t, t) to get

ut = Duzz + c∗uz + f(u), (11)

which admits the stationary solution u(z, t) = v∗(z).
Linearizing this PDE about v∗, we obtain the linearized
operator

L∗u := (D∂2zz + c∗∂z + fu(v∗(z)))u. (12)

The operator L∗ can be viewed as an unbounded,
densely defined, closed operator on X = C0

unif : its spec-
trum on this space provides the necessary information
that can be used to prove linear and nonlinear asymp-
totic stability of the traveling wave u(z, t) = v∗(z).
We now review some key features of the spectrum of
L. First, λ = 0 always belongs to the spectrum since
L∗v′∗(z) = 0, and the derivative of the pulse, therefore,
provides an eigenfunction associated with λ = 0. Fig-
ure 4(a) illustrates the one-parameter family v∗(· − p)
of stationary solutions that is provided by a pulse v∗(z)
via translation of the center of mass to any location
p ∈ R. Second, since the pulse profile v∗(z) converges
to zero as |z| → ∞, it can be shown that any element
in the spectrum of the asymptotic operator

L0u := (D∂2z + c∗∂z + fu(0))u (13)

that is associated with the rest state u = 0 also lies
in the spectrum of L∗. The spectrum of L0 can be
determined via Fourier transform: indeed, the spectrum
S0 of L0 is given by

S0 = {λ ∈ C | for some k ∈ R,
det
[
−Dk2 + i k c∗ + fu(0)− λ

]
= 0
}
.

(14)

This set consists of curve segments in the complex
plane. If S0 intersects the open right-half plane, the
pulse will be unstable. Therefore, we assume from now
on that S0 lies in the open left-half plane (as the bor-
der case where the spectrum of the rest state touches
the imaginary axis will result in bifurcations[30, 31]):

in this case, the spectrum of L∗ in the closed right-half
plane consists of discrete isolated eigenvalues of finite
multiplicity, as is illustrated in Fig. 4(b).

We say that the pulse v∗ is spectrally stable if S0
lies in the open left-half plane, the eigenvalue λ = 0
of L∗ is simple, and L∗ has no other eigenvalues with
positive real part. A typical stability result consists of
the statement that spectral stability of L∗ implies non-
linear stability with asymptotic phase of the traveling-
wave family {v∗(· − p); p ∈ R}. This result reduces
the question of nonlinear stability to studying spectral
stability of L∗. If we take the view that the set S0 can,
in principle, be calculated case by case, as it involves
only an algebraic problem, then it remains to (i) find
conditions that guarantee that λ = 0 is simple and (ii)
identify any other unstable eigenvalues of L∗.

To analyze (i), we note that the equation L∗v = 0 is
equivalent to solving the variational equation

Vz = FV (V∗(z), c∗)V

of the traveling-wave ODE (9) around the homoclinic
orbit V∗(z) associated with the pulse v∗(z). In par-
ticular, the condition that the null space of L∗ is one
dimensional (λ = 0 has geometric multiplicity one) is
equivalent to the condition that the tangent spaces of
the stable and unstable manifolds at V∗(z) intersect in
the one-dimensional space spanned by V ′∗(z). Further-
more, if the geometric multiplicity of λ = 0 is one, then
its algebraic multiplicity will be one if, and only if, the
Melnikov integral M defined in (10) is not zero: in-
deed, it can be shown that the adjoint solution ψ(z) is
related to the adjoint eigenfunction of the adjoint opera-
tor L∗∗. This result provides an interesting link between
the traveling-wave ODE and stability properties of the
PDE linearization.

Regarding property (ii), we can write the eigenvalue
problem

L∗u = λu

as an equivalent system of linear ODEs of the form

Vz = FV (V∗(z), c∗)V + λBV (15)

with parameter λ. A complex number λ is an isolated
eigenvalue of L∗ if, and only if, (15) has a nonzero lo-
calized solution, that is, a ‘homoclinic orbit’. In other
words, if we denote by Es(λ) and Eu(λ) the linear sub-
spaces of initial conditions of (15) at z = 0 that converge
to zero as z → ∞ and z → −∞, respectively, then we
need that these subspaces have a nontrivial intersection.
Thus, choosing bases in these subspaces and calculating
their determinant, we see that λ is an eigenvalue if, and
only if, this determinant, a Wronskian of appropriate
solutions of (15), vanishes. This determinant, viewed
as a function D(λ) of λ, is referred to as the Evans
function [32]: it is analytic in λ for λ to the right of S0,
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and its roots correspond to the sought eigenvalues; in
fact, the multiplicity of roots of D(λ) agrees with the
algebraic multiplicity of λ viewed as an eigenvalue of
L∗.

A. Traveling waves of the FitzHugh–Nagumo
equation

To conclude this review, we illustrate the importance
of invariant manifolds in both the theoretical and nu-
merical analysis of dynamical systems by considering
a model that exhibits all types of invariant manifolds
discussed in this paper. More specifically, we consider
traveling waves of a FitzHugh–Nagumo model, which
have spatial profiles that are homoclinic solutions of the
three-dimensional vector field

ε ẋ1 = x2,

ε ẋ2 = 1
5 [s x2−
x1 (x1 − 1) ( 1

10 − x1) + y − p
]
,

ẏ = 1
s (x1 − y).

(16)

The geometry of the homoclinic orbits of this system
is organized by its invariant manifolds. Study of this
problem motivated Jones and Kopell [33] to formulate
a general result, the Exchange Lemma, that was used to
prove existence of a homoclinic orbit of (16) for particu-
lar wave speeds given by the parameter s. However, the
homoclinic orbit was computed accurately only recently,
via intersections of several different types of invariant
manifolds [34].

System (16) is a slow-fast vector field with one slow
variable y and two fast variables x1 and x2. The critical
manifold S, defined by {x2 = 0, y = x1 (x1 − 1) (0.1 −
x1) + p}, is one dimensional and splits into left, middle
and right branches, denoted Sl, Sm, and Sr, respec-
tively: the inner branch Sm consists of sources and the
two outer branches Sl and Sr are saddle equilibria of
the layer equations. System (16) has an equilibrium q
that lies on the critical manifold and additionally solves
y = x1. The stability of q depends upon both p and s.
Figure 5(a) shows a bifurcation diagram in the (p, s)-
plane. The equilibrium q undergoes a Hopf bifurcation
along the U-shaped curve and homoclinic orbits to q
are found along the C-shaped curve, where q ∈ Sl.

Approximations of the homoclinic orbits for small
ε > 0 can be pieced together from the singular limit.
Beginning at q ∈ Sl, the first segment of the homoclinic
orbit follows the unstable manifold of q in the layer
equations to the layer equilibrium on Sr with the same
(x1, x2)-coordinates as q. As described by the Exchange
Lemma, the trajectory then turns and follows Sr to a
value of the slow variable y where there is a connecting
orbit that returns from Sr to Sl; the connecting orbit
then follows Sl back to q.
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FIG. 5. (a) Bifurcation diagram of traveling waves for sys-
tem (16) in the (p, s)-plane consisting of a U-shaped (blue)
curve of Hopf bifurcations and a C-shaped (red) curve of
homoclinic bifurcations; the dashed curves are their singu-
lar limit as ε→ 0. (b) Traveling-wave homoclinic orbit (red
curve) to the saddle q with slow segments near the critical
manifold (blue curve).

Fenichel proved that the critical manifold branches
Sl and Sr perturb to locally invariant slow manifolds
for small ε > 0, along with their stable and unstable
manifolds [20]. Hence, the slow-fast decomposition of
the homoclinic orbits persists when ε > 0; however, as
a heteroclinic connection between saddles, it occurs for
parameters that lie on a curve in the (p, s)-plane. It is
difficult to compute the homoclinic orbits because the
relevant slow manifolds are saddle like in the fast di-
rections. Numerical solutions of initial value problems
that start on or close to these manifolds can only fol-
low them for times that are O(1) with respect to the
fast timescale. Guckenheimer and Kuehn [34] devel-
oped a two-point boundary value problem and associ-
ated solver that locates these manifolds. The directions
of its stable and unstable manifolds were estimated as
well, yielding initial conditions for computing trajecto-
ries on these manifolds with initial value solvers; see
Sec. VI for the details of these calculations. This ap-
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proach allows for the computation of the whole homo-
clinic orbit as a composite of its slow and fast segments,
each computed separately and matched together at the
respective endpoints. The full homoclinic orbit to q is
illustrated in Fig. 5(b).

Champneys et al. noted that the ‘CU’ bifurcation
diagram shown in Fig. 5(a) is puzzling [35]. They re-
port that the curve of homoclinic bifurcations appears
to end without contacting another more degenerate bi-
furcation. Further analysis of invariant manifolds re-
solved this enigma [34]. The clue to the discrepancy
is that q may undergo a subcritical Hopf bifurcation,
after which it no longer lies on Sl. There is a family of
periodic orbits emerging from q which bounds its sta-
ble manifold. A consequence is that there is no way
for trajectories following the slow manifold associated
with Sl to reach q for parameters that are close to the
Hopf curve. The stable manifold of q and the unstable
manifold of the saddle slow manifold do not intersect.
However, as the parameters move farther from the Hopf
curve, the stable manifold of the equilibrium begins to
spiral around the periodic orbit created at the Hopf bi-
furcation. It then passes through a tangency with the
unstable manifold of the slow manifold Sl followed by
transversal intersections of the two manifolds; see Fig. 3
in Ref. [34]. The tangency of these manifolds can be
regarded as another codimension-one bifurcation that
occurs along a curve in the (p, s)-plane. Because this
tangency is independent of the connection from q to the
saddle slow manifold associated with Sr, the associated
two bifurcation curves cross transversally, intersecting
at the end of the C-curve of homoclinic bifurcations. We
refer to Ref. [34] for more detail on the exponentially
small scales found in the folding of the C-curve.

This example illustrates that invariant manifolds of
different kinds and their intersections play a prominent
role in shaping the dynamics of slow-fast vector fields.
Homoclinic tangency of stable and unstable manifolds
of periodic orbits has long been a focus of the analy-
sis of horseshoes and their bifurcations, but the phe-
nomenology associated with the homoclinic orbits of
the FitzHugh–Nagumo model have been a new develop-
ment. Similarly, intersections between a repelling slow
manifold and the unstable manifold of a saddle equilib-
rium are important in mixed-mode oscillations of the
Koper model [13, 36], and the tangency of these man-
ifolds demarcates part of a parameter-space boundary
for these complex oscillations; see also Ref. [19]. In a
broader context, we know relatively little about global
returns of systems with multiple timescales; i.e., dy-
namics that lead to recurrence of trajectories to spe-
cific regions of a phase space following large excursions
from these regions. We even lack a sharp formulation of
mathematical problems and conjectures that generalize
the observations made in examples of three-dimensional
slow-fast systems.

VI. NUMERICAL METHODS FOR
MANIFOLDS

Equilibria, periodic orbits and their local bifurcations
can be found with standard dynamical systems soft-
ware such as Auto [16], MatCont [37] and CoCo
[38]. Here periodic orbits are computed as solutions to
a boundary value problem (BVP) with periodic bound-
ary conditions and an appropriate phase condition.
More generally, the integrated boundary value solvers
of the above packages locate an orbit segment u(t) with
t ∈ [0, 1] that satisfies the time-rescaled equation

u̇ = T f(u),

subject to specified boundary conditions, where T is
the integration time (which may be negative) associated
with the normalized orbit segment u. The solution of
the BVP is found with the method of collocation as a
piecewise polynomial over a specified mesh. A first peri-
odic solution can be constructed near a Hopf bifurcation
or, when it is stable, found by numerical integration.

An approximate homoclinic or heteroclinic orbit can
be found and continued as an orbit segment whose end
points lie in the stable and unstable linear eigenspaces
near the respective equilibrium; one speaks of projec-
tion boundary conditions [39]. To find an initial orbit
segment u satisfying this BVP one can consider a peri-
odic orbit of high period, or perform what is known as
a homotopy step as implemented in the toolbox Hom-
Cont [15] that is part of the package Auto; also sup-
plied are test functions that allow the user to identify
certain codimension-two global bifurcations, including
inclination and orbit flips.

Several methods have been developed for computing
invariant manifolds of dimension higher than one, with
emphasis on two-dimensional stable and unstable man-
ifolds of equilibria in R3; see the survey Ref. [40]. We
concentrate here on the general idea to select a region
of interest and define the two-dimensional (invariant)
manifold in this region as a one-parameter family of or-
bit segments, defined by a suitable BVP. A review of
this approach can be found in Ref. [41]; for more gen-
eral background information on continuation methods
see Ref. [42].

Restricting our discussion to three-dimensional sys-
tems for simplicity, we consider an orbit segment u with
one end point on a one-dimensional curve (for example,
a line) and the other on a two-dimensional surface (for
example a planar section). This two-point boundary
value problem setup is very flexible, and the boundary
conditions on either end point can be formulated implic-
itly; for example, one can also consider orbit segments
of a fixed integration time or specified fixed arclength;
see Refs. [41] and [40].

Figure 6(a) shows the computational setup for the re-
pelling slow manifold of system (5) in Fig. 3(b). Here,
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FIG. 6. Illustration of BVP setup for computing families of
orbit segments. (a) An initial orbit segment u of system (5)
with u(0) ∈ Lr ⊂ Sr and u(1) ∈ Σ; varying u(0) along Lr

produces the repelling slow manifold Sr
ε ; reproduced from

Ref. [28]. (b) Lin’s method setup for a connection between
an equilibrium p and a periodic orbit Γ, consisting of two
orbit segments, Q− from p and Q+ from Γ, that end in a
section Σ along a specified Lin direction Z; from Ref. [43,
Fig. 1(a)]. c©2008 IOP Publishing & London Mathematical
Society. Reproduced with permission. All rights reserved.

u(0) is restricted to the line denoted Lr ⊂ Sr with
v = 0, and u(1) is restricted to the plane Σ that is per-
pendicular to the fold curve F and contains the folded-
node singularity. To obtain such an orbit segment we
perform two homotopy steps [28]. The orbit segment
u shown in Fig. 6(a) with associated integration time
T is an isolated solution of a solution family that is
parametrized by the point u(0) on the line Lr = Lr(θ).
Continuation in the parameter θ then produces the re-
pelling slow manifold Sr

ε as a surface.
In order to find more complicated connecting orbits

it may be useful to split the orbit into several segments,
each to be computed with a BVP solver. In particu-

lar, this approach is used in implementations of what
is known as Lin’s method [44, 45]. The underlying idea
is to compute pairs of orbit segments (with associated
integration times) in such a way that their end points
are constrained to lie along a specified vector direction
on a common surface defining one of the boundary con-
ditions for these segments. Lin’s method has been im-
plemented for the detection of multipulse homoclinic
orbits [46], and for so-called EtoP connections between
equilibria and periodic orbits [43] and PtoP connections
between periodic orbits [47].

Figure 6(b) shows the Lin’s method setup for the
computation of a codimension-one EtoP connection be-
tween a saddle equilibrium p and a saddle periodic or-
bit Γ. The orbit segment Q− starts from a point on the
unstable eigenvector vu of p and ends in the section
Σ; similarly the orbit segment Q+ starts from Σ to a
point on the vector vs in the unstable bundle of Γ. The
two end points of Q− and Q+ in Σ lie along the Lin
direction Z, which can be chosen freely provided a mild
genericity condition is satisfied. The signed difference
between the two end points along the fixed direction
Z is a well-defined test function that is referred to as
the Lin gap; continuation in a system parameter, while
keeping Z fixed, can then be used to find a zero of the
Lin gap, which corresponds to the sought connecting
orbit.

A similar strategy was used in calculating the homo-
clinic orbit of system (16), but a customized boundary
value solver was developed to compute the slow seg-
ments of this orbit. The homoclinic orbit is split into
four segments, two that follow the slow manifolds Sr

and Sl, one that connects the equilibrium q to Sr and
a fourth that connects Sr to Sl. The connection from
q to Sr is the part of the homoclinic orbit that exists
for only a discrete value of the wave-speed parameter s.
The first step in finding the homoclinic orbit is to com-
pute this segment by a shooting algorithm that uses
initial conditions on the linear approximation of the
one-dimensional manifold Wu(q), for different values of
the wave speed s. The value of s for which this con-
nection is found is then fixed in the remainder of the
calculations of the homoclinic orbit. Note that, since
Sr is normally hyperbolic, it is easy to determine which
direction Wu(q) turns as it approaches Sr.

The next step in finding the homoclinic orbit is to
calculate accurate approximations to Sr and Sl with a
boundary value solver. Figure 7(a) illustrates the setup
of the two-point boundary value problem used to calcu-
late Sr. In making the calculation well conditioned, it
is important to choose boundary conditions that make
a large angle with the vector field in an entire region
of the boundary manifold. Thus, instead of just com-
puting the segment along the slow manifold where the
direction of the vector field changes rapidly, the bound-
ary conditions are located transverse to the stable and
unstable manifolds of Sr, as illustrated by the line seg-
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roclinic connection of slow manifolds: ten blue trajectories
starting along Sr are computed forward to a cross-section Σ
defined by x1 = 0.5, and ten red trajectories starting on Sl

are computed backward to Σ. It is apparent In Σ that the
unstable manifold of Sr intersects the stable manifold of Sl

transversally.

ment Br and rectangle Bl in Fig. 7(a). The (time)
length of the trajectory is chosen so that the algorithm
computes longer segments of Sr and Sl than those that
are part of the homoclinic orbit.

The directions of the stable and unstable manifolds
along Sr and Sl were estimated by the linearization of
the fast (layer) equations along the slow manifold; an
initial value solver was used to ‘sweep’ out the man-
ifolds by computing sets of trajectories whose initial
conditions were constructed from the linearization. Fig-
ure 7(b) shows some of these trajectories as well as the

surfaces of the stable and unstable manifolds interpo-
lated from these. These integrations were terminated
on a common plane to illustrate the transversality of
their intersection along the fast segment of the hete-
roclinic orbit that connects Sr to Sl. The Exchange
Lemma describes important aspects of the geometry of
this connection.

The matching conditions of the four segments of the
homoclinic orbit are more or less automatic from the
normal hyperbolicity of the slow manifolds. The slow
segments of the homoclinic orbit orbit must lie expo-
nentially close to the slow manifolds Sr to Sl, so they
cannot be distinguished from these manifolds numeri-
cally. Thus, the errors associated with using approxi-
mate boundary conditions that place the endpoints of
the segments on the stable and unstable manifolds of Sr

to Sl cannot be resolved without heroic computations of
extreme precision. The continuity of the invariant man-
ifolds with respect to perturbations of the vector field
and their transversal intersections on the boundaries of
the cross-sections used in the phase space extended with
the parameter s make us confident that the numerically
computed trajectory is an excellent approximation to
the homoclinic orbit.

VII. DISCUSSION

This short review attempted to highlight some recent
examples of how the study of global invariant mani-
folds and their bifurcations can help unravel the overall
dynamics of a given system. The examples are by no
means exhaustive, but we hope that they convey the
usefulness of this approach and the associated advanced
numerical methods. Indeed, invariant manifolds of dif-
ferent kinds are also key ingredients in the dynamics of
numerous other systems, and quite a number of chal-
lenges remain. We mention a few of them briefly.

• The study of invariant manifolds near the more
complicated cases B and C of codimension-two
homoclinic flip orbits is the subject of ongoing re-
search; here also (possibly infinitely many) peri-
odic orbits of saddle type play a role as well.

• The study of invariant manifolds near heteroclinic
cycles or chains involving equilibria and periodic
orbits is a promising direction for future research.

• The examples in this paper all involve invariant
manifolds of dimensions one and two in three-
dimensional vector fields. There is a robust lit-
erature on identifying attracting slow manifolds
in systems of chemical reactions, especially in the
context of combustion [48], and this appears to be
an area ready for further development. Comput-
ing stable manifolds of low codimension in high-
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dimensional systems is one strategy to identify at-
tractor basin boundaries in high-dimensional sys-
tems [49].

• Higher-dimensional compact invariant objects,
such as invariant tori, are also of great interest in
many areas of application, and computing them
and their stable and unstable manifolds is an ac-
tive area of research [50–53] not touched upon in
this review.

• Dynamical systems with symmetries, conserved
quantities or network structure appear in many
applications. Invariant manifolds are perhaps
even more important as key ingredients in the

analysis of such systems, but adjustments of the
numerical methods to take account of these struc-
tures is needed [54]. Beyond manifolds, more ge-
ometric objects with singularities arise in these
settings. Group theoretical methods are a power-
ful tool for the analysis of systems with symme-
try [55].
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