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Summary. We review how a conjectural codimension-four unfolding of the full
family of cubic Liénard equations helped to identify the central singularity as an
excellent candidate for the organizing center that unifies different types of spiking
action potentials of excitable cells. This point of view and the subsequent numerical
investigation of the respective bifurcation diagrams led, in turn, to new insight on
how this codimension-four unfolding manifests itself as a sequence of bifurcation
diagrams on the surface of a sphere.

In 1952, Hodgkin and Huxley [10] formulated the first realistic mathematical
model describing the flow of electric current through the surface membrane of a
squid giant axon. Their system produces a sequence of single action potentials,
which are equivalent to the relaxation oscillations generated by a simple RCL-circuit
(involving a resistor, capacitor and inductor) such as the Van der Pol oscillator [16,
17]. Electrically excitable cells can exhibit many other bursting patterns, which
can loosely be interpreted as a series of spikes (action potentials) modulated by
a slower relaxation oscillation. The bursting is related to and controlled by ionic
currents through channels in the cell wall, which evolve on much slower time scales.
Rinzel [18, 19] was the first to explain such bursting patterns mathematically in
terms of an underlying bifurcation diagram with a hysteresis loop, which is traversed
by one or more slowly varying parameters; see also [11].

The bursting pattern one finds depends on the codimension-one bifurcations
that are encountered, that is, on the relative positions of saddle-node bifurcations,
Hopf bifurcations and homoclinic bifurcations that are crossed by the slowly varying
parameter. These occur naturally near codimension-two Bogdanov–Takens bifurca-
tions in two-parameter bifurcation diagrams of planar systems which, therefore, arise
as ‘minimal models’ of bursting patterns of action potentials. The classification of
bursting patterns was formalized further by studying the transitions between them
via parameter dependence of the underlying bifurcation diagram. In particular, the
organisation of the two-parameter bifurcation diagram under consideration changes
when the Bogdanov–Takens bifurcation itself undergoes a bifurcation, which is an
event of codimension three where a higher-order normal-form term vanishes. This
realization is behind the work of Bertram, Butte, Kiemel and Sherman [2], who pre-
sented many known bursting patterns as generated by horizontal parameter paths
through a two-parameter bifurcation diagram of the Chay–Cook model, which is a
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paradigm model that retains many physiological features and is representative for a
large class of realistic models of neuronal spiking. They realized that this bifurcation
diagram of the Chay–Cook model can be found as a slice in the three-parameter
unfolding of the degenerate Bogdanov–Takens singularity of focus type (or nilpotent
cusp of order three) — one of the classic codimension-three bifurcations, with a two-
dimensional center manifold, whose unfolding in planar vector fields was presented
in [6]; see already case (M) of Fig. 1. This point of view was made explicit in the
paper by Golubitsky, Josić and Kaper [7], who proposed a classification of bursting
patterns in terms of the smallest codimension of a singularity in whose unfolding
it can be generated (via a path of one or more slow parameters). In particular,
they showed that so-called fold/homoclinic or square-wave bursting, which involves
a hysteresis loop generated by a saddle-node and homoclinic bifurcation, requires an
underlying codimension-three singularity, such as the degenerate Bogdanov–Takens
singularity of focus type considered in [2].

It emerged that one type of bursting, called pseudo-plateau bursting — first
analyzed in [20] and also known as fold/subHopf bursting — could not be found
in the unfolding of this codimension-three singularity. This was puzzling because,
for biological reasons, it was considered to be related to fold/homoclinic bursting,
which is part of the patterns found in [2]. Recent work by Osinga, Sherman and
Tsaneva-Atanasova [15] showed that all the relevant types of bursting, including
fold/subHopf and fold/homoclinic bursting, can be found near a doubly degenerate
Bogdanov–Takens singularity, whose conjectural unfolding was presented in 1998 by
Khibnik, Krauskopf and Rousseau [12]. As a result, this codimension-four singularity
and its unfolding has enjoyed particular interest from mathematical biologists. Quite
amazingly, it emerged as a natural organizing center that unifies an entire class of
different bursting patterns of electrically excitable cells.

We now proceed in Sec. 1 by recalling the candidate unfolding of the doubly-
degenerate Bogdanov–Takens bifurcation from [12] and review in Sec. 2 the results
from [15] on the identification of fold/subHopf bursting near this singularity. Sec-
tion 3 then presents numerical results on the nature of the codimension-four un-
folding in terms of bifurcation diagrams on spheres. In particular, we show that all
topologically different bifurcation diagrams can be found readily on spheres of appro-
priate radii; this point of view is particularly helpful for identifying two-parameter
sections that feature certain bursting patterns of interest. We summarise and draw
some conclusions in Sec. 4.

1 Candidate four-parameter unfolding

In the final section of the paper [12] the four-parameter planar vector field{
ẋ = y,
ẏ = µ1 + µ2x+ µ3y + µ4xy − x3 − x2y,

(1)

was considered. It represents a candidate unfolding that provides a connection be-
tween two codimension-three bifurcations: the case µ4 = 0, which was the main
subject of study in [12], and the case of sufficiently large µ4, when (1) represents
a nilpotent focus of codimension three as studied in [6]. In fact, when the four pa-
rameters µi are allowed to vary over the reals, (1) represents the full family of cubic
Liénard equations.
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Fig. 1. Sketch of the suggested transition with increasing µ4 between codimension-
three unfoldings on a sphere in (µ1, µ2, µ3)-space of (1); the associated phase por-
traits can be found in Fig. 2. Reproduced with permission from [12]. c©1998 IOP
Publishing & London Mathematical Society. All rights reserved.

The point of view taken in [12] was to consider the transition of the three-
parameter bifurcation diagram of (1) in (µ1, µ2, µ3)-space as the parameter µ4 is
varied between these two known cases of µ4 = 0 and µ4 sufficiently large. The
respective three-parameter bifurcation diagram for a given value of µ4 can be rep-
resented conveniently on the surface of a sphere in (µ1, µ2, µ3)-space (due to cone
structure of the unfolding); it changes qualitatively on the sphere at non-generic
values of µ4, which include different types of codimension-three singularities. Im-
portantly, there are quite a number of events of codimension ‘one-plus-two’, where
a bifurcation curve moves over a codimension-two bifurcation point on the sphere.
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Fig. 2. Phase portraits of (1) in the open regions of the bifurcation diagrams in
Fig. 1. Reproduced with permission from [12]. c©1998 IOP Publishing & London
Mathematical Society. All rights reserved.

Figure 1 reproduces from [12] the respective series of sketched bifurcation di-
agrams (A) to (M) on the sphere (represented in stereographic projection), and
Fig. 2 reproduces the associated phase portraits. The starting point is the reflec-
tionally symmetric bifurcation diagram (A) for µ4 = 0; details and the proof of
correctness can be found in [12]. There is then a first event of codimension ‘one-
plus-two’, when the curve D of double (or saddle-node) limit cycles crosses over the
Bogdanov–Takens bifurcation point BTl, yielding bifurcation diagram (B). At (C)
there is a cuspidal loop formed by the separatrices of a Bogdanov–Takens point,
which then gives bifurcation diagram (D). The curve D then moves up and at (F)
there is a limit cycle of multiplicity four; it is unfolded by a swallow tail yield-
ing (G). In a sequence of events of codimension ‘one-plus-two’ the curve H of Hopf
bifurcation them moves past the Bogdanov–Takens bifurcations and beyond to give
bifurcation diagram (H), and then the degenerate Hopf point on H moves across the
saddle-node bifurcation curve Sl to result in (I). Then there is a cusp of order three,
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yielding (K), after which the cusp point on D moves over Sl to yield bifurcation
diagram (L). Finally, there is a homoclinic loop of order three and the final result is
bifurcation diagram (M), which is that of the nilpotent focus; compare with [1, 6].

This sequence of unfoldings (A) to (M) in Fig. 1 takes into account the informa-
tion available at the time, especially that on different codimension-three bifurcations.
The existence of the cuspidal loop had been studied in [22] and, except for the limit
cycle of multiplicity four, the stated codimension-three bifurcations had been noted
explicitly in [3]; moreover, rigorous numerics in [9, 14] showed the existence of a small
region with four limit cycles. The overall unfolding of (1) in Fig. 1 was constructed
abstractly in [12] in the spirit of a ‘minimal model’ and it is, hence, conjectural,
specifically in terms of the exact sequence of codimension-three and codimension
one-plus-two bifurcations.

2 Identification of fold/sub-Hopf bursting

Bertram, Butte, Kiemel and Sherman [2] considered a two-parameter slice near
the degenerate Bogdanov–Takens singularity of focus type, where the two saddle-
node curves are parallel vertical lines. This correpsonds to the (µ1, µ3)-plane with
µ2 = const < 0 and µ4 sufficiently large in (1); see case (M) in Fig. 1. The different
bursters were identified as different horizontal parameter paths in this parameter
plane, along which µ1 changes back and forth slowly.

In a similar spirit, Osinga, Sherman and Tsaneva-Atanasova [15] were guided
by the bifurcation diagrams in Fig. 1 and presented the fold/subHopf or pseudo-
plateau burster by a suitable horizontal path on the relevant bifurcation diagram on
the unit sphere in (µ1, µ2, µ3)-space for µ4 = 0.75. Figure 3 reproduces from [15] the
bifurcation diagram and the path on the unit sphere, as well as the time series and
phase-space representation of the ensuing fold/subHopf bursting. More specifically,
the path is parameterized by µ1 ∈ [−0.38, 0.38], with µ2 =

√
1− µ2

1 − µ2
3, µ3 = 0.1

and µ4 = 0.75. System (1) exhibits along this path the saddle-node bifurcation
of equilibria Sl, the homoclinic bifurcation L, the subcritical Hopf bifurcation H,
the other saddle-node bifurcation of equilibria Sl. For consistency of presentation,
images from [15] are reproduced here with parameters and notation as used in [12].
In fact, in [15] µ3 = ν, µ4 = b, and µ1 has the opposite sign; moreover, the curves
Sl, Sr, H, D, Ll, Lb and Lr here are referred to in [15] as SNl, SNr, Hl or Hr, SNP,
HCl, HCc and HCr, respectively. The relevant features of the bifurcation diagram on
the sphere in Fig. 3(a) correspond qualitatively to a situation in between cases (G)
and (H) in Fig. 1; a difference is that (G) and (H) feature a cusp bifurcation point
on the curve D of double limit cycles in Fig. 3.

The bursting pattern is generated by introducing a slow variable defined by

z(t) = −µ1(t) := −0.38 sin (ε t),

where the time-scale separation parameter ε = 0.1 > 0 is small (but not so small that
delayed bifurcation phenomena are encountered). The x-coordinate of system (1)
represents the membrane potential, and it exhibits the particular bursting pattern
known as fold/subHopf or pseudo-plateau bursting [20]; its time series is shown in
Fig. 3(b) together with the time series of the slow variable z(t) = −µ1(t).
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Fig. 3. Fold/subHopf bursting for system (1) as generated by a parameter path
on the unit sphere in (−µ1, µ2, µ3)-space with µ4 = 0.75. Panel (a) shows the bifur-
cation diagram and the path on the unit sphere. Panels (b) and (c) show the time
series and the underlying bifurcation diagram of the corresponding fold/subHopf
bursting pattern. Reproduced with permission from [15]. c©2012 American Institute
of Mathematical Sciences. All rights reserved.
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The biologically distinguishing aspects of fold/subHopf bursting are its relatively
short period and the small amplitudes of the spikes on the plateau [20]; see also [8,
13, 21]. In contrast to fold/homoclinic or square-wave bursting, the spikes are not
stable oscillations but rather transient oscillations that damp down to an upper
steady state. Hence, if the time-scale separation parameter is too small, the time
series will consists of relaxation oscillations instead. Fold/subHopf bursting only
arises if the contraction to the upper steady states is weak relative to the speed of
the slow variable.

Figure 3(c) shows the underlying periodic oscillation overlayed onto the bifurca-
tion diagram in the (z, x)-plane. As can be checked, fold/subHopf bursting cannot
be generated by any path on the two-parameter bifurcation diagram in [2].

Indeed, it has been argued in [15] that fold/subHopf or pseudo-plateau bursting
can only be generated in the vicinity of a codimension-four singularity, such as that
in system (1). However, the bursting patterns of fold/subHopf and fold/homoclinic
bursting are considered very similar and it is often hard to distinguish the two types
in experiments. Indeed fold/homoclinic or square-wave bursting was found in [2] near
the degenerate Bogdanov–Takens singularity of focus type, that is, in system (1) for
sufficiently large µ4. Hence, it seems natural to expect the existence of a parame-
ter path in the full four-dimensional parameter space of system (1) that generates
fold/homoclinic bursting. Furthermore, it should be possible to deform and/or move
this path such that the type of bursting changes to fold/subHopf bursting. In order
to find such a transition, the four-dimensional (µ1, µ2, µ3, µ4)-space of system (1) was
explored in [15] by setting µ4 = 0.75 and considering horizontal or vertical sections
chosen appropriately relative to the bifurcation diagram on the sphere. The section
for µ2 = 0.0675 (not shown; see [15]) gives an associated bifurcation diagram in the
(µ1, µ3)-plane that is exactly that near the degenerate Bogdanov–Takens singularity
of focus type presented in [2].

Furthermore, the choice µ3 = −0.09 gives a bifurcation diagram in the (−µ1, µ2)-
plane that features paths for both fold/subHopf and fold/homoclinic bursting, thus,
providing the sought connection between the two. This is illustrated in Fig. 4 repro-
duced from [15] (with −µ1 along the horizontal axis, owing to the mentioned sign
change). Panel (a) shows the section for µ3 = −0.09 relative to the unit sphere for
µ4 = 0.75; panel (b) shows the corresponding bifurcation diagram in the (−µ1, µ2)-
plane together with the paths for fold/subHopf and fold/homoclinic bursting; and
panel (c) is an enlargement to highlight the transition to fold/homoclinic burst-
ing. An important observation in Fig. 4(b) is the presence of two codimension-two
Bogdanov–Takens points, denoted BTr and BTfar

r , on the saddle-node bifurcation
curve SNr. The point BTfar

r has the same local unfolding as BTr in Fig. 3, but the
Hopf bifurcation in the local unfolding of BTr in Fig. 4(b) is supercritical. This
implies that the bifurcation diagram on a sphere of sufficiently small radius R� 1
in Fig. 4(a) is, in fact, topologically that near the degenerate Bogdanov–Takens
singularity of focus type, that is, case (M) of Fig. 1.

3 Transitions of bifurcation diagram on a sphere

The analysis in [15] started with the hypothesis that there exist a bifurcation di-
agram on the unit sphere for a suitable choice of µ4 in system (1) such that both
fold/subHopf and fold/homoclinic bursting could be generated by paths on this
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sphere. As we argued above, this is not actually the case. Moreover, these initial in-
vestigations indicated that the transition from case (A) to case (M) does exist, but
that the sequence of codimension-three bifurcations on a sphere in (µ1, µ2, µ3)-space
is not exactly as proposed in [12] and shown in Fig. 1. In particular, it seems that
there is no cusp point on the curve D of double limit cycles that disappears in a
codimension-three singularity on Lb in between case (L) and case (M) in Fig. 1.

As was mentioned at the end of Sec. 2, the bifurcation diagram on the sphere
changes topologically when its radius is decreased. We now consider this aspect of
the codimension-four unfolding in more detail. As was already known from [12], for
sufficiently large µ4 the bifurcation diagram on a sphere with a fixed radius is that of
the nilpotent focus of codimension three as presented in [6]. Here sufficiently large µ4

means sufficiently large relative to µ1, µ2 and µ3. Hence, for any given value of µ4 > 0
this is satisfied on any sphere with sufficiently small radius R =

√
µ2
1 + µ2

2 + µ2
3,

which has the following interesting consequence. Suppose one considers a sphere of
a given fixed radius, say, with R = 1, with the bifurcation diagram of case (A) in
Fig. 1 on it. As soon as µ4 > 0 then bifurcation diagram (M) of the nilpotent focus
of codimension three can already be found inside this given sphere on a sufficiently
small sphere close to the central singularity! This observation means, in particular,
that one finds the entire transition of bifurcation diagrams from case (A) to case (M)
on nested spheres when one reduces the radius R down to zero.

Of course, it is also natural to keep the radius of the chosen sphere of interest
constant, say, again at R = 1. As µ4 is increased from 0, case (M) can be found on
larger and larger spheres until it can be found on the chosen sphere. Hence, the entire
transition is ‘pushed through’ the chosen sphere. In other words, increasing µ4 while
considering a sphere of a given radius is equivalent in this sense with decreasing the
radius of the sphere considered while keeping µ4 > 0 constant.

Another consequence of this observation is the following. For µ4 = 0 the bifurca-
tion diagram in (µ1, µ2, µ3)-space has cone structure, so is topologically the same on
any sphere. For µ4 > 0 it also has cone structure, but only in a small neighborhood
of the origin, meaning that one finds case (M) of Fig. 1, the unfolding of the nilpo-
tent focus of codimension three, on any sufficiently small sphere. Any of the other
bifurcation diagrams (B) to (L) in Fig. 1, on the other hand, do not correspond
to bifurcation diagrams in (µ1, µ2, µ3)-space that have cone structure. In particular,
this means that the exact sequence of transitions one finds from case (A) to case (M)
depends on the properties of the family of closed convex surfaces around the origin
(such as spheres, ellipses or parallelepipeds).

Since it is arguably the most natural choice, we consider in what follows the
bifurcation diagram on a sphere in (µ1, µ2, µ3)-space, where we concentrate on the
transition from about case (G) to case (M) in system (1); this corresponds to the
transition from the sphere in Figs. 3, where fold/subHopf bursting was found, to the
limiting case of the degenerate Bogdanov–Takens singularity of focus type.

We first present in Fig. 5 topological sketches of this transition, as observed
numerically via the computation of bifurcation diagrams on spheres that will be
presented next. In the topoogical sketches in Fig. 5 the projections are reflected
with respect to the vertical axis when compared with Fig. 1; in other words, the
view is from outside the sphere, so that the projections better resemble the bifurca-
tion diagrams on the sphere shown in Figs. 3 and 4, and in similar figures below. The
starting point in Fig. 5 is case (G’), which is as the bifurcation diagram in Fig. 3(a).
Case (G’) lies ‘in between’ cases (G) and (H) in Fig. 1 as far as the position of
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Fig. 5. Transition for increasing µ4 as found numerically for system (1); shown are
projections of unfoldings on a sphere in (µ1, µ2, µ3)-space for fixed µ4.

the Hopf curve H is concerned, but notice the absence of a cusp point on curve D.
The curve H then crosses the end points of the curves Lb and Lr on Sl, yielding
cases (H’) and (I’) of Fig. 5, respectively. Subsequently, there is a sign-change in
the higher-order terms of the Bogdanov–Takens bifurcation BTr to give case (K’),
where the relative position of the curves H changes locally near BTr. An impor-
tant aspect is that there are now three degenerate Hopf bifurcation points on the
curve H. The one inside the area bounded by Sl, and Sr then moves through Sl to
give case (K”). The associated curve D of double periodic orbits then disappears
when the respective two degenerate Hopf points that bound it come together and
disappear; this codimension-three doubly degenerate Hopf point does not seem to
involve additional bifurcations, but its further analysis is beyond the scope of this
contribution. The final result is case (M), the bifurcation diagram of the degenerate
Bogdanov–Takens singularity of focus type.
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Fig. 7. The bifurcation diagrams of system (1) for µ4 = 1 on the nested spheres in
(µ1, µ2, µ3)-space of radius R = 1, R = 0.7, R = 0.5 and R = 0.2.

Figure 6 presents numerical evidence of the transition as images of computed
bifurcation diagrams of system (1) for µ4 = 1 on spheres of radius R = 1, R =
0.7, R = 0.5 and R = 0.2; these computations were performed with the packages
MatCont [4] and Auto [5]. The bifurcation diagram in Fig. 6(a) for R = 1 is as
case (H’) in Fig. 5. Figure 6(b) shows the bifurcation diagram on the sphere of radius
R = 0.7, where the Hopf curve H has dipped below the end point of Lr on Sl, as
is sketched in case (I’) of Fig. 5. Figure 6(c) for R = 0.5 is past the type change of
the Bogdanov–Takens point BTr; moreover, the associated curve D is already quite
short and lies entirely outside the region bounded by Sl, and Sr, as in case (K”) of
Fig. 5. Finally, for R = 0.2, as shown in Figure 6(d), we find case (M).

For illustration purposes, each sphere in Fig. 6 was rendered at the same size,
irrespective of its actual radius. Figure 7, on the other hand, shows how the respec-
tive bifurcation diagrams are nested by rendering all spheres in (µ1, µ2, µ3)-space in
one and the same image. Also shown is the vertical line of cusp bifurcations and the
curve of Bogdanov–Takens bifurcations, which meet in a tangency at the origin, that
is, at the nilpotent focus of codimension three (since µ4 = 1 > 0). Taken together,
Fig. 6 and Fig. 7 constitute numerical evidence in support of the revised transition
presented in Fig. 5.
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4 Conclusions

Unfoldings of codimension-four singularities of vector fields are sometimes seen as
quite esoteric. The conjectural unfolding of codimension four that was originally
presented in 1998 was almost a bit of an afterthought of the paper in [12], which
deals with a codimension-three singularity that gives rise to symmetric bifurcation
diagrams in planar sections nearby that had been found in numerous applications.
Quite a number of years later it provided the solution, found 2012 in [15], to the ques-
tion of where pseudo-plateau or fold/subHopf bursting can be found and whether
and how it is connected to fold/homoclinic bursting.

The important aspect here is that the conjectural unfolding was presented in [12]
as a sequence of bifurcation diagrams on spheres that constitutes the transition from
the codimension-three unfolding considered in [12] to the well-known degenerate
Bogdanov–Takens bifurcation of focus type that was known from [6]. As a result
of the renewed interest in this transition we realized that the transition is, in some
sense, not so well defined. More specifically, the bifucation diagrams found in the
transition on convex surfaces (such as spheres or ellipses) are not uniquely defined
due to the lack of cone structure. On the other hand, it is quite natural to consider
spheres in parameter space, in which case an amended sequence of transitions can
be determined with the help of numerical continuation tools. Overall, the different
bifucation diagrams can be encountered on nested spheres as soon as µ4 > 0 in (1),
rather like Russian dolls. As µ4 is increased they emerge one-by-one an a chosen
fixed sphere, such as the unit sphere in (µ1, µ2, µ3)-space.

We presented here only the part of the codimension-four unfolding that is rel-
evant for generating the different types of bursting action potentials considered
in [15]. Indeed, the complete transition between the codimension-three singularity
for µ4 = 0 and the degenerate Bogdanov–Takens bifurcation of focus type can be
represented in the same spirit in terms of bifurcation diagrams on nested spheres
for µ4 = 1. The overall sequence of bifurcation diagrams, to be presented elsewhere,
will shed light on the manifestation of the relevant bifurcations known from [12] and
the study [3] of an alternative parameterization.
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