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Abstract

The transition to chaos in the Lorenz system — from simple via preturbulent to chaotic dynamics —
has been characterized in terms of the dynamics on the respective attractors, as described by the one-
dimensional Lorenz map. In this paper we consider how this transition manifests itself globally, that is, we
determine the associated organization of the entire phase space. To this end, we study how global invariant
manifolds of equilibria and periodic orbits change with the parameters; the main object of study in this
context is the two-dimensional stable manifold of the origin, or Lorenz manifold. Two-dimensional global
manifolds and their complicated intersection sets with a plane or sphere are calculated with a boundary-
value-problem setup. This allows us to determine how basins of attraction change or are created, and to
give a precise characterization of the observed topological and geometric properties of the relevant invariant
manifolds during the transition. In particular, we show where preturbulence occurs after the first homoclinic
bifurcation and how it suddenly disappears in a heteroclinic bifurcation to give rise to a chaotic attractor
and its basin.

1 Introduction

Edward N. Lorenz derived in the 1960s a much simplified model of convection dynamics in the atmosphere that
bears his name today [33]. The Lorenz system is the vector field in R3 given by





ẋ = σ(y − x),
ẏ = %x− y − xz,
ż = xy − βz,

(1)

where %, σ, β ∈ R are parameters. System (1) is invariant under the transformation

(x, y, z) 7→ (−x,−y, z),

which means that any solution is either symmetric under rotation by π about the z-axis (such as the Lorenz
attractor), or has a corresponding symmetric counterpart. Famously, Lorenz found sensitive dependence on
initial conditions — the property that is the hallmark of chaotic dynamics — for the now classic parameters
values of σ = 10, β = 8/3, and % = 28; the associated butterfly-shaped Lorenz attractor is probably the best
known example of a chaotic attractor.

We are concerned with the transition from simple to chaotic dynamics as the parameter % is changed in the
range (0, 30), while σ = 10 and β = 8/3 are kept fixed. Figure 1 is the corresponding one-parameter bifurcation
diagram of (1) in the (%, x)-plane, showing its equilibria 0, p+ and p− and the pair of bifurcating periodic
orbits Γ+ and Γ−. The origin 0 is always an equilibrium; it is stable and the only attractor for % ∈ (0, 1), and
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Figure 1: The bifurcation diagram of (1) in % of the equilibria 0 and p± and the saddle periodic orbits Γ±,
featuring a pitchfork bifurcation of 0 at %P = 1, a homoclinic bifurcation at %hom ≈ 13.9265, an EtoP heteroclinic
connection at %het ≈ 24.0579, and a Hopf bifurcation of p± at %H = 470

19 ≈ 24.7368; the numbers at the top
indicate the different regimes.

bifurcates at the pitchfork bifurcation P at % = %P = 1. For 1 < % the equilibrium 0 is a saddle with two real
stable eigenvalues and one real unstable eigenvalue. Hence, it has a one-dimensional unstable manifold Wu(0),
consisting of all points in phase space that converge to 0 for t → −∞, and a two-dimensional stable manifold
W s(0), consisting of all points that converge to 0 for t → ∞. In light of its important role for the overall
organization of phase space, we refer to W s(0) as the Lorenz manifold. At %P the two symmetrically related
stable equilibria

p± =
(
±
√
β(%− 1),±

√
β(%− 1), %− 1

)

emerge. The points p± lose their stability in the Hopf bifurcation H at

% = %H =
σ (β + σ + 3)

σ − β − 1
=

470

19
≈ 24.7368,

where they become saddle foci. The Hopf bifurcation H is subcritical and gives rise to the symmetrically related
pair of saddle periodic orbits Γ±, which exist for % < %H ; in figure 1 they are represented by their maximum
and minimum x-values. As % is decreased from %H , the periodic orbits Γ± persist until they reach the origin 0
to form a pair of homoclinic orbits at

% = %hom ≈ 13.9265.

At this parameter value, the unstable manifold Wu(0) is contained in the Lorenz manifold W s(0). This point
is also referred to as the homoclinic explosion point, because it creates a hyperbolic set or chaotic saddle S that
contains, in particular, infinitely many other saddle periodic orbits [17, 20, 42]. Importantly, immediately past
%hom the sinks p± remain the only attractors of (1). The chaotic attractor is created only at

% = %het ≈ 24.0579,

where Wu(0) forms a pair of heteroclinic connections from the equilibrium 0 to the periodic orbits Γ±. At
this bifurcation, which we refer to as an EtoP connection for short, the two branches of Wu(0) lie in the two-
dimensional stable manifolds W s(Γ±). Immediately past %het, the Lorenz system (1) exhibits multistability,
because the chaotic attractor coexists with the two sinks p± for %het < % < %H , that is, until p± become saddles
at the Hopf bifurcation H.

Overall, the four bifurcations P , hom, EtoP and H are responsible for the transition from simple to chaotic
dynamics of (1), and they divide the %-range (0, 30) in figure 1 into five intervals, labelled 1–5. The knowledge
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of the attracting or long-term dynamics of the Lorenz system, especially in the preturbulent regime 4 and in the
turbulent or chaotic regime 5, comes from the description of the dynamics on the attractor by a one-dimensional
map, generally referred to as the Lorenz map. The construction of this map relies on geometric conditions
that abstract what has been observed in the Lorenz system: the attractor intersects the Poincaré section
Σρ = {z = ρ−1}, which contains p±, in infinitely many lines, but these are extremely close together. A technical
assumption of the abstract geometric Lorenz model is that there is a stable invariant foliation in the section,
meaning that its leaves map to leaves and points are contracted along leaves towards the attractor. Then the one-
dimensional Lorenz map describes how leaves map to leaves in the stable foliation and, hence, describes exactly
the dynamics on the attractor — one speaks of the geometric Lorenz model. This construction/reduction was
developed by Guckenheimer [19] in 1976 and subsequently by Guckenheimer and Williams [21] and Williams [45]
in 1979, and also independently by Afrajmovich, Bykov and Shil’nikov [2] in 1977. Famously, Tucker [43] proved
only in 1999 that the Lorenz system (1) actually satisfies the relevant geometric conditions for the classic
parameter values σ = 10, β = 8/3, and % = 28; see also [44].

The study of the Lorenz map made it possible to determine many properties of the Lorenz attractor. In 1979
Kaplan and Yorke [24] studied the dynamics of the Lorenz system past the homoclinic bifurcation, in what we
call region 4 with %hom < % < %het. They found that there are trajectories with arbitrarily long transients before
they settle down to either p+ or p−, which are the only attractors. In analogy with the notion of turbulence
introduced by Ruelle and Takens [39], Kaplan and Yorke called this type of dynamics preturbulence, which
they showed is due to the existence of a Smale horseshoe in the Poincaré map. The statistical properties of
preturbulence were subsequently investigated in a numerical study of the Lorenz map [46].

The purpose of this paper is to clarify how this transition manifests itself throughout phase space. In other
words, we wish to answer the following questions. How is the dynamics on the attractor, whether it is simple,
preturbulent or chaotic, expressed in terms of the overall organization of the Lorenz system? What are the
basins of attraction and their boundaries in R3? And more specifically, where can preturbulence be found in
phase space, and where does the basin of attraction of the chaotic attractor come from?

The key to the overall organization of phase space is the study of two-dimensional global invariant manifolds,
because these surfaces form separatrices in the three-dimensional phase space of the Lorenz system. Of special
importance is the Lorenz manifold W s(0). In region 2 the surface W s(0) forms the entire boundary between
the two basins of p+ and p−. However, in spite of the fact that p+ and p− remain the only two attractors,
past the homoclinic bifurcation at %hom, in region 3 of preturbulence, this is no longer the case. Rather, the
boundary of the basins of p+ and p− is also formed by the stable manifold of the chaotic saddle, which can
be found as the closure of the two-dimensional stable manifolds W s(Γ±) of the two bifurcating periodic orbits
Γ±; this was shown in [15] and is reviewed in section 2. We then proceed by studying how these sets change
and occupy an increasingly larger part of phase space on the way to the heteroclinic EtoP bifurcation. We
then show how the chaotic attractor and its basin are created in the EtoP bifurcation, which we identify as
a boundary crisis bifurcation. Moreover, we show how W s(0) lies dense in the basin of the chaotic attractor.
In our investigation of the global properties of this transition to chaos in the Lorenz system, we characterize
the properties of the two-dimensional manifolds W s(0) and W s(Γ±) by considering their intersection sets with
a sufficiently large sphere. In particular, we show that in the region of preturbulence the intersection set of
W s(Γ±) is the accessible boundary of an indecomposible continuum, which grows to become the basin of the
chaotic attractor.

The results presented here are made possible by the develoment of dedicated numerical techniques for
the computation of two-dimensional global invariant manifolds and their intersection sets, and a secondary
goal of this paper is to showcase such state of the art computations. From the very beginning, numerical
calculations have played a crucial role for furthering the understanding of the Lorenz system. Indeed, Lorenz
himself discovered the sensitive dependence on the initial condition of (1) in his computer simulations quite
by accident [16]. Moreover, his numerical explorations allowed him to make a topological sketch of the Lorenz
attractor [33]. The development of the geometric Lorenz attractor and the 1D Lorenz map was also based on and
checked with careful numerical simulations [2, 19, 21]. Tucker’s proof employed interval arithmetic calculations
to obtain relevant estimates [43].

The two-dimensional Lorenz manifold W s(0) has received attention because of its role in organizing the
dynamics of (1). Already in 1979 Perelló [37] considered how W s(0) changes through the homoclinic bifurcation
at %hom and provided sketches (reproduced in [14]) of W s(0) at and after this bifurcation; this work was based
on numerical simulations by Simó [41]. Perelló’s sketch past the homoclinic bifurcation formed the basis of the



The transition to chaos in the Lorenz system 4

illustrations by Abraham and Shaw [1] of W s(0) for % = 28 (reproduced in [35]). In 1985 Jackson studied the
basins of p+ and p−, and provided hand-drawn sketches of W s(0) near the origin, both for % < %hom [22] and for
%hom < % [23]. All these early renderings of the Lorenz manifold are based on extensive and careful numerical
simulations; effectively, W s(0) was obtained indirectly as the complement of points that converge to either p+

or p−.
More recently, numerical methods have been developed that allow one to compute a two-dimensional global

invariant manifold directly. The Lorenz system has been a testbed for these developments, with the challenge
being to compute the Lorenz manifold W s(0). Today there are several implemented methods; most of them
are presented in the survey [31], where the Lorenz manifold is used to discuss and compare the properties of
the different approaches. The underlying idea is to start from local information near a saddle equilibrium or
periodic orbit and then to globalize or grow the manifold. The computations presented in this paper make use of
the general technique of finding a family of orbit segments defined by a suitably posed two-point boundary value
problem (2PBVP); see [31] for background information. The two-dimensional manifold W s(0) is computed as
a surface formed by a family of geodesic level sets; this approach is described in detail in [28, 29]. Additionally,
we compute large sets of intersection curves of the stable manifolds W s(0) and W s(Γ±) with a sufficiently large
sphere via a suitable 2PBVP setup; see section 5 for details.

We make extensive use of these techniques to gain insight into the topological and geometric structure of
global invariant manifolds in the Lorenz system, and how these change with the parameter %. This allows us
to make precise observations regarding the overall organization of phase space during the transition to chaos.
Strictly speaking, these observations are conjectures that are supported by detailed numerical evidence. In
the spirit of previous work on the Lorenz system, we hope that the results presented here will inspire further
investigations.

The paper is organized as follows. In section 2 we review the transition through the homoclinic bifurcation
into preturbulence. Section 3 discusses how the structure associated with preturbulence grows, and section 4
presents the transition through the EtoP bifurcation and the creation of the chaotic attractor. In Section 5
we introduce and discuss the boundary value problem setup for the calculation of many intersection curves of
manifolds, including their isolas. The final section 6 contains an overall mathematical characterization of the
transition to chaos, as well as a brief outlook.

2 Into the preturbulent regime

The transition to chaos starts with a homoclinic bifurcation at %hom ≈ 13.9265, which gives rise to the so-
called preturbulent regime. The homoclinic bifurcation is illustrated in figure 2 in terms of the one-dimensional
unstable manifold Wu(0) of the origin 0; also shown are the one-dimensional strong stable manifolds W ss(p+)
and W ss(p−) of the sinks p±, which are defined by the direction of strongest contraction. The disk represents
the linear stable eigenspace Es(0) spanned by the two stable eigenvalues of 0. Figure 2 (a) shows the situation
before the homoclinic bifurcation, where the right-hand branch of the unstable manifold Wu(0) of the origin
0 spirals into p+ and the left-hand branch of Wu(0) spirals into p−. At the moment of bifurcation, shown
in figure 2(b), both branches of Wu(0) connect back to 0 tangent to Es(0) and form a symmetrically related
pair of homoclinic connecting orbits. Panel (c) shows the situation after the homoclinic bifurcation, where the
right-hand branch of Wu(0) now spirals into p− and the left-hand branch of Wu(0) spirals into p+. Moreover,
two saddle periodic orbits, Γ+ and Γ−, have been created from the two homoclinic connections. Note that the
manifolds W ss(p±) do not change qualitatively in this homoclinic bifurcation.

While Figure 2 clearly shows that there is a homoclinic bifurcation and that it creates two periodic orbits, it
does not really explain its consequences for the dynamics of the Lorenz system after the bifurcation. In fact, the
two points p+ and p− remain the only attractors of (1) and the complicated dynamics created at %hom ≈ 13.9265
is initially of saddle type [21]. It was realized in [24] from the study of the one-dimensional Lorenz map that,
as a consequence, for %hom < % < %het one may find trajectories with arbitrarily long chaotic transients before
either p+ or p− are finally reached; one speaks of the preturbulent regime.

In order to understand the geometric organization of phase space that explains preturbulent dynamics it
is necessary to consider the associated two-dimensional stable manifolds W s(0) and W s(Γ±). As we will see
in section 4, the manifolds W s(0) and W s(Γ±) also play an important role in the subsequent creation of the
chaotic attractor and its basin at the EtoP connection, when %het ≈ 24.0579. We first review here how these
surfaces change through the homoclinic bifurcation at %hom ≈ 13.9265; see also [15].
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Figure 2: The transition through the homoclinic bifurcation at %hom ≈ 13.9265. Shown are 0, p±, Γ±, Wu(0),
W ss(p±), and a small disk in the linear eigenspace Es(0), for % = 10.0 (a), for % = 13.9265 (b), and for % = 18.0
(c).

Figure 3 shows the global invariant manifolds for % = 10.0, which is representative for the situation before
the homoclinic bifurcation, that is, for 1 < % < %hom. Panel (a) shows the first part of the Lorenz manifold
W s(0), computed up to geodesic distance 262.0, that lies in the region of negative y. The surface W s(0) divides
the phase space into the two basins of attraction, B(p+) of p+ and B(p−) of p−, meaning that the trajectory
of any initial condition not on W s(0) will end up at either p+ or p−. The points p± and the one-dimensional
manifolds Wu(0) and W ss(p±) are shown in the centre; compare with figure 2(a). Notice in figure 3(a) how the
surface W s(0) spirals around the curves W ss(p±). In [15], we found that it suffices to consider the intersection

set Ŵ s(0) := Wu(0) ∩ SR with a sphere SR in order to understand the overall organization of phase space.
This sphere SR must be large enough so that it intersects only the unbounded global invariant manifolds; in
particular, Wu(0) should be contained in its interior. As in [15] and as shown in figure 3(a), we choose (0, 0, %−1)
as the centre of SR and its radius R is such that the second intersection point of the low-amplitude branch of
W ss(p±) with the plane Σ% lies on the equator of SR. Figure 3(b) shows how the sphere SR is divided by Ŵ s(0)
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Figure 3: The organization of phase space for % = 10.0. Panel (a) shows the part of W s(0), computed up to
geodesic distance 262.0, that lies in the region of negative y, together with 0, p±, Wu(0), W ss(p±), the sphere

SR with R = 67.156 and the intersection set Ŵ s(0) (light blue) on it. Panel (b) shows how Ŵ s(0) divides SR
into the basins B̂(p+) (sand colour) and B̂(p−) (white), and how these sets connect up with the corresponding

basins on the plane Σ%. Panel (c) is the stereographic projection of SR for x ≥ 0; also shown are Ŵ ss(0) (light

blue dot), Ŵ ss(p+) (blue dot) and Ŵ ss(p−) (dark blue dot) and the tangency locus C with the symbols ⊗
and � indicating the direction of the vector field. See also the accompanying animation dko tochaos a01.gif
available via the Supplementary Data link.

into two disjoint basins B̂(p+) := B(p+) ∩ SR and B̂(p−) := B(p+) ∩ SR; also shown are the corresponding
intersection sets on the plane Σ%. We can now deduce the main properties of W s(0) from how it intersects SR.
Because of the rotational symmetry of the Lorenz system, it suffices to consider only one half of SR. We chose
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the half with x ≥ 0, which can be represented in a convenient way by means of the stereographic projection

(u, v) :=

(
y

x+R
,
z − (%− 1)

x+R

)
, (2)

where x2 + y2 + (z − % + 1)2 = R2. Figure 3(c) shows this stereographic projection of SR to illustrate how

Ŵ s(0) divides it into B̂(p+) and B̂(p−). Here we also plot the tangency locus C, which divides SR into regions
where the vector field points inwards (denoted by ⊗) and outwards (denoted by �), respectively; note that C

lies entirely inside B̂(p−) for % = 10.

The main conclusion from figure 3 is that, for 1 < % < %hom, the intersection set Ŵ s(0) is a single closed
curve! This may not be obvious, but can be checked by close inspection of figure 3(c). Our computation of

Ŵ s(0) confirms that the associated family of orbits segments provides a smooth one-to-one mapping from a

small ellipse in Es(0) around 0 to Ŵ s(0); we refer to section 5 and [15]. It follows that B̂(p+) and B̂(p−) are
two topological disks.

Figure 4 illustrates the situation after the homoclinic bifurcation, that is, for %hom < % < %het, for the
specific case of % = 18.0. Panel (a) shows the first part of W s(0), computed up to geodesic distance 150.5,
that lies in the region of negative y. As before, we also plot the points p± and the one-dimensional manifolds
Wu(0) and W ss(p±); compare with figure 2(c). The surface W s(0) intersects SR again in the intersection

set Ŵ s(0), but this set is no longer a single closed curve. Rather, Ŵ s(0) consists of infinitely many curves
that appear to cover some ‘bands’ on SR. These bands are further illustrated in figure 4(b), where we show
the computed manifold W s(0) only up to its intersection with SR and similarly cropped the one-dimensional

manifolds W ss(p±) up to their respective intersection points with SR. Our computations of Ŵ s(0) confirm these

results; see section 5 for more details. Figure 4(c) shows the intersection sets Ŵ s(0), Ŵ s(Γ+) := W s(Γ+)∩ SR
and Ŵ s(Γ−) := W s(Γ−) ∩ SR on the stereographic projection of SR for x ≥ 0. Even though we can only plot
a finite number of curves, each of these three intersection sets consist of infinitely many curves.

It is important to realize that W s(0) alone no longer divides the phase space into the two basins B(p+) and
B(p−) [3, 15]. Namely, close to p+ the boundary of B(p+) is formed by the stable manifold W s(Γ+), which is
locally a cylinder; similarly, W s(Γ−) forms a boundary of B(p−) near p−. In particular, note the closed curve

in Ŵ s(Γ+) that surrounds the point in Ŵ ss(p+) in the centre of figure 4(c); the equivalent situation occurs for

Ŵ s(Γ−) and Ŵ ss(p−) on the other side of SR, where x ≤ 0. All other, infinitely many more curves in Ŵ s(Γ+)

and Ŵ s(Γ−) are arcs whose ends accumulate on either of these two closed curves. We call the (sand-coloured)

disk in figure 4(c) that is bounded by the closed curve in Ŵ s(Γ+) the primary basin of p+. There is another

topological disk in B̂(p+) that is part of the primary basin of p+, namely, the region that contains the other

point of Ŵ ss(p+), which lies on the other side of SR; we can see part of this topological disk in figure 4(c) as the
two larger (sand-coloured) regions that ‘spilled over’ from the other side of SR; the region on the left is bounded

by one arc in Ŵ s(Γ+) and a segment of the unit circle; this region continues onto the other side of SR and is
connected to the other comma-shaped (sand-coloured) region in figure 4(c), which is bounded by this same arc

in Ŵ s(Γ+) as well as by one arc in Ŵ s(0). These two arcs are special because points on them will go straight
to Γ+ or 0, respectively; that is, they are the intersections with SR of the local stable manifolds of Γ+ and 0,
respectively; see also figure 4(b), which illustrates this for the local stable manifold of 0. Similarly, the primary

basin of p− is formed by the (white) disk bounded by the closed curve in Ŵ s(Γ−) and the topological disk

bounded by the symmetrically related arc in Ŵ s(Γ−) and the same arc in Ŵ s(0) (which is itself symmetric);
we can see part of the topological disk in the primary basin of p− as the two relatively large white regions in
figure 4(c), the smaller of which contains the point in Ŵ ss(p−) just above the centre of the figure.

The complement of the primary basins of p± is the ‘band’ on SR that contains the infinitely many other arcs
of Ŵ s(0) and Ŵ s(Γ±). This band comprises a finer structure of ‘bands’ and the curves in the set Ŵ s(Γ+) ∪
Ŵ s(Γ−) locally appear to form a Cantor set of curves. In fact, the intersection points of a line segment with

Ŵ s(Γ+) ∪ Ŵ s(Γ−) bound intervals on this line segment in the complement of a Cantor set. Moreover, each

such interval is divided by a point in Ŵ s(0) into two subintervals — one of which lies in B̂(p+) and the other

in B̂(p−). Note that each and every intersection curve in Ŵ s(0) and Ŵ s(Γ±) lies in the boundary of B̂(p±),

but only Ŵ s(0) and Ŵ s(Γ+) (Ŵ s(Γ−)) are accessible from B̂(p+) (B̂(p−)).

The overall conclusion is that the set Ŵ s(Γ+) ∪ Ŵ s(Γ−) is the accessible boundary of what is known as an
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Figure 4: The organization of phase space for % = 18.0. Panel (a) shows the part of W s(0), computed up
to geodesic distance 150.5, that lies in the region of negative y, together with 0, p±, Wu(0), W ss(p±), the

sphere SR with R = 69.062 and the intersection set Ŵ s(0) (light blue) on it. Panel (b) shows Ŵ s(0) on SR,
together with the part of W s(0) that lies inside SR. Panel (c) is the stereographic projection of SR for x ≥ 0,

showing how the sets Ŵ s(0) (light blue), Ŵ s(Γ+) (dark green) and Ŵ s(Γ−) (light green) divide SR into the

basins B̂(p+) (sand colour) and B̂(p−) (white); also shown are Ŵ ss(0) (light blue dot), Ŵ ss(p+) (blue dot) and

Ŵ ss(p−) (dark blue dot) and the tangency locus C with the symbols ⊗ and � indicating the direction of the
vector field. See also the accompanying animation dko tochaos a02.gif available via the Supplementary Data
link.

indecomposable continuum [25, 26, 27, 40], that is, a nonempty connected compact metric space or continuum

without proper subcontinua. This indecomposable continuum is the intersection set Ŵ s(S) := W s(S) ∩ SR of
the stable manifold of the saddle hyperbolic set S that is created in the homoclinic bifurcation. Since the two
manifolds W s(Γ±) lie dense in S and each bounds one of the basins B(p±), we have that Ŵ s(S) is the closure
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Figure 5: Stereographic projection of SR for x ≥ 0, for % = 19.5 with R = 69.346 (a), for % = 21.0 with
R = 69.612 (b), for % = 23.0 with R = 69.947 (c), and for % = 24.047 with R = 70.116 (d), showing how

the sets Ŵ s(0) (light blue), Ŵ s(Γ+) (dark green) and Ŵ s(Γ−) (light green) divide SR into the basins B̂(p+)

(sand colour) and B̂(p−) (white); the region of preturbulence is shaded grey. Also shown are Ŵ ss(0) (light blue

dot), Ŵ ss(p+) (blue dot) and Ŵ ss(p−) (dark blue dot) and the tangency locus C with the symbols ⊗ and �
indicating the direction of the vector field.

of Ŵ s(Γ+) ∪ Ŵ s(Γ−).

3 Growing preturbulence

We reported in [15] that the indecomposable continuum Ŵ s(S) is created at the homoclinic bifurcation. Here we
present how it changes with % and then bifurcates at the EtoP bifurcation. Initially, when it is created at %hom,
the indecomposable continuum Ŵ s(S) is initially small on the sphere SR; specifically, its Hausdorff dimension

goes to zero as % ↘ %hom. However, as % is increased towards %het, the indecomposable continuum Ŵ s(S)
spreads over a larger area of SR. This is illustrated in figure 5. Figure 5(a) shows a case similar to figure 4(c),
but now % has increased to 19.5, so that the area of the complement of the primary basins of p± has grown. As a
result, (infinitely) many more curves of these intersection sets intersect the tangency locus C in figure 5(a). As

% is increased further, the single arc of Ŵ s(Γ+) in the primary basin of p− splits into two parts at % ≈ 19.8530
in a first saddle transition S at a single point on the tangency locus C. (The same happens to the symmetrically



The transition to chaos in the Lorenz system 10

related arc of Ŵ s(Γ+) on the other side of SR.) Since this boundary curve of B̂(p−) is accumulated by curves
of the indecomposable continuum, this first saddle transition is followed by infinitely many saddle transitions
of other curves in Ŵ s(0), Ŵ s(Γ+) and Ŵ s(Γ−). Figure 5(b) shows an approximate saddle transition of an

arc in Ŵ s(Γ+) for % = 21.0. The saddle transitions give rise to closed curves or isolas of these intersection
sets, which surround a now separated large topological disk in the primary basin of p−. This disjoint disk in
the primary basin of p− disappears at % ≈ 21.4200 in a first minimax transition M on the tangency locus C,
followed by infinitely many minimax transitions of other curves in Ŵ s(0), Ŵ s(Γ+) and Ŵ s(Γ−). (Again, the

same happens to Ŵ s(Γ+) on the other side of SR.) As a result, in figure 5(c) for % = 23.0, the primary basins
of p± again consist of two parts each, and the area with curves of the indecomposable continuum (shaded grey)
has increased considerably on the sphere SR. Figure 5(d) shows the situation for % = 24.047 very close to the
EtoP connection and illustrates that this area grows even further as % is increased; specifically, the visible part
of the (white) topological disk in the primary basin of p− has been reduced to a single component on this side
of SR in panel (d).

The panels of figure 5 show hundreds of curves of the sets Ŵ s(0), Ŵ s(Γ+) and Ŵ s(Γ−), which were computed

with the 2PBVP setup detailed in section 5. Note that the curves of Ŵ s(Γ+) and Ŵ s(Γ−) that bound the
primary basins of p+ and p− can be computed readily for any value of %, because these are the intersections of the
respective local manifolds with SR. It is much more challenging to find the other additional intersection curves.
We use an approach that selects curves up to a prescribed maximum integration time. While our numerical
method highlights the fractal nature of the structure of the intersection set, it is unable to fill all of the grey
shaded area of preturbulence, which should be densely filled with curves. In particular, the accumulation of
curves onto the arc Ŵ s(Γ±) in the primary basins requires rapidly increasing integration times that are not
feasible numerically.

The emergence of isolas, that is, closed curves of Ŵ s(0), Ŵ s(Γ+) and Ŵ s(Γ−) in figure 5 is inevitable due to
the presence of the tangency locus C on SR. Isolas appear in saddle transitions and disappear again in minimax
transtions, which are generic interactions of these curves with the tangency locus C [32]. It is important to
realize that these interactions are due to the way SR intersects the two-dimensional manifolds W s(0), W s(Γ+)
and W s(Γ−), respectively. In particular, they do not constitute bifurcations of the two-dimensional manifolds
themselves. Since the interactions of the many curves with the tangency locus C on SR cannot be avoided, we
present a convenient way to compute them in section 5.

4 Into the turbulent regime

The indecomposable continuum Ŵ s(S) associated with the saddle hyperbolic set S exists only in the preturbu-
lent regime, which is the parameter interval %hom < % < %het. That is, as % increases through %het ≈ 24.0579, the
set Ŵ s(S) along with its accessible boundary Ŵ s(Γ+) ∪ Ŵ s(Γ−) undergoes a dramatic change and disappears
as an indecomposale continuum. At this %-value, two symmetric heteroclinic bifurcations occur, where there
exists a pair of connecting orbits from 0 to Γ± (EtoP). The EtoP heteroclinic connection at %het generates a
chaotic attractor as is illustrated in figure 6 in terms of the relative positions of the periodic orbits Γ± and
the one-dimensional unstable manifold Wu(0); also shown are the sinks p± and their one-dimensional strong
stable manifolds W ss(p±). Panel (a) for % = 23.5 shows the situation before the EtoP connection, which is
topologically as figure 2(c); in particular, the right-hand branch of Wu(0) spirals into the attracting point p−

and the left-hand branch of Wu(0) spirals into the attracting point p+. Notice that figure 6(a) is already near
the EtoP connection, so that the left- and right-hand branches of Wu(0) come quite close to the periodic orbits
Γ+ and Γ−, respectively. At the moment of bifurcation, shown in figure 6(b), each branch of Wu(0) actually
connects to the respective saddle periodic orbit. Panel (c), after the EtoP heteroclinic bifurcation, shows that
the two branches of Wu(0) do not reach the attracting points p+ and p− any longer. As a result, Wu(0) now
accumulates on a newly created chaotic attractor. As for the homoclinic explosion, the manifolds W ss(p±) do
not change qualitatively in this heteroclinic bifurcation.

Recall that the two-dimensional stable manifolds W s(Γ±) (which are not shown in figure 2) are cylinders
close to the periodic orbits Γ±. Hence, locally near Γ±, the EtoP connection is characterized by the fact that
the one-dimensional manifold Wu(0) moves from the ‘insides’ of these cylinders, where the two sides of Wu(0)
accumulate on the attracting points p+ and p−, to their ‘outsides’ which prevent Wu(0) from reaching p+ and
p−. As figure 7 shows, this has a dramatic effect on the overall global manifolds W s(Γ±). Panels (a) and (b)
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Figure 6: The transition through the EtoP heteroclinic connection at %het ≈ 24.0579. Shown are 0, p±, Γ±,
Wu(0), W ss(p±), and a small disk in the linear eigenspace Es(0), for % = 23.5 (a), for % = 24.0579 (b), and for
% = 24.5 (c).

show Ŵ s(Γ+) in stereographic projection on both sides of the sphere SR just before and just after the EtoP
heteroclinic connection, respectively; the side with x ≤ 0 is positioned upside-down below the side with x ≥ 0, so
that the two stereographic projections are connected at their respective south poles. Figure 7(a) shows Ŵ s(Γ+)

just before the bifurcation, for % = 24.047, illustrating that Ŵ s(Γ+) is part of the indecomposable continuum
and covers a large area of SR; compare with figure 5(d) to identify the primary basins of p+ and p− and the
area of preturbulence in their complement. As shown in figure 7(b) for % = 24.060, just after the bifurcation,

Ŵ s(Γ+) consists of only two closed curves on SR. In particular, this means that the primary basin of p+ is now

bounded only by these two closed curves and no longer involves an arc from Ŵ s(0); the equivalent statement is

true for the symmetrically related intersection set Ŵ s(Γ−) which consists of only two closed curves on SR that
form the boundary of the primary basin of p−.

To help understand the transition for Ŵ s(Γ+) through the EtoP bifurcation, consider in figure 5 the location

of the point in Ŵ ss(0) with x ≥ 0 relative to the arcs in Ŵ s(Γ±). When comparing with figure 7, notice that the
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Figure 7: Stereographic projection of Ŵ s(Γ+) on the sphere SR for % = 24.047 with R = 70.116 (a) and for
% = 24.060 with R = 70.117 (b).

sharp turn of the central curve at the top of figure 7(a) has effectively ‘flipped’ to the other side in figure 7(b).
The opposite happens for the sharp turn shown in the lower part of panel (b); compare with the symmetric

arc in Ŵ s(Γ−) in figure 5(d). In fact, at the EtoP connection, a particular pair of trajectories in W s(Γ±)
accumulate on W ss(0) when the two branches of Wu(0) are contained in W s(Γ±).

The EtoP connection gives rise to a chaotic attractor L formed by the closure of Wu(0); see figure 6(c) for a
representative example. Hence, after the EtoP heteroclinic connection, there are three attractors: the two sinks
p± and the chaotic attractor L. Since Ŵ s(Γ+) and Ŵ s(Γ−) now bound the basins of p+ and p−, respectively,
the basin boundary of L is formed by W s(Γ+) ∪W s(Γ−). Hence, the EtoP connection is, in fact, a boundary
crisis [18]: as % is decreased toward %het the chaotic attractor increases in size, then hits its own basin boundary
W s(Γ+) ∪W s(Γ−) and subsequently disappears.

The EtoP connection involves only the unstable manifold Wu(0) and the two stable manifolds Ŵ s(Γ±); the
Lorenz manifold W s(0) plays no role in this bifurcation. Figure 8 shows that, indeed, W s(0) is not affected

by the dramatic change in the EtoP connection of Ŵ s(Γ+) ∪ Ŵ s(Γ−) — and, hence, of the indecomposable

continuum — to two sets of closed curves. The intersection set Ŵ s(0) consists of infinitely many curves before,

at and after the EtoP connection. However, the difference after the EtoP connection is that Ŵ s(0) now lies

dense in the basin B̂(L) of the newly created chaotic atractor L; this is illustrated in figure 8(a) for % = 24.5,

immediately after the EtoP connection. Notice how the set B̂(L) occupies the complement of the primary

basins of p+ and p−, which are now their entire basins B̂(p+) and B̂(p−), bounded by Ŵ s(Γ+) and Ŵ s(Γ−),
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(a)

C

⊗ ⊙B̂(L)
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⊗ ⊙B̂(L)

(c)

C

⊗ ⊙B̂(L)

(d)

C

⊗ ⊙B̂(L)

Figure 8: Stereographic projection of SR for x ≥ 0, for % = 24.5 with R = 70.186 (a), for % = 24.71 with
R = 70.219 (b), for % = 26.5 with R = 70.491 (c), and for % = 28.0 with R = 70.709 (d), showing how the

sets Ŵ s(0) (light blue), Ŵ s(Γ+) (dark green) and Ŵ s(Γ−) (light green) divide SR into the basins B̂(p+) (sand

colour), B̂(p−) (white) and B(L) (light blue). Also shown are Ŵ ss(0) (light blue dot), Ŵ ss(p+) (blue dot) and

Ŵ ss(p−) (dark blue dot) and the tangency curve C with the symbols ⊗ and � indicating the direction of the
vector field.

respectively; the closed curve in Ŵ s(Γ+) that surrounds the point Ŵ ss(p+) with x ≥ 0 can hardly be seen

in this figure, because it is only a few pixels wide. As % is increased, the topological circles in Ŵ s(Γ+) and

Ŵ s(Γ−) contract to the four points in Ŵ ss(p±); see figure 8(b) for % = 24.71. The sets Ŵ s(Γ±) and B̂(p−)
then disappear in the Hopf bifurcation at % = %H = 470

19 ≈ 24.7368, where the sinks p± become saddles with
one-dimensional stable manifolds, which are continuations of W ss(p±). After the Hopf bifurcation the chaotic

attractor L is the only attractor and Ŵ s(0) is dense in SR; see figure 8(c) for % = 26.5 and figure 8(d) for
% = 28.0.

Figure 9 illustrates how the larger closed curve in Ŵ s(Γ+), which surrounds the point Ŵ ss(p+) with x ≤ 0,
changes as % is increased. The ‘tail’ of this closed curve retracts from the side of SR with x ≥ 0, a transformation
that occurs over a very narrow interval of %-values that is less than 10−3 wide. As % is increased further,
Ŵ s(Γ+) changes rapidly from the shape it has in figure 7(b) and in figure 8(a) to the more circular shape of

(the symmetrically related) Ŵ s(Γ−) in figure 8(b).
Figure 10 illustrates for the classical parameter value % = 28 the organization of phase space inside the

sphere SR, whose stereographic projection is shown in figure 8(b). More specifically, SR is rendered transparent
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Figure 9: Stereographic projection of Ŵ s(Γ+) on the sphere SR for % = 24.6 with R = 70.202 (a), for % = 24.7
with R = 70.217 (b), for % = 24.7059473 with R = 70.218 (c), and for % = 24.7059475 with R = 70.218 (d).

so that we can see the origin 0 inside with the two branches of its unstable manifold Wu(0), which accumulate
on the Lorenz attractor, and the two saddle points p± with their stable manifolds W s(p±). Also shown is the
part of the Lorenz manifold W s(0) computed up to geodesic distance 162.5 that lies inside SR, of which we
only render the half with negative y; compare with figure 3(a) and figure 4(a). On SR we show all computed

curves of Ŵ s(0) along with the tangency locus C. Notice in figure 10 how, near p+, the surface W s(0) spirals
in between trajectories on the Lorenz attractor, and observe that its intersection curves of the shown part with
SR indeed agree with Ŵ s(0). The computed curves of Ŵ s(0) in figure 10 provide a good impression of how the
Lorenz manifold fills out the sphere SR, illustrating how it manages to lie dense in the entire phase space R3.

5 Computing the intersection sets of invariant manifolds on SR

The emphasis in this section is on finding the many intersection curves of W s(0) and W s(Γ±) with SR by for-
mulating appropriate boundary conditions. The respective 2PBVPs are solved with the package Auto [12, 13],
which implements pseudo-arclength continuation and solves 2PBVPs with orthogonal collocation on piecewise
polynomial approximations; see also [6, 9]. This general approach is already discussed in [15, 31]. Here we
provide a more detailed explanation that focusses on the issue of computing the respective intersection set
when it consists of infinitely many curves, including families of isolas. The Python drivers for these AUTO
calculations are available in the form of a demo via the Supplementary Data link.

As a representative example, we consider the computation of Ŵ s(0) = W s(0) ∩ SR. Any point in Ŵ s(0)
corresponds to a trajectory that starts on SR and ends at 0 as t → ∞. In the computation this trajectory
needs to be approximated by an orbit segment with a finite integration time. To this end, the Lorenz system is
rescaled by time to yield

u̇ =




u̇1
u̇2
u̇3


 = T




σ(u2 − u1)
%u1 − u2 − u1u3z

u1u2 − βu3


 , (3)

where the total integration time T is now a parameter. Consequently, any orbit segment satisfying (3) is given
over the unit time interval by

u = {u(τ) ∈ R3 | 0 ≤ τ ≤ 1} .

Hence, any boundary conditions are applied at u(0) and u(1), irrespective of the value of T . To compute Ŵ s(0)
we define the following two boundary conditions. At t = 0, we require

u(0) = δ (vs1 cos (2π ϑ) + vs2 sin (2π ϑ)) , (4)
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SR

C

0

p+

W s(0)

Ŵ s(0)

Figure 10: The organization of phase space for % = 28.0 inside the sphere SR with R = 70.709. Shown are 0,
p±, Wu(0), W s(p±), Ŵ s(0), C, and the part of W s(0), computed up to geodesic distance 162.5, that lies in the
region of negative y. See also the accompanying animation dko tochaos a03.gif available via the Supplementary
Data link.

where vs1 and vs2 are the two normalized stable eigenvectors at the origin, so that u(0) lies on a small ellipse (of
size δ) in Es(0) around 0; one speaks of a projection boundary condition [7, 8]. At t = 1, we require

||u(1)− (0, 0, %− 1) ||2= R, (5)

which restricts u(1) to lie on SR. For any value of ϑ there is an orbit segment u with an associated value of
T (which is negative in this case) that solves the 2PBVP (3)—(5). Hence, there is an entire one-parameter
solution family, which can be computed by continuation in ϑ (with T as a free parameter) once an initial solution
segment is known.

Since the z-axis lies in W s(0), we always know two solutions of the 2PBVP (3)–(4), namely, the two orbit
segments that start at (0, 0, % − 1 + R) and (0, 0, % − 1 − R), respectively. Therefore, it is convenient to set
vs1 = (0, 0, 1) and start the continuation from the known solution for ϑ = 0 given by

u(τ) =




0
0

(%− 1 +R) e−β (1−τ)T




with

T =
1

β
ln

(
δ

%− 1 +R

)
.
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When using the 2PBVP (3)–(4) for 1 < % < %hom we find that the intersection set Ŵ s(0) is traced out by u(0)
as a single closed curve as ϑ varies monotonically from ϑ = 0 to ϑ = 1; for example, see figure 3, where this
approach was used to compute Ŵ s(0) for % = 10.

5.1 Infinitely many arcs on SR

As discussed in section 2, as soon as %hom < %, the intersection set Ŵ s(0) consists of infinitely many curves that

are arcs whose ends accumulate on either one of two closed curves in Ŵ s(Γ±). Each such arc can be represented
as a family of orbit segments solving the 2PBVP (3)–(5), but it would be necessary to find starting orbits on
each arc in a systematic way. Moreover, the integration time T goes to (minus) infinity during the computation
as each of the limiting closed curves is approached along an arc.

To deal with these issues we perform a computation that selects only those parts of the arcs for which the
integration time of the associated orbit segments stays below a preset maximal integration time Tmax. This
is achieved by a single continuation run, where ϑ again varies from 0 to 1 as before, but where boundary
condition (5) that requires u(0) ∈ SR is replaced with the boundary condition

(Tmax − T ) (R− r) = ε. (6)

Here r :=||u(1)− (0, 0, %− 1) ||2 is the distance of u(1) to the centre of the sphere SR, and ε = 10−3 � 1 is an
accuracy parameter.

The effect of boundary condition (6) is the following. When the continuation of the 2PBVP (3) with (4)
and (6) is started from a known solution then we have r ≈ R while T is relatively small compared to Tmax.
Hence, boundary condition (6) is satisfied, because u(1) lies on SR in very good approximation. During the
continuation of a solution family the integration time T increases until T ≈ Tmax. The continuation then
proceeds with a solution family that satisfies (6), because T ≈ Tmax, allowing the point u(1) to retract into the

interior of SR; the associated orbit segments are not part of Ŵ s(0) and the points u(1) trace out a curve inside
SR until an orbit segment is reached for which u(0) again lies approximately on SR, that is r ≈ R. Then the

continuation again switches to the continuation of a curve in Ŵ s(0) while T < Tmax. This process repeats until

ϑ = 1; which and how many parts of the arcs in Ŵ s(0) are computed depends on the value of Tmax. The parts

of the single curve traced out by u(1) that represent curves in Ŵ s(0) are determined in a postprocessing step
that selects only those points that lie approximately on SR; we use the criterion that the corresponding orbit
segments have integration time T ≤ 99.9

100 Tmax.

Figure 11 illustrates such a continuation of 2PBVP (3) with (4) and (6) to find arc in Ŵ s(0) with % = 23,
where we used R = 69.947 and Tmax = 8. Panel (a) shows SR and the single curve traced out by u(1); this
curve is plotted in light blue when it lies on SR and dark blue when it lies in the interior of SR. Panels (b)
and (c) show r and T , respectively, plotted against the orbit segment number; there are a total of 644,723
continuation steps taken in this run while ϑ was varied from 0 to 1. Figure 11(b) highlights the orbit segments

with u(1) /∈ Ŵ s(0) with r < R = 69.947 (dark blue part of the graph) and figure 11(c) highlights the orbit

segments with u(0) ∈ Ŵ s(0) with T < Tmax = 8 (light blue part of the graph); compare with panel (a). Notice
that the switching between r ≈ R and T ≈ Tmax and vice versa is very rapid due to the fact that ε = 10−3

in (6) is small.

We remark that Ŵ s(Γ+) can also be computed with this approach. Here (4) is replaced by the equivalent
boundary condition that u(0) lies on a vector vs in the stable eigenbundle at a small distance from Γ+ and moves
over one (approximate) fundamental domain as the continuation parameter ϑ is varied from 0 to 1. A starting
orbit with u(1) ∈ SR is found by continuation in T for fixed ϑ = 0. Since Γ+ is orientable (has positive Floquet
multipliers), the intersection sets of both sides of W s(Γ+) with SR need to be computed; for %hom < % < %het
one side of W s(Γ+) leads to the infinitely many arcs in Ŵ s(Γ+), while the other side intersects SR in a single

closed curve. We remark that Ŵ s(Γ−) need not be computed separately, because it is the symmetric image of

Ŵ s(Γ+).

5.2 Infinitely many isolas on SR

The emergence of isolas is due to the interaction of the intersection curves in Ŵ s(0) and Ŵ s(Γ±) with the

tangency locus C on the sphere SR. The first curve to form isolas is the curve in Ŵ s(Γ−) that bounds the large
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Figure 11: Data from the single continuation run to compute Ŵ s(0) for % = 23.0 with SR = 69.947 and
Tmax = 8. Panel (a) shows the curve on SR traced out by u(1) of all 644,723 computed orbit segments; there

are 275 curve segments of Ŵ s(0) on SR (light blue) and 274 curve segment inside SR (dark blue). Panels (b)
and (c) show r and T , respectively, as a function of the orbit segment number. See also the accompanying
animation dko tochaos a04.gif available via the Supplementary Data link.
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Figure 12: The boundary curve of Ŵ s(Γ−) that forms the first isola on SR. Panel (a) shows the respective

first curve in Ŵ s(Γ−) ∩C in the (%, z)-plane. Panels (b)–(e) are stereographic projections of SR for x ≥ 0 that

show the corresponding set in Ŵ s(Γ−) at the detected moments of its transitions T1 at % = 17.4601, T2 at
% = 18.9236, S at % = 19.8530, and M at % = 21.4200.

region of B̂(p−) for % = 19.5 in figure 5(a). For % = 21.0 as in figure 5(b), B̂(p−) has two large regions, one of

which is bounded by an isola in Ŵ s(Γ−) — the light green closed curve. Notice that this isola is accumulated

by infinitely many other isolas in the sets Ŵ s(0) and Ŵ s(Γ±).
The key observation that allows us to compute the isolas in a convenient and systematic way is that they

are created by saddle transitions on the tangency locus C, where two local branches join and reconnect differ-
ently [32]. In particular, before the saddle transition the respective curve intersects C in four points, and after
the saddle transition, the isola intersects C in two points while the other part does not intersect C at all. Finally,
as % is increased further, the isola contracts to a single point on C, where it disappears in a minimax transition;
indeed the first isola in Ŵ s(Γ−) and the region of B̂(p−) that it bounds have disappeared for % = 23.0 as in
figure 5(c). The conclusion of this discussion is that the saddle transition and the minimax transition can be

detected as fold points (local maxima in %) when one continues in % the intersection points of curves in Ŵ s(0)

or Ŵ s(Γ±) with C. Such intersection points are defined by the additional boundary condition

f(u(1)) · (u(1)− (0, 0, %− 1)) = 0; (7)

here, u(1) ∈ SR and u(1)− (0, 0, %−1) is the normal direction to SR at u, which implies that the flow is tangent
to SR at u(1) as soon as (7) holds. Points satisfying this boundary condition can be found by monitoring
the left-hand side of (7) during a computation of the respective set of curves for fixed %. Any orbit segment
satisfying (7) thus detected can be followed in %, where ϑ and T are also free parameters. Since the tangency
locus depends on the radius R of SR, we allowed R to vary subject to the algebraic condition

% = a0 + a1R+ a2R
2 with (8)

a0 = 2204.380212505092, a1 = −68.520074141368, a2 = 0.533745104664.

This quadratic polynomial was determined by fitting data for the radius R as defined over the %-range considered
here.

Figure 12 shows the result of this calculation for the boundary curve of Ŵ s(Γ−) that forms the first isola
on SR. For example, consider the primary basin of p− for % = 19.5 in figure 5(a) and its four intersection

points with C. These four points in Ŵ s(Γ−) ∩ C lie on a single closed curve in the (%, z)-plane with four fold
points with respect to % — two local minima T1 and T2 and two local maxima S and M . As panels (b) and (c)

show, at T1 and T2 the curve in Ŵ s(Γ−) has quadratic tangencies with the curve C, so that immediately past
T2 there are four intersection points C; compare with figure 5(a). The saddle transition at S is illustrated in
figure 12(d); notice how the curve connects on C to give rise to an isola; compare with figure 5(b). Hence,
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Figure 13: Starting data for the computation of isolas in Ŵ s(0) and Ŵ s(Γ±). Panel (a) shows computed curves

in Ŵ s(0) ∩ C in the (%, z)-plane, and panel (b) also shows computed curves in Ŵ s(Γ±) ∩ C, which exist only
up to the EtoP heteroclinic connection at %het ≈ 24.0579.

the isola of this first curve in Ŵ s(Γ−) exists for 19.8530 < % < 21.4200, until it disappears in the minimax
transition M illustrated in figure 12(e). Notice, in particular, that the two branches that approach the point
M in figure 12(a) correspond to points on the isola; hence, the computation of the isola for any fixed value of
% where it exists can be started from this data.

Figure 13 shows all curves in Ŵ s(0)∩C and in Ŵ s(Γ±)∩C that can be computed with Tmax = 8. Panel (a)

shows the curves in Ŵ s(0) ∩C over a large range of %. Panel (b) shows the same curves and also the curves in

Ŵ s(Γ±)∩C over a smaller range of %. The curves in Ŵ s(Γ±)∩C do not extend beyond the EtoP heteroclinic

connection at %het ≈ 24.0579, since for %het < % the set Ŵ s(Γ±) no longer intersects the tangency locus C;
see figure 7(b). Notice that the computed curves in the (%, z)-plane exhibit the same Cantor structure as the
associated indecomposable continuum.

The isolas for a fixed value of % can now be computed from the data represented by figure 13; this technique
was used to obtain figures 5(b)–(d), 7(a), 8 and 10. Figure 14 illustrates the geometry in phase space behind a

single isola in Ŵ s(0) (dark blue closed curve) on SR for % = 28. A part of W s(0) inside SR is rendered as a

surface; also shown are all the computed curves in Ŵ s(0) that are not isolas. Only one isola is shown, which
arises from the thin strip of W s(0), formed by orbit segments that connect from near the origin to the isola; it is
bounded by the two cyan orbits that end exactly on the curve C. When followed from near the origin, where the
strip has almost no width, it lies on the initial part of W s(0) as it folds clockwise around to the back side of the
image; the strip then leaves the computed part W s(0) as it comes back to the front and folds counter-clockwise
around the left ‘arm’ of W s(0), after which it leaves SR (somewhere on the other side of sphere) and comes
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SR
C

0

⊗⊙ W s(0)

W s(0)

Ŵ s(0)

Figure 14: The part of W s(0) that is used to compute an isola in Ŵ s(0) (dark blue closed curve) on SR for
% = 28 with R = 70.709; also shown are the curve C with the symbols ⊗ and � indicating the direction of the
vector field, other curves in Ŵ s(0), and the part of W s(0) inside SR of total geodesic distance 100. See also
the accompanying animation dko tochaos a05.gif available via the Supplementary Data link.

back to the front on the outside of SR. The isola is formed as the strip dips back to intersect SR in a scoop-like
fashion. Hence, the part of W s(0) bounded by the isola lies again inside SR.

6 Overall characterization of transition and conclusions

Our findings regarding the transition from simple to chaotic dynamics in the Lorenz system when the parameter
% is increased can be formulated as follows; here the numbers 1–5 corresponds to the open %-intervals in figure 1
and the symbols P, hom, EtoP and H to the respective bifurcations.

Statement 1. (Transition to chaos)

1 Trivial dynamics. For 0 < % < 1 the origin 0 is a global attractor.

P Pitchfork bifurcation. At % = 1 the origin 0 undergoes a pitchfork bifurcation that creates the two stable
equilibria p− and p+, while 0 becomes a saddle point with one unstable eigenvalue.

2 Regular attracting dynamics. For 1 < % < %hom the phase space is divided into the two basins B(p−) and
B(p+) by the two-dimensional stable manifold W s(0). On any sufficiently large sphere SR the intersection

set Ŵ s(0) is a simple closed curve and B̂(p+) and B̂(p−) are topological disks, that is, simply connected.
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hom Homoclinic bifurcation. At % = %hom ≈ 13.9265 the one-dimensional unstable manifold Wu(0) lies in
W s(0) to form a pair of homoclinic orbits of 0.

3 Preturbulent regime. For %hom < % < %het the phase space is divided into the two basins B(p−) and B(p+)
by W s(0) and the stable manifold W s(S) of a hyperbolic set S. The accessible boundary of B(p+) is
W s(0) ∪W s(Γ+) and the accessible boundary of B(p−) is W s(0) ∪W s(Γ−). On any sufficiently large

sphere SR the intersection set Ŵ s(S) is an indecomposable continuum and the two basins B̂(p+) and

B̂(p−) are intermingled; moreover, Ŵ s(S) is the closure of Ŵ s(Γ+) ∪ Ŵ s(Γ−). As % ↘ %hom, the set

Ŵ s(S) converges to Ŵ s(0) in the Hausdorff metric and, as % ↗ %het, the set Ŵ s(S) converges to B̂(L)

in the Hausdorff metric; in particular, the Hausdorff dimension of Ŵ s(Γ+) ∪ Ŵ s(Γ−) and the Hausdorff

dimension of Ŵ s(0) increase continuously from 1 for % = %hom to 2 for % = %het.

EtoP Heteroclinic bifurcation. At % = %het ≈ 24.0579 the two branches of the one-dimensional unstable manifold
Wu(0) lie in W s(Γ+) and W s(Γ−), respectively, to form a pair of heteroclinic connections between 0 and
Γ±.

4 Turbulent regime with two attracting equilibria. For %het < % < %H there are three attractors: the stable
equilibria p± and a chaotic attractor L. The basins B(p+) and B(p+) are bounded by W s(Γ+) and
W s(Γ−), respectively, which are topological cylinders. The basin B(L) is bounded by W s(Γ+)∪W s(Γ−),

and W s(0) is dense in B(L). In particular, the Hausdorff dimension of the intersection sets Ŵ s(Γ±) on

SR is 1 and the Hausdorff dimension of Ŵ s(0) is 2.

H Hopf bifurcation. At % = %H ≈ 24.7368 the two periodic orbits Γ± disappear in a Hopf bifurcation of the
equilibra p±, which then become saddle foci with one stable eigenvalue.

5 Turbulent regime of the Lorenz attractor. For %H < % ≤ 28 the chaotic attractor L is the only attractor.
Its basin B(L) is the complement of p±∪W s(p±), and W s(0) is dense in the phase space R3. In particular,

the closure of Ŵ s(0) is SR.

This above statement is the result of an extensive investigation with highly accurate numerical methods that
present the state-of-the-art in invariant manifold computations. While our results concern the full space, they
connect perfectly with what is known for the one-dimensional Lorenz map. For example, the saddle hyperbolic
set S in the preturbulent regime corresponds to a Cantor set [46] of the Lorenz map. The indecomposable

continuum Ŵ s(S) on SR is, in fact, its manifestation throughout phase space. Similarly, stated properties of

the Hausdorff dimensions of the sets Ŵ s(Γ+) ∪ Ŵ s(Γ−) and Ŵ s(0) correspond to the fact that the Cantor set
of the Lorenz map changes in Hausdorff dimension from 0 at the homoclinic bifurcation to 1 at the birth of the
Lorenz attractor. Strictly speaking, our mathematical observations are mathematical conjectures. On the other
hand, the technique of continuing orbit segments defined via suitable two-point boundary problems comes with
estimates of convergence. A proof could, therefore, be achieved in principle by error estimates for these types
of computations to establish a specific topological property.

The characterization in Statement 1 of the properties of the global manifolds in the different regions and
the bifurcations between them is generic, meaning that the transition to chaos will be qualitatively the same
along any suitable path that crosses the homoclinic, EtoP and Hopf bifurcations. Indeed, for example, in the
(%, σ)-plane, these bifurcations form curves that delimit regions 1–5 with the respective global organization of
the phase space of the Lorenz system. Figure 15 shows the bifurcation diagram with the curves hom, EtoP
and H in a suitable part of the (%, σ)-plane. Preturbulence can be found in region 3, and a chaotic attractor in
regions 4 and 5.

We remark that the chaotic dynamics in the Lorenz system is no longer described by a one-dimensional map
once % is too large, the so-called foliation condition fails and there appear hooked horseshoes in the Poincaré
return map [2, 42]. As will be reported elsewhere, the boundary where the foliation condition fails can be
continued in all parameters with a boundary value problem setup; for σ = 10 it lies at % ≈ 31.01. Moreover,
there is a plethora of other phenomena for larger values of %, including windows of attracting periodic orbits
and period-doubling to chaos [38, 42] and families of codimension-two T-point bifurcations [10].

The investigation of the specific example of the Lorenz equations showcases, more generally, what can
be achieved with advanced methods for the computation of global invariant manifolds. We argue that these
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Figure 15: Bifurcation diagram of (1) in the (%, σ)-plane, showing the curves hom of homoclinic bifurcation of
0, EtoP of heteroclinic connection from 0 to Γ±, and H of Hopf bifurcation; regions 2 to 5 from Statement 1
are labelled and shaded.

methods have reached such a maturity that detailed topological and geometric statements can be made about
the overall organization of phase space. The Python drivers for the calculations presented here are available as
an AUTO demo file via the Supplementary Data link.

Indeed, other dynamical systems can be studied in the same spirit. Recent examples are the study of global
invariant manifolds near a Shilnikov homoclinic bifurcation in [5] and near codimension-two inclination and orbit
flip bifurcations [4]. Apart from such more theoretical studies, the computation of global invariant manifolds is
also an important tool for understanding concrete phenomena in applications, including basins of attraction in
neuronal cells [34], the emergence of mixed-mode bifurcations [11], and excitability of transient spikes [36].
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