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Abstract

Homoclinic bifurcations are organizing centers for the creation of chaotic dynam-
ics. We study a specific homoclinic bifurcation called a homoclinic flip bifurcation of
case C, where a homoclinic orbit to a saddle equilibrium with real eigenvalues changes
from being orientable to nonorientable. This bifurcation is of codimension two, mean-
ing that it can be found as a bifurcation point on a curve of homoclinic bifurcations in
a suitable two-parameter plane. In fact, this is the lowest codimension for a homoclinic
bifurcation of a real saddle that generates chaotic behavior in the form of (suspended)
Smale horseshoes and strange attractors. We present a detailed study of how global
stable and unstable manifolds of the saddle equilibrium and of bifurcating periodic
orbits interact in the unfolding of the homoclinic flip bifurcation of case C. This rep-
resents the next and final step in understanding the generic cases of homoclinic flip
bifurcations, which started with the study of the simpler cases A and B. In a three-
dimensional vector field due to Sandstede, we compute relevant bifurcation curves in
the two-parameter bifurcation diagram near the central codimension-two bifurcation in
unprecedented detail. We present representative images of invariant manifolds, com-
puted with a boundary value problem setup, both in phase space and as intersection sets
with a suitable sphere. In this way, we are able to identify infinitely many cascades of
homoclinic bifurcations that accumulate on specific codimension-one heteroclinic bifur-
cations between an equilibrium and various saddle periodic orbits. Our computations
confirm what is known from theory but also show the existence of different phenomena
that were not considered before. Specifically, we identify the boundaries of the Smale–
horseshoe region in the parameter plane, one of which creates a strange attractor of
Rössler type. The computation of a winding number reveals a complicated overall
bifurcation structure that involves infinitely many further homoclinic flip bifurcations
associated with so-called homoclinic bubbles.

Keywords— global invariant manifolds, homoclinic tangencies, homoclinic and hetero-
clinic bifurcations, inclination flip, saddle periodic orbits, chaos

1 Introduction

Homoclinic bifurcations lie at the heart of complicated dynamics in smooth vector fields.
Apart from being interesting objects of study in their own right, homoclinic bifurcations
appear in many applications, such as mathematical biology [22, 23], laser physics [38, 39]
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and electronic engineering [19]; more on their relevance for applications can be found, for ex-
ample, in [14]. Indeed, the study of homoclinic bifurcations is important as a first step in the
pursuit of understanding complex behavior that arises in mathematical models of different
physical phenomena. Since the work of Shilnikov [34] on homoclinic bifurcations to a saddle
focus (with complex eigenvalues), which is now called a Shilnikov bifurcation, a lot of atten-
tion has focused on the consequences of the existence of homoclinic bifurcations. Famously,
the Shilnikov bifurcation, subject to certain eigenvalue conditions, is the only homoclinic
bifurcation of codimension one that generates chaotic behavior in the form of (suspended)
Smale–horseshoe dynamics; see [17] for a comprehensive review. This contrasts the situa-
tion of a codimension-one homoclinic bifurcation of a real saddle (with only real eigenvalues),
which does not generate any nearby chaotic behavior. However, near the codimension-two
homoclinic bifurcation of the real saddle, known as the homoclinic flip bifurcation, (sus-
pended) Smale–horseshoes [15] and strange attractors [25, 26] arise when certain eigenvalue
and geometric conditions are satisfied. More generally, homoclinic flip bifurcations can be of
different cases (discussed below), and these cases act as organizing centers for the creation
of periodic orbits and multi-pulse solutions [15]. Specifically, the existence of homoclinic flip
bifurcations explains the creation of spiking behavior in mathematical models of neurons
such as the Hindmarsh–Rose system [23].

This paper is about the homoclinic flip bifurcation of case C, which is the most com-
plicated case that features chaotic dynamics. We consider here the defining situation of a
three-dimensional vector field with a real saddle equilibrium. Without loss of generality,
we assume that this equilibrium has two different real stable eigenvalues, and one unstable
eigenvalue. Generically, at the moment of a codimension-one homoclinic bifurcation of a real
saddle equilibrium, the two-dimensional stable manifold forms either a topological cylinder
or a Möbius band as it is followed locally around the homoclinic orbit. The homoclinic flip
bifurcation is characterized as the moment when this stable manifold changes from orientable
to nonorientable [17, 18, 35]. A homoclinic flip bifurcation has different unfoldings depend-
ing on the eigenvalues of the saddle equilibrium. In general, three generic cases have been
identified, denoted A, B and C [17]. In case A a single attracting (or repelling) periodic
orbit is created. The unfolding of case B involves saddle periodic orbits, a period-doubling
bifurcation and an additional homoclinic bifurcation curve nearby [12, 17, 18]. Finally,
the unfolding of case C gives rise to period-doubling cascades, n-homoclinic orbits, for any
n ∈ N, a region of Smale–horseshoe dynamics [8, 15, 32], and strange attractors [25, 26].
Importantly, case C constitutes the homoclinic bifurcation of a real saddle with the lowest
codimension that generates chaotic dynamics.

The unfoldings for the three cases have been studied theoretically with different tech-
niques including return maps [8, 15], Shilnikov variables [18] and Lin’s method [32]. The
unfoldings for both cases A and B have been determined and proven for any vector field of
dimension n ≥ 3. The exact nature of the unfolding of case C is not as well understood as
that for cases A and B; in particular, the complete unfolding is not known because infinitely
many saddle periodic orbits are created and the interactions of their respective stable and
unstable manifolds give rise to many other global bifurcations. This complexity is associated
with the existence of Smale–horseshoes dynamics [8] and is linked to the eigenvalue condi-
tions that defines case C [15]. More specifically, cascades of period-doubling and homoclinic
bifurcations are featured in the unfolding to explain the annihilation process of the infinitely
many saddle periodic orbits that exist in the Smale–horseshoe region [15]. However, the
literature does not yet provide an understanding of the boundaries of the Smale–horseshoe
region, the nature of additional bifurcations due to interactions of manifolds, or the im-
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plications of such interactions for the reorganization of basin of attraction in phase space.
Moreover, all results concerning the dynamics and unfolding of case C have only been proven
for three-dimensional vector fields.

In this paper, we study a homoclinic flip bifurcation of case C in unprecedented detail.
We use two-point boundary vale problem (2PBVP) continuation techniques [37] for the
computation of global invariant manifolds [20] and their interactions. In this way, we are
able to present the overall dynamics near a homoclinic flip bifurcation of case C in a more
global sense. Our focus is on the organization of the three-dimensional phase space by
global invariant manifolds of saddle equilibria and saddle periodic orbits. These objects
rearrange themselves in sequences of global bifurcations that arise from the codimension-two
homoclinic flip bifurcation point of case C.

As in previous work for cases A [1] and B [12], we consider the three-dimensional vector
field

Xs(x, y, z) :





ẋ = P 1(x, y, z) := ax+ by − ax2 + (µ̃− αz)x(2 − 3x) + δz,

ẏ = P 2(x, y, z) := bx+ ay − 3
2
bx2 − 3

2
axy − 2y(µ̃− αz)− δz,

ż = P 3(x, y, z) := cz + µx+ γxz + αβ(x2(1− x)− y2),

(1)

which was introduced by Sandstede in [33] as a model containing homoclinic flip bifurcations
of all three different cases. We choose parameters as discussed in section 2.1, such that the
equilibrium located at the origin 0 ∈ R

3 is a saddle with two different real negative (stable)
and one positive (unstable) eigenvalues λss < λs < 0 < λu. Then the origin has a two-
dimensional stable manifold W s(0) and a one-dimensional unstable manifold W u(0), which
consist of the points in phase space that converge to 0 forward and backward in time,
respectively. In particular, system eq. (1) is at a homoclinic bifurcation when W s(0) ∩
W u(0) 6= ∅, that is, at the moment when there exists a trajectory that converges both to 0
forward and backward in time. System eq. (1) exhibits a homoclinic bifurcation for µ = 0
[33], which is a homoclinic flip bifurcation of case C when α ≈ 0.3694818. We denote this
point by CI throughout this paper, and we study the bifurcation diagram of system eq. (1)
in the (α, µ)-plane near CI.

1.1 The codimension-two homoclinic flip orbit

Figure 1 shows phase portraits of system eq. (1) at three different points along the homoclinic
bifurcation curve given by µ = 0 in the (α, µ)-plane. The individual panels show the homo-
clinic orbit together with the associated stable and unstable manifolds of 0, where the stable
manifold W s(0) is rendered in two shades of blue to illustrate its orientability; here, every
trajectory that forms W s(0) has arclength four. The homoclinic orbit Γhom is the branch of
W u(0) (red curves) that lies in W s(0). The homoclinic bifurcations in panels (a) and (b) in
fig. 1 are of codimension one, because they fullfil the following genericity conditions [15, 18]:

(G1) (Non-resonance) |λs| 6= λu;

(G2) (Principal homoclinic orbit) In positive time the homoclinic trajectory approaches the
equilibrium tangent to the eigenvector es associated with λs;

(G3) (Strong inclination) The tangent space TW s(0) of the stable manifold W s(0), when
followed along Γhom backward in time, converges to the plane spanned by the eigen-
vectors associated with λss and λu.
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Figure 1: The stable manifoldW s(0) of system eq. (1) in R3 at a codimension-one orientable
and nonorientable homoclinic bifurcation in panels (a) and (b), respectively; panel (c) shows
W s(0) at a codimension-two inclination flip bifurcation. Here,W s(0) is rendered transparent
with one half colored dark blue and the other half light blue. The unstable manifold W u(0)
is colored red and the homoclinic orbit is labeled Γhom. The one-dimensional strong stable
manifold W ss(0) is highlighted by a blue curve. The common parameter values for all
three panels are (a, b, c, β, γ, µ, µ̃) = (0.7, 1,−2, 1, 2, 0, 0); furthermore, α = 0.2 in panel (a),
α = 0.5 in panel (b) and α ≈ 0.3694818 in panel (c).
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These three properties ensures that a portion of W s(0) close to Γhom folds over and closes
along a trajectory of W s(0) tangent to the strongest stable eigenvector of 0, that is, along
the strong stable manifoldW ss(0) (blue curve); hence, locally near Γhom, the stable manifold
W s(0) is topologically equivalent to a cylinder, in fig. 1 (a), or a Möbius band, in fig. 1 (b);
see [1] for more details. Recall that, for µ = 0, system eq. (1) always exhibits a homoclinic
bifurcation; hence, it seems that one can transition between panels (a) and (b) by varying
α continuously. However, a cylinder and a Möbius band are not homeomorphic surfaces,
so there must exist a transition point, where W s(0) does not close in either of the two
ways depicted in panels (a) and (b). This transition case is shown in panel (c) of fig. 1 for
α ≈ 0.3694818, where a homoclinic flip bifurcation takes place, which is called an inclination
flip (IF). At this bifurcation point genericity condition (G3) is not fulfilled and W s(0) does
not close along W ss(0); see fig. 1 (c). It was proven in [8, 15, 18] that the inclination
flip bifurcation is one mechanism by which one can transition between the orientable and
nonorientable case of a homoclinic bifurcation of codimension one. It is not the only known
mechanism: a transition in orientability of the homoclinic bifurcation may also occur via a
so called orbit flip bifurcation, which corresponds to a homoclinic bifurcation that does not
fulfill condition (G2). Both inclination and orbit flip are codimension-two homoclinic flip
bifurcations whose unfolding can be of cases A, B and C.

For the purpose of this paper, we only consider the inclination flip bifurcation of case C,
which occurs if one of the following eigenvalue conditions are satisfied [17]:

|λss| < λu or 2|λs| < λu, (2)

and the following geometric conditions are met:

(i) |λs| 6= |λss|/2

(ii) If |λs| < |λss|/2, the homoclinic orbit converges to 0 tangent to es in a typical way. Geo-
metrically, this means that the homoclinic orbit is not contained in the one-dimensional
leading (weak) stable manifold tangent to 0, which exists uniquely as a smooth manifold
under these eigenvalue conditions; for further details see [17].

(iii) If |λs| > |λss|/2, the invariant manifold of the homoclinic orbit, which is tangent to the
span{es, eu} backward in time, has a nondegenerate quadratic tangency with W s(0)
along the homoclinic orbit.

1.2 Bifurcation diagram of case C

The literature distinguishes between two different unfoldings of a homoclinic flip bifurcation
of case C [15]. These are given by global conditions regarding the geometry of the stable
manifold W s(0) during the creation of the Smale–horseshoe, and they are called an outward
twist Cout and an inward twist Cin in the literature [8, 15]. Both twist cases contain the
same codimension-one bifurcation curves but their relative positions differ. In particular, we
find that the homoclinic flip bifurcation point CI found for system eq. (1) corresponds to
the outward twist case.

Figure 2 shows a sketch of what is known theoretically about the unfolding of a homoclinic
flip bifurcation of case C for an outward twist Cout [15, 16]. The unfolding consists of an
orientable homoclinic bifurcation curve H1

o that becomes nonorientable (twisted) H1
t after

transitioning through the codimension-two flip bifurcation point Cout. Furthermore, the
following bifurcation curves emanate from Cout: a saddle-node bifurcation SN1 of periodic
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Figure 2: Sketch of the theoretical unfolding of an outward twist point Cout of case C from
[16, Fig. 5]. [Reproduced from Journal of Dynamics and Differential Equations, Resonant
Homoclinic Flip Bifurcations, 12(4), 2000, pages 807-850, A. J. Homburg and B. Krauskopf,
c©Plenum Publishing Corporation 2000 with permission of Springer.]

orbits, an infinite sequence of period-doubling bifurcations labeled PDn, n = 1, 2, 4, 8, ..., and
an infinite sequence of n-homoclinic bifurcations labeled Hn

t , n = 2, 4, 8, ..., where t indicates
that these are codimension-one nonorientable (twisted) homoclinic bifurcations. The value
of n indicates the number of loops made by the homoclinic orbit before it connects back to
the equilibrium point. As each homoclinic bifurcation occurs, a saddle periodic orbit with
n loops is created. The Smale–horseshoe region lies in between the period-doubling and
homoclinic cascades; however, the boundaries of this region are not identified in the sketch.
Note that the orientability of the saddle periodic orbits, labeled 1u and 2u, are not explicitly
stated in fig. 2, meaning that labels are not unique to each saddle periodic orbit.

To explain the overall structure of the unfolding, we start with the orientable saddle peri-
odic orbit 1u that bifurcates from the orientable homoclinic bifurcation H1

o . This same label
1u is also used for the nonorientable saddle periodic orbit that bifurcates from H1

t . Note in
the sketch that the orientable and nonorientable saddle periodic orbits persist throughout the
cascades of period-doubling and homoclinic bifurcations, and they disappear in the saddle-
node bifurcation SN1, after the nonorientable saddle periodic orbit becomes an attracting
periodic orbit, labeled 1s, in the period-doubling bifurcation PD1. Even though it is not
illustrated in fig. 2, the unfolding is known to have infinitely many saddle-node bifurcation
curves that also emanate from Cout and occur along the period-doubling cascade [17].

Most of the literature on case C does not delve into details about bifurcations related to
interactions of manifolds of saddle periodic orbits. This is also the case in fig. 2 where the
bifurcation diagram only shows local bifurcations of saddle periodic orbits and homoclinic
bifurcations of the real saddle. For ease of exposition and in contrast to fig. 2, we label the
orientable saddle periodic orbit that bifurcates from H1

o as Γo, and the nonorientable saddle
periodic orbit that bifurcates from H1

t as Γt throughout this paper.

1.3 Computing the bifurcation diagram near CI

By computing the interaction of the manifolds of these saddle periodic orbits with other
objects, we are able to present the unfolding of case C in a new light. Throughout this
paper, we center our attention on the saddle periodic orbits Γo and Γt, and their corre-
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Figure 3: Bifurcation diagram in the (α, µ)-plane near an homoclinic flip bifurcation CI of
system eq. (1). The inset shows an enlargement of the indicated area. Shown are the curves of
homoclinic bifurcation Ho and Ht (brown), saddle-node bifurcations SNP of periodic orbits
(dark-green), period-doubling bifurcations PD (red), heteroclinic bifurcations QΓt

0 from 0
to Γt (magenta), heteroclinic bifurcation QΓo

0 from 0 to Γo (purple) and codimension-one
homoclinic bifurcation bifurcation TanΓo

of Γo (violet). The Smale–horseshoe region SH is
the gray region. The other parameter values are (a, b, c, β, γ, µ̃, δ) = (0.7, 1,−2, 1, 2, 0, 0).
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sponding global manifolds. As a starting point, we show in fig. 3 the bifurcation diagram
for system eq. (1) in the (α, µ)-plane near the homoclinic flip point CI of case C. Note that
we changed the orientation of the µ-axis from top to bottom in the bifurcation diagram for
ease of comparison. Figure 3 shows the principal homoclinic branch (brown curve) together
with representative period-doubling PD (red curves) and saddle-node SNP (green curves)
bifurcations of periodic orbits. To exemplify the relevance of the global bifurcations concern-
ing saddle periodic orbits, we also compute representative codimension-one heteroclinic and
homoclinic bifurcations in system eq. (1) of the saddle periodic orbits Γo and Γt, labelled
CΓo

0 and QΓt

0 [mΓo] for m = 1, 2, 3, 4. At first glance, the period-doubling and saddle-node
bifurcation curves are indiscernible near the inclination flip point CI in fig. 3. To visualize
these curves, the inset shows an enlargement of a region of the bifurcation diagram that dis-
tinguishes the first three computed period-doubling bifurcation PDΓt

, PD2Γt
and PD4Γt

of a
period-doubling cascade. Furthermore, it shows the saddle-node bifurcation curves SNPΓo

,
SNP3Γo

, SNP4Γo
and SNP5Γo

which are responsible for the disappearance of the orientable
saddle periodic orbits created during the homoclinic cascade, as will be discussed in detail
in section 5. For the remainder of this paper, the subindices in the label of each saddle-node
bifurcation SNP of periodic orbits refers to the orientable saddle period orbit involved.
The same applies to the period-doubling bifurcations PD, where the subindices refer to the
corresponding nonorientable saddle periodic orbit involved. Note how the saddle-node bi-
furcation curves accumulate onto the codimension-one homoclinic bifurcation TanΓo

(violet
curve) of Γo where the stable and unstable manifolds of Γo have a quadratic tangency. We
identify the curve TanΓo

as one of the boundaries of the Smale–horseshoe region SH (gray
region), as it delimits the region in the bifurcation diagram where there exist structurally
stable homoclinic orbits of Γo.

Overall, the computed fig. 3 agrees well with the sketch in fig. 2; however, one of the most
apparent differences are the curves QΓt

0 [mΓo], with m = 1, 2, 3, 4, of heteroclinic connecting
orbits between 0 and Γt (magenta curves). For each of these heteroclinic bifurcation curves,
we find infinitely many homoclinic and heteroclinic bifurcation curves accumulating on it;
these are not shown in fig. 3 because they lie very close to the curves QΓt

0 [mΓo]. We describe
in more detail these accumulation cascades in section 5. Notice in fig. 3 how the sequence of
heteroclinic bifurcation curves QΓt

0 [mΓo] accumulates onto the heteroclinic bifurcation QΓo

0

(purple curve) of a heteroclinic connecting orbit between 0 and Γo, which corresponds to
the other boundary of the Smale–horseshoe region SH in the bifurcation diagram. Both
boundary curves, TanΓo

and QΓo

0 , were not included or studied in the theoretical unfolding
as shown in fig. 2. Furthermore, the bifurcation TanΓo

acts as mechanism to destroy a
strange attractor, which was conjectured to exist close to the inclination flip point due to
the cascades of period-doubling and saddle-node bifurcation [25, 26]; this will be discussed
in more detail in section 7.

The main purpose of this paper is to obtain an overall understanding of the unfold-
ing of the inclination flip bifurcation point CI of case C through a detailed study of the
role of representative invariant manifolds in the reorganization of phase space as different
codimension-one bifurcations occur. Of particular interest is to understand the nature and
roles of the infinitely many cascades of codimension-one homoclinic and heteroclinic bifurca-
tions, the boundaries in parameter plane of the Smale–horseshoe regions, and the existence
and annihilation of strange attractors, etc. To present our results, we choose parameter
values in (α, µ)-plane close to CI and provide representative figures of the relevant objects
in phase space, as well as their intersection sets with a suitable sphere. This allows us
to show the consequences of different codimension-one bifurcations for the organization of
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phase space, and to present an overall picture of the unfolding of CI in the (α, µ)-plane.
Motivated by the existence of infinitely many homoclinic and heteroclinic bifurcation, we
define a winding number ζ as a topological invariant for system eq. (1). A two-parameter
sweep in the (α, µ)-plane identifies open regions with constant ζ-values close to CI. Their
respective boundaries correspond to codimension-one homoclinic bifurcation curves. Hence,
this parameter sweep contributes to obtaining a clearer picture of how the infinitely many
homoclinic bifurcation are organized and accumulate onto heteroclinic bifurcations curves
of the saddle periodic orbit Γt. Furthermore, we identify and characterize a phenomenon
where two different homoclinic bifurcation curves emanating from CI meet and create a
“homoclinic bubble” [16] in the (α, µ)-plane as we consider a larger parameter range in the
(α, µ)-plane.

The organization of this paper is as follows. In section 2 we introduce some notation;
here, we also present the parameter values used, and give the definition of the winding
number ζ . We present, in section 3, the bifurcation diagram of system eq. (1) near CI.
Section 4 then focusses on the transition through the main codimension-one homoclinic
bifurcation curve, section 5 on the homoclinic and heteroclinic cascades, section 6 on the
Smale–horseshoe region, and section 7 on the period-doubling cascade and the existence
of an strange attractor of Rössler type. Finally, we characterize, in section 8, the bubble
phenomenon arising in the bifurcation diagram of CI. We end in section 9 with a discussion
and an outlook on future research.

The computations in this paper are performed with the pseudo-arclength continuation
package Auto [9, 10] and its extension HomCont [7]. More specifically, global manifolds
are computed with a two-point boundary value problem set-up [5, 20] and the heteroclinic
orbits are obtained with Lin’s method [21, 42]. The parameter sweeping of ζ in parameter
plane, visualization and post-processing of the data are performed with Matlab R©.

2 Notation and set-up

We choose parameters such that the Jacobian Df(0) of 0 has two stable and one unstable
eigenvalues, λss < λs < 0 < λu with eigenvectors ess, es and eu, respectively. The global
stable manifold W s(0) is a surface foliated by trajectories that converge to 0 as t→ ∞, and
global unstable manifold W u(0) consist of two trajectories that converge to 0 as t → −∞.
The manifold W s(0) and W u(0) are immersed manifolds in R3: they are as smooth as
f and tangent to the linear spaces spanned by the stable and unstable eigenvectors of 0,
respectively [30]. Furthermore, associated with λss, there is a unique one-dimensional strong
stable manifold W ss(0) ⊂ W s(0), defined as the subset of points on W s(0) that converges
to 0 tangent to the eigenvector ess.

System eq. (1) has a second equilibrium q for the parameters chosen, which is a stable
focus that lies near 0. We denote its basin of attraction as B(q). The set B(q) is an open
connected set of R3 and consists of all points in phase space that converge to q. We also
denote by W ss(q) ⊂ B(q) the subset of points that converge to q tangent to the eigenvector
associated with the real eigenvalue of q, which is the largest eigenvalue in modulus.

Let Γ be a periodic orbit of system eq. (1). We denote the two nontrivial Floquet
multipliers of Γ by Λ1,Λ2 ∈ C; they are the eigenvalues of the variational equation of
system eq. (1) along Γ at time T , where T is the period of Γ. Note that the Floquet
multipliers of Γ in a three-dimensional vector field are always such that their real parts
have the same sign; each one has an associated eigenfunction that is referred as the Floquet
bundle [36]. If Λ1,Λ2 ∈ R and 0 < |Λ1| < 1 < |Λ2| then one speaks of a saddle periodic
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a b c β γ µ̃ δ
0.7 1.0 -2.0 1.0 2.0 0.0 0.0

Table 1: Parameter values chosen for an inclination flip of case C in system eq. (1).

orbit. A saddle periodic orbit has stableW s(Γ) and unstableW u(Γ) manifolds which consist
of points that converge to Γ backward and forward in time, respectively. As for the saddle
equilibrium case, the associated stable and unstable manifolds of a saddle periodic orbit
are two dimensional immersed manifolds; they are tangent to the Floquet bundle of the
periodic orbit associated with Λ1 and Λ2, respectively [30]. If 0 < Λ1 < 1 < Λ2, one speaks
of an orientable saddle periodic orbit, which we denote by Γo, and its stable and unstable
manifolds W s(Γo) and W

u(Γo), respectively, are topological cylinders [28, 36]. Similarly, if
Λ2 < −1 < Λ1 < 0, then the saddle periodic orbit is nonorientable, denoted Γt, and W

s(Γt)
and W u(Γt) are locally topological Möbius bands [28, 36].

Let S1, S2, S3 be hyperbolic saddle invariant objects of system eq. (1) with manifolds
W u(S1),W

s(S2),W
u(S2) andW

s(S3) that are all two-dimensional. If there exist structurally
stable heteroclinic orbits from S1 to S2 and from S2 to S3, that is, if W u(S1) ∩ W s(S2)
and W u(S2) ∩ W s(S3) are non-empty transversal intersections, then we use the notation
S1 → S2 → S3 to represent this situation.

2.1 Sandstede’s Model

System eq. (1) was constructed specifically to study different homoclinic flip bifurcations in
three-dimensional vector fields [33]. It is a very convenient vector field, because its parameter
can be chosen in such a way that either one of the casesA,B andC occur for both inclination
and orbit flip bifurcations. System eq. (1) has been used extensively, particularly to study
numerically transitions between the three cases as codimension-three phenomena due to
resonance [27], and to investigate the unfoldings of homoclinic flip bifurcations of cases A
and B [1, 12].

Note that 0 is an equilibrium of Xs for all parameter values. We use the parameter
ranges found in [27] as a reference to study case C in the (α, µ)-plane and fix parameters as
given in table 1. Since δ = 0, the z-axis is invariant under the flow of system eq. (1) and the
eigenvalues of 0 are given by

λ1,2 = a±
√
b2 + 4µ̃2 and λ3 = c.

The inclination flip bifurcation point CI of case C unfolds with respect to α and µ. At CI,
the equilibrium 0 has eigenvalues λ1 = 1.7, λ2 = −0.3 and λ3 = −2, which confirms that
2|λs| < λu as required for case C. Note that the strong stable manifold W ss(0) is the z-axis.

For our chosen parameters, there exists a stable equilibrium q, which is the same equi-
librium that appears in the discussion of cases A and B in [1, 12]. However, unlike for these
two cases, the stability of q is not of relevance in our study of case C. More specifically, we
find that the orientable saddle periodic orbit Γo takes on the role of q; in particular it is
responsible for the creation of a fold bifurcation F in case C. For the case C considered in
this paper, the equilibrium q is attracting and identifying its basin of attraction is critical
for understanding the reorganization of phase space close to CI; see section 3.
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Figure 4: Illustration of the change of the winding number ζ for system eq. (1). Shown are
W u(0) (red curve), W ss(0) (dark-blue curve) and W ss(q) (cyan curve), Σ (green plane), the
boundaries ∂V (blue planes). The parameter values are µ = 0.001, µ = 0.0 and µ = −0.001
for panels (a), (b) and (c), respectively. Furthermore, α = 0.5 and the other parameter
values are as given in table 1.

2.2 Definition of the winding number

The unfolding of an inclination flip bifurcation of case C is characterized by the existence of
k-homoclinic orbits for any k ∈ N [15]. In [27], these codimension-one homoclinic bifurcations
in the parameter plane are studied via the continuation of solutions to a suitable two-point
boundary value problem (2PBVP) during the transition between cases B and C. A drawback
of this technique is the limitation of sampling only a small number of these bifurcation curves,
which increases the risk of missing subtle interactions in the parameter plane. We define a
winding number ζ for system eq. (1) and run a two-parameter sweep in the (α, µ)-plane to
complement the 2PBVP approach of finding bifurcation curves. The value for ζ is defined
as the number of rotations that W u(0) makes around W ss(q), as introduced more formally
below. Parameter sweeping techniques have been used in part to understand the nature
of cascades of homoclinic bifurcation close to Bykov T-points in the Lorenz system [4] and
Shimizu-Morioka system [4, 41]. It is also useful to illustrate spike adding in neuron models;
for example, see [2, 3]. By combining continuation and parameter sweeping, we are able to
characterize different phenomena not only in the vicinity of the homoclinic flip bifurcation
point of case C, but also far away from it.

To define the quantity ζ , let V := {p = (x, y, z) ∈ R3 | x ≤ 0 and y ≤ 0} and let ∂V be its
boundary. Since we set b = 1 > 0 and δ = 0 in table 1, we have ẋ < 0 on {x = 0}∩V \{y = 0}
and ẏ < 0 on {y = 0} ∩ V \ {x = 0}. Furthermore, the z-axis, {x = 0} ∩ {y = 0}, is a
subset of V and it is invariant. Hence, V is a positively invariant set for system eq. (1),
i.e., φt(V ) ⊂ V for all t ≥ 0 where φt is the flow defined by system eq. (1). Therefore,
any intersection of W u(0) with ∂V must be transversal and W ss(q) cannot intersect ∂V .
We view ζ , that is, the number of rotations that W u(0) makes around W ss(q), as a kind
of linking number, which can only vary through bifurcation. Indeed, since W ss(q) never
intersects ∂V and W u(0) cannot follow W ss(q) to undo itself by restriction of the flow of
system eq. (1), we may view these orbits segments as topological closed curves by identifying
their endpoints.

Homoclinic bifurcations are a mechanism for ζ to change, as is illustrated in fig. 4 for
system eq. (1) with α = 0.5 and three different values of µ. In panel (a) the manifold W u(0)
loops once around W ss(q) before reaching ∂V , that is, ζ = 1. As µ decreases, system eq. (1)
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Figure 5: Bifurcation diagram in the (α, µ)-plane near an inclination flip bifurcation CI of
case C of system eq. (1), with coloring of regions according to the winding number ζ as
given by the colorbar. The inset shows an enlargement of the region indicated in the main
panel. Shown are the curves of homoclinic bifurcation Ho and Ht (brown), non-principal
homoclinic bifurcation (cyan), saddle-node bifurcation SNPΓo

and SNP∗ of periodic orbits
(dark green), Hopf bifurcation HB (light green), period-doubling bifurcation PD (red), fold
bifurcation curve F of heteroclinic orbits from Γo to 0 (blue) and its extension F∗ (blue
dashed curve), heteroclinic bifurcation QΓt

0 from 0 to Γt (magenta), heteroclinic bifurcation
QΓo

0 from 0 to Γo (purple) and codimension-one homoclinic bifurcation TanΓo
of Γo (violet).

The curves SNPΓo
and SNP∗ meet at the cusp point CP, and SNP∗ ends at the generalized

Hopf bifurcation point GHB. The curve F meets QΓo

0 at a codimension-two heteroclinic
cycle point HetCycle; the Smale–horseshoe region SH (gray region) is indicated. We denote
by 1, 2, 3 and 4 four different regions close to the CI point and the line α = 0.5 (dashed).
The other parameters are as in table 1.

goes through a homoclinic bifurcation at µ = 0 in panel (b), after which W u(0) makes an
extra turn around W ss(0) before intersecting ∂V , as shown in panel (c); hence, ζ increases
to 2.

In practice, we calculate ζ by counting the number of intersections of W u(0) with Σ :=
{(x, y, z) ∈ R3 : x = qx}, where qx is the x-component of q, and dividing this number by
two; see fig. 4. The parameter sweeps of ζ shown in figs. 5, 21 and 22 are performed on a
1000× 1000 grid over the corresponding parameter ranges.

3 Bifurcation diagram near CI

We now present more details of the bifurcation diagram shown in fig. 3. Namely, fig. 5 shows
it over a slightly larger range of the (α, µ)-plane together with the parameter sweep of ζ
where the colors indicate the value of the winding number ζ ; the inset shows an enlargement
of the indicated region of the main panel. At first glance, we distinguish the curves of
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period-doubling, saddle-node and heteroclinic bifurcations presented in fig. 3. Recall that the
subindices in the label of each saddle-node bifurcation SNP and period-doubling bifurcation
PD of periodic orbits refers to the orientable and nonorientable saddle period orbit involved,
respectively. Specifically for this bifurcation diagram, we only compute and label one of the
infinitely many saddle-node and period-doubling curves that emanate from CI, namely, the
saddle-node bifurcation SNPΓo

of Γo (green curve) and period-doubling bifurcation PDΓt

of Γt (red curve).
We now discuss the overall features of the bifurcation diagram in fig. 5; further details

will be presented in later sections. Note that, in between successive curves QΓt

0 [mΓo], with
m = 1, 2, 3, 4, of heteroclinic connecting orbits between 0 and Γt (magenta curves), there exist
big regions of the (α, µ)-parameter plane with constant values of ζ . The value of ζ in these
regions increases as we approach the bifurcation QΓo

0 (purple) of a heteroclinic connecting
orbit between 0 and Γo. This indicates the existence of more bifurcation curves QΓt

0 [mΓo], for
m > 4. The labels of the codimension-one heteroclinic bifurcation are deliberately chosen
to encode information of the corresponding heteroclinic orbit in phase space. Figure 6
shows, in phase space, representative heteroclinic orbits QΓt

0 and QΓo

0 (red curves) together
with the saddle periodic orbits Γt (purple curve) and Γo (green curve) at the moment of
the corresponding heteroclinic bifurcation. For simplicity, we use the same label of the
heteroclinic bifurcation to refer to the corresponding orbit in phase space. The heteroclinic
orbit is formed by one branch of W u(0), which is the branch shown in fig. 6. In panel (a1),
the heteroclinic orbit QΓt

0 [Γo] makes an excursion close to the (x, y)-plane, and then follows
Γo for one rotation before accumulating onto Γt. In panels (a2)-(a5), the branch of W u(0)
also accumulates onto Γt, but only after making two, three, four and five rotations near
Γo, respectively. Hence, the number of rotations that the respective heteroclinic orbit of
QΓt

0 makes in phase space around Γo increases until it reaches its limiting case, where the
number of rotations around Γo has increased to infinity, at QΓo

0 as shown in panel (b).
This accumulation is seen in fig. 5, where the cascade QΓt

0 [mΓo] accumulate on the final
codimension-one heteroclinic bifurcation QΓo

0 of a connecting orbit between 0 and Γo (dark-
purple curve). Note also that the winding number ζ is at its computational maximum after
this curve; this is due to the accumulation of the unstable manifold W u(0) onto q after QΓo

0

is crossed, as will be detailed in section 6. This curve QΓo

0 represents the last moment where
system eq. (1) exhibits a homoclinic or heteroclinic bifurcation close to CI, after which the
dynamics are complicated due to the existence of structurally stable homoclinic orbits of Γo.

It was proved under the conditions of case C that a Hénon-like attractor unfolds from
CI [25]. The Smale–horseshoe region was conjectured to be bounded by a first quadratic
tangency between the stable and unstable manifolds of a saddle periodic orbit. However,
it was not even clear at the time that such a first tangency existed in the unfolding of an
inclination flip point. We have found this first tangency and it corresponds to the bifurcation
curve TanΓo

(violet curve) in fig. 5 where the stable and unstable manifolds of Γo have a
quadratic tangency. After leaving the Smale–horseshoe region through TanΓo

, we find a
strange attractor in phase space that is topologically equivalent to the Rössler attractor. This
attractor exists during a reverse period-doubling cascade which terminates at the bifurcation
PDΓt

, where the saddle periodic orbit Γt changes to an attracting periodic orbit Γa
t and

the corresponding attracting periodic orbit 2Γa
t of twice the period disappears. Then Γa

t

disappears in the saddle-node bifurcation SNPΓo
with Γo.

Note in fig. 5 that we also find a bifurcation curve F, similar to the ones found in [1, 12],
that represents the moment when W s(0) becomes tangent to W u(Γo). If one follows the
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Figure 6: Configuration of the unstable manifold W u(0) of system eq. (1) in R3 at the
codimension-one heteroclinic bifurcations. Shown are the heteroclinic branch ofW u(0) (red),
and the periodic orbits Γo (purple) and Γt (green). Panels (a1)-(a5) illustrate connections
from 0 to Γt and panel (b) shows the connection from 0 to Γo. Here, we used α = 0.5 and
the respective µ-values for each panel are given in table 3.

curve F in fig. 5, one sees that it intersects the curve QΓo

0 at a point that we labeled HetCycle

which is seen more clearly in the corresponding enlargement. At this point, there exists
a codimension-two heteroclinic cycle between 0 and Γo in system eq. (1). The unfolding
of this cycle has been studied theoretically [6, 24] as an organizing center for the creation
of chaotic regions in the parameter plane and the creation of multi-pulse homoclinic solu-
tions that exhibit flip bifurcations close to it. This agrees with our computations because
the Smale–horseshoe region SH in fig. 5 also unfolds from the point HetCycle; moreover,
different homoclinic bifurcation branches in the bifurcation diagram exhibit inclination flip
bifurcations as will be discussed in detail in section 8.

Finally, note in fig. 5 that the additional stable equilibrium q of system eq. (1) goes
through a Hopf bifurcation labeled HB (light-green curve) and becomes an unstable saddle
focus. On the curve HB, there exists a generalized Hopf bifurcation point GHB, which gives
rise to a curve (dark-green) of saddle-node bifurcation SNP∗ at which Γo and an attracting
periodic orbit Γa are created. The curve SNP∗ ends in a cusp bifurcation point CP with the
curve SNPΓo

; see the inset in fig. 5. The periodic orbits Γo and Γt disappear on the other
side of SNPΓo

and only Γa persists; hence, the bifurcation curves QΓo

0 and F disappear at
the point CP and the curve SNP∗, respectively. In particular, we find another curve F∗

(dashed blue line), which represents the moment when W s(0) becomes tangent to W u(q);
this curve constitutes the extension of F past its intersection with SNP∗.
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Figure 7: Phase portraits of system eq. (1) in regions 1–3 of the (α, µ)-plane and along
the bifurcations Ho and Ht near the inclination flip point CI. Shown are W s(0) (blue sur-
face), W ss(0) (blue curve), W u(0) (pink curve), W s(Γo) (cyan surface) and W s(Γt) (purple
surface). The (α, µ)-values for each panel are given in table 2.
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1
2 3 Ho Ht1o 1t

α 0.200 0.500 0.200 0.500 0.200 0.500
µ 0.050 0.001 −0.001 −0.002 0.000 0.000

Table 2: Representative parameter values for the open regions 1–3 and the homoclinic
bifurcations Ho and Ht, as used in fig. 7; all other parameter values are as in table 1.

4 Transition through the homoclinic bifurcations

In order to illustrate the difference between crossing the orientable homoclinic bifurcation Ho

and the nonorientable homoclinic bifurcation Ht in fig. 5, we choose representative points in
the regions 1 to 3 and at the bifurcations Ht and Ho; see table 2 for the precise parameters
chosen. In particular, we choose two points in region 1, labelled 1o and 1t, which are close
to Ho and Ht, respectively. The phase portraits with the respective global invariant objects
in R3 are shown in fig. 7.

Region 1 is characterized by the existence of the orientable saddle periodic orbit Γo, the
saddle equilibrium 0 and the stable-focus q. Panel 1o of fig. 7 shows the corresponding
phase portrait, which consists of the stable manifolds W s(0) (blue surface) and W s(Γo)
(cyan surface), and the unstable manifolds W u(0) (red curve) and W u(Γt) (orange surface).
Note that W s(Γo) is a topological cylinder that bounds the basin of attraction B(q) of q.
The manifold W s(0) accumulates from the outside onto W s(Γo) backward in time. One
of the sheets that form W u(Γo) lies inside the topological cylinder W s(Γo) and, as such,
it accumulates onto q; the other sheet is bounded by W u(0). The accumulation of W s(0)
onto W s(Γo) and the fact that W u(0) bounds one sheet of W u(Γo) are due to the λ-lemma
[30, 40]: the existence of a nontransversal intersection between W s(0) andW u(0) implies the
existence of a structurally stable heteroclinic orbit from Γo to 0. Notice that W u(0) spirals
once around Γo before escaping to infinity, so that ζ = 1 for this region. The boundary
between regions 1o to 2 is the codimension-one orientable homoclinic bifurcation Ho. At this
bifurcation, the saddle periodic orbit Γo becomes the homoclinic orbit Γhom and the stable
manifold W s(0) closes along its strong stable manifold W ss(0) in a topological cylinder; see
panel Ho of fig. 7. However, the moment one transitions into region 2, the homoclinic orbit
Γhom disappears, allowing W u(0) to accumulate onto q; see panel 2 of fig. 7. Hence, the
ζ-value in this region is infinite.

We now focus on the transition through the codimension-one nonorientable homoclinic
bifurcation Ht. At the point 1t, system eq. (1) is close to a nonorientable homoclinic bifur-
cation. Note that the computed manifolds in panels 1t and 1o are topologically equivalent,
but the way W s(0) approaches backward in time onto W ss(0) vastly differs. In particular,
note in panel 1t how the bottom part of the outer layer of W s(0) that accumulates onto
W s(Γo) twists as it gets closer to W

ss(0). In the transition from region 1t to region 3, sys-
tem eq. (1) exhibits the bifurcation Ht illustrated in panel Ht of fig. 7. At this bifurcation,
the stable manifold W s(0) closes along its strong stable manifold W ss(0) in a topological
Möbius band. In contrast to Ho, the saddle periodic orbit Γo does not become the homo-
clinic orbit Γhom at the bifurcation Ht. Then into region 3, the saddle periodic orbit Γo

persists and Γhom bifurcates into the nonorientable saddle periodic orbit Γt; see panel 3 of
fig. 7. Its stable manifold W s(Γt) (purple surface) accumulates onto Γo backward in time,
and W s(0) lies in between W s(Γo) and W

s(Γt). Contrary to region 2, the unstable manifold
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W u(0) spirals twice aroundW s(Γo) and then escapes to infinity, so that ζ = 2 for this region.
Furthermore, the two-dimensional stable and unstable manifolds in region 3 have transverse
intersections; in particular, we have a configuration of the form Γo → Γt → 0, that is, there
exist heteroclinic orbits from Γo to Γt and from Γt to 0.

By applying the λ-lemma [30, 40] in a Poincaré section of Γt, we can show that Γo →
Γt → 0 implies, in fact, the existence of infinitely many heteroclinic orbits from Γo to 0.
Hence, we have the following:

Remark 4.1. The phase portrait in region 3 is topological equivalent to that in region 4 for
case B if we contract Γo to the point q; see [12].

4.1 Intersection sets with a sphere

fig. 8 shows the same series of phase portraits from fig. 7 in terms of intersection sets of the
stable manifolds with the sphere S∗ := {x ∈ R3 :|| x − c ||= R}, where c := (cx, cy, cz) =
(0.5, 0, 0) and R = 0.6; these intersection sets have been stereographically projected onto
one of the tangent planes of S∗. More precisely, we first apply the transformation

π =

(
u

||u ||
,
v

||v ||
,
w

||w ||

)
,

formed by the vectors

u = (0.5706, 0.1854, 0)T , v = (1,−(ux + uz)/uy, 1)
T and w = u× v.

We rotate and translate points (x, y, z) ∈ S
∗ to points (x′, y′, z′) on the sphere of radius R =

0.6 centered at the origin, that is, (x′, y′, z′) = π(x−c). We then use stereographic projection
from the south pole onto the tangent plane at the north pole, via the transformation

(x′, y′, z′) 7→

(
Rx′

R + z′
,
Ry′

R + z′

)
. (3)

This particular stereographic projection was chosen to improve the visibility of certain fea-
tures of the intersection sets specific to case C.

The left column of fig. 8 illustrates the transition through Ho and the right column
through Ht. Starting from panel 1o in fig. 8, note how the intersection set Ŵ s(Γo) (cyan

curve) is made up of two topological circles that bound the disconnected basin B̂(q), that is,

∂B̂(q) = Ŵ s(Γo). The intersection Ŵ s(0) (blue curve) is a single curve that accumulates in

a spiralling manner backward in time onto Ŵ s(Γo). The accumulation is as expected: the

λ-lemma implies that the transversal heteroclinic orbit from Γo to 0 causes Ŵ s(0) to spiral

around Ŵ s(Γo). Note that these phenomena are only observed if the sphere S∗ is chosen

small enough. At the moment of the bifurcation, shown in panel Ho, the curve Ŵ
s(0) closes

back on itself along Ŵ ss(0) and Ŵ s(Γo) disappears as Γo becomes the homoclinic orbit Γhom;

the basin B̂(q) is now bounded by a subset of Ŵ s(0), that is, ∂B̂(q) ⊂ Ŵ s(0). Hence, at
Ho, the boundary of the basin of attraction of q is contained in W s(0). As soon as we enter

region 2, the entire intersection set Ŵ s(0) becomes the boundary of B̂(q), which is now a
connected region that is topologically equivalent to an open disk; see panel 2.

In panel 1t of fig. 8, one sees the same topological configuration as in panel 1o, because
both phase portraits are from the same region; however, note how only one end of Ŵ s(0)
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Ŵ ss(0)

Ŵ ss(0)
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Figure 8: Stereographic projections of the intersection sets of the invariant manifolds with S∗

in regions 1–3 and at the homoclinic bifurcations Ho and Ht near the inclination flip point
CI. The left and right columns show the transition through the homoclinic bifurcations Ho

and Ht, respectively. Shown are Ŵ s(0) (dark-blue curves), Ŵ ss(0) (light-blue dots), Ŵ s(Γo)

(cyan curve), Ŵ s(Γt) (purple curve) and B̂(q) (shaded yellow region). See table 2 for the
respective parameter values.
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gets close to both points in Ŵ ss(0) in panel 1t. At the nonorientable homoclinic bifurcation

Ht, the intersection set Ŵ s(0) connects back on itself at Ŵ ss(0) in a different way, as is

illustrated in panelHt of fig. 8. Here, Ŵ
s(0) does not bound two open regions as in panelHo.

Instead, at Ht the two segments that form Ŵ s(0) accumulate onto the two topological circles

Ŵ s(Γo) due to the persistence of the heteroclinic orbit from Γo to 0. The nature of B̂(q)
and its boundary is unchanged from panel 1o. As one transitions to region 3, the homoclinic
orbit Γhom becomes the periodic orbit Γt and the intersection set Ŵ s(Γt) (purple curve) is

a single curve that accumulates at both ends onto Ŵ s(Γo) backward in time, due to the
existence of a heteroclinic orbit from Γo to Γt. As mentioned before, there are infinitely
many heteroclinic orbits from Γo to 0 in region 3. Since S∗ is a sufficiently small sphere that
is transverse to Ŵ s(0), there exist infinitely many curves in Ŵ s(0). One curve in Ŵ s(0)

accumulates onto a single topological circle of Ŵ s(Γo), and all other cuves accumulate onto

both topological circles of Ŵ s(Γo). These sets of curves get arbitrary close to Ŵ s(Γt) from

both sides; we say that Ŵ s(Γt) is a geometric accumulation curve of Ŵ s(0). In panel 3 of

fig. 8 we only show three of these infinitely many intersection curves of Ŵ s(0), namely, the

outer curve that accumulates onto the single topological circle of Ŵ s(Γo), and two other

curves that track Ŵ s(Γt) on both sides. We remark that the intersection sets shown in fig. 8
are homotopic to the intersection sets shown in [12] for the transition through Ho and Ht

in case B, provided one contracts Ŵ ss(Γa
o) to Ŵ

s(q) through Ho and blows up Ŵ s(q) to a
closed curve through Ht in case B.

The fact that Γo → Γt → 0 implies the existence of infinitely many structurally stable
heteroclinic orbits from Γo to 0 is going to be a recurrent phenomenon for different equilibria
and saddle periodic orbits. For ease of exposition, we summarize the consequences in general
terms:

Proposition 4.2. Let A,B and C be hyperbolic saddle equilibria or periodic orbits of sys-
tem eq. (1). If A → B → C then there exist infinitely many structurally stable orbits from
A to C. Furthermore, if W s(A) intersects S∗ transversally then there exist infinitely many

curves in Ŵ s(C). Each curve in Ŵ s(C) accumulates onto Ŵ s(A) backward in time, and

Ŵ s(B) is a geometric accumulation curve of Ŵ s(C).

Proof. The proof follows from the λ-lemma and is a variation of the proof given in [12] for
the case q → Γt → 0.

5 Cascades of homoclinic and heteroclinic bifurcations

We now focus our attention on the invariant manifolds of system eq. (1) during the cascades
of homoclinic and heteroclinic bifurcations, which we study and illustrate along the line
α = 0.5 in the (α, µ)-plane.

5.1 Transition through 2Ht

Starting from region 3, we first encounter the codimension-one nonorientable homoclinic
bifurcation 2Ht which is shown in fig. 9 as a stereographic projection of the stable invariant
objects on S∗ that exist in phase space. Panel (a) shows a sketch of the intersection sets
in region 3 shown in fig. 8. The pink region indicates the relative location of the infinitely
many curves in Ŵ s(0) that accumulate geometrically onto Ŵ s(Γt). At the moment of the
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Ŵ ss(0) Ŵ ss(0)
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Ŵ ss(0) Ŵ ss(0)
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Figure 9: Stereographic projection of the intersection sets of the invariant manifolds with
S∗ before, at, and after the moment of the codimension-one homoclinic bifurcation 2Ht in
panels (a), (b1) and (b2), and (c), respectively. Panel (a) shows a sketch of the stereographic
projection in region 3; panels (b1) and (b2) show a sketch and the computed projections
of system eq. (1) at 2Ht, respectively; and panel (c) shows a sketch after 2Ht. The color
code and labeling of the regions is as in fig. 8. Panel (b2) is for parameter values (α, µ) =
(0.5,−0.002880267).
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codimension-one homoclinic bifurcation 2Ht, the outer-most curve in Ŵ s(0) that connects

both topological circles of Ŵ s(Γo) split into two curves that close on Ŵ s(0) at the two points

Ŵ ss(0); see the sketch in panel (b1) of fig. 9 and the associated computed phase portrait on
S∗ in panel (b2). The bifurcation 2Ht gives rise to the saddle periodic orbit 2Γt, and we find
the following transversal connections: Γo → 2Γt → 0, Γo → Γt →

2Γt and Γo → 2Γt → Γt.
Panel (c) illustrates the situation by way of a representative sketch. Note how the two curves

of Ŵ s(0) that end at Ŵ ss(0) in panel (b1) give rise to the two light-green regions, which

represent the accumulation onto Ŵ s(2Γt) (dark-cyan curves) of infinitely many curves in

Ŵ s(0) and Ŵ s(Γt) due to the existence of Γo → 2Γt → 0 and Γo → 2Γt → Γt; we refer to

proposition 4.2. Both circles in Ŵ s(Γo) bound one of these two regions, but only one circle

in Ŵ s(Γo) bounds the other region. Furthermore, since Γo → Γt → 0 and Γo → Γt →
2Γt,

the pink region must contain infinitely many curves of Ŵ s(2Γt), and infinitely many curves

in Ŵ s(0) also accumulate geometrically onto these curves. The existence of both pink and
light-green regions is important. As µ decreases, the outer-most curve from the region that
is closest to Ŵ ss(0) will meet Ŵ ss(0) at a certain value µ∗; depending on whether this is

a curve from Ŵ s(0), Ŵ s(Γt) or Ŵ s(2Γt), system eq. (1) exhibits a particular correspond-
ing codimension-one homoclinic or heteroclinic bifurcation. Furthermore, as the infinitely
many curves in Ŵ s(0) accumulate onto either Ŵ s(Γt) or Ŵ s(2Γt), infinitely many homo-
clinic bifurcations must occur before a codimension-one heteroclinic bifurcation can take
place. Whenever a homoclinic bifurcation occurs, the above sequence of different kinds of
bifurcations occurs again; that is, an additional saddle periodic orbit is created, accompa-
nied by two regions of accumulation with respect to the stable manifold of the new saddle
periodic orbit. Moreover, an accumulation of intersection curves from this stable manifold
is created inside the already existing regions. In addition, the closer Ŵ s(0) lies to Ŵ s(Γt)

or Ŵ s(2Γt), the higher the number of rotations are for both the homoclinic orbit and the
bifurcating saddle periodic orbit.

5.2 Transition through QΓt

0 [Γo]

We illustrate in fig. 10 the transition through the codimension-one heteroclinic bifurcation
QΓt

0 [Γo] and its effect on the reorganization of the stable manifold W s(Γt) (purple surface)
in phase space. The left column shows W s(Γt) in a tubular neighborhood of Γt, showing
that W s(Γt) is topologically a Möbius band. The right column (2) shows a larger part of
W s(Γt). Panels (a1) and (a2) show W s(Γt), at µ = −0.002, before the bifurcation QΓt

0 [Γo]
and the associated first homoclinic cascade; panels (b1) and (b2) are at the moment of the
bifurcation, when µ ≈ −0.002880324; and panels (a3) and (b3) are for µ = −0.0035, in
region 4 past the first cascade; see fig. 5.

We first focus on the local behavior in a tubular neighborhood. In panel (a1), the unstable
manifold W u(0) (red curve) makes one rotation close to Γo and one close to Γt and then
escapes to infinity. As discussed before, a sequence of homoclinic bifurcations must occur
before the bifurcation QΓt

0 [Γo] is exhibited by system eq. (1). During this sequence, the
unstable manifold W u(0) gains turns around W s(Γt), thus increasing ζ , until its limiting
case at the bifurcation QΓt

0 [Γo]. However, note how the first loop of W u(0) is still close to
Γo before accumulating onto Γt; this situation is the same as in panel (a1) of fig. 6. After
QΓt

0 [Γo], a sequence of homoclinic bifurcations occur which decreases the winding number of
W u(0) around W s(Γt), thus decreasing ζ . Finally in region 4, the unstable manifold W u(0)
makes two rotation close to Γo and one again close to Γt before escaping to infinity; see
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Figure 10: The stable manifold W s(Γt) (purple surface) of the nonorientable saddle periodic
orbit Γt (green curve), together with W u(0) (red curve) and W ss(0) (blue curve) before,
at, and after the moment of the codimension-one heteroclinic bifurcation QΓt

0 [Γo] of sys-
tem eq. (1) in rows (a), (b) and (c), respectively. The left column shows W s(Γt) in a tubular
neighborhood of Γt, and the right column shows a larger part of W s(Γt). Rows (a), (b) and
(c) are for (α, µ) = (0.5,−0.002), (α, µ) = (0.5,−0.002880324) and (α, µ) = (0.5,−0.0035),
respectively.
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Ŵ ss(0)
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Figure 11: Stereographic projection of the intersection sets of the invariant manifolds with
S∗ at the codimension-one heteroclinic bifurcation QΓt

0 , in region 4, and at the codimension-
one heteroclinic bifurcation QΓo

0 in rows (a) and (b), respectively. The left column shows
the computed projections and the right column corresponding sketches. The color code
and labeling of the regions is the same as in fig. 8. Panels (a1), and (b1) are for (α, µ) =
(0.5,−0.002880324) and (α, µ) = (0.5,−0.0035), respectively.

panel (c1). In particular, the orientation of the homoclinic bifurcation of 0 that follows,
depends on how W u(0) passes near Γo and Γt.

We gain a deeper understanding by studying a larger portion of W s(Γt) as shown in the
right column of fig. 10. Panel (a2) illustrates how W s(Γt) spirals around W

s(Γo) due to the
presence of heteroclinic orbits from Γo to Γt; the outer rim of the computed part ofW s(Γt) is
highlighted as the black curve. Note how part ofW s(Γt) gets close to W

ss(0) before starting
to spiral again. In panel (b2), this part of W s(Γt) has disappeared, and the existence of
the heteroclinic orbit QΓt

0 [Γo] forces W
s(Γt) to accumulate onto W ss(0) backward in time.

After the bifurcation QΓt

0 [Γo], the manifold W s(Γt) no longer accumulates onto W ss(0); see
panel (c2). Observe that W s(Γt) in panel (c2) seems identical to W s(Γt) in panel (b2), but
it exhibits one additional loop. This extra loop would spread out if a much larger portion of
W s(Γt) were computed, and it would get close to W ss(0) in the same way as in panel (a2).

Figure 11 illustrates the transition to region 4 on the level of the intersection sets of
the invariant objects with S

∗. Panels (a1) and (a2) are stereographic projections of the
intersection sets with S∗ at the moment of the first codimension-one heteroclinic bifurcation
QΓt

0 [Γo] of Γt. At the moment of the bifurcation the curve Ŵ s(Γt) (purple) splits into two
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curves that meet at the two points in Ŵ ss(0); see panel (a1). This phenomenon is illustrated

more clearly in the sketch shown in panel (a2), where the accumulation of curves in Ŵ s(Γt)
is represented by the pink shading. As mentioned before, each homoclinic bifurcation creates
a saddle periodic orbit that gives rise to two new accumulation regions in the intersection set
with S∗; these are shaded in panel (a2) with different tones of cyan and the label indicates the
intersection curve of the principal stable manifold. Only two pairs of accumulation regions
are indicated in panel (a2). The gray region represents the infinitely many regions created
in further homoclinic bifurcations and specifies their relative location in the stereographic
projection. It is clear from panels (a1) and (a2) of fig. 11 that, after crossing of QΓt

0 [Γo], there
is another cascade of homoclinic bifurcations that terminates on the homoclinic bifurcation
associated with the blue curve in Ŵ s(0) that bounds the pink region in panel (a2); this
last homoclinic bifurcation corresponds to the last bifurcation that system eq. (1) exhibits
before transitioning into region 4 in fig. 5. Panels (b1) and (b2) in fig. 11 show the situation
in region 4 on the level of the stereographic projections. In particular, each accumulation
region is represented by the main intersection curve of the stable manifold of the saddle
periodic orbit that exists on it. Observe how one of the curves of Ŵ s(Γt) and, thus, the

corresponding accumulation region accumulate onto a single topological circle of Ŵ s(Γo),

while the other curve accumulates on both topological circles of Ŵ s(Γo). This is true for
each of the accumulation regions of the different saddle periodic orbits, while they accumulate
at the same time onto Ŵ s(Γt) (gray region).

5.3 Transition through QΓo

0

The final step at the end of all cascades is the heteroclinic bifurcation QΓo

0 . The two-
dimensional stable manifold W s(Γo) does not interact with any saddle invariant object,
and it retains its topological properties during the cascades of homoclinic and heteroclinic
bifurcations. However, this changes as soon as W s(Γo) intersects W

u(0) at the bifurcation
QΓo

0 , which is illustrated in fig. 12. Specifically, the left column showsW s(Γo) (cyan surface),
together with W u(0) (red curve), in a tubular neighborhood of Γo and the right column
shows larger parts of these manifolds. Panels (a1) and (a2) show, at µ = −0.002, the
situation before the bifurcationQΓo

0 , that is, during the homoclinic and heteroclinic cascades;
panels (b1) and (b2) are for µ ≈ −0.004861805 at the moment of the bifurcation QΓo

0 ; and
panels (a3) and (b3) are for µ = −0.005, after the bifurcation. It seems that, in the vicinity of
Γo, the transition through QΓo

0 does not manifest itself as any topological change forW s(Γo),
apart from its relative position with respect to W u(0). Hence, in panels (a1), (b1) and (c1),
one sees W u(0) outside, at, and inside the topological cylinder W s(Γo), respectively. The
difference becomes apparent only when we consider a larger portion of phase space. In
panel (a2), the stable manifold W s(Γo) is still a topological cylinder, but note how part of
W s(Γo) lies close to W ss(0). The moment QΓo

0 occurs, in panel (b2), one trajectory of the
unstable manifold manifold W u(0) lies inside W s(Γo) which forces W s(Γo) to accumulate
onto W ss(0) backward in time. After the bifurcation QΓo

0 , as shown in panel (c2) of fig. 12,
the lower half of W s(Γo) starts to spiral around its upper half. The spiralling accumulation
is due to the existence of structurally stable homoclinic orbits of Γo. Note in panel (c2) that
one branch of W u(0) lies in the basin B(q) and the other one lies in the positive invariant
set V , as defined in section 2.2. Hence, the winding number ζ is infinite and there cannot
be any homoclinic or heteroclinic bifurcations occurring after QΓo

0 . This implies that QΓo

0

marks the end of the homoclinic and heteroclinic cascade in the (α, µ)-plane.
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Figure 12: The stable manifold W s(Γo) (cyan surface) of the orientable saddle periodic orbit
Γo (purple curve), together with W u(0) (red curve) and W ss(0) before, at, and after the
moment of the codimension-one heteroclinic bifurcation QΓo

0 of system eq. (1) in rows (a),
(b) and (c), respectively. The left column shows W s(Γt) in a tubular neighborhood of
Γt, and the right column shows a larger part of W s(Γt). Rows (a), (b) and (c) are for
(α, µ) = (0.5,−0.002), (α, µ) = (0.5,−0.004861805) and (α, µ) = (0.5,−0.005), respectively.
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5.4 Computation of bifurcation sequences

To determine different homoclinic and heteroclinic cascades, and to understand their orga-
nization in the parameter plane, we computed representative bifurcation points and their
corresponding µ-values along the line α = 0.5. These are listed in table 3, which also lists the
sequence of further bifurcations past these cascades. We first discuss the global bifurcations
up to QΓo

0 and then the remaining bifurcations.
As µ decreases from the primary homoclinic bifurcation Ht at µ = 0, we encounter

homoclinic and heteroclinic cascades in a particular order, followed by saddle-node and
period-doubling bifurcations of periodic orbits. As mentioned before, a saddle periodic orbit
is created for each homoclinic bifurcation that occurs as µ decreases; e.g., the saddle peri-
odic orbits Γt and

2Γt are created from the homoclinic bifurcations Ht and
2Ht, respectively.

We now employ a similar notation as used for the heteroclinic bifurcations to denote the
subsequent homoclinic bifurcations where the corresponding orbit makes rotations around
certain saddle periodic orbits before accumulating backward and forward in time to 0. For
ease of exposition, we append this information in their corresponding labels. For example,
Ho[nΓo, mΓt] represents the codimension-one orientable homoclinic bifurcation where the
corresponding orbit makes n turns around Γo and then m turns around Γt before accu-
mulating forward in time to 0. In particular, the homoclinic bifurcations Ho[nΓo, mΓt] or
Ht[nΓo, mΓt], for n,m ∈ N, in table 3 create saddle periodic orbits that make n + m + 1
loops (the first rotation cannot be assigned to any saddle periodic orbit) and have the same
orientation as the homoclinic bifurcation. Heuristically, one can get information about the
orientation of the homoclinic bifurcation by looking at the parity ofm, that is, the amount of
times the corresponding orbit of the homoclinic bifurcation rotates around Γt in phase space
before converging to 0. In general the first turn changes the orientation of the homoclinic
bifurcation to nonorientable, and every time a rotation occurs around Γt, the orientation
swaps; hence, for odd m the corresponding bifurcation is nonorientable and for even m
it is orientable. For example, observe in table 3 that the homoclinic cascade of the form
Ht[Γo, mΓt], with m even, increases in the number of rotations around Γt until it accu-
mulates onto QΓt

0 [Γo]; the number of rotations then starts decreasing, with m odd, up to
Ho[Γo,Γt]. In particular, Ho[Γo,Γt] is the last bifurcation that occurs before transitioning
into region 4. Note that between Ho[Γo,Γt] and Ht[2Γo] there is a larger gap in µ compared
to the previous homoclinic bifurcations. This is due to the termination and the start of
new homoclinic and heteroclinic cascades, respectively. In particular, these two homoclinic
bifurcations are related as they create the saddle periodic orbits 3Γo and 3Γt, which disap-
pear in the saddle-node bifurcation SNP3Γo

. Because ζ remains constant at ζ = 3, we also
have numerical evidence that during this gap there cannot exist additional homoclinic or
heteroclinic bifurcations.

We also present in table 3 the µ-values of representative codimension-one heteroclinic
bifurcations from 0 to 2Γt. For example, at the heteroclinic bifurcation Q

2Γt

0 [2Γo], sys-
tem eq. (1) exhibits a heteroclinic orbit that connects 0 to 2Γt while rotating twice around
Γo. This shows that there exist additional cascades inside the cascade Ho[2Γo, mΓt] with m
even, and the same holds for the cascade Ht[2Γo, mΓt] with m odd, as our topological sketch
in panel (b2) of fig. 11 suggests due to the λ-lemma. In general, there must be cascades of the
form Ho/t[2Γo, mΓ∗], m ∈ N, where Γ∗ is a different saddle periodic orbit, accumulating onto
heteroclinic bifurcations QΓ∗

0 [2Γo]. Therefore, there exist entire clusters of cascades. These
clusters of cascades are repeated starting from Ht[2Γo] and ending at Ho[2Γo,Γt], and again
for the pair Ht[3Γo] and Ho[3Γo,Γt], and so on. In general, the center of each cluster corre-
sponds to the heteroclinic bifurcation QΓt

0 [nΓo], with n = 2, 3, 4, 5, ..., which occurs only once
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Bifurcation µ× [10−3] Bifurcation µ× [10−3]

Ht 0.0 Ht[5Γo] -4.619987
2Ht -2.880268 Q

2Γt

0 [5Γo] -4.619993

Ht[Γo, 2Γt] -2.880324 QΓt

0 [5Γo] -4.620120

Ht[Γo, 4Γt] -2.880324 Ho[5Γo,Γt] -4.620128

Ht[Γo, 6Γt] -2.880324 Ht[6Γo] -4.704132

Ht[Γo, 8Γt] -2.880324 Ho[6Γo,Γt] -4.704235

QΓt

0 [Γo] -2.880324 Ht[7Γo] -4.757563

Ho[Γo, 7Γt] -2.880324 Ho[7Γo,Γt] -4.757636

Ho[Γo, 5Γt] -2.880324 Ht[8Γo] -4.792227

Ho[Γo, 3Γt] -2.880324 Ho[8Γo,Γt] -4.792278

Ho[Γo,Γt] -2.880325 Ht[9Γo] -4.815051

Ht[2Γo] -3.816057 QΓo

0 -4.861805

Q
2Γt

0 [2Γo] -3.816058 F -7.054355

QΓt

0 [2Γo] -3.816233 TanΓo
-7.076705

Q
2Γt

0 [2Γo,Γt] -3.816233 SNP10Γo
-7.077572

Ho[2Γo,Γt] -3.816234 SNP9Γo
-7.078122

Ht[3Γo] -4.249463 SNP7Γo
-7.080554

Q
2Γt

0 [3Γo] -4.249465 SNP6Γo
-7.083202

QΓt

0 [3Γo] -4.249668 SNP5Γo
-7.088049

Q
2Γt

0 [3Γo,Γt] -4.249669 SNP4Γo
-7.097747

Ho[3Γo,Γt] -4.249669 SNP3Γo
-7.120570

Ht[4Γo] -4.483178 PD8Γt
-7.151054

Q
2Γt

0 [4Γo] -4.483183 PD4Γt
-7.153300

QΓt

0 [4Γo] -4.483359 PD2Γt
-7.163762

Q
2Γt

0 [4Γo,Γt] -4.483360 PDΓt
-7.211185

Ho[4Γo,Γt] -4.483359 SNPΓo
-7.386406

Table 3: Computed µ-values at a selection from the infinitely many bifurcations points
along the slice α = 0.5 of system eq. (1). The color of each bifurcation point matches the

corresponding curve in fig. 5. We also show the heteroclinic bifurcation Q
2Γt

0 from 0 to 2Γt

(gray). The ordering and clustering of these bifurcations is illustrated in fig. 13.
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Figure 13: Sketch of the bifurcation sequence along the slice α = 0.5 for the bifurcation
diagram of system eq. (1) in fig. 5. Here, µ decreases to the right; see also table 3.

in each cluster. For example, note from table 3 that the heteroclinic bifurcation QΓt

0 [2Γo]

lies in between the bifurcations Q
2Γt

0 [2Γo] and Q
2Γt

0 [2Γo,Γt]. Furthermore, the last orientable
homoclinic bifurcation from the second cluster, i.e., Ho[2Γo,Γt], is associated with the first
nonorientable homoclinic bifurcation in the second cluster, i.e. Ht[3Γo], because they create
the saddle periodic orbits 4Γo and

4Γt that disappear in the saddle-node bifurcation SNP4Γo
.

These two homoclinic bifurcations also form a big region in the bifurcation diagram fig. 5
with ζ = 4 constant. After Ho[2Γo,Γt] occurs, the rotation of W u(0) around Γt moves closer
to Γo as µ decreases, until it becomes Ht[3Γo]. Similarly, the third cluster of cascades ends
with the orientable homoclinic bifurcation Ho[3Γo,Γt], which is associated with the first ho-
moclinic bifurcation Ht[4Γo], because they create 5Γo and 5Γt which disappear in SNP5Γo

;
these two homoclinic bifurcations also form a big region in the bifurcation diagram fig. 5,
now with ζ = 5. In general, the last orientable homoclinic bifurcation of a cluster and the
first nonorientable homoclinic bifurcation in the following cluster of cascades bound a big
region in the bifurcation diagram fig. 5 with the number of their loops corresponding to the
value of ζ . We are able to compute the homoclinic clusters up to Ho[8Γo,Γt] and Ht[9Γo],
and detect the heteroclinic bifurcations up to QΓt

0 [5Γo]. The cascade ends on QΓo

0 , which
marks the start, as µ decreases, of a regime with transversal homoclinic orbits of Γo, that is,
the existence of Smale–horseshoe dynamics [31].

5.5 Graphical representation of the bifurcation sequence

Figure 13 presents a sketch of the bifurcation sequence along the slice α = 0.5 from table 3.
Here, we illustrate how the infinitely many homoclinic and heteroclinic bifurcations orga-
nize themselves according to our discussion in the previous paragraph. The intersection sets
presented in fig. 11 give us a good explanation for the gap between Ho[Γo,Γt] and Ht[2Γo]

in fig. 13 and the corresponding gap between the µ-values in table 3: the curves in Ŵ s(0)
involved in these two bifurcations are the boundaries of their respective clusters of accu-
mulation, which are locally isolated. Notice that this is the case for all pairs of homoclinic
bifurcations Ho[mΓo,Γt] and Ht[(m+ 1)Γo], as found for m = 1, 2, 3, 4, 5, 6, 7, 8, 9 in table 3.
Furthermore, each gap provides a parameter window during which the extra loop of W u(0),
created in the respective codimension-one heteroclinic bifurcation QΓt

0 , moves closer to Γo;
recall that the next homoclinic bifurcation of Γo will be nonorientable. During these gaps,
the value of the winding number ζ remains constant and is given by the number of loops of
the homoclinic orbits that bound the region in (α, µ)-plane. Note that after every cluster
of accumulation, the unstable manifold W u(0) gains a rotation that lies closer to Γo. This
mean that, as µ decreases, the ζ value in each gap increases until it reaches infinity at QΓo

0 .
Figure 13 also illustrates the order of further bifurcations past QΓo

0 that are computed
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Ŵ s(Γo)
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Figure 14: Stereographic projection of the intersection sets of the invariant manifolds with
S∗ at, and after the codimension-one heteroclinic bifurcation QΓo

0 in rows (a) and (b), re-
spectively. Column (1) shows the computed projections and column (2) shows corresponding
sketches. The color code and labeling of the regions is the same as in fig. 8. Panels (a1) and
(b1) are for (α, µ) = (0.5,−0.004861805) and (α, µ) = (0.5,−0.0065), respectively.

and list in table 3. There is a Smale–horseshoe region SH after transitioning through QΓo

0 ;
this region is discussed in more detail in section 6. Inside SH, the stable manifold W s(0)
becomes tangent to the unstable manifoldW u(Γo) of Γo at the bifurcation F, which plays the
same role as the fold bifurcation curve of the heteroclinic orbit from q to 0 for cases A and
B in [1, 12]. The other boundary of the Smale–horseshoe region SH is the codimension-one
homoclinic bifurcation TanΓo

of Γo, where W
u(Γo) and W

s(Γo) have a quadratic tangency.
Past this bifurcation, there are no more homoclinic orbits of Γo and one finds small regions of
existence of chaotic attractors [25], which are then destroyed via (reversed) period-doubling
and saddle-node cascades of periodic orbits. This is discussed in more detail in section 7.
The right-most period-doubling cascade in fig. 13, the one ending with PDΓt

, changes Γt

into an attracting periodic orbit Γa
t when 2Γa

t disappears. The orbit Γa
t then disappears in

the saddle-node bifurcation SNPΓo
, where it merges with the only other remaining periodic

orbit Γo; then, this marks the entry into region 2 is entered.
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6 Smale–horseshoe region

Figure 14 shows the transition from the bifurcation QΓo

0 to the Smale–horseshoe region on
the level of the intersection sets with the sphere S∗. As before, the left column shows the
numerically computed curves and the right column shows sketches where the gray and brown
regions highlight the relative positions of the accumulation regions; each accumulation region
is represented by the main intersection curve of the stable manifold of the saddle periodic
orbit that exists on it. We present the stereographic projection at the codimension-one
bifurcation QΓo

0 in panels (a1) and (a2). Notice in panel (a1) how one of the topological

circles in Ŵ s(Γo) forms a connecting curve between the two intersection points in Ŵ ss(0),
as a consequence of W s(Γo) accumulating on W ss(0) backward in time; see fig. 12. In this

limiting case, all the accumulation regions accumulate onto this single curve Ŵ s(Γo), while

spiraling around the other topological circle in Ŵ s(Γo). The boundary of B̂(q) is formed by

Ŵ s(Γo) and the segment of Ŵ s(0) in beween the two points Ŵ ss(0). Before Ŵ s(Γo) connects

the two points in Ŵ ss(0) at QΓo

0 , infinitely many heteroclinic and homoclinic bifurcations
must occur as the corresponding intersection sets accumulate in a spiraling manner onto
Ŵ s(Γo); see panels (b1) and (b2) of fig. 11. This explain why the cascades of heteroclinic
bifurcations QΓt

0 and homoclinic bifurcation accumulate onto the bifurcation curve QΓo

0 in
fig. 5.

In panels (b1) and (b2) of fig. 14, after the heteroclinic bifurcation QΓo

0 , the curve Ŵ s(Γo)

that connected the two points Ŵ ss(0) now accumulates onto the topological circle in Ŵ s(Γo)
that persists through this bifurcation. This accumulation is a consequence of the existence of
the homoclinic orbits of Γo and the λ-lemma. Since there are infinitely many homoclinic or-
bits and heteroclinic cycles, there are infinitely many intersection curves in Ŵ s(Γo), Ŵ

s(Γt),

Ŵ s(2Γt), etc., that accumulate onto the topological circle in Ŵ s(Γo). Hence, the accumu-
lation region in the intersection sets is more complicated; we illustrate this change by the
brown shading in panel (b2). Note also that the boundary of the basin of attraction ∂B̂(q)
of q after the bifurcation QΓo

0 in panels (b1) and (b2) has changed from two topological

circles to a topological circle with two handles, that is, ∂B̂(q) ⊂ Ŵ s(0) ∪ Ŵ s(Γo).

6.1 Dynamics inside the region SH

Past the codimension-one heteroclinic bifurcation QΓo

0 of system eq. (1), we find structurally
stable homoclinic orbits of Γo; hence, there exist Smale–horseshoe dynamics in phase space
[31]. Figure 15 (a) shows such homoclinic orbits (maroon and lilac curves) in more detail. The
manifoldsW s(Γo) (cyan surface) andW u(Γo) (orange surface) intersect along the homoclinic
orbits Γo. Note how the outer boundary of the lower half of the topological cylinder W s(Γo)
(black curve) accumulates in a spiraling fashion onto the top half of W s(Γo). Panel (b)
shows an enlargement of panel (a) around the homoclinic orbits, where this accumulation is
illustrated more clearly. The time series of the x-component of the two homoclinic orbits are
shown in panels (c1) and (c2), and together in panel (c3). The lilac orbit moves faster away
from Γo than the maroon orbit. The existence of these homoclinic orbits implies infinitely
many secondary homoclinic orbits of Γo [31]. In addition, their existence also implies the
appearance of heteroclinic cycles between different saddle periodic orbits, such as Γo, Γt,

2Γt,
etc., due to the accumulation of their stable manifolds backward in time onto W s(Γo) and
the accumulation of W u(Γo) onto their respective unstable manifolds.
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Figure 15: Configuration in phase space of W s(Γo) (cyan surface) and W u(Γo) (orange
surface) of system eq. (1) in the Smale–horseshoe region. Panel (a) shows a big part of
W s(Γo) andW

u(Γo) in phase space; while panel (b) shows an enlargement of two transversal
homoclinic orbits (maroon and lilac curves) of Γo. Panels (c1) and (c2) show the x-component
of the transversal homoclinic orbits of Γo separately; while panel (c3) shows them together.
Also shown are W u(0) (red curve) and W ss(0) (blue curve). The panels are for (α, µ) =
(0.5,−0.0065).
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6.2 Transition through F

The numerical results shown in table 3 and fig. 5 indicate that the fold bifurcation F, in the
vicinity of CI, occurs before the intersection between W u(Γo) and W

s(Γo) becomes tangent,
that is, before the bifurcation TanΓo

. The left column of fig. 16 illustrates the crossing of
F, that is, the moment W u(Γo) (orange surface) is tangent to W s(0) (blue surface). Note
the transversal intersection between W s(0) and W u(Γo) in panel (a1) that persists since its
creation in region 1. Since Γo → Γt → 0, there exist infinitely many heteroclinic orbits
from Γo to 0, of which we only show two in panel (a1) (green curves). As F occurs, which
is illustrated in panel (a2), the stable manifold W s(0) goes through a quadratic tangency
with W u(Γo); this is similar to cases A and B [1, 12], where W s(0) exhibited a quadratic
tangency with W u(q). In particular for case C, the infinitely many heteroclinic orbits merge
in a tangent heteroclinic orbit, shown as the white curve in panel (a2). After the transition
through F shown in panel (a3), W s(0) no longer intersects W u(Γo); hence, W

s(0) no longer
accumulates onto W s(Γo) and the unstable manifold W u(0) no longer bounds W u(Γo). In
fact, we find that W s(0) no longer intersects any unstable manifold of any other saddle
periodic orbit.

7 Transition to a strange attractor and period-doubling

cascade

Past TanΓo
one finds chaotic attractors, and cascades of period-doubling and saddle-node

bifurcations. This allows system eq. (1) to transition back to region 2; see section 4.

7.1 Transition through TanΓo

The right column of fig. 16 illustrates the crossing ofTanΓo
, that is, the last tangency between

W u(Γo) (orange surface) and W s(Γo) (cyan surface). After the transition through F and
before TanΓo

occurs, the intersection between W s(Γo) and W u(Γo) still persists, as shown
in panel (b1). As µ is decreased, system eq. (1) must exhibit a sequence of codimension-
one homoclinic bifurcations of secondary tangencies between W s(Γo) and W

u(Γo) [31], until
it reaches the last homoclinic tangency at TanΓo

; shown in panel (b2). The bifurcation
TanΓo

represents the last intersection (blue curve) between W u(Γo) and W
s(Γo). After the

transition through TanΓo
, shown in panel (b3), the manifold W s(Γo) stops accumulating on

itself, because it no longer intersects W u(Γo).
Figure 17 shows additional details of the transition through TanΓo

by considering cor-
responding intersection sets with the sphere S

∗. Row (a) shows the situation in between

the bifurcations F and TanΓo
were the intersection set Ŵ s(0) is formed by a single closed

curve; the left column shows the computed stereographic projections and the right column
the corresponding sketches. Hence, the accumulation region (brown region) that is sketched

in panel (a2) does not contain any intersection curves of Ŵ s(0). We find that the other in-
tersection curves do not go through any significant changes for parameter values in between
the bifurcations F and TanΓo

. Panels (b1) and (b2) illustrate the consequence of crossing

TanΓo
. In particular, the intersection set Ŵ s(Γo) now consists of two single closed curves

that do not accumulate onto any other intersection curve. Nevertheless, the existence of
nontransversal intersections of the unstable manifolds of other saddle periodic orbits with
W s(Γo) forces the other intersection curves to accumulate onto Ŵ s(Γo). Since there are no
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Figure 16: Phase portraits of the transition through the bifurcation curves F (left col-
umn) and TanΓo

(right column) in system eq. (1). Shown are the effect of the transitions
with respect to W s(0) and W u(Γo) (left column), and with respect to W s(Γo) and W

u(Γo)
(right column). Shown are W s(0) (blue surface), W s(Γo) (cyan surface) and W u(Γo) (or-
ange surface); also shown are the corresponding tangency orbits (white and blue curves),
W u(0) (red curve), and W ss(0) (blue curve). Panels (a1), (a2) and (a3) are for (α, µ) =
(0.5,−0.0065), (α, µ) = (0.5,−0.007054355) and (α, µ) = (0.5,−0.00706), respectively. Pan-
els (b1), (b2) and (b3) are for (α, µ) = (0.5,−0.00706), (α, µ) = (0.5,−0.007076705) and
(α, µ) = (0.5,−0.0071), respectively.
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Figure 17: Stereographic projection of the intersection sets of the invariant manifolds with
S∗ after crossing the bifurcation curves F (top row) and TanΓo

(bottom row). The left
column shows the computed projections and the right column shows the corresponding
sketches. The color code and labeling is the same as in fig. 8. Panels (a1) and (b1) are
for (α, µ) = (0.5,−0.00706) and (α, µ) = (0.5,−0.0071), respectively.
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Figure 18: Approximation of the chaotic attractor of system eq. (1) close to the codimension-
one homoclinic bifurcation TanΓo

of Γo. Panel (a) shows three trajectories (red, blue and
green), with initial conditions that differ in the sixth decimal place. Panel (b) shows a
portion of W u(Γo). Here (α, µ) ≈ (0.5,−0.007076768).

homoclinic orbits of Γo anymore, we color the accumulation region light gray in panel (b2).
As we will see in the next section, this region may correspond to the basin of attraction of a
strange attractor or of an attracting periodic orbit. Note also that Ŵ s(Γo) is a topological
annulus. The insets in panels (a1) and (b1) show enlargements around one of the topological
circles of W s(Γo), illustrating the accumulation of W s(Γo) on itself and the lack of it before
and after the transition through TanΓo

, respectively.

7.2 Evidence of the chaotic attractor

Figure 18 shows a chaotic attractor in the phase space of system eq. (1) for µ = −0.007076768.
Panel (a) shows trajectories of three different initial conditions that agree up to five decimal
places. The trajectories are shown after their transients have been discarded, to illustrate
that they are attracted to a lower-dimensional object in phase space. In particular, the
trajectories do not remain arbitrarily close to each other as time progresses, but they do
remain arbitrarily close to W u(Γt), which is shown in panel (b). This is evidence for the
existence of a chaotic attractor, which would be the closure of W u(Γo).

As further evidence, fig. 19 shows the successive returns xSci to the plane y = 0 of the
x-coordinates of each of these three trajectories, plotted as xSci+1 versus xSci , where xSci is
scaled to the interval [0, 1]. Clearly, the return map in fig. 19 is a unimodal map, which is
effectively another clear indication that system eq. (1) has a chaotic attractor. In fact, it was
proven that the Poincaré return map close to an inclination flip bifurcation of case C, up to
some Cr-rescaling, is Cr-close to the family of unimodal maps ψa(u, v) = (0, 1 − av2) [25].
We infer from figs. 18 and 19 that the closure of W u(Γo) can, therefore, be identified with
the template of a type of Rössler attractor [11]. This implies that the strange attractor is
destroyed by the tangency between W u(Γo) and W

s(Γo), as was conjectured in [25]. Hence,
TanΓo

indeed separates the Smale–horseshoe region from the cascades of period-doubling
and saddle-node bifurcations.
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Figure 19: First return map of the scaled x-coordinates of the three trajectories shown in
fig. 18 at the Poincaré section y = 0. The line xSci+1 = xSci is indicated (cyan dashed line) and
the points are colored according to their corresponding trajectories in fig. 18.

7.3 Transition through PD back to region 2

The saddle periodic orbits that are created during the homoclinic and heteroclinic cascades
disappear in cascades of period-doubling and saddle-node bifurcations as µ is decreased.
During this process the intersection sets of different stable manifolds disappear with the
corresponding periodic orbits. In fact, the accumulation region alternates between being
a basin of attraction of an attracting periodic orbit and that of a strange attractor. This
is caused by the saddle-node bifurcations that create periodic windows and start different
period-doubling cascades [11]. These period-doubling and saddle-node cascades terminate
at the final saddle-node bifurcation SNPΓo

, which marks the transition back to region 2.
Figure 20 illustrates the moment before and after the bifurcation SNPΓo

on the level
of the intersection sets of invariant manifolds with S∗; as before, the left column shows the
computed stereographic projections and the right column the corresponding sketches. In
panels (a1) and (a2), after the period-doubling bifurcation PDΓt

, all periodic orbits have
disappeared with the exception of Γo and an Γt, which is now attracting periodic orbit
Γa
t . Immediately after the period-doubling bifurcation, Γa

t has a nonorientable strong stable
manifold W ss(Γa

t ); however, Γ
a
t becomes an attracting periodic orbit Γa

o with an orientable
strong stable manifold before reaching SNPΓo

. This transition from having a nonorientable
and an orientable strong stable manifold occurs via a crossing of the curves CC−

Γa and
CC+

Γa where the Floquet multipliers of Γa
t (Γ

a
o) change from being real positive (negative) to

complex conjugate. In between these curves, the attracting periodic orbit Γa does not have
a well-defined strong stable manifold [12]. We discuss the existence of the curves CC±

Γa in
more detail in section 8, when we study the unfolding over an even larger parameter range.
On the level of the intersection sets shown in fig. 20(a), the former accumulation region has

now become the basin of attraction B̂(Γa
t ) of Γ

a
t (green). Furthermore, the basin B̂(q) is a

disconnected region with boundaries Ŵ s(Γo) and Ŵ
s(0). After, the saddle-node bifurcation

SNPΓo
, which marks the disappearance of Γa and Γo, we find ourselves again in region 2,

as is illustrated in panels (b1) and (b2). Hence, these panels are topological equivalent to
panel 2 of fig. 8.
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Ŵ ss(0)
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Ŵ ss(0) Ŵ ss(0)
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Figure 20: Stereographic projection of the intersection sets of the invariant manifolds with S∗

before (top row) and after (bottom row) the last saddle-node bifurcation SNPΓo
of periodic

orbits. The left column shows the computed projections and the right column shows the
corresponding sketches. The color code and nomenclature of the regions is the same as given
in fig. 8. Panels (a1) and (b1) are for (α, µ) = (0.5,−0.0073) and (α, µ) = (0.5,−0.0074),
respectively.
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8 Global picture in the (α, µ)-plane

We now focus our study on the global organization in the (α, µ)-parameter plane of the
codimension-one bifurcations emanating from the homoclinic flip bifurcation point CI. Fig-
ure 21 shows the numerically computed bifurcation diagram of CI for a much larger param-
eter range in panel (a), as well as two enlargements in panels (b) and (c). In particular, the
parameter sweep of ζ now plays an even more prominent role in discerning small and subtle
interactions of the different bifurcation curves. In fig. 21, we recognize from fig. 5 and table 3
the principal homoclinic branch (brown curve) with CI, as well as the curves of saddle-node
bifurcation SNP (dark-green), of period-doubling bifurcation PD (red), of homoclinic bifur-

cation TanΓo
(violet), of heteroclinic bifurcation QΓt

0 (magenta), QΓo

0 (purple) and Q
2Γt

0 [2Γo]
(gray), and of homoclinic bifurcation Ho[mΓo, nΓt] Ht[mΓo, nΓt] (cyan curves). Note also
the region SH where Smale–horseshoe dynamics occurs, and the curve HB of Hopf bifurca-
tion (green curve) that transforms q into an unstable saddle focus. Panel (a) shows that the
curve HB does not interact with any other bifurcation curve for µ-values larger than that
at the generalized Hopf bifurcation point GHB. We also observe more clearly the curve F∗

(dashed blue); recall that this curve represents the moment when W s(0) becomes tangent
to W u(q), and it is the extension of the curve F past its intersection with SNP∗, as shown
in fig. 5. At first glance, F∗ seems to bound the region where the homoclinic curves exists,
but this is not the case, as we are going to discuss in more detail in the following section.
We also show the curves CC−

Γa and CC+
Γa (orange) which represent the moment the Floquet

multipliers of the attracting periodic orbit Γa become complex conjugate with negative and
positive real parts, respectively. In addition, we also present the curve CC−

2Γa (dark orange)
of the attracting periodic orbit 2Γa; these are visible in panels (b) and (c).

The curves QΓt

0 shown in fig. 21 extend to the top part of the figure in panel (a). They
represent the extensions of the heteroclinic bifurcation curves in fig. 5 past the transition
of Γt to the attracting periodic orbit Γa

t , where QΓt

0 corresponds to the intersection of the
two-dimensional strong stable manifold W ss(Γa

t ) with W
u(0), which is also a codimension-

one phenomenon. As such, these curves terminate at the respective curve CC−
Γa , that is,

at the moment when W ss(Γa
t ) is no longer well defined. This also holds for the heteroclinic

bifurcation Q
2Γt

0 [2Γo] (gray curve), which can be seen to terminate at CC−
2Γa in fig. 21(b).

8.1 Cascades of inclination flip bifurcations

The larger parameter range in fig. 21(a) reveals how the homoclinic bifurcations, which were
hard to discern in fig. 5, fan out and are more distinguishable. Furthermore, we clearly see
how each homoclinic bifurcation curve encloses a region in the (α, µ)-plane with a constant

ζ value; indeed, the ζ-value in each region increases as a heteroclinic bifurcation QΓt

0 or Q
2Γt

0

is approached; see also section 5.
It is an important feature of fig. 21 that many of the homoclinic, saddle-node and period-

doubling bifurcation curves emanating from CI end at other codimension-two inclination
flip bifurcation points. Notably, the principal homoclinic branch goes through a secondary
inclination flip bifurcation B∗

I of case B, which is the end point of the curves 2Ho and PDΓt
.

Moreover, other homoclinic curves exhibit inclination flip bifurcations Cn
I of case C, where

n represents the number of loops that the corresponding homoclinic orbit makes in phase
space.

The bifurcation diagram near one of these inclination flip points, C3
I , is shown in fig. 21(b).

Notice how C3
I is responsible for the transformation of the orientable homoclinic bifurcation
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Figure 21: Bifurcation diagram of system eq. (1) for a larger region in the (α, µ)-plane than
shown in fig. 5. Panels (b) and (c) are enlargements as indicated in panel (a). The color
code of the regions and labeling of the curves are the same as in fig. 5. We also show the
curve Q
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2Γa (orange) of Γa and 2Γa, respectively.
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Ho[Γo,Γt] to the nonorientable homoclinic bifurcation Ht[2Γo], both of which emanate from
the initial inclination flip bifurcation CI. Recall that these homoclinic bifurcations are re-
lated as they represent the last and the first bifurcation of their respective accumulation
cluster, as discussed in section 5.4. Moreover, they create the saddle periodic orbits 3Γo and
3Γt, respectively, and they bound a region in the parameter plane where ζ = 3; see also
fig. 13. So it does not come as a surprise that SNP3Γo

(green curve) ends at the bifurcation
point C3

I , as this bifurcation curve is responsible for the disappearance of 3Γo and
3Γt; indeed

SNP3Γo
plays the same role as SNPΓo

in the unfolding of CI. In Figure 21(c) we observe
that Ho[Γo,Γt] turns around before reaching C3

I , and then the curve continues smoothly
past C3

I as Ht[2Γo] before returning to CI. This same scenario can also be observed for
the inclination flip points C5

I and C7
I . Moreover, fig. 21(c) shows that there exist infinitely

many regions with constant ζ in between the two inclination flip points C3
I and C5

I . The
boundaries of each of these regions are homoclinic bifurcation curves emanating from CI,
which also exhibit an inclination flip bifurcation of case C along them and then come back
to CI as an homoclinic bifurcation curve of the opposite orientation. As a consequence,
the respective saddle-node and period-doubling bifurcation curves extend from CI to this
additional inclination flip bifurcation point.

8.2 Homoclinic bubbles

This type of overall bifurcation structure generated by a particular homoclinic curve is called
a homoclinic bubble [16]. Recall our discussion of the gaps between accumulation clusters
along the slice µ = 0.5, which we found in table 3 and sketched in fig. 13. Figure 21 (a) shows
that the pairs of homoclinic bifurcations Ho[mΓo,Γt] and Ht[(m+ 1)Γo], as found for m =
1, 2, 3, 4, 5, 6, 7, 8, 9 in table 3 form bubbles in the parameter plane. In particular, identified
cascades of these bubbles explain the disappearance of the infinitely many codimension-
one curves that emanate from the unfolding of case C during a transition to case B. In
fact, two types of bubbles were conjectured [16] and subsequently confirmed numerically
[27]: one is characterized by a homoclinic-doubling cascade and the other by an additional
homoclinic flip bifurcation of case C. Figure 22 (a) shows the theoretical sketch of a single
homoclinic k-bubble, for k ∈ N, of the latter type, reproduced from [16]. Notice how
an orientable k-homoclinic bifurcation curve Hk

o emanates from the principal homoclinic flip
bifurcation point Cout and then exhibits an inclination flip bifurcation Ck

out, after which it is
the nonorientable k-homoclinic bifurcation curve Hk

t . In this way, the homoclinic and period-
doubling bifurcation curves of the form 2nk, for n ∈ N, emanating fromCout disappear in the
unfolding ofCk

out. For any k ∈ N, there exists k-bubbles that annihilate all the corresponding
2nk curves ofCout. Those are exactly the bifurcation structures we observe in the bifurcation
diagram of fig. 21 in the transition between the inclination flip points CI and B∗

I .
Figure 22(b) shows a different enlargement of the bifurcation diagram of CI. Here, we use

the coordinate transformation µ∗ := µ+0.1246α−0.06644 and plot the bifurcation diagram
in the (α, µ∗)-plane to improve visualization and comparison with the sketch in panel (a).
The homoclinic curve 2Ht exhibits the inclination flip bifurcation C2

I , which allows 2Ht to
become 2Ho so it can disappear at B∗

I . This is one of the most important curves in the
transition between the two cases [16]. However, it does not form a bubble as presented in
[16] because both homoclinic curves do not emanate from the same point CI. Nevertheless,
the inclination flip point C2

I plays the same role as the homoclinic flip point Ck
out of a k-

bubble for k = 2 in terms of absorbing/generating the respective bifurcation curves. Notice
in fig. 21(b) how the cascade of nonorientable homoclinic bifurcation curves (cyan) of the



INVARIANT MANIFOLDS NEAR HOMOCLINIC ORBITS 41

(a)

(b)

Q
2Γt

0
[2Γo]

CC−
2Γa

C2

I

C3

I C5

I C7

I

QΓt

0
[Γo]

Ht[Γo, 2Γt]

Ht[Γo, 4Γt]

Ht[Γo, 8Γt]

Ht[Γo, 6Γt]
Ho[Γo,Γt]

Ho[Γo, 3Γt]

Ho[Γo, 5Γt]

Ho[Γo, 7Γt]

2Ht

PDΓt

PD2Γt

PD4Γt

F∗

10

20

30

40

µ∗

0.002

0.007

α0.95 1.2

Figure 22: Comparison of a theoretical and numerical inclination flip bubble. Panel (a)
shows the sketch of an inclination flip bubble from [16, Fig. 12]; panel (b) shows a region of
fig. 21 in the (α, µ∗)-plane, where µ∗ := µ + 0.1246α − 0.06644. Color code of the regions
and nomenclature of the curves are as in fig. 21. [The inset is reproduced from Journal of
Dynamics and Differential Equations, Resonant Homoclinic Flip Bifurcations, 12(4), 2000,
pages 807-850, A. J. Homburg and B. Krauskopf, c©Plenum Publishing Corporation 2000
with permission of Springer.]
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form Ht[Γo, nΓt], for n = 2, 4, 6, 8, and the period-doubling bifurcation curves PD2Γt
and

PD4Γt
(red) connect the points CI and C2

I as sketched in panel (a).
The same phenomenon occurs at the points C3

I , C
5
I , and C7

I , but the curves are much
closer together. Figure 22(b) clearly shows the complicated structure of how some homoclinic
bifurcation curves create bubbles and others connect to inclination flip points on bubbles.
It also shows how infinitely many homoclinic bubbles accumulate on QΓt

0 [Γo], which is il-
lustrated by the increase of ζ . Furthermore, notice how the ζ-value also increases in the
different regions in between bubbles, such as those of C3

I , C
5
I and C7

I , each of which is asso-
ciated with a codimension-one heteroclinic bifurcation of the type QΓ∗

0 for a suitable saddle
periodic orbit Γ∗; see section 5. The accumulation of these homoclinic bifurcation curves and
bubbles onto a heteroclinic bifurcation of the form QΓt

0 was not identified in either in [16] or
[27]. Another interesting detail about the bubbles in Figure 21(b) is how they seem to be
bounded by a single smooth curve, where the inclination flip points C3

I , C
5
I and C7

I occur
along it. At first glance, it appears that this curve is F∗, that is, the fold curve of a tangency
between W u(q) and W s(0), as shown in panel (a) and (b) in fig. 21. However, fig. 22 (b)
indicates that this is not the case. This boundary curve represents a boundary crisis [29],
and infinitely many inclination flip bifurcations of case C occur along it. We believe that
this curve of boundary crisis involves the tangency of an, as yet, unknown invariant object.

Finally, we remark that the eigenvalues of 0 do not change as α and µ vary in the
bifurcation diagrams shown in fig. 21 and fig. 22; see section 2.1. This raises the question
of the existence of B∗

I in fig. 21, because it fullfils the eigenvalue conditions of case C.
Preliminary work suggest that it also fullfils the necessary geometry condition for case C.
On the other hand, our bifurcation analysis clearly identifies the point B∗

I as an inclination
flip bifurcation of case B. Further analysis of this codimension-two point is beyond the scope
of this paper, and left for future work.

9 Discussion

We presented a detailed study of the unfolding of a codimension-two inclination flip bifurca-
tion of case C by computing the representative manifolds of saddle objects in system eq. (1)
as well as their bifurcation curves in the (α, µ)-plane. In the same spirit as in [1, 12], we
chose representative points in regions with distinct qualitative behavior, and illustrated the
changes and consequences when different bifurcation curves are crossed. To this end, we pre-
sented the global invariant manifolds in phase space as well as their intersection sets with a
suitable sphere. Clearly, case C is much more complicated than cases A and B. Indeed, one
can find Smale–horseshoe dynamics, strange attractors and cascades of homoclinic, period-
doubling and saddle-node bifurcations in the neighborhood of this codimension-two point in
the (α, µ)-plane. Representative homoclinic, heteroclinic, saddle-node and period-doubling
bifurcations were computed in the (α, µ)-parameter plane and they agree with and extend
the theoretical unfolding described in [15].

In pursuit of a better understanding of this unfolding, we defined a winding number ζ and
performed a parameter sweep in the (α, µ)-plane to delimit regions with different ζ-values.
We found that certain boundaries of these regions correspond to homoclinic bifurcations that
emanate from the inclination flip point but had not been identified before. We also found
that the homoclinic bifurcations reorganize themselves in different cascades that accumulate
onto codimension-one heteroclinic bifurcations that involve different saddle periodic orbits,
e.g. the nonorientable saddle periodic orbit Γt, and the equilibrium 0 [21]. These homoclinic
and heteroclinic cascades can be distinguished in phase space according to the number of
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rotations that the respective homoclinic or heteroclinic orbit makes around different saddle
periodic orbits. We computed and represented the overall implications of these bifurcations
nearCI. We also identified the boundaries of the Smale–horseshoe region as the codimension-
one heteroclinic bifurcation QΓo

0 , where there is a connecting orbit from 0 to the orientable
saddle periodic orbit Γo. The other boundary is the codimension-one homoclinic bifurcation
TanΓo

of Γo. The bifurcation TanΓo
was conjectured to exist [25]; it is tied to the destruction

of a strange attractor, because it marks the termination of the period-doubling cascade. The
bifurcation curves QΓo

0 and TanΓo
intersect to form a codimension-two heteroclinic cycle

between 0 and the orientable saddle periodic orbit Γo, thus, delimiting a bounded connected
region in the (α, µ)-plane where system eq. (1) exhibits Smale–horseshoe dynamics.

We also studied the global bifurcation picture in the (µ, α)-plane to determine the overall
organization of the codimension-one bifurcations emanating from the homoclinic flip point of
case C. We found a complex picture involving the transition to an inclination flip bifurcation
of case B. We found that the certain homoclinic bifurcations create bubbles in parameter
plane, which exhibit an additional homoclinic flip bifurcation of case C that changes the
orientation of the respective homoclinic bifurcation. These bubbles were proposed as a
crucial ingredient in the transition between cases B and C as codimension-three phenomena
[16], and found numerically in [27]. We studied in unprecedented detail the role of the
heteroclinic bifurcations in the existence of these infinitely many bubbles and described
their accumulation on a specific boundary curve.

Overall, the work presented here shows a detailed numerical and theoretical exploration
of the most complicated case of a homoclinic flip bifurcation. The results obtained illustrate
different phenomena that were not considered before for case C and could, in principle, be
extended to a more abstract and general setting. In particular, this paper exemplifies the
important role numerical studies can play, not just in applications, but also for a better
understanding of theoretical constructs. A deeper insight into phenomena can be obtained
that had not yet been considered due to the intricacies of the theory. In fact, theoretical
constructions that might seem esoteric at first glance and devoid of direct use, can be put into
a concrete context thanks to their detection with advanced numerical techniques. Beyond
a contributions to the theory, most of our results may be of interest to applications that
exhibit homoclinic flip bifurcations. For example, it has been found that a combination of
homoclinic flip bifurcation and fast-slow dynamics can explain the creation of large spiking
excursions of periodic orbits, for example in the Hindmarsh–Rose model [23].

A lot of interesting questions arise from our study of homoclinic flip bifurcations, which
we would like to address in the future. One of them concerns the configuration of manifolds
responsible for the inward twist case Cin. It is clear from the theory that the relative
position of the Smale–horseshoe region in the parameter plane is different. For this reason,
the boundaries of this region might differ from the ones found here. However, we have no
concrete example of a three-dimensional vector field exhibiting this particular flavor of caseC
and, as such, are not yet in a position to explore this particular case. We are also interested
in understanding the geometric conditions that give rise to the homoclinic flip point B∗

I of
case B in the bifurcation diagram of case C in fig. 21.

More generally, the results presented here can be seen as a showcase of the capabilities of
advanced numerical methods based on two-point boundary value problems for the bifurcation
analysis of a given system with complicated global bifurcations. Since global bifurcations
have attracted considerable attention recently as organizing centers for spiking, pulsing and
bursting, we hope that the work in this paper may contribute to future insights into theory
and applications alike.



INVARIANT MANIFOLDS NEAR HOMOCLINIC ORBITS 44

References

[1] P. Aguirre, B. Krauskopf, and H. M. Osinga, Global invariant manifolds near
homoclinic orbits to a real saddle: (Non)orientability and flip bifurcation, SIAM J. Appl.
Dyn. Syst., 12 (2013), pp. 1803–1846.

[2] R. Barrio, M. Lefranc, M. A. Mart́ınez, and S. Serrano, Symbolic dynami-
cal unfolding of spike-adding bifurcations in chaotic neuron models, EPL (Europhysics
Letters), 109 (2015).

[3] R. Barrio and A. Shilnikov, Parameter-sweeping techniques for temporal dynamics
of neuronal systems: case study of hindmarsh-rose model, J. Math. Neurosci., 1 (2011).

[4] R. Barrio, A. Shilnikov, and L. Shilnikov, Kneadings, symbolic dynamics and
painting Lorenz chaos, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012).

[5] R. C. Calleja, E. J. Doedel, A. R. Humphries, A. Lemus-Rodriguez, and

E. B. Oldeman, Boundary-value problem formulations for computing invariant man-
ifolds and connecting orbits in the circular restricted three body problem, Celest. Mech.
Dyn. Astron., 114 (2012), pp. 77–106.

[6] A. R. Champneys, V. Kirk, E. Knobloch, B. E. Oldeman, and J. D. M.

Rademacher, Unfolding a tangent equilibrium-to-periodic heteroclinic cycle, SIAM J.
Appl. Dyn. Syst., 8 (2009), pp. 1261–1304.

[7] A. R. Champneys, Y. Kuznetsov, and B. Sandstede, A numerical toolbox for
homoclinic bifurcation analysis, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6 (1996),
pp. 867–887.

[8] B. Deng, Homoclinic twisting bifurcations and cusp horseshoe maps, J. Dynam. Dif-
ferential Equations, 5 (1993), pp. 417–467.

[9] E. J. Doedel, AUTO: A program for the automatic bifurcation analysis of autonomous
systems, Congr. Numer., 30 (1981), pp. 265–284.

[10] E. J. Doedel and B. E. Oldeman, AUTO-07p: Continuation and Bifurcation Soft-
ware for Ordinary Differential Equations, Department of Computer Science, Concordia
University, Montreal, Canada, 2010. With major contributions from A. R. Champneys,
F. Dercole, T. F. Fairgrieve, Y. Kuznetsov, R. C. Paffenroth, B. Sandstede, X. J. Wang
and C. H. Zhang; available at http://www.cmvl.cs.concordia.ca/.

[11] R. Gilmore and M. Lefranc, The Topology of Chaos: Alice in Stretch and Squeeze-
land, Wiley-Interscience, 2002.

[12] A. Giraldo, B. Krauskopf, and H. M. Osinga, Saddle invariant objects and their
global manifolds in a neighborhood of a homoclinic flip bifurcation of case B, SIAM J.
Appl. Dyn. Syst., 16 (2017), pp. 640–686.

[13] A. Golmakani and A. J. Homburg, Lorenz attractors in unfoldings of homoclinic-
flip bifurcations, Dyn. Syst., 26 (2011), pp. 61–76.

[14] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.

http://www.cmvl.cs.concordia.ca/


INVARIANT MANIFOLDS NEAR HOMOCLINIC ORBITS 45

[15] A. J. Homburg, H. Kokubu, and M. Krupa, The cusp horseshoe and its bifurca-
tions in the unfolding of an inclination-flip homoclinic orbit, Ergodic Theory Dynam.
Systems, 14 (1994), pp. 667–693.

[16] A. J. Homburg and B. Krauskopf, Resonant homoclinic flip bifurcations, J. Dy-
nam. Differential Equations, 12 (2000), pp. 807–850.

[17] A. J. Homburg and B. Sandstede, Homoclinic and heteroclinic bifurcations in
vector fields, in Handbook of Dynamical Systems, H. W. Broer, B. Hasselblatt, and
F. Takens, eds., vol. 3, Elsevier, New York, 2010, pp. 381–509.

[18] M. Kisaka, H. Kokubu, and H. Oka, Bifurcations to n-homoclinic orbits and n-
periodic orbits in vector fields, J. Dynam. Differential Equations, 5 (1993), pp. 305–357.

[19] M. Koper, Bifurcations of mixed-mode oscillations in a three-variable autonomous Van
der Pol-Duffing model with a cross-shaped phase diagram, Phys. D, 80 (1995), pp. 72–94.

[20] B. Krauskopf and H. M. Osinga, Computing invariant manifolds via the con-
tinuation of orbit segments, in Numerical Continuation Methods for Dynamical Sys-
tems: Path Following and Boundary Value Problems, B. Krauskopf, H. M. Osinga, and
J. Galán-Vioque, eds., Springer, The Netherlands, 2007, pp. 117–154.

[21] B. Krauskopf and T. Rieß, A Lin’s method approach to finding and continuing
heteroclinic connections involving periodic orbits, Nonlinearity, 21 (2008), pp. 1655–
1690.

[22] Y. A. Kuznetsov, O. Feo, and S. Rinaldi, Belyakov homoclinic bifurcations in a
tritrophic food chain model, SIAM J. Appl. Dyn. Syst., 62 (2001), p. 462487.

[23] D. Linaro, A. Champneys, M. Desroches, and M. Storace, Codimension-two
homoclinic bifurcations underlying spike adding in the Hindmarsh-Rose burster, SIAM
J. Appl. Dyn. Syst., 11 (2012), pp. 939–962.

[24] A. Lohse and A. Rodrigues, Boundary crisis for degenerate singular cycles, Non-
linearity, 30 (2017), pp. 2211–2245.

[25] V. Naudot, Strange attractor in the unfolding of an inclination-flip homoclinic orbit,
Ergodic Theory Dynam. Systems, 16 (1996), pp. 1071–1086.

[26] V. Naudot, A strange attractor in the unfolding of an orbit-flip homoclinic orbit, Dyn.
Syst., 17 (2002), pp. 45–63.

[27] B. E. Oldeman, B. Krauskopf, and A. R. Champneys, Numerical unfold-
ings of codimension-three resonant homoclinic flip bifurcations, Nonlinearity, 14 (2001),
pp. 597–621.

[28] H. M. Osinga, Nonorientable manifolds in three-dimensional vector fields, Internat.
J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), pp. 553–570.

[29] H. M. Osinga, Locus of boundary crisis: Expect infinitely many gaps, Phys. Rev. E,
74 (2006).

[30] J. Palis and W. de Melo, Geometric Theory of Dynamical Systems, Springer, New
York, 1982.



INVARIANT MANIFOLDS NEAR HOMOCLINIC ORBITS 46

[31] J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homo-
clinic Bifurcations: Fractal Dimensions and Infinitely Many Attractors in Dynamics,
Cambridge University Press, 1995.

[32] B. Sandstede, Verzweigungstheorie Homokliner Verdopplugen, PhD thesis, University
of Stuttgart, Stuttgart, Germany, 1993.

[33] B. Sandstede, Constructing dynamical systems having homoclinic bifurcation points
of codimension two, J. Dynam. Differential Equations, 9 (1997), pp. 269–288.

[34] L. P. Shilnikov, A case of the existence of a denumerable set of periodic motions,
Sov. Math. Dokl., 6 (1965), pp. 163–166.

[35] L. P. Shilnikov, On the generation of a periodic motion from trajectories doubly
asymptotic to an equilibrium state of saddle type, Mat. Sb. (N.S.), 77(119) (1968),
pp. 461–472.

[36] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, and L. O. Chua, Methods of
Qualitative Theory in Nonlinear Dynamics (Part I), vol. 4, World Scientific, Singapore,
1998.

[37] B. W., A. Champneys, E. Doedel, W. Govaerts, Y. Kuznetsov, and

B. Sandstede, Numerical continuation, and computation of normal forms, in Hand-
book of Dynamical Systems, 1999.

[38] S. M. Wieczorek, Global bifurcation analysis in laser systems, in Numerical Continu-
ation Methods for Dynamical Systems: Path Following and Boundary Value Problems,
B. Krauskopf, H. M. Osinga, and J. Galán-Vioque, eds., Springer, The Netherlands,
2007, pp. 177–220.

[39] S. M. Wieczorek and B. Krauskopf, Bifurcations of n-homoclinic orbits in opti-
cally injected lasers, Nonlinearity, 18 (2005), pp. 1095–1120.

[40] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos,
Springer-Verlag, New York, 2nd ed., 2003.

[41] T. Xing, R. Barrio, and A. Shilnikov, Symbolic quest into homoclinic chaos,
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 (2014).

[42] W. Zhang, B. Krauskopf, and V. Kirk, How to find a codimension-one hetero-
clinic cycle between two periodic orbits, Discrete Contin. Dyn. Syst., 32 (2012), pp. 2825–
2851.


	Introduction
	The codimension-two homoclinic flip orbit
	Bifurcation diagram of case C
	Computing the bifurcation diagram near CI

	Notation and set-up
	Sandstede's Model
	Definition of the winding number

	Bifurcation diagram near CI
	Transition through the homoclinic bifurcations
	Intersection sets with a sphere

	Cascades of homoclinic and heteroclinic bifurcations
	Transition through 2Ht
	Transition through Q0t[o]
	Transition through Q0o
	Computation of bifurcation sequences
	Graphical representation of the bifurcation sequence

	Smale–horseshoe region
	Dynamics inside the region SH
	Transition through F

	Transition to a strange attractor and period-doubling cascade
	Transition through Tano
	Evidence of the chaotic attractor
	Transition through PD back to region blue 2

	Global picture in the (,)-plane
	Cascades of inclination flip bifurcations
	Homoclinic bubbles

	Discussion

